气动阀原理和操作介绍

合集下载

气动阀门工作原理图解说明

气动阀门工作原理图解说明

气动阀门工作原理图解说明
气动阀门的工作原理如下:
1. 气源: 气动阀门的工作原理主要依赖于气源。

气源通常是一个气缸,里面储存着压缩空气或其他气体。

2. 控制器: 控制器用来控制气源的供应和关闭。

它可以是手动操作的开关,也可以是自动控制器,如电磁阀。

3. 气缸: 气缸是气动阀门的核心部件。

它通常由一个活塞和一个活塞杆组成。

当气源供气时,气缸内的压缩空气推动活塞移动。

4. 阀门: 阀门连接在气缸的出口处。

它可以是旋转阀,也可以是直线阀。

当气源供气时,阀门打开,允许流体通过。

当气源关闭时,阀门关闭,阻止流体通过。

5. 动力传动: 气缸的活塞杆通过动力传动装置连接到阀门,将气源的动力传递给阀门,以实现开启或关闭阀门。

通过控制器和气源的供应,可以实现对气动阀门的控制。

当控制器将气源供气时,气体流经阀门,并允许流体通过。

当控制器关闭气源时,阀门关闭,阻止流体通过。

这种工作原理使得气动阀门在自动化系统中得以广泛应用,可以用于控制流体介质的流量、压力和方向。

气动球阀的工作原理

气动球阀的工作原理

气动球阀的工作原理
气动球阀的工作原理是基于气动执行器对球阀的控制,以实现开启和关闭流体通道的功能。

下面将详细介绍气动球阀的工作原理:
1. 结构组成:气动球阀主要由球体、阀座、阀杆、阀体和气动执行器组成。

球体是阀门的关键部件,可以通过旋转来实现开启和关闭流体通道。

阀座是球体的密封垫块,可以确保阀门在关闭时完全密封,防止流体泄漏。

阀杆用于连接球体和气动执行器,将气动执行器的运动转化为球体的旋转运动。

2. 工作原理:当气动执行器的信号输入时,气动执行器内的活塞会根据信号的控制,实现推动或拉动阀杆的运动。

阀杆的运动会将球体旋转到相应的位置,从而开启或关闭阀门。

开启阀门时,球体旋转将流体通道与阀体内的出口对齐,流体可以顺畅地通过阀门。

关闭阀门时,球体旋转使流体通道与阀体内的出口脱离对齐,阻止流体的通过,从而实现封闭。

3. 密封性能:气动球阀的密封性能取决于球体与阀座之间的接触。

当阀门关闭时,球体的表面与阀座紧密接触,形成密封状态,以阻止流体泄漏。

同时,球体的表面通常涂有特殊的密封材料,以提高密封性能。

4. 控制方式:气动球阀可以通过手动控制、电动控制或气动控制。

其中,气动控制是最常见的一种方式,通常通过气动执行器的信号输入,由气动执行器控制阀杆的运动,从而实现对阀门的控制。

综上所述,气动球阀的工作原理是通过气动执行器对球体的控制,实现对阀门的开启和关闭。

通过控制气动执行器的信号输入,推动或拉动阀杆的运动,从而使球体旋转到相应的位置,实现开关通道,并通过球体与阀座的接触达到密封的效果。

这种工作原理使气动球阀在工业领域中得到广泛应用。

气动阀的工作原理

气动阀的工作原理

气动阀的工作原理
气动阀的工作原理是通过气动执行器将气动信号转换为机械运动,从而实现对流体介质的控制。

具体工作原理如下:
1. 气动信号传递:气动信号由控制系统产生,并通过气源将压缩空气送入气动执行器。

2. 转换运动:在气动执行器内部,压缩空气进入气缸,推动活塞运动。

活塞连接着阀芯,当活塞运动时,阀芯也跟随移动。

3. 阀孔控制:当阀芯移动时,它可以与阀体上的阀孔进行连通或断开操作。

连通时,阀芯与阀孔对齐,流体介质可以通过;断开时,阀芯与阀孔不对齐,流体介质无法通过。

4. 流体控制:通过控制气压信号的变化,可以控制活塞位置和阀芯与阀孔的对应关系,从而实现对流体介质的控制。

比如,若阀芯与阀孔连通,则流体可以顺利通过;若阀芯与阀孔断开,则流体无法通过。

5. 控制策略:气动阀根据实际需求,通过控制系统发送不同的气压信号,实现对阀芯位置的调节,从而达到控制流体介质的目的。

通过以上工作原理,气动阀可以在工业自动化控制及流体控制系统中起到重要的作用,广泛应用于各种流体介质的控制领域。

气动阀工作原理

气动阀工作原理

气动阀工作原理
气动阀是一种利用气动力控制流体流动的装置。

它由活塞式执行器和阀体组成。

以下是气动阀的工作原理:
1. 气源供气:将压缩空气通过气源管道送入气动阀的进气口。

2. 控制信号输入:当需要控制气动阀开关状态时,向气动阀发送相应的控制信号。

常用的控制信号有气压信号和电信号。

3. 活塞运动:根据控制信号的不同,活塞运动方向也不同。

当气动阀接收到信号时,活塞会受到气源供气的作用,从而产生运动。

4. 阀门开关:随着活塞的运动,阀体中的阀门也会随之开启或关闭。

当活塞移动到规定位置时,阀门会与阀体的开口对齐,从而使流体流通或中断。

5. 流体控制:根据阀门的开启或关闭状态,流体能够通过阀体的开口进入或离开管道系统。

通过控制活塞的位置,可以调节阀门的开闭程度,从而控制流体的流量。

6. 控制信号停止:当控制信号停止或改变时,气动阀会根据新的信号重新调整活塞的位置,从而实现新的阀门开闭状态。

总之,气动阀利用气源供气和控制信号来驱动活塞的运动,进而控制阀体的开闭状态,从而实现对流体流动的控制。

气动阀 工作原理

气动阀 工作原理

气动阀的工作原理是利用压缩空气来驱动执行器内的多组组合气动活塞运动,通过传力给横梁和内曲线轨道的特性,带动空芯主轴作旋转运动。

压缩空气的气盘输至各缸,改变进出气位置以改变主轴旋转方向。

根据阀门所需旋转扭矩的要求,可以调整气缸组合数目,从而带动阀门工作。

气动阀主要用于控制各种流体,如空气、水、蒸汽、各种腐蚀性介质、泥浆、油品、液态金属和放射性介质等。

在工业自动化中,气动阀作为一种常见的控制元件,用于保持管道中介质的压力、流量和温度等参数的稳定,从而实现对整个系统的自动化控制。

请注意,气动阀的具体工作原理可能会因阀门类型和规格的不同而有所差异。

如需了解更多信息,建议咨询专业人士或查阅相关书籍文献。

气动控制阀工作原理

气动控制阀工作原理

气动控制阀工作原理气动控制阀是一种常用于工业自动控制系统中的设备,它通过对气体的调节和控制,实现对流体的流量、压力、液位和温度等参数的控制。

本文将探讨气动控制阀的工作原理。

一、气动控制阀的组成气动控制阀由阀体、阀芯、阀板、活塞和控制装置等组成。

其中阀体是整个气动控制阀的主要承载部件,通常由金属材料制成。

阀芯是气动控制阀关键的工作部件,负责控制气体的流动。

阀板则用于连接阀体和阀芯,并通过与阀芯的运动来控制气流的通断。

二、气动控制阀的工作原理气动控制阀的工作原理基于气动控制系统的基本原理。

当控制装置接收到由传感器测量到的信号后,通过对气压进行调节,从而改变气动控制阀的开度。

当气动控制阀的开度发生变化时,阀芯相应地移动,改变气体的通道。

这样,流经气动控制阀的气体的流量、压力、液位或温度就会随之变化,实现系统的自动控制。

三、气动控制阀的工作过程当气动控制阀处于关闭状态时,阀芯紧贴阀座,阻止气体的通道。

当控制装置发出开阀信号后,通过增加气压将阀芯从阀座分离,开启通道。

气体便可以通过阀体的进口流入阀芯,在阀板的控制下流出阀体的出口。

当控制装置发出关闭阀信号时,降低气压使阀芯重新贴合阀座,阻止气体的流动。

四、气动控制阀的特点与应用1. 高精度控制:气动控制阀具有快速响应、稳定性好的特点,可以实现对流体参数的精确控制,广泛应用于工业生产中的精密控制领域。

2. 耐腐蚀性强:气动控制阀通常采用耐腐蚀材料制成,适用于各种腐蚀性介质的控制。

3. 结构简单紧凑:气动控制阀具有简单的结构和紧凑的体积,便于安装和维护。

4. 耐用性好:气动控制阀的零件经过特殊处理,具有良好的耐用性和稳定性。

5. 广泛应用:气动控制阀广泛应用于石化、电力、冶金、制药、食品加工等领域,可以实现对各类工业过程的控制。

综上所述,气动控制阀是一种重要的工业自动控制设备,它通过调节和控制气体的流动,实现对流体的流量、压力、液位和温度等参数的精确控制。

气动控制阀具有高精度控制、耐腐蚀性强、结构简单紧凑、耐用性好等特点,并广泛应用于各个领域的工业生产过程中。

气动电磁阀的工作原理

气动电磁阀的工作原理

气动电磁阀的工作原理气动电磁阀是一种常用的控制元件,广泛应用于工业自动化系统中。

它通过电磁力控制气体流动,实现对气体的开关控制。

下面将详细介绍气动电磁阀的工作原理。

1. 结构组成气动电磁阀主要由电磁铁、气缸、阀体和阀芯等部分组成。

其中,电磁铁是气动电磁阀的核心部件,它通过电流激励产生电磁力,控制阀芯的运动。

2. 工作原理气动电磁阀的工作原理可以分为两个过程:电磁铁吸合和阀芯动作。

(1)电磁铁吸合当控制电路通电时,电磁铁中的线圈产生磁场,吸引铁芯。

铁芯被吸引后,与阀芯连接的杆部位受到推力,向下运动。

推力的大小取决于电磁铁的磁场强度和线圈匝数。

(2)阀芯动作随着铁芯的向下运动,阀芯也会随之向下运动。

当阀芯的密封面与阀座密封面接触时,气体无法通过阀体,阀门处于关闭状态。

当电磁铁断电时,铁芯失去磁性,弹簧的作用力将阀芯推回原位,阀门处于开启状态。

3. 工作过程气动电磁阀的工作过程可以分为两个阶段:开启和关闭。

(1)开启过程当电磁铁通电时,电磁铁吸合,阀芯向下运动,阀门关闭。

此时,气体无法通过阀体,实现了气体的截断。

(2)关闭过程当电磁铁断电时,电磁铁失去磁性,弹簧的作用力将阀芯推回原位,阀门开启。

此时,气体可以通过阀体,实现了气体的通畅。

4. 应用领域气动电磁阀广泛应用于工业自动化系统中,常见的应用领域包括:(1)气动系统控制:气动电磁阀可以用于控制气体的流动方向、流量和压力等参数,实现气动系统的控制。

