随机过程-习题解答 电子科技大学
随机过程习题和答案

一、设二维随机变量 ( ,) 的结合概率密度函数为:试求:在时,求。
解:=当时,=设失散型随机变量X 听从几何散布:试求的特点函数,并以此求其希望与方差。
解:因此:袋中有一个白球,两个红球,每隔单位时间从袋中任取一球后放回,对每一个确立的 t对应随机变量t假如对 t时获得红球X (t )3e t假如对 t时获得白球试求这个随机过程的一维散布函数族 .设随机过程,此中是常数,与是相互独立的随机变量,听从区间上的均匀散布,听从瑞利散布,其概率密度为试证明为宽安稳过程。
解:( 1)与没关(2),因此(3)只与时间间隔有关,因此为宽安稳过程。
设随机过程X (t ) U cos2t,此中 U 是随机变量,且E(U ) 5, D (U ) 5.求:(1)均值函数;(2)协方差函数;(3)方差函数 .设有两个随机过程X (t ) Ut 2, Y(t ) Ut 3 ,此中 U 是随机变量,且 D (U ) 5.试求它们的互协方差函数。
设 A, B是两个随机变量, 试求随机过程X (t) At 3B,t T ( ,)的均值函数和自有关函数.若 A, B互相独立,且 A ~ N (1,4), B ~ U (0,2),则m X(t)及R X(t1, t2)为多少?一队学生按序等候体检。
设每人体检所需的时间听从均值为 2 分钟的指数散布而且与其余人所需时间互相独立, 则 1 小时内均匀有多少学生接受过体检在这 1 小时内最多有40 名学生接受过体检的概率是多少(设学生特别多,医生不会安闲)解:令 N (t) 表示 (0, t) 时间内的体检人数,则N (t ) 为参数为 30 的poisson 过程。
以小时为单位。
则 E(N(1)) 30。
40 (30) k e 30。
P(N (1) 40)k!k 0在某公共汽车起点站有两路公共汽车。
乘客乘坐 1,2 路公共汽车的强度分别为 1,2,当 1 路公共汽车有N1人乘坐后出发; 2 路公共汽车在有N2人乘坐后出发。
(完整word版)随机过程试题及答案

1.设随机变量X 服从参数为λ的泊松分布,则X 的特征函数为 。
2.设随机过程X(t)=Acos( t+),-<t<ωΦ∞∞ 其中ω为正常数,A 和Φ是相互独立的随机变量,且A 和Φ服从在区间[]0,1上的均匀分布,则X(t)的数学期望为 。
3.强度为λ的泊松过程的点间间距是相互独立的随机变量,且服从均值为 的同一指数分布。
4.设{}n W ,n 1≥是与泊松过程{}X(t),t 0≥对应的一个等待时间序列,则n W 服从 分布。
5.袋中放有一个白球,两个红球,每隔单位时间从袋中任取一球,取后放回,对每一个确定的t 对应随机变量⎪⎩⎪⎨⎧=时取得白球如果时取得红球如果t t t e tt X ,,3)(,则 这个随机过程的状态空间 。
6.设马氏链的一步转移概率矩阵ij P=(p ),n 步转移矩阵(n)(n)ijP (p )=,二者之间的关系为 。
7.设{}n X ,n 0≥为马氏链,状态空间I ,初始概率i 0p P(X =i)=,绝对概率{}j n p (n)P X j ==,n 步转移概率(n)ij p ,三者之间的关系为 。
8.设}),({0≥t t X 是泊松过程,且对于任意012≥>t t 则{(5)6|(3)4}______P X X ===9.更新方程()()()()0tK t H t K t s dF s =+-⎰解的一般形式为 。
10.记()(),0n EX a t M M t μ=≥→∞-→对一切,当时,t +a 。
二、证明题(本大题共4道小题,每题8分,共32分)P(BC A)=P(B A)P(C AB)。
2.设{X (t ),t ≥0}是独立增量过程, 且X (0)=0, 证明{X (t ),t ≥0}是一个马尔科夫过程。
3.设{}n X ,n 0≥为马尔科夫链,状态空间为I ,则对任意整数n 0,1<n l ≥≤和i,j I ∈,n 步转移概率(n)()(n-)ij ik kjk Ip p p l l ∈=∑ ,称此式为切普曼—科尔莫哥洛夫方程,证明并说明其意义。
随机过程-平稳过程

