湖南省株洲市芦淞区2019年中考数学一模试卷
2019年湘教中考数学模拟试题(一)及参考答案
2019年中考模拟试题(一)数学参考答案满分120分,考试时量120分钟.一、选择题 (本大题共12个小题, 每小题3分,满分36分)二、填空题 (本大题共6个小题, 每小题3分, 满分18分)13.3x ≥, 14.14 , 15.1x =,16. 17. 3π18.1,4,6三、解答题(本大题共2个小题,每小题6分,满分12分)19.原式=6 20. 原式=6,四、解答题(本大题共2个小题,每小题8分,满分16分)21.解:(1)根据题意得:40÷20%=200(人)则本次被调查的学生有200人(2)喜欢“李晨”的人数为200-(40+20+60+30)=50(人)喜欢“黄晓明”的百分比为20÷200×100%=10%喜欢“Angelablaby ”的百分比为60÷200×100%=30%,如下图(3)列表如下:(B 表示喜欢“李晨”,D 表示喜欢“Angelababy ”)所有等可能的情况有20种,其中两人都是喜欢“李晨”的学生有6种,则P =620=310. 22. 解:由题意可知:10=OA m ,︒=∠45BAO ,︒=∠60CAO ,OA OC ⊥∵在Rt △AOB 中,︒=∠45BAO ,10=OA m∴OB =OA =10m ………………………2分 又∵在Rt △AOC 中,︒=∠60CAO ,10=OA m∴m 310·3==OA OC ………………………5分∴10310-=-=OB OC BC ≈10×1.732-10≈7.3m ………………………7分答:甲建筑物BC 的高约为7.3m ………………………8分五、解答题(本大题共2个小题,每小题9分,满分18分)23. 解:(1)设购进A 种纪念品每件需x 元,购进B 种纪念品每件需y 元,则根据题意,可列方程组为43550851050x y x y +=⎧⎨+=⎩,解得10050x y =⎧⎨=⎩,则购进A 、B 两种纪念品每件各需100、50元。
2019年湖南省株洲中考数学试卷及答案解析
湖南省株洲市2019年初中学业水平考试数 学本试卷满分120分,考试时间120分钟.一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.3-的倒数是 ( )A.13-B.13C.3-D.3 2.28⨯=( )A.42B.4C.10D.22 3.下列各式中,与233x y 是同类项的是( )A.52xB.323x yC.2312x y -D.513y - 4.对于任意的矩形,下列说法一定正确的是( )A.对角线垂直且相等B.四边都互相垂直C.四个角都相等D.是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为( )A.3-B.2-C.2D.3 6.在平面直角坐标系中,点()2,3A -位于哪个象限?( )A.第一象限B.第二象限C.第三象限D.第四象限7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为( )A.2B.3C.4D.5 8.下列各选项中因式分解正确的是( )A.()2211x x -=-B.()32222a a a a a -+=-C.()22422y y y y -+=-+D.()2221m n mn n n m -+=-9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数()0ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD y ⊥轴于点D ,过点B 、C 分别作BE ,CF x ⊥轴于点E 、F ,OC 与BE 相交于点M ,记AOD △、BOM △、四边形CMEF 的面积分别为1S 、2S 、3S ,则( )A.123S S S =+B.23S S =C.321S S S >>D.2123S S S <10.从1-,1,2,4四个数中任取两个不同的数(记作;k a ,k b )构成一个数组{},k k k M a b =(其中1,2k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},j j j M a b =(i j ≠,1i S ≤≤,1j S ≤≤)都有i i j j a b a b +≠+,则S 的最大值( )A.10B.6C.5D.4二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相同,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt ABC △中,90ACB ∠=︒,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若1EF =,则AB = .14.若a 为有理数,且2a -的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠= 度.16.