(2)液压系统控制:气动电磁阀也可以用于控制液体的流动,实现液压系统的控制。

(3)工业设备控制:气动电磁阀可以用于控制工业设备的启停、转向和运动等,提高生产效率。

(4)环境控制:气动电磁阀可以用于控制空调、暖通系统等环境控制设备,实现温度、湿度和空气流动等参数的调节。

总结:气动电磁阀通过电磁力控制阀芯的运动,实现对气体的开关控制。

其工作原理简单明了,结构紧凑,可靠性高。

在工业自动化系统中有着广泛的应用。

通过控制电磁铁的通断,气动电磁阀可以实现气体的截断和通畅,满足不同工业场景的控制需求。

气动阀原理和操作介绍

气动阀原理和操作介绍

气动阀原理和操作介绍气动阀是一种利用气动作动机械波动产生的力来控制流体介质流动方向、流量、压力和其他参数的控制阀门。

气动阀是工业自动化系统中重要的执行元件,广泛应用于石化、电力、冶金、造纸、制药、食品、环保等领域。

气动阀的工作原理是通过空气压力作用在气动阀的执行机构上,驱动阀芯或阀板进行位移,从而改变阀门的开启度,控制流体的流动。

气动阀无需电源供给,具有快速开闭、可靠性高、操作灵活等优点。

气动阀的操作可以分为手动操作和自动操作两种形式。

手动操作是通过手动装置如手轮、手柄等来开闭阀门。

自动操作则是通过气动元件如气动开关、电磁阀等与气动阀联动,实现远程控制。

气动阀的开启与关闭通过执行机构的运动来实现。

常见的气动执行机构有薄膜式执行机构、活塞式执行机构和齿轮齿条式执行机构。

1.薄膜式执行机构:薄膜式执行机构由弹性材料制成的薄膜组成,通过压缩或膨胀实现阀芯的运动。

它具有结构简单、体积小、重量轻、响应速度快等特点。

2.活塞式执行机构:活塞式执行机构是通过气缸内的活塞与阀芯相连,通过压缩空气的作用使活塞产生运动,从而驱动阀芯的运动。

活塞式执行机构常用于对严格要求定位准确度的气动阀中。

3.齿轮齿条式执行机构:齿轮齿条式执行机构是通过齿轮与齿条的相互啮合,将旋转运动转化为直线运动,从而实现阀芯的开闭。

该机构结构稳定、运动平稳、密封性好。

气动阀的关键部件是气动驱动装置。

常见的气动驱动装置有单作用气缸、双作用气缸、气动薄膜执行器等。

1.单作用气缸:单作用气缸只有一个气腔与气动源相连,通过气源的压力使气缸的活塞运动完成单向的开启或关闭操作。

当气源的压力消失时,常采取弹簧等装置使执行机构返回原位。

2.双作用气缸:双作用气缸有两个气腔与气动源相连,分别用于控制气缸的开启和关闭。

通过气源压力的增减来实现气缸的双向运动。

3.气动薄膜执行器:气动薄膜执行器是将气压转化为弹性薄膜的形变,从而使阀芯或阀板产生相应的位移。

薄膜执行器具有结构简单、密封可靠、响应速度快等特点。

气动调节阀原理

气动调节阀原理

气动调节阀原理
气动调节阀是一种利用气动执行器控制阀门开启度的自动调节阀。

其工作原理如下:
1. 弹簧平衡:气动调节阀的执行器内装有弹簧,通过调节弹簧的紧度来实现阀门的平衡状态。

当输入的控制信号为0时,弹簧将阀门关闭,实现密封状态。

2. 控制信号:气动调节阀的执行器接收到来自控制系统的信号,通常是气压或电信号。

当控制信号改变时,执行器内的气体将发生变化,从而改变阀门的开启度。

3. 阀门开启度调节:根据控制信号的变化,执行器内的气体将推动阀门的开闭。

当控制信号增加时,执行器内的气压增加,阀门打开度逐渐增大;反之,当控制信号减小时,执行器内的气压减小,阀门打开度逐渐减小。

4. 反馈调节:气动调节阀通常配备有反馈装置,用于监测阀门的开启度,并将实际开启度反馈给控制系统。

控制系统根据实际开启度进行调节,将控制信号精确地控制在期望的范围内,以实现阀门的精确调节。

综上所述,气动调节阀通过控制信号的变化和执行器内气体的压力变化,实现阀门的开启度精确调节。

这种调节阀在工业自动化控制中广泛应用,具有调节精度高、响应速度快、可靠性高等优点。

气动阀操作说明

气动阀操作说明

气动阀操作说明一、前言气动阀是一种控制流体的设备,广泛应用于工业生产中。

为了确保安全和高效操作气动阀,本文将详细介绍气动阀的操作步骤与注意事项。

二、气动阀的组成1. 阀体:用于容纳流体和控制流体的流向。

2. 阀芯:通过与阀座的接触来控制流体的流量。

3. 气缸:负责驱动阀芯的上下移动。

4. 控制装置:通过信号控制气缸的动作,从而实现对阀门的控制。

三、操作步骤1. 前期准备在操作气动阀之前,务必确保以下准备工作已完成:- 检查气源:确保气源正常供应且压力稳定。

- 检查管道:确保管道连接正确,无漏气现象。

- 检查电源:若气动阀带有电气控制部分,需确保电源正常。

2. 打开阀门(根据具体气动阀的类型和结构,可能会有不同的操作步骤,请根据实际情况选择适用的步骤)- 步骤一:将气源接入气动阀。

- 步骤二:将控制装置与气动阀连接。

- 步骤三:通过控制装置发送信号,使气缸动作,推动阀芯打开阀门。

- 步骤四:确认阀门已完全打开,并通过观察流体状态来验证。

3. 关闭阀门当需要关闭气动阀时,操作步骤与打开阀门时相反,以下为一般步骤:- 步骤一:通过控制装置发送信号,使气缸动作,使阀芯回到关闭位置。

- 步骤二:确认阀门已完全关闭,并通过观察流体状态来验证。

- 步骤三:若不再需要使用气动阀,可断开气源和控制装置的连接。

四、操作注意事项1. 严格遵守操作规程:操作气动阀时,应按照规定的程序进行操作,不能随意更改或省略步骤。

2. 注意安全防护:在操作气动阀时,应佩戴合适的防护用品,防止因操作不当导致的意外伤害。

3. 维护保养:定期检查气动阀的工作状况,如发现异常应及时进行维修或更换。

4. 阀门润滑:定期给气动阀的阀芯和气缸加注润滑油,以保证阀门的灵活性和密封性。

5. 气源控制:保持气源的稳定供应,防止气压过高或过低影响气动阀的正常工作。

五、结语通过本文的操作说明,相信大家对气动阀的操作有了更加全面的了解。

在实际操作中,务必严格遵守操作步骤和注意事项,确保气动阀的安全运行和高效控制流体。

气动调压阀工作原理

气动调压阀工作原理

气动调压阀工作原理
气动调压阀是一种使用气动力进行调节的调压装置,它可以通过调整进入阀内的气流压力来控制出口的气压。

其工作原理如下:
1. 阀体结构:气动调压阀通常由阀体、阀芯和驱动膜片等组成。

阀体中有进气口和出气口,并且之间有一定距离的隔离区域。

2. 弹簧调力:阀芯与阀体之间存在一个弹簧,该弹簧用于提供初始调力,使阀芯保持在关闭状态。

3. 驱动膜片:驱动膜片连接到阀芯上,它能够感受到进入阀内的气流压力变化,并将其传递到阀芯上。

4. 调节压力:当进入阀内的气流压力升高时,驱动膜片也会随之上升,使阀芯从初始关闭状态逐渐打开。

相反,当进入阀内的气流压力降低时,驱动膜片会下降,使阀芯逐渐关闭。

5. 平衡稳定:当进入阀内的气流压力达到与弹簧调力平衡时,阀芯会保持在一个稳定的开启程度,使出口的气压保持在设定的值。

总之,气动调压阀的工作原理是通过感受进入阀内的气流压力变化,利用弹簧调力和驱动膜片的协同作用,控制阀芯的开闭程度,从而调节出口的气压。

气动阀门的原理介绍

气动阀门的原理介绍

气动阀门的原理介绍中国泵业网常见的阀门有很多种,而气动阀门便是其中的一个。

气动阀门的机能是极好的,被广泛运用于产业行业当中,使用价值极高。

就目前而言,市道市情上的气动阀门种类也有良多,不同规格的阀门,它的形状与机能也会存在差异,可以知足不同行业对它的需求。

气动阀门是一种直角回转结构,它与阀门定位器配套使用,可实现比例调节;V型阀芯最合用于各种调节场合,具有额定流量系数大,可调比大,密封效果好,调节机能零敏,体积小,可竖卧安装。