FX () S() , d X
随机过程——西安电子科技大学数学系 冯海林
对平稳时间序列有相类似的结果.
设X={Xn, n=0, ±1, ±2,…}是平稳时间序列,则其 相关函数可以表示为 1 jm R(m) X e dFX (), m 0, 1, () 2
1 t T s( )s( )d T t
只与 有关系.
所以X是平稳过程.
随机过程——西安电子科技大学数学系 冯海林
例2 对复随机过程 Z t=Xt +jYt 若mZ(t)是复常数, RZ(t,t+τ )=RZ(τ ),则称 Z={Zt, -∞<t<+ ∞}为复平稳过程. 设Ak和ω k分别是实随机变量和实常数(k=1,2…,n),
随机过程西安电子科技大学数学系冯海林平稳过程的谱分解平稳过程的谱分解随机过程西安电子科技大学数学系冯海林平稳过程的谱分解定理551是均方连续的平稳过程则其相关函数可以表示为上非负有界单调不减右连续且f随机过程西安电子科技大学数学系冯海林所以f是某个随机变量w的特征函数即存在分布函数g随机过程西安电子科技大学数学系冯海林随机过程西安电子科技大学数学系冯海林称函数f为平稳过程x相关函数的谱展开式或谱分解式
k 1
E[Ak ]=0时,上式与t无关.
随机过程——西安电子科技大学数学系 冯海林
R(t , t ) E[Zt Z t ] Z E[ Ak e jk t Ak e jk ( t ) ]
k 1 k 1 n n
= E[ Ak Al ]e j (l k )t e jl
令
Zt Ak e
k 1
n
jk t
通信原理辅导及习题解析

通信原理辅导及习题解析(第六版)第3章随机过程本章知识结构及内容小结[本章知识结构][知识要点与考点]1. 随机过程的基本概念 (1)随机过程的定义随机过程可从样本函数与随机变量两种角度定义。
第一,随机过程是所有样本函数的集合;第二,随机过程可以看作实在时间进程中处于不同时刻的随机变量的集合。
(2)随机过程的分布函数 ① n 维分布函数12121122(,,,;,,,){(),(),,()}n n n n n F x x x t t t P t x t x t x ξξξ=≤≤≤② n 维概率密度函数1212121212(,,,;,,,)(,,,;,,,),,,n n n n n n nF x x x t t t f x x x t t t x x x ∂=∂∂∂维数n 越大,对随机过程统计特征的描述就越充分。
(3)随机过程的数字特征 ① 均值(数学期望)1[()](,)()E t xf x t dx a t ξ∞-∞==⎰均值表示随机过程的样本函数曲线的摆动中心。
② 方差2222[()]{()[()]}[()]()()D t E t E t E t a t t ξξξξσ=-=-=方差表示随机过程在时刻t 相对于均值的偏离程度。
③自相关函数1212(,)[()()]R t t E t t ξξ=自相关函数目的是为了衡量在任意两个时刻上获得的随机变量之间的关联程度。
④协方差函数1211221212(,){[()()][()()]}(,)()()B t t E t a t t a t R t t a t a t ξξ=--=-协方差函数对随机过程在任意两个时刻上的随机变量与各自均值的差值之间的相关联程度进行描述。
⑤互相关函数,1212(,)[()()]R t t E t t ξηξη=互相关函数用来衡量两个随机过程之间的相关程度。
2. 平稳随机过程 (1)定义 ①严平稳随机过程若一个随机过程()t ξ的任意有限维分布函数与时间起点无关,则称为严平稳的,即:()()12121212,,,,,,,,,,n n n n n n f x x x t t t f x x x t t t =+∆+∆+∆②宽平稳随机过程若一个随机过程()t ξ的均值为常数,自相关函数仅于时间间隔21t t τ=-有关,则称为宽平稳,即:()()()12, ,E t a R t t R ξτ==⎡⎤⎣⎦(2)各态历经性若随机过程的任一实现,经历了随机过程的所有可能状态,则称其是各态历经的,即随机过程的数字特征,可以由其任一实现(样本函数)的数字特征来代表。
随机过程习题及部分解答【直接打印】