如图所示,AB 为O e 的直径,点C 在O e 上,且OC AB ⊥,过点C 的弦CD 与线段OB 相交于点E ,满足65AEC ∠=︒,连接AD ,则BAD ∠= 度.17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy中,在直线1x=处放置反光镜Ⅰ,在y轴处放置一个有缺口的挡板Ⅱ,缺口为线段AB,其中点()0,1A,点B在点A上方,且1AB=,在直线1x=-处放置一个挡板Ⅲ,从点O发出的光线经反光镜Ⅰ反射后,通过缺口AB照射在挡板Ⅲ上,则落在挡板Ⅲ上的光线的长度为.三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:()2211a a aaa-+--,其中12a=.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A处测得汽车前端F的俯角为α,且1tan3α=,若直线AF与地面1l相交于点B,点A到地面l1的垂线段AC的长度为1.6米,假设眼睛A处的水平线2l与地面1l平行.(1)求BC的长度;(2)假如障碍物上的点M正好位于线段BC的中点位置(障碍物的横截面为长方形,且线段MN为此长方形前端的边),1MN l⊥,若小强的爸爸将汽车沿直线1l后退0.6米,通过汽车的前端F点恰好看见障碍物的顶部N点(点D为点A的对应点,点1F为点F的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鲜奶,根据以往的销售经验,当天的需求量与当天的最高气温T有关,现将去年六月份(按30天计算)的有关情况统计如下:最高气温T(单位:℃)需求量(单位:杯)T<25 20025≤T<30 250T≥30 400(1)求去年六月份最高气温不低于30 ℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T满足2530T≤<(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG的顶点O为正方形ABCD对角线AC、BD的交点,连接CE、DG.(1)求证:DOG COE△≌△;(2)若DG BD ⊥,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,12AM =,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰OAB △的边OB 与反比例函数my x=(0m >)的图像相交于点C ,其中OB AB =,点A 在x 轴的正半轴上,点B 的坐标为()2,4,过点C 作CH x ⊥轴于点H .(1)已知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB上的一点,满足OC ,过点P 作PQ x ⊥轴于点Q ,连结OP ,记OPQ △的面积为OPQ S △,设AQ t =,2OPQ T OH S =-△.①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是O e 的圆内接四边形,线段AB 是O e 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且ACH CBD ∠=∠,AD CH =,BA 的延长线与CD 的延长线相交于点P .(1)求证:四边形ADCH 是平行四边形; (2)若AC BC =,PB =,)21AB CD +=①求证:DHC △为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2y ax bx c =++(0a >).(1)若1a =,2b =-,1c =-.①求该二次函数图像的顶点坐标;②定义:对于二次函数2y px qx r =++(0p ≠),满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”. (2)设312b c =,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点()1,0A x ,()2,0B x ,其中10x <,20x <,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC OD =,又点E 的坐标为()1,0,过点D 作垂直于y 轴的直线与直线CE 相交于点F ,满足AFC ABC ∠=∠.FA 的延长线与BC 的延长线相交于点P,若PC PA =求该二次函数的表达式.---------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无------------------------------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________湖南省株洲市2019年初中学业水平考试数学答案解析一、选择题2.【答案】B4==。