合用于控制气体、蒸汽、液体等介质。

特点:是一种直角回转结构,由V型阀体、气动执行机构、定位器及其他附件组成;有一个近似等百比的固有流量特性;采用双轴承结构,启动扭矩小,具有极好的敏捷度和感应速度;超强的剪切能力。

气动活塞执行机构采用压缩空气作动力源,通过活塞的运动带动曲臂进行90度回转,达到使阀门自动启闭。

它的组成部门为:调节螺栓、执行机构箱体、曲臂、气缸体、气缸轴、活塞、连杆、万向轴。

气动调节阀的工作原理:气动调节阀由执行机构和调节机构组成。

执行机构是调节阀的推力部件,它按控制信号压力的大小产生相应的推力,推动调节机构动作。

阀体是气动调节阀的调节部件,它直接与调节介质接触,调节该流体的流量。

因为现在的控制方式和手段越来越多,在实际产业生常和产业控制中,用来控制气动执行机构的方法也良多,常用的有以下几种。

(一)基于单片机开发的智能显示仪控制智能显示仪是用来监测阀门工作状态,并控制阀门执行期工作的仪器,它通过两路位置传感器监督阀门的工作状态,判定阀门是处于开阀仍是关阀状态,通过编程记实阀门开关的数字,并且有两路与阀门开度对应的4~20mA输出及两足常开常闭输出触点。

通过这些输出信号,控制阀门的开关动作。

根据系统的要求,可将智能阀门显示仪从硬件上分为3部门来设计:模拟部门、数字部门、按键/显示部门。

1、模拟电路部门主要包括电源、模拟量输入电路、模拟量输出电路三部门。

2、数字电路部门主要包括:单片机、掉电保护、两路监测脉冲输入信号、两路常开常闭转换触点输出。

气动阀开关原理

气动阀开关原理

气动阀开关原理
气动阀开关原理是利用空气或气体的压力作用于阀芯,将阀芯从关闭位置移动到开启位置或从开启位置移动到关闭位置,从而实现对流体的控制。

具体原理如下:
1. 工作原理:气动阀由电磁阀、压缩空气源和控制部件组成。

控制部件可以是手动按钮、电磁线圈或压力传感器等。

当控制部件发出信号时,电磁阀会受到激励,打开或关闭压缩空气源的通道,通过气压控制阀芯的运动。

2. 开启过程:当控制部件信号到达时,电磁阀打开压缩空气源的通道,压缩空气进入阀体,并通过通道作用于阀芯上的气动力。

气动力的大小取决于压力差和阀芯面积,当气动力大于关闭阀的弹簧力时,阀芯被推动向开启位置移动,从而打开阀门。

3. 关闭过程:当控制部件信号消失时,电磁阀关闭压缩空气源的通道,阀芯上的气动力消失,此时关闭阀的弹簧力将阀芯推回到关闭位置,阀门关闭。

4. 控制方式:除了手动按钮外,气动阀还可以通过电磁线圈或压力传感器进行控制。

当电磁线圈受到电流激励时,电磁阀打开或关闭通道,实现对阀芯的控制。

压力传感器可以检测系统中的压力变化,并通过控制电磁阀的开闭来调节阀芯的运动。

通过以上的工作原理,气动阀可以实现远距离控制和自动化控制,广泛应用于工业领域的流体控制系统中。

气动阀原理和操作介绍

气动阀原理和操作介绍

气动阀原理和操作介绍气动阀,是一种通过气动装置来控制液体或气体流动的阀门。

它是工业自动化控制系统中的重要组成部分,广泛应用于石化、电力、冶金、制药、轻工、环保等行业。

本文将介绍气动阀的原理和操作。

一、气动阀的原理:气动阀的原理主要涉及气动执行机构、阀体和控制系统。

1.气动执行机构:气动执行机构是气动阀的关键组成部分,用于将气源的气动能转化为机械力,实现阀门的开闭。

常见的气动执行机构有气动活塞式执行机构和气动齿轮式执行机构。

2.阀体:阀体是气动阀的外壳,通常由金属制成,用于容纳阀门的主要功能部件,如阀芯、阀盖等。

阀体具有一定的刚度和密封性能,能够承受流体的压力,并防止流体泄漏。

3.控制系统:控制系统是气动阀的控制中枢,主要包括气源、气路和信号传递装置。

气源提供气动阀所需的气体动力能源,气路负责气体的传输和分配,信号传递装置用于接收和解读控制信号,控制气动阀的开闭状态。

在气动阀的工作过程中,气源提供的气体经过气路和控制系统的处理,进入气动执行机构,推动阀体内的阀芯或阀板,实现阀门的开闭。

当气源压力施加在阀芯或阀板上时,阀芯或阀板与阀座之间的间隙封闭,实现阀门的关闭;当气源压力去除时,阀芯或阀板受到弹簧力的作用,阀芯或阀板与阀座分离,实现阀门的开启。