随机过程习题及部分解答习题一1. 若随机过程()(),X t X t At t =-∞<<+∞为,式中A 为(0,1)上均匀分布的随机变量,求X (t )的一维概率密度(;)X P x t 。
2. 设随机过程()cos(),X t A t t R ωθ=+∈,其中振幅A 及角频率ω均为常数,相位θ是在[,]ππ-上服从均匀分布的随机变量,求X (t )的一维分布。
习题二1. 若随机过程X (t )为X (t )=At t -∞<<+∞,式中A 为(0,1)上均匀分布的随机变量,求12[()],(,)X E X t R t t2. 给定一随机过程X (t )和常数a ,试以X (t )的相关函数表示随机过程()()()Y t X t a X t =+-的自相关函数。
3. 已知随机过程X (t )的均值M X (t )和协方差函数12(,),()X C i t t ϕ是普通函数,试求随机过程()()()Y t X t t ϕ=+是普通函数,试求随机过程()()()Y t X t t ϕ=+的均值和协方差函数。
4. 设()cos sin X t A at B at =+,其中A ,B 是相互独立且服从同一高斯(正态)分布2(0,)N σ的随机变量,a 为常数,试求X (t )的值与相关函数。
习题三1. 试证3.1节均方收敛的性质。
2. 证明:若(),;(),X t t T Y t t T ∈∈均方可微,a ,b 为任意常数,则()()aX t bY t +也是均方可微,且有[()()]()()aX t bY t aX t bY t '''+=+3. 证明:若(),X t t T ∈均方可微,()f t 是普通的可微函数,则()()f t X t 均方可微且[()()]()()()()f t X t f t X t f t X t '''=+4. 证明:设()[,]X t a b 在上均方可微,且()[,]X t a b '在上均方连续,则有()()()b aX t dt X b X a '=-⎰5. 证明,设(),[,];(),[,]X t t T a b Y t t T a b ∈=∈=为两个随机过程,且在T 上均方可积,αβ和为常数,则有[()()]()()b b baaaX t Y t dt X t dt Y t dt αβαβ+=+⎰⎰⎰()()(),b c baacaX t dt X t dt X t dt a c b =+⎰⎰⎰≤≤6. 求随机微分方程()()()[0,](0)0X t aX t Y t t X '+=∈+∞⎧⎨=⎩的()X t 数学期望[()]E X t 。
随机过程-习题解答电子科技大学陈良均

在独立同分布的随机变量序列中,当样本量趋于无穷时,无论总体分布是什么,样本均 值的分布趋近于正态分布。
05
随机过程的估计与预测
参数估计
矩估计法
利用随机过程的数学期望、方差等矩特征,通过 样本矩来估计参数。
最小二乘估计法
通过最小化误差的平方和来估计参数,常用的有 普通最小二乘法和加权最小二乘法。
泊松过程
总结词
泊松过程是一种随机过程,其中事件 的发生是相互独立的,且具有恒定的 发生率。
详细描述
泊松过程描述了在单位时间内发生事 件的次数,其中事件的发生是相互独 立的,且具有恒定的发生率。这种过 程在物理学、工程学、统计学等领域 有广泛应用。
随机漫步
总结词
随机漫步是一种随机过程,其中每一步 都是随机的,且与前一步无关。
信号的滤波与预测
要点一
信号滤波
利用滤波器对随机信号进行处理,提取出所需频率成分, 抑制噪声和其他干扰。
要点二
信号预测
基于随机过程理论,利用历史数据对未来信号进行预测, 提高信号处理的准确性和可靠性。
信号的检测与估计
信号检测
在存在噪声和干扰的情况下,利用随机过程理论,检测 出有用的信号,提高信号检测的灵敏度和抗干扰能力。
参数估计
通过分析随机信号的统计特性,估计出信号的某些参数 ,如频率、相位等,为进一步处理和应用提供依据。
感谢您的观看
THANKS
06
随机过程在信号处理中的应 用
信号的随机模型化
信号的随机模型化
01
将信号表示为随机过程,以便更好地理解和分析信号的特性。
随机信号的统计特性
02
研究随机信号的均值、方差、相关函数等统计特性,以描述信
随机过程答案2