2019湖南省株洲市中考数学真题(含答案)
初中数学试题株洲市2019年初中学业水平考试数学试题卷一、选择题(每小题有且只有一个正确答案,本题共10小题,每小题3分,共30分) 1.﹣3的倒数是 A .13-B .13C .﹣3D .32A .B .4CD .3.下列各式中,与233x y 是同类项的是A .52x B .323x y C .2312x y -D .513y - 4.对于任意的矩形,下列说法一定正确的是A .对角线垂直且相等B .四边都互相垂直C .四个角都相等D .是轴对称图形,但不是中心对称图形 5.关于x 的分式方程2503x x -=-的解为 A .﹣3 B .﹣2 C .2 D .3 6.在平面直角坐标系中,点A(2,﹣3)位于哪个象限?A .第一象限B .第二象限C .第三象限D .第四象限 7.若一组数据x ,3,1,6,3的中位数和平均数相等,则x 的值为A .2B .3C .4D .5 8.下列各选项中因式分解正确的是A .221(1)x x -=- B .3222(2)a a a a a -+=- C .2242(2)y y y y -+=-+ D .222(1)m n mn n n m -+=- 9.如图所示,在直角坐标系xOy 中,点A 、B 、C 为反比例函数(0)ky k x=>上不同的三点,连接OA 、OB 、OC ,过点A 作AD ⊥y 轴于点D ,过点B 、C 分别作BE ,CF ⊥x 轴于点E 、F ,OC 与BE 相交于点M ,记△AOD 、△BOM 、四边形CMEF 的面积分别为S 1、S 2、S 3,则A .S 1=S 2+S 3B .S 2=S 3C .S 3>S 2>S 1D .S 1S 2<S 32 10.从﹣1,1,2,4四个数中任取两个不同的数(记作:k a ,k b )构成一个数组M k ={k a ,k b }(其中k =1,2,…,S ,且将{k a ,k b }与{k b ,k a }视为同一个数组),若满足:对于任意的M i ={i a ,i b }和M j ={j a ,j b }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有i a +i b ≠j a +j b ,则S 的最大值A .10B .6C .5D .4 二、填空题(本题共8小题,每小题3分,共24分)11.若二次函数2y ax bx =+的图像开口向下,则a 0(填“=”或“>”或“<”). 12.若一个盒子中有6个白球,4个黑球,2个红球,且各球的大小与质地都相问,现随机从中摸出一个球,得到白球的概率是 .13.如图所示,在Rt △ABC 中,∠ACB =90°,CM 是斜边AB 上的中线,E 、F 分别为MB 、BC 的中点,若EF =1,则AB = .14.若a 为有理数,且2﹣a 的值大于1,则a 的取值范围为 .15.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角∠EAB 的角平分线相交于点P ,且∠ABP =60°,则∠APB = 度.第9题 第13题 第15题16.如图所示,AB 为⊙O 的直径,点C 在⊙O 上,且OC ⊥AB ,过点C 的弦CD 与线段OB 相交于点E ,满足∠AEC =65°,连接AD ,则∠BAD = 度. 17.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有善行者行一百步,不善行者行六十步.今不善行者先行一百步,善行者追之,问几何步及之?”其意思为:速度快的人走100步,速度慢的人只走60步,现速度慢的人先走100步,速度快的人去追赶,则速度快的人要走 步才能追到速度慢的人.18.如图所示,在平面直角坐标系xOy 中,在直线x =1处放置反光镜I ,在y 轴处放置一个有缺口的挡板II ,缺口为线段AB ,其中点A(0,1),点B 在点A 上方,且AB =1,在直线x =﹣1处放置一个挡板III ,从点O 发出的光线经反光镜I 反射后,通过缺口AB 照射在挡板III 上,则落在挡板III 上的光线的长度为 .第16题 第18题 三、解答题(本大题共8小题,共66分)19.(本题满分6分)计算:032cos30π-+-︒.20.(本题满分6分)先化简,再求值:221(1)a a a a a -+--,其中a =12.21.(本题满分8分)小强的爸爸准备驾车外出.启动汽车时,车载报警系统显示正前方有障碍物,此时在眼睛点A 处测得汽车前端F 的俯角为α,且tan α=13,若直线AF 与地面l 1相交于点B ,点A 到地面l 1的垂线段AC 的长度为1.6米,假设眼睛A 处的水平线l 2与地面l 1平行. (1)求BC 的长度;(2)假如障碍物上的点M 正好位于线段BC 的中点位置(障碍物的横截面为长方形,且线段MN 为此长方形前端的边),MN ⊥l 1,若小强的爸爸将汽车沿直线l 1后退0.6米,通过汽车的前端F 点恰好看见障碍物的顶部N 点(点D 为点A 的对应点,点F 1为点F 的对应点).