二、气动阀的操作:气动阀的操作分为手动操作和自动操作两种方式。

1.手动操作:手动操作是通过旋转、推拉、按压等方式来控制阀门的开闭。

根据不同类型的气动阀,手动操作方式也有所差异。

手动操作主要用于维修、调试、紧急情况等场合。

2.自动操作:自动操作是通过信号传递装置接收和解读控制信号,实现气动阀的开闭。

控制信号可以是电气信号、气动信号等,由上位设备或自动化控制系统发出。

自动操作具有调节精度高、反应速度快、操作稳定等优点。

气动阀的操作过程中需要注意以下几点:1.操作前应了解阀门的工作原理、结构和参数,确保操作正确。

2.操作时应检查气动系统的压力、密封性和连接状态,确保正常工作。

气动阀门电磁阀工作原理

气动阀门电磁阀工作原理

气动阀门电磁阀工作原理气动阀门电磁阀是一种常用的控制阀门,它利用电磁铁的吸合和释放来控制阀门的开启和关闭。

它的工作原理如下:1. 结构组成气动阀门电磁阀主要由电磁铁、阀体、阀盖和阀芯等部分组成。

电磁铁由线圈、铁芯和固定在阀体上的磁极组成,通过通电使线圈产生磁场,吸引铁芯,使阀芯打开或关闭。

2. 工作原理当气动阀门电磁阀通电时,电流通过线圈,产生磁场。

磁场使铁芯受到吸引力,向上运动。

阀芯与铁芯相连,受到铁芯的带动,也向上运动。

当阀芯向上运动时,阀体上的密封垫被压缩,阀门打开,介质通过阀门流动。

当气动阀门电磁阀断电时,电磁铁中断电流,磁场消失,铁芯失去吸引力,向下运动。

阀芯受到铁芯的带动,也向下运动。

当阀芯向下运动时,密封垫恢复原状,阀门关闭,介质无法通过阀门流动。

3. 工作过程气动阀门电磁阀的工作过程可以分为开启过程和关闭过程。

开启过程:当气动阀门电磁阀通电时,电流通过线圈,产生磁场。

磁场使铁芯受到吸引力,向上运动。

阀芯与铁芯相连,受到铁芯的带动,也向上运动。

当阀芯向上运动时,阀体上的密封垫被压缩,阀门打开,介质通过阀门流动。

关闭过程:当气动阀门电磁阀断电时,电磁铁中断电流,磁场消失,铁芯失去吸引力,向下运动。

阀芯受到铁芯的带动,也向下运动。

当阀芯向下运动时,密封垫恢复原状,阀门关闭,介质无法通过阀门流动。

4. 使用注意事项在使用气动阀门电磁阀时,需要注意以下几点:(1) 电源电压要与电磁阀标识的额定电压一致,以免损坏电磁阀或无法正常工作。

(2) 电磁阀的线圈不能长时间通电,以免线圈过热引起故障。

(3) 定期检查电磁阀的工作状态,确保其正常运行。

(4) 定期清洗电磁阀内部的积尘和杂质,以防止阀门堵塞或漏气。

(5) 在安装和拆卸电磁阀时,要遵循相关的操作规范,以免损坏阀门或造成人身伤害。

总结:气动阀门电磁阀是一种利用电磁铁的吸合和释放来控制阀门的开启和关闭的装置。

通过通电使线圈产生磁场,吸引铁芯,使阀芯打开或关闭,从而实现阀门的控制。

气动角阀工作原理

气动角阀工作原理

气动角阀工作原理角阀是现代是水龙头上面不可缺少的一种小部件。

气动角阀也是一种经常会用到的东西。

可以说角阀是水龙头的心脏,如果能够搞清楚气动角阀的工作原理,就可以更好的使用气动角阀。

本文将详细介绍一下气动角阀的工作原理和气动角阀的安装步骤等相关问题。

一、气动角阀的工作原理气动调节阀由执行机构和调节机构组成。

执行机构是调节阀的推力部件,它按控制信号压力的大小产生相应的推力,推动调节机构动作。

阀体是气动调节阀的调节部件,它直接与调节介质接触,调节该流体的流量。

二、气动角阀的安装步骤1、首先安装气动角阀的第一步就是要查看它的型号,还有就是气动角阀的参数问题,需要通过现场安装的需要,以及技术方面的要求。

检查气动角座阀的气动阀门的气缸、位置指示器,确保无损伤。

2、在进行安装之前我们需要将气动角座阀的管道给清洗干净,如果在质内中有杂质的话,那么就要在阀前管道上加装过滤阀。

按气动角座阀,阀体上箭头指示的,气动角座阀如加装电磁阀,注意连接处确保密封良好,气动角座阀需要焊接连接时,避免高温传到气动阀的填料等处。

3、我们既然在使用气动角阀那么就要给它做定期维护,这样才可以保证阀门寿命更长久,还要保证启闭可靠。

气动角座阀的阀杆螺纹,经常与阀杆螺母摩擦,要涂一点黄干油、二硫化钼或石墨粉,起润滑作用。

4、如果对于一些没有经常性开关启动的阀门,那么也是需要定期性的给手轮进行转动,然后在给阀杆螺纹添加一些润滑剂。

这样就可以防止出现咬住的现象,如果是在室外的阀门,那么就要对阀杆加保护套,以防雨、雪、尘土锈污。

三、气动角阀的分类1、气动角座阀按汽缸可分为:单作用和双作用。

单作用是根据弹簧复位达到开启和关闭的作用,分为常开型与常闭型。

双作用工作原理是是给气控制其开关。

2、气动角座阀按管道安装类别可分为:不锈钢气动丝扣角座阀,不锈钢气动快装式角座阀,不锈钢气动法兰角座阀。

3、气动角座阀按实际应用情况分为:全不锈钢气动丝扣(内螺纹)角座阀,全不锈钢气动快装式角座阀。

气动阀的工作原理 气动阀工作原理

气动阀的工作原理 气动阀工作原理

气动阀的工作原理气动阀工作原理定义:气动阀是借助压缩空气驱动的阀门。

一、气动阀门紧要种类:1)气动V型调整球阀2)气动O型切断球阀3)扭距式汽缸球阀4)电磁隔膜阀5)气动直行程式隔膜阀6)电动阀二、气动V型调整阀:用途与特点A、用途是一种直角回转结构,它与阀门定位器配套使用,可实现比例调整; V型阀芯适用于各种调整场合,具有额定流量系数大,可调比大,密封效果好,调整性能零敏,体积小,可竖卧安装。

适用于掌控气体、蒸汽、液体等介质。

B、特点:是一种直角回转结构,由V型阀体、气动执行机构、定位器及其他附件构成;有一个貌似等百比的固有流量特性;接受双轴承结构,启动扭矩小,具有极好的灵敏度和感应速度;超强的剪切本领。

C、气动活塞执行机构接受压缩空气作动力源,通过活塞的运动带动曲臂进行90度回转,达到使阀门自动启闭。

它的构成部分为:调整螺栓、执行机构箱体、曲臂、气缸体、气缸轴、活塞、连杆、万向轴。

D、气动调整阀的工作原理:气动调整阀由执行机构和调整机构构成。

执行机构是调整阀的推力部件,它按掌控信号压力的大小产生相应的推力,推动调整机构动作。

阀体是气动调整阀的调整部件,它直接与调整介质接触,调整该流体的流量。

两位三通气动阀的原理如何?两位三通气动阀是一种用于气动设施的、有两个位置状态、三个接口的换向阀。

其种类很多,从掌控方式上可分电控阀、气控阀、机控阀、手控阀,脚踏阀等。

原理因工作位置不同时,不同的接口连通。

二位三通电磁阀工作原理:一进二出:(ZC2/31)当电磁阀线圈通电时,出介质端(2)第一路打开,第二路(3)关闭;当电磁阀线圈断电时,出介质端第一路(2)关闭,第二路(3)打开;二进一出:(ZC2/32)当电磁阀线圈通电时,进介质端第一路(2)打开,第二路(3)关闭;当电磁阀线圈断电时,进介质端第一路(2)关闭,第二路(3)打开;(此内阀两进口端前必需加单向阀)一进一出:常闭式(ZC2/3)———当电磁阀线圈通电时,接口2通向接口1,接口3关闭;当电磁阀线圈断电时,接口2关闭,接口1通向接口3;常开式(ZC2/3K)当电磁阀线圈断电时,接口3通向接口1,接口2关闭;当电磁阀线圈通电时,接口3关闭,接口1通向接口2;两位三通气动阀原理:V型调整球阀电磁阀里有密闭的腔,在的不同位置开有通孔,每个孔都通向不同的油管,腔中心是阀,两面是两块电磁铁,哪面的磁铁线圈通电阀体就会被吸引到哪边,通过掌控阀体的移动来档住或漏出不同的排油的孔,而进油孔是常开的,液压油就会进入不同的排油管,然后通过油的压力来推动油刚的活塞,活塞又带动活塞杆,活塞竿带动机械装置动。