⎪2. (1) 求参数为(p , b )的Γ 分布的特征函数,其概率密度为⎧ b p p (x ) = ⎪ x p -1e -bx , x > 0 b > 0, p 是正整数(2)求其期望和方差。
⎨Γ( p ) ⎪⎩0 x ≤ 0(3)证明对具有相同参数b 的Γ 分布,关于参数 p 具有可加性。
解 (1) 首先,我们知道Γ 函数有下面的性质:Γ(p ) = (p -1)!根据特征函数的定义,有f X (t ) = E [e jtX]= ⎰∞ejtxp (x )dx = ⎰e jtxb p Γ(p ) x p -1e -bx dx= ⎰0bpΓ( p ) -∞ 0x p -1e -(b - jt )x dx =b p 1p -1 -(b - jt )x ∞ b p p - 1 ∞ p -2 -(b - jt )x Γ(p ) - (b - jt ) x e0 + Γ( p ) (b - jt ) ⎰0 x e dx = b p p - 1 ⎰∞ x p -2 e -(b - jt )x dx Γ(p ) (b - jt ) 0 ==b p ( p - 1)! ∞ 0 -(b - jt )x Γ(p ) (b - jt )p -1 ⎰0 x e dx= b p ( p - 1)! = ⎛ b ⎫ Γ(p ) (b - jt )p b - jt ⎪ ⎝ ⎭所以⎛ b ⎫ pf X (t ) = ⎪b - jt ⎝ ⎭(2)根据期望的定义,有∞∞ p]⎰ b ⎰ ∞( )∞b pp -1 -bxb p∞p -bxm X = E [X ] = ⎰-∞ xp x dx = ⎰0 x Γ(p ) x e dx = Γ( p ) ⎰0 x e dx = b p 1 p -bx ∞ b p p ∞p -1 -bxΓ( p ) - b x e 0 + Γ(p ) b ⎰0 xe dx = p ⎰∞ bp -1 -bx = p ⎰∞ ( ) = p b 0 Γ( p ) x 类似的,有e dx p x dx b -∞ bE [X 2= ∞x 2-∞ p (x )dx = ⎰0 2b px Γ(p ) x p -1e -bx dx = p Γ(p ) ⎰0x p +1e -bx dx b p 1 p +1 -bx ∞ b p ( p + 1) ∞ p -bx= Γ( p ) - b x e 0 + Γ(p ) b ⎰0 x e dx= b p Γ( p ) =(p + 1) b 0 x p e -bx dx= (p + 1)p ∞ b pp -1 -bx= ( p + 1)p ∞ ( )b 2⎰0=(p + 1)p b 2Γ(p ) xe dxb 2⎰-∞p x dx所以, X 的方差为D X =E [X 2]- m 2= ( p + 1)p b 2⎛ p ⎫2⎪ b= p b 2⎝ ⎭ (3)p ∞∞ ∞ X -M M M M ∑ ∑ i =1 k =1 i =1 k =1i =1 k =1i =1 k =15. 试证函数 ( ) =e jt (1 - e jnt ) 为一特征函数,并求它所对应的随机变f tn (1 - e jt )量的分布。
电子科大 应用随机过程及应用 (陈良均 朱庆棠)第三章作业

(ii) 分解 对于参数为λ 对于参数为λ的Poisson过程, 过程,假设发生的每一个事件 独立的以概率做了记录, 独立的以概率做了记录,未做记录的概率为1-p。令 N1(t)是到t为止做了记录的事件数, 为止做了记录的事件数,而N2(t)是未做记录 的事件数, 的事件数,则{N1(t);t ≥0}和 {N2(t);t ≥0}分别是具 有参数pλ 和(1-p)λ的独立Poisson过程。 过程。
相互独立。 相互独立。而且
P ( N (t ) = k ) = ∑ P ( N 1 (t ) = j, N 2 (t ) = k − j ) = ∑ P ( N 1 (t ) = j )P ( N 2 (t ) = k − j )
j=0 j=0 j k− j k k
(λ t ) (λ t ) = ∑ 1 e − λ1 t 2 e −λ2t j! ( k − j )! j=0
[
]
( )
( )
(
)
ρ=
(
)(
)
一维概率密度函数
一维特征函数 二维概率函数 f (s , t , x , y ) = −
[X − m (t )]2 t ∈ T 1 exp − 2 D (t ) 2 λ D (t ) x∈ R t∈T ϕ (t , u ) = exp im (t )u − 1 D (t )u 2 2 x∈ R f (t , x ) =
i i i =1
n
X (t )为正态分布 m X (t ) = E [X (t )] = E [ξ t + W (t )] = E (t )E (ξ ) + E [W (t )] = 0
(t > s ) E [X 2 (t )] = E [ξ 2 t 2 + W (t )W (s ) + W (t )ξ s + W (s )ξ t ] = ts + s σ 2 D (t ) = t 2 + t 2σ 2 D (s ) = s 2 + s 2 σ 2 C (s , t ) = C (t , s ) = R (t , s ) = ts + s σ 2