求障碍物的高度.22.(本题满分8分)某甜品店计划订购一种鮮奶,根据以往的销售经验,当天的需求量与当天的最高气温T 有关,现将去年六月份(按30天计算)的有关情况统计如下:(最高气温与需求量统计表)(最高气温与天数的统计图)(1)求去年六月份最高气温不低于30℃的天数;(2)若以最高气温位于各区间的频率估计最高气温位于该区间的概率,求去年六月份这种鲜奶一天的需求量不超过200杯的概率;(3)若今年六月份每天的进货量均为350杯,每杯的进价为4元,售价为8元,未售出的这种鲜奶厂家以1元的价格收回销毁,假设今年与去年的情况大致一样,若今年六月份某天的最高气温T 满足25≤T <30(单位:℃),试估计这一天销售这种鲜奶所获得的利润为多少元?23.(本题满分8分)如图所示,已知正方形OEFG 的顶点O 为正方形ABCD 对角线AC 、BD 的交点,连接CE 、DG . (1)求证:△DOG ≌△COE ;(2)若DG ⊥BD ,正方形ABCD 的边长为2,线段AD 与线段OG 相交于点M ,AM=12,求正方形OEFG 的边长.24.(本题满分8分)如图所示,在平面直角坐标系xOy 中,等腰△OAB 的边OB 与反比例函数(0)my m x=>的图像相交于点C ,其中OB =AB ,点A 在x 轴的正半轴上,点B 的坐标为(2,4),过点C 作CH ⊥x 轴于点H .(1)己知一次函数的图像过点O ,B ,求该一次函数的表达式;(2)若点P 是线段AB 上的一点,满足OC ,过点P 作PQ ⊥x 轴于点Q ,连结OP ,记△OPQ 的面积为S △OPQ ,设AQ =t ,T =OH 2﹣S △OPQ .①用t 表示T (不需要写出t 的取值范围);②当T 取最小值时,求m 的值.25.(本题满分10分)四边形ABCD 是⊙O 的圆内接四边形,线段AB 是⊙O 的直径,连结AC 、BD .点H 是线段BD 上的一点,连结AH 、CH ,且∠ACH =∠CBD ,AD =CH ,BA 的延长线与CD 的延长线相交于点P . (1)求证:四边形ADCH 是平行四边形;(2)若AC =BC ,PB ,AB +CD =1).①求证:△DHC 为等腰直角三角形;②求CH 的长度.26.(本题满分12分)已知二次函数2(0)y ax bx c a =++>.(1)若a =l ,b =﹣2,c =﹣1.①求该二次函数图像的顶点坐标;②定义:对于二次函数2(0)y px qx r p =++≠,满足方程y x =的x 的值叫做该二次函数的“不动点”.求证:二次函数2y ax bx c =++有两个不同的“不动点”.(2)设b =312c ,如图所示,在平面直角坐标系xOy 中,二次函数2y ax bx c =++的图像与x 轴分别相交于不同的两点A(1x ,0),B(2x ,0),其中1x <0,2x <0,与y 轴相交于点C ,连结BC ,点D 在y 轴的正半轴上,且OC =OD ,又点E 的坐标为(1,0),过点D 作垂直于y 轴的直线与直线CE 相交于点E ,满足∠AFC=∠ABC .FA 的延长线与BC 的延长线相交于点P ,若PC PA =,求该二次函数的表达式.研读课标著名特级教师于永正先生有一个习惯,总是把课程标准中各学段的教学目标复印下来,贴在备课本的首页上,作为“教学指南”。
2019年株洲市中考数学模拟试题与答案
2019年株洲市中考数学模拟试题与答案考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的”姓名”、“考号”、“考场"、”座位号”在答题卡上填写清楚,将“条形码”准确粘贴在条形码区域内。
3.保持卡面整洁,不要折叠、不要弄脏、不要弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷 选择题(共30分)一、选择题(每小3分,共计30分。
每小超都给出A,B,C,D 四个选项,其中只有一个是正确的。
) 1.在0,-1,-2,3这四个数中,最小的数是A .0B .-1C .-2D .32.吸烟有害健康.据中央电视台2016年5月30日报道,全世界每年因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为 A .6610⨯ B .56010⨯ C .5610⨯ D .70.610⨯ 3.下列计算正确的是A .2523a a a =+B .134=-x xC .y x yx y x 22223=- D .ab b a 523=+ 4. 下列图形中,是中心对称图形但不是轴对称图形的是A. B. C. D.5. 一个几何体的主视图和左视图都是边长为2的正方形,俯视图是一个圆,那么这个几何体的体积是 A .8 B .8π C .6π D .2π6.如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连结BD ,AD.若∠ACD =30°,则∠DBA 的大小是A .15°B .30°C .60°D .75° 7. 如果一元二次方程x2﹣2x+p=0总有实数根,那么p 应满足的条件是 A .p >1 B .p=1 C .p <1 D .p ≤18.若点A(3,-4)、B(-2,m)在同一个反比例函数的图像上,则m 的值为 A .6 B .-6 C .12 D .-129. 为有效开发海洋资源,保护海洋权益,我国对南海诸岛进行了全面调查。