气动阀门工作原理及说明

气动阀门工作原理及说明

气动阀门工作原理及说明一、产品概述:系列气动蝶阀是由气动执行器与中线蝶阀组成,利用洁净的压缩空气作为能源,接受气动信号或电气定位器等附件信号进行工作,具有结构简单,操作方便等优点。

蝶阀采用无磨损阀座设计,阀座为缓坡缓冲设计,阀板在关闭时接触到阀座缓冲坡,与阀座不产生硬性的磨擦。

提高了使用寿命,从而减少了管道更换阀门频率和维修次数。

性价比非常卓越。

广泛应用于生产过程自动控制系统中的调节或开关操作场合。

二、气动执行器概述:ADA ASR系列气动执行器设计简单紧凑,风格独特,全密封、模块式、内部气路,无须连接管线外露而受损。

安装电磁阀、信号回讯器、阀门定位器或其他附件都极其方便。

设计上考虑到安全操作,便于维修,容易拆卸和组装。

1、外壳是由铝合金挤压拉制成型,表面经硬质阳极氧化处理,能够防腐、耐磨。

具有重量轻,外形美观,强度和密封性能可靠。

2、醇缩醛轴垫片和活塞导环有很低的磨擦阻力,能吸收活塞侧向推力。

3、气缸内壁是经过珩磨,减少整体运动摩擦力,在输出轴的顶部和底部、装有醇缩醛轴承,以降低旋转磨擦阻力,延长寿命。

4、端盖、活塞是铝合金铸压精制而成。

输出轴由316不锈钢制成。

5、开度指示器直观地显示“开”或“关”的位置,容易拆除以便扳手操作。

6、行程调节螺丝可机械限制气动执行器的转动角度。

它以现场方式调整执行器的开或关的位置。

三、产品工作条件b) 使用流体:空气、无腐蚀性气体和油;c) 压力范围:2-10巴(Bar)d) 环境温度:标准型(使用丁晴橡胶O型圈)-20℃~+80℃低温型(使用硅橡胶O型圈)-40℃~+80℃高温型(使用氟橡胶O型圈)-20℃~+150℃e) 行程调整:在90位置有+/-4°的可调范围: 90℃+/-4°f) 润滑:在正常工作条件下,不需添加润滑剂;g) 安装:适合室内或室外安装;h) 最高使用压力:输入气压不超过10帕;四、执行器动作原理双作用式A口进气、B口排气,推动两活塞分开 B口进气、A口排气,推动两活塞合拢向两边移动,输出轴逆时针方向转动向中心,移动输出轴顺时针方向转动单作用式A口进气、B口排气,推动两活塞分开排气或失电时,弹簧推动两活塞合拢向两边移动,同时压缩弹簧,输出轴向中心移动,输出轴顺时针方向转动逆时针方向转动五、主要技术参数公称通径DN(mm)40-1200公称压力PN(Mpa)0.6 1.0 1.6 试验压力(Mpa)强度试验0.9 1.5 2.1密封试验0.66 1.1 1.7 适用介质水、蒸气、油品、海水、酸类适用温度-40℃~200℃执行器PLVADA系列气源压力 0.2~0.8Mpa六、主要零部件材料名称材料(材料代号)Z C P R阀体HT200 WCB ZG1Cr18Ni9Ti ZG0Cr18Ni12MO2Ti 阀板HT200 WCB ZG1Cr18Ni9Ti ZG0Cr18Ni12MO2Ti 阀杆2Cr13 2Cr13 1Cr18Ni9Ti 0Cr18Ni12MO2Ti 密封圈丁晴, 乙丙, 氯丁, 氟塑料填料丁晴, 柔性石墨, V型橡胶垫G DN A B C D E F G H L K2”50 75 126 125 4-18 80 350 180 128 43 55.22 1/2”65 81 134 145 4-18 89 388 220 132 46 66.33”80 95 157 160 8-18 95 394 220 132 46 83 4”100 113 167 180 8-18 114 436 260 138 52 101.5 5”125 128 180 210 8-18 127 449 260 138 56 129.3 6”150 141 203 240 8-22 139 494 296 142 56 154.5 8”200 171 228 295 8-22 175 546 351 156 60 200.3 10”250 211 266 350 12-22 203 578 351 156 68 250 12”300 241 291 400 12-22 242 687 440 215 78 301 14”350 268 332 460 16-22 267 761 445 245 78 338.7 16”400 312 363 515 16-22 297 793 445 245 102 389.9 18”450 343 397 565 20-26 315 920 610 335 114 440.6 20”500 390 425 620 20-26 348 978 610 335 127 491.4 24”600 450 498 725 20-30 444 1128 707 391 154 593.1 o常见故障和对策故障现象检查项目排除对策1、气缸内没有规定的供给压力空气压缩机空气管道减压阀、电磁阀等是否正常修理2、气缸内有规定的压力供给但不工作A、阀内有杂质将阀板卡住清除杂质B、对气缸进行单独供气,看其是否正常工作如果气缸不工作拆开气缸检查内部密封件是否损坏,更换已坏零件C、对蝶阀进行单独检查看扭矩是否大于工作扭矩,或有异物卡死拆开阀进行修理、清洗,或增加气缸工作压力(调换气缸)D、当蝶阀的工作扭矩小于额定扭矩时重新调整蝶阀与气缸的匹配安装调试与维护气动执行器与阀门安装与否,直接影响执行器使用效果。

气动阀门气缸工作原理

气动阀门气缸工作原理

气动阀门气缸工作原理
气动阀门气缸是一种利用气源驱动的装置,用于控制气动阀门的开启和关闭。

它的工作原理如下:
1. 气源供应:气动阀门气缸通常通过空气压缩机提供的压缩空气作为动力源。

空气经过过滤、调压装置后,进入气缸供给动力。

2. 活塞运动:气缸内部有一个活塞,当压缩空气进入气缸时,活塞就会随之向前或向后运动。

3. 气缸控制:气缸的运动是由控制阀控制的。

通过控制阀的开启和关闭,可以控制气缸的进气和排气,从而控制活塞的运动方向和位置。

4. 弹簧复位:为了保证气缸的回位,通常在气缸内部设置了一个弹簧。

当空气压力减小或消失时,弹簧会使活塞返回原位,实现气缸的复位。

5. 力和速度调节:通过调整气源的压力、控制阀的开启时间和关闭时间,可以调节气缸的作用力和速度,以满足不同工作需求。

总结:气动阀门气缸通过控制阀和压缩空气的进出,实现对活塞的控制,从而实现气动阀门的开启和关闭功能。

通过调整气源压力和控制阀的工作方式,可以调节气缸的作用力和速度,以适应不同的工作要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图1-2 隔膜气动头的示意图
图1-2 活塞气动头的示意图
气动阀的基本知识
1.隔膜式气动装置 主要由上、下膜盖、橡胶隔膜(带 帘子布夹层)、气动杆、支架、弹 簧、弹簧座、调节套筒、连接螺母、 行程指示器、操纵手轮等部件组成。 1)橡胶隔膜 气动装置的关键部件,一般由具有 较好的耐油及耐高、低温性能的丁腈 橡胶加锦纶丝织物制成。为了保护其 有效面积基本上保持不变,提高气动 装置工作的线性度,膜片常制作成波 纹状。
气动截止阀
图2-10勺尺高度图示
气动截止阀
间接手轮气动阀是通过一对蜗 杆、蜗轮将手轮扭力矩传给阀杆的, 此类阀门气动头上没有“中性点” 勺尺,而在阀杆轴线上方的手轮杆 上设计了一个指示棒,运行其间由 指示棒的上端面与气动头盖小孔的 上平面平齐.表示手轮“中性点” 的正确位置。 当运行人员其他部门的现场操作 人员在手轮操作阀门以后要恢复手 轮机构的”中性点”时只需将手轮 摇高,直到看见指示棒的上端面与 气动头盖小孔的上平面平齐后,板 动锁紧器手柄将手轮杆夹紧即可。
气动阀的基本知识
装有齿轮的气动杆对面齿合,活塞外側的弹簧使活塞体沿气缸壁 滑动压向中间,此时将设定了开(或关)位置的球阀或蝶阀的阀 杆联在一起, 当进气口充入压缩空气后气缸的中间密闭区压力升高,迫使 两活塞克服弹簧力向外滑动,在此其间,由于齿合的作用,气动 杆旋转,带动球阀或蝶阀关闭(或开启);当气动头失去气源 后,阀门在弹簧的作用下,迅速回到安全位置。 为了防止活塞无限制的外滑而损坏阀门,既在气缸盖上安置 了限位螺栓,来控制阀门的开(或关)情况。为了使气动头能快 速可靠地操作阀门,限位螺栓上的排气孔是非常必要的。
气动截止阀
手轮操作任务完成后,现场操作人员一定要把手动机构回置到 “中性点”上,否则阀门将无法气动操作.确定无误后将手轮杆锁 紧.
图1-11 气动截止阀的动力流程图
气动截止阀
如何在现场手动操作后恢复“中性点” “直接”式气动阀气动头上都用链条栓挂着一个带把的 “中 性点”勺尺,这是维修人员根据规程要求的方法设定好“中性 点”后,以手轮的下平面到气动头锁紧器上平面的距离精确加工 的。这个勺尺是给运行人员其他部门的现场操作人员在手轮操 作阀门以后用勺尺来恢复手轮机构准备的. 当运行人员其他部门的现场操作人员在手轮操作阀门以后, 要恢复手轮机构的”中性点”时.只需将手轮摇高,将勺尺的圆 勺部分靠紧手轮杆,再往下旋手轮至到手轮轴下表面与勺尺的上 端面靠紧,然后板动锁紧器手柄,将手轮杆夹紧即可。
气动截止阀
图2-8 设计中性点位置的轴系图
气动截止阀
“中性点”勺尺是怎么做出来的? 以失气关/直接式手轮的气动截止阀轴系图为例 维修人员在每次解体检修阀门后期都要重新标定勺尺高度,该 工作在阀门组装完成后,品质再鉴定之前执行。内容有测量数 据;总体计算,气动检查和机加工4个步骤 1.测量数据 首先检查各联接紧固部件是否牢固可靠; *摇手轮使手轮杆滑块在气动杆导套中至下止位。测量锁紧器 到手轮轴下表面的距离记为H;(此时阀门为关闭状态) *反向摇手轮使手轮杆滑块在气动杆导套中至上止位。测量锁 紧器到手轮轴下表面的距离记为H1;(阀门仍为关闭状态)
Valves
气动阀原理与操作
气动调节阀 - 调节阀基础知识; - 调节阀特点; - 调节原理; - 气动调节阀; - 气动调节阀的分类 - 笼式调节阀; - 调节阀的调节原理 - 气动调节阀的辅助元件 - 调节阀手轮“中性点”的设置
教学内容和步骤 重要阀门介绍 - 气动蝶形调节阀 - 笼型气动调节阀 - 活塞式气动头笼形调节阀 - 先导式笼型气动调节阀 气动阀的常见故障和处理 - 阀门盘根泄漏 - 阀门内漏
气动截止阀
失气开
失气关 SEREG间接手轮气动阀 SEREG直接手轮气动阀