湖南省株洲市2019-2020学年中考一诊数学试题含解析
湖南省株洲市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知:a 、b 是不等于0的实数,2a=3b ,那么下列等式中正确的是( ) A .B .C .D .2.如图,矩形ABCD 内接于⊙O ,点P 是»AD 上一点,连接PB 、PC ,若AD=2AB ,则cos ∠BPC 的值为( )A .55B .255C .32D .35103.如图,A ,B ,C ,D ,E ,G ,H ,M ,N 都是方格纸中的格点(即小正方形的顶点),要使△DEF 与△ABC 相似,则点F 应是G ,H ,M ,N 四点中的( )A .H 或NB .G 或HC .M 或ND .G 或M4.-3的相反数是( ) A .13B .3C .13-D .-35.如图,已知Rt △ABC 中,∠BAC=90°,将△ABC 绕点A 顺时针旋转,使点D 落在射线CA 上,DE 的延长线交BC 于F ,则∠CFD 的度数为( )A .80°B .90°C .100°D .120°6.如图,DE 是线段AB 的中垂线,AE //BC ,AEB 120o ∠=,AB 8=,则点A 到BC 的距离是()A .4B .43C .5D .67.下列分式是最简分式的是( )A .223a a bB .23a a a -C .22a b a b ++D .222a ab a b --8.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x=16(27﹣x )B .16x=22(27﹣x )C .2×16x=22(27﹣x )D .2×22x=16(27﹣x )9.甲、乙、丙三家超市为了促销同一种定价为m 元的商品,甲超市连续两次降价20%;乙超市一次性降价40%;丙超市第一次降价30%,第二次降价10%,此时顾客要购买这种商品,最划算的超市是( ) A .甲B .乙C .丙D .都一样10.多项式4a ﹣a 3分解因式的结果是( )A .a (4﹣a 2)B .a (2﹣a )(2+a )C .a (a ﹣2)(a+2)D .a (2﹣a )211.2018年,我国将加大精准扶贫力度,今年再减少农村贫困人口1000万以上,完成异地扶贫搬迁280万人.其中数据280万用科学计数法表示为( ) A .2.8×105B .2.8×106C .28×105D .0.28×10712.如图:A 、B 、C 、D 四点在一条直线上,若AB =CD ,下列各式表示线段AC 错误的是( )A .AC =AD ﹣CDB .AC =AB+BC C .AC =BD ﹣ABD .AC =AD ﹣AB二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.在Rt △ABC 中,∠C=90∘,若AB=4,sinA =35,则斜边AB 边上的高CD 的长为________. 14.一艘轮船在小岛A 的北偏东60°方向距小岛80海里的B 处,沿正西方向航行3小时后到达小岛的北偏西45°的C 处,则该船行驶的速度为____________海里/时.15.如图,PA ,PB 是⊙O 是切线,A ,B 为切点,AC 是⊙O 的直径,若∠P=46°,则∠BAC= ▲度.16.小球在如图所示的地板上自由地滚动,并随机地停留在某块方砖上,那么小球最终停留在黑色区域的概率是_____________________.17.袋中装有一个红球和二个黄球,它们除了颜色外都相同,随机从中摸出一球,记录下颜色后放回袋中,充分摇匀后,再随机摸出一球,两次都摸到红球的概率是_____.18.如图(1),在矩形ABCD中,将矩形折叠,使点B落在边AD上,这时折痕与边AD和BC分别交于点E、点F.然后再展开铺平,以B、E、F为顶点的△BEF称为矩形ABCD的“折痕三角形”.如图(2),在矩形ABCD中,AB=2,BC=4,当“折痕△BEF”面积最大时,点E的坐标为_________________________.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)两家超市同时采取通过摇奖返现金搞促销活动,凡在超市购物满100元的顾客均可以参加摇奖一次.小明和小华对两家超市摇奖的50名顾客获奖情况进行了统计并制成了图表(如图)奖金金额20元15元10元5元获奖人数商家甲超市 5 10 15 20乙超市 2 3 20 25(1)在甲超市摇奖的顾客获得奖金金额的中位数是,在乙超市摇奖的顾客获得奖金金额的众数是;(2)请你补全统计图1;(3)请你分别求出在甲、乙两超市参加摇奖的50名顾客平均获奖多少元?