图2-3 SEREG气动截止阀模型图
气动截止阀
图2-4 阀门零部件名称示图
气动截止阀
气动截止阀的动作过程 气动隔离阀在静态时,阀瓣在弹簧力的作用下,处在个自的安全 位置;此时压缩空气被气动头进气管上的电磁阀阻隔,当有阀门开 启(或关闭)信号传来,电磁阀开启,压缩空气快速进入气动头气腔 建立气压,克服弹簧力使阀瓣同轴系上升(或下降);反之有阀门关 闭(或开启)信号传来,电磁阀关闭,放气口开启,气腔气压迅速丧 失,弹簧力使阀瓣重回安全位置. 在整个动作过程中,设在“中性点”的手轮杆及滑块和气 动杆系没有任何接触;当需要手动干预时,现场操作人员首先板开 手轮杆锁紧器,转动手轮(右旋为关;左旋为开)强制阀瓣和阀座的 开闭,达到系统要求的位置.
图1-1a 正向式气动头
图1-1b 反向式气动头
气动阀的基本知识
“失气关”-气动阀在气动头没有进气的时 候,阀门在弹簧的作用下完全关闭。当气 动头充气后在隔膜下产生的作用力压缩弹 簧使阀门打开(如图1-1b); 气动头的分类 气动伺服装置(气动头)一般分为隔膜式和 活塞式两种: -隔膜式气动装置安装在要求阀门反应快,(开关 时间短)的小口径的截止阀或调节阀上; -活塞式气动伺服装置的气动操纵力增加了,同 时也增加了动力板的强度, 一般安装在口径较大 ,且反应灵敏的重要位置上.
气动阀的基本知识
气动阀的基本知识
压力的起始值和压座预紧力。 5)气动杆 一端安装下护板并感受和传递隔膜所施加的推力,另一端通 过联轴器与阀杆相连接,将隔膜的推力转变成阀门开度的变 化。 6)开度指示器 它用于指示执行机构的气动杆位移。 活塞式气动头 A.卧式活塞式气动头 卧式活塞式气动头一般多用于球阀和蝶阀。它由圆筒气缸 与活塞以及其上的密封环组成密闭的空间,活塞上装有齿条与
气动阀的基本知识
气动阀手动“中性点”的概念 气动阀门设置了手动操作机构后,大大提高了运行系统的 安全可靠性;增加了气动阀门在失去控制气源后的应变能力。 但是同时由带来了手动机构在阀门上的定位问题,也就是我通 常所说的气动阀“中性点”(NEUTRALPOINT)问题。 当气动阀手轮机构设置在某一点(或区)时,既不影响远程控 制阀门全开又不影响其全关,这个点(或区)就称其为这个气动阀 的手轮“中性点”.或者叫做“空位点”。 气动阀的“中性点”是由手动机构的添置带来的,因此没 有手动机构的气动阀门不存在“中性点”问题。
气动阀的基本知识
典型手轮的分类 --SEREG气动截止阀: 直接式手轮:手轮杆和阀杆在一条轴线 上,手轮在阀体的正上方; 间接式手轮:是指手轮的转动扭矩通过 一副蜗轮装置将手轮扭矩传递给阀杆,手 轮杆和阀杆不在一条轴线上. --气动调节阀 顶部手轮;側置蜗轮组手轮;杠杆式手轮
图1-7 SEREG气动截止阀的手轮形式
气动阀的基本知识
图1-5 卧式活塞式气动头模型
气动阀的基本知识
气动阀的基本知识
B 立式活塞式气动头 立式活塞式气动头一般多用于调节阀。它由圆筒气缸和盖与 活塞以及其上的密封环组成密闭的空间,气动弹簧(双向进气 没有弹簧)使活塞体沿气缸壁压向阀门的安全位置,当进气口 充入压缩空气后气缸的密闭区压力升高,迫使活塞克服弹簧力 向弹簧力反向滑动,达到开关(或调节)阀门的目的. 当气动头失去气源后,阀门在弹簧的作用下,迅速回到安全 位置。为了使气动头能快速可靠地操作阀门,维修时及时疏通 排气孔是非常必要的。
气点”勺尺的 高度。并将旧的勺尺与新勺高度进行比较,如果就旧勺尺高度 比新勺要求高度长,则只须将其送机加车间用刨床把高度修为 新高度后还可以继续使用,如果就旧勺尺高度比新高度短,则只 能重新加工一个,旧勺尺必须拿离现场,不可再用. 为了防止勺尺混用,要求在每个勺尺把上用油漆笔写上阀门 的功能位置和标定日期;用链条将其固定在气动头壳体上,防止 混用和丢失, 失气开气动截止阀“中性点”勺尺的制做过程与上述相同, 只 是方向上正好相反,本文不作憋述.
气动截止阀
有些阀门对关闭严密性 要求比较高,则在选点时 往1/2L的下方取点; 某些阀门有全流量要求 比较高,,则在选点时往 1/2L的上方取点; 以保 证阀门主要功能的完成 实现。
图2-9 失气关气动截止阀取值图示
气动截止阀
3.气动检查 按计算设计出的“中性点”高度来设置并锁住手轮,用气动 操作来验证,防止测量和计算发生错误.方法是用气动控制将阀 门全开、全关各一次,在阀门有效行程的上下点位,即阀门的全 开/全关位置,检查手论是否受力,如果手轮可以轻松摇动1/4圈, 不受力,即可认为设置是正确性的,如果有一个位置受力,就说 明“中性点”有问题,需重新设置。另外,气动操作还可已测得 阀门气动行程值,并与手轮测的的行程值(H2-H1)进行比较,如果 二值不一致,就要解决差异原因;是压缩空气表压不够还是阀门内 部有卡涩或轴系弯曲.要先处理异常,而后再执行下面内容.机加 工在确认手轮机构”中性点”设置完成后,以锁紧器到手轮轴
气动阀的基本知识
图1-6立式活塞式气动头主实视图
气动阀的基本知识
气动阀的基本知识

阀门气动装置的手轮 手轮装置的作用: 大多数比较重要的气动阀门都设计有气动装置的手动机构,不 同厂家构形各异,其作用主要有下列两点。 A .气源中断、调节器故障无输出以及膜片损坏等情况, 用手 轮操作使阀门动作,以保障生产过程的正常进行,保证电站安 全; B .用于加强隔离(用手轮增大阀座/阀瓣的压紧力);或根据系 统需要控制下游流量和压力的作用.
图1-3 隔膜气动头的模型
气动阀的基本知识
为了保证作用于膜片上的压力能有效准确地传递给气动杆,除 薄膜的四周夹装于上、下膜盖之间以外,其中间部分压装在下护 板的盘形件上。 2)回位弹簧 也是一个关键部件,它能使气动阀在气动头失气后迅速回到阀 门的安全位置,对它的要求是在全行程范围内弹簧的刚度应不发 生变化,这样可以提高气动装置的线性度。 3)上、下膜盖 上、下膜盖一般用灰铸铁铸成,也可用钢板冲制。它们与膜片 构成隔膜气室.形成操作阀门的动力。 4)调节套筒 用来调整弹簧的预紧力,这样可以根据实际工作需要改变进气

气动阀的基本知识
气动阀门的基本概念 所谓气动阀通常指阀门的闭合或调节功能是 由压缩空气产生的控制力来实现的.其特点是反 应迅速;阀位准确,经常被用在阀门口径比较 小,系统要求开关速度较快的现场位置. 1.“安全位置”的概念 气动阀门在气动头尚未进气或气动头卸压后自 动回复的稳定位置被称为该阀的“安全位置”。 2.“失气关”和“失气开”的概念 “失气开”-气动阀在气动头没有进气的时 候,阀门在弹簧的作用下完全开启。当气动头充 气后在隔膜上产生的作用力压缩弹簧使阀门关闭 (如图1-1a);
相关文档
最新文档