(4)图2是甲超市的摇奖转盘,黄区20元、红区15元、蓝区10元、白区5元,如果你购物消费了100元后,参加一次摇奖,那么你获得奖金10元的概率是多少?20.(6分)如图,在平面直角坐标系xOy 中,一次函数y =x 与反比例函数()0ky k x=≠的图象相交于点()3,Aa .(1)求a 、k 的值;(2)直线x =b (0b >)分别与一次函数y =x 、反比例函数ky x=的图象相交于点M 、N ,当MN =2时,画出示意图并直接写出b 的值.21.(6分)如图,在ABCD Y 中,6090B ︒<∠<︒,且2AB =,4BC =,F 为AD 的中点,CE AB ⊥于点E ,连结EF ,CF .(1)求证:3EFD AEF ∠=∠;(2)当BE 为何值时,22CE CF -的值最大?并求此时sin B 的值.22.(8分)已知:如图,在△ABC 中,∠ACB=90°,以BC 为直径的⊙O 交AB 于点D ,E 为»BD的中点.求证:∠ACD=∠DEC;(2)延长DE、CB交于点P,若PB=BO,DE=2,求PE的长23.(8分)关于x的一元二次方程mx2+(3m﹣2)x﹣6=1.(1)当m为何值时,方程有两个不相等的实数根;(2)当m为何整数时,此方程的两个根都为负整数.24.(10分)如图,P是半圆弧AB n上一动点,连接PA、PB,过圆心O作OC//BP交PA于点C,连接=,设O,C两点间的距离为xcm,B,C两点间的距离为ycm.CB.已知AB6cm小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是小东的探究过程,请补充完整:()1通过取点、画图、测量,得到了x与y的几组值,如下表:x/cm0 0.5 1 1.5 2 2.5 3y/cm 3 3.1 3.5 4.0 5.3 6(说明:补全表格时相关数据保留一位小数)()2建立直角坐标系,描出以补全后的表中各对应值为坐标的点,画出该函数的图象;()3结合画出的函数图象,解决问题:直接写出OBCV周长C的取值范围是______.25.(10分)2013年我国多地出现雾霾天气,某企业抓住商机准备生产空气净化设备,该企业决定从以下两个投资方案中选择一个进行投资生产,方案一:生产甲产品,每件产品成本为a元(a为常数,且40<a<100),每件产品销售价为120元,每年最多可生产125万件;方案二:生产乙产品,每件产品成本价为80元,每件产品销售价为180元,每年可生产120万件,另外,年销售x万件乙产品时需上交0.5x2万元的特别关税,在不考虑其它因素的情况下:(1)分别写出该企业两个投资方案的年利润y1(万元)、y2(万元)与相应生产件数x(万件)(x为正整数)之间的函数关系式,并指出自变量的取值范围;(2)分别求出这两个投资方案的最大年利润;(3)如果你是企业决策者,为了获得最大收益,你会选择哪个投资方案?26.(12分)如今很多初中生购买饮品饮用,既影响身体健康又给家庭增加不必要的开销,为此数学兴趣小组对本班同学一天饮用饮品的情况进行了调查,大致可分为四种:A:自带白开水;B:瓶装矿泉水;C:碳酸饮料;D:非碳酸饮料.根据统计结果绘制如下两个统计图(如图),根据统计图提供的信息,解答下列问题:请你补全条形统计图;在扇形统计图中,求“碳酸饮料”所在的扇形的圆心角的度数;为了养成良好的生活习惯,班主任决定在自带白开水的5名同学(男生2人,女生3人)中随机抽取2名同学担任生活监督员,请用列表法或树状图法求出恰好抽到一男一女的概率.27.(12分)在数学实践活动课上,老师带领同学们到附近的湿地公园测量园内雕塑的高度.用测角仪在A处测得雕塑顶端点C′的仰角为30°,再往雕塑方向前进4米至B处,测得仰角为45°.问:该雕塑有多高?(测角仪高度忽略不计,结果不取近似值.)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B 【解析】 ∵2a=3b ,∴,∴,∴A 、C 、D 选项错误,B 选项正确,故选B. 2.A 【解析】 【分析】连接BD ,根据圆周角定理可得cos ∠BDC=cos ∠BPC ,又BD 为直径,则∠BCD=90°,设DC 为x ,则BC 为2x ,根据勾股定理可得5,再根据cos ∠BDC=DC BD5x 5,即可得出结论.【详解】 连接BD ,∵四边形ABCD 为矩形, ∴BD 过圆心O ,∵∠BDC=∠BPC (圆周角定理) ∴cos ∠BDC=cos ∠BPC ∵BD 为直径, ∴∠BCD=90°, ∵DC BC =12, ∴设DC 为x , 则BC 为2x ,∴22DC BC +()222x x +5, ∴cos ∠BDC=DC BD5x 5,∵cos ∠BDC=cos ∠BPC , ∴cos ∠5. 故答案选A.【点睛】本题考查了圆周角定理与勾股定理,解题的关键是熟练的掌握圆周角定理与勾股定理的应用.3.C【解析】【分析】根据两三角形三条边对应成比例,两三角形相似进行解答【详解】设小正方形的边长为1,则△ABC的各边分别为3、13、10,只能F是M或N时,其各边是6、13 10△ABC各边对应成比例,故选C【点睛】本题考查了相似三角形的判定,相似三角形对应边成比例是解题的关键4.B【解析】【分析】根据相反数的定义与方法解答.【详解】--=.解:-3的相反数为()33故选:B.【点睛】本题考查相反数的定义与求法,熟练掌握方法是关键.5.B【解析】【分析】根据旋转的性质得出全等,推出∠B=∠D,求出∠B+∠BEF=∠D+∠AED=90°,根据三角形外角性质得出∠CFD=∠B+∠BEF,代入求出即可.【详解】解:∵将△ABC 绕点A 顺时针旋转得到△ADE , ∴△ABC ≌△ADE , ∴∠B=∠D ,∵∠CAB=∠BAD=90°,∠BEF=∠AED ,∠B+∠BEF+∠BFE=180°,∠D+∠BAD+∠AED=180°, ∴∠B+∠BEF=∠D+∠AED=180°﹣90°=90°, ∴∠CFD=∠B+∠BEF=90°, 故选:B . 【点睛】本题考查了旋转的性质,全等三角形的性质和判定,三角形内角和定理,三角形外角性质的应用,掌握旋转变换的性质是解题的关键. 6.A 【解析】 【分析】作AH BC ⊥于H.利用直角三角形30度角的性质即可解决问题. 【详解】解:作AH BC ⊥于H .DE Q 垂直平分线段AB , EA EB ∴=, EAB EBA ∠∠∴=,AEB 120∠=o Q , EAB ABE 30∠∠∴==o ,AE //BC Q ,EAB ABH 30o ∠∠∴==, AHB 90∠=o Q ,AB 8=,1AH AB 42∴==, 故选A . 【点睛】本题考查线段的垂直平分线的性质,等腰三角形的性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 7.C 【解析】 解:A .22233a a b ab=,故本选项错误; B .2133a a a a =--,故本选项错误;C .22a ba b++,不能约分,故本选项正确; D .222()()()a ab a a b aa b a b a b a b--==-+-+,故本选项错误.故选C .点睛:本题主要考查对分式的基本性质,约分,最简分式等知识点的理解和掌握,能根据分式的基本性质正确进行约分是解答此题的关键. 8.D 【解析】设分配x 名工人生产螺栓,则(27-x )人生产螺母,根据一个螺栓要配两个螺母可得方程2×22x=16(27-x ),故选D. 9.B 【解析】 【分析】根据各超市降价的百分比分别计算出此商品降价后的价格,再进行比较即可得出结论. 【详解】解:降价后三家超市的售价是: 甲为(1-20%)2m=0.64m , 乙为(1-40%)m=0.6m ,丙为(1-30%)(1-10%)m=0.63m , ∵0.6m <0.63m <0.64m ,∴此时顾客要购买这种商品最划算应到的超市是乙. 故选:B . 【点睛】此题考查了列代数式,解题的关键是根据题目中的数量关系列出代数式,并对代数式比较大小. 10.B 【解析】 【分析】。
2019届湖南株洲市中考模拟数学试卷(一)【含答案及解析】
17. 如图,在菱形 ABCD中, DE⊥ AB,cosA= ,则 tan ∠ DBE的值等于 ______.
18. 如图放置的△ OAB1,△ B1A1B2 ,△ B2A2B3 ,…都是边长2 为的等边三角形,边 AO在 y 轴上,点 B1, B2, B3,…都在直线 y= x 上,则 A2015 的坐标是 ______.
2019 届湖南株洲市中考模拟数学试卷(一)【含答案
及解析】
姓名 ___________ 班级 ____________ 分数 __________
题号
一
二
三
四
五
总分
得分
一、单选题
1. 下列各数中,绝对值最大的是( )
A. 2 B. ﹣ 1 C. 0 D.
﹣3
二、选择题
2. 下列运算正确的是( )
A.(﹣ a2)3=a5
A.6 B . 9 C. 12 D . 3
9. 某中学新科技馆铺设地面,已有正三角形形状的地砖,现打算购买另一种不同形状的正 多边形地砖,与正三角形地砖在同一顶点处作平面镶嵌,则该学校不应该购买的地砖形状
是( )
A.正方形B.正六边形来自C.正八边形D
.正十二边形
10. 如图是二次函数 y=ax2+bx+c 图象的一部分,其对称轴为 x=﹣ 1,且过点(﹣ 3, 0), 下列说法: ①b2﹣ 4ac=0; ②4a+2b+c<0; ③3a+c=0; ④若(﹣ 5,y1),( 2, y2)是抛物线上的两点,则 y1> y2, 其中正确的是( )
23. 某电器超市销售每台进价分别为 200 元、 170 元的 A、B 两种型号的电风扇,下表是近 两周的销售情况:
湖南省株洲市2019-2020学年中考数学一模考试卷含解析
湖南省株洲市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.函数y=113xx+--自变量x的取值范围是( )A.x≥1B.x≥1且x≠3C.x≠3D.1≤x≤32.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是()A.中位数不相等,方差不相等B.平均数相等,方差不相等C.中位数不相等,平均数相等D.平均数不相等,方差相等3.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m的值应是()A.110 B.158 C.168 D.1784.为了配合“我读书,我快乐”读书节活动,某书店推出一种优惠卡,每张卡售价20元,凭卡购书可享受8折优惠,小慧同学到该书店购书,她先买优惠卡再凭卡付款,结果节省了10元,若此次小慧同学不买卡直接购书,则她需付款:A.140元B.150元C.160元D.200元5.下列调查中,调查方式选择合理的是()A.为了解襄阳市初中每天锻炼所用时间,选择全面调查B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查C.为了解神舟飞船设备零件的质量情况,选择抽样调查D.为了解一批节能灯的使用寿命,选择抽样调查6.下列选项中,可以用来证明命题“若a2>b2,则a>b“是假命题的反例是()A.a=﹣2,b=1 B.a=3,b=﹣2 C.a=0,b=1 D.a=2,b=17.如图,△ABC中,AB=3,AC=4,BC=5,D、E分别是AC、AB的中点,则以DE为直径的圆与BC 的位置关系是()A.相切B.相交C.相离D.无法确定8.2-的相反数是()A .2-B .2C .12D .12-9.如图,矩形ABCD 中,AD=2,AB=3,过点A ,C 作相距为2的平行线段AE ,CF ,分别交CD ,AB 于点E ,F ,则DE 的长是( )A .5B .136C .1D .5610.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是( ) A .三棱柱B .四棱柱C .三棱锥D .四棱锥11.下列实数为无理数的是 ( ) A .-5B .72C .0D .π12.如图,PA 切⊙O 于点A ,PO 交⊙O 于点B ,点C 是⊙O 优弧弧AB 上一点,连接AC 、B C ,如果∠P=∠C ,⊙O 的半径为1,则劣弧弧AB 的长为( )A .13π B .14π C .16π D .112π 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知正六边形ABCDEF 的外接圆半径为2cm ,则正六边形的边心距是__________cm .14.计算(+1)(-1)的结果为_____.15.如图,点D 为矩形OABC 的AB 边的中点,反比例函数(0)ky x x=>的图象经过点D ,交BC 边于点E.若△BDE 的面积为1,则k =________16.某种商品每件进价为20元,调查表明:在某段时间内若以每件x元(20≤x≤30,且x为整数)出售,可卖出(30﹣x)件.若使利润最大,每件的售价应为______元.17.-3的倒数是___________18.一个正四边形的内切圆半径与外接圆半径之比为:_________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt△ABC中∠ABC=90°,AC的垂直平分线交BC于D点,交AC于E点,OC=OD.(1)若3sin4A=,DC=4,求AB的长;(2)连接BE,若BE是△DEC的外接圆的切线,求∠C的度数.20.(6分)已知:四边形ABCD是平行四边形,点O是对角线AC、BD的交点,EF过点O且与AB、CD分别相交于点E、F,连接EC、AF.(1)求证:DF=EB;(2)AF与图中哪条线段平行?请指出,并说明理由.21.(6分)如图,⊙O的直径AD长为6,AB是弦,CD∥AB,∠A=30°,且CD=3.(1)求∠C的度数;(2)求证:BC是⊙O的切线.22.(8分)解不等式组()22113x xxx⎧-≥-⎪⎨≤+⎪⎩,并把它的解集表示在数轴上.23.(8分)一个不透明的口袋里装有分别标有汉字“美”、“丽”、“光”、“明”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,求摸出球上的汉字刚好是“美”的概率;(2)甲从中任取一球,不放回,再从中任取一球,请用树状图或列表法,求甲取出的两个球上的汉字恰能组成“美丽”或“光明”的概率.24.(10分)阅读材料:对于线段的垂直平分线我们有如下结论:到线段两个端点距离相等的点在线段的垂直平分线上.即如图①,若PA=PB,则点P在线段AB的垂直平分线上请根据阅读材料,解决下列问题:如图②,直线CD是等边△ABC的对称轴,点D在AB上,点E是线段CD上的一动点(点E不与点C、D重合),连结AE、BE,△ABE经顺时针旋转后与△BCF重合.(I)旋转中心是点,旋转了(度);(II)当点E从点D向点C移动时,连结AF,设AF与CD交于点P,在图②中将图形补全,并探究∠APC 的大小是否保持不变?若不变,请求出∠APC的度数;若改变,请说出变化情况.25.(10分)如图,直线l是线段MN的垂直平分线,交线段MN于点O,在MN下方的直线l上取一点P,连接PN,以线段PN为边,在PN上方作正方形NPAB,射线MA交直线l于点C,连接BC.(1)设∠ONP=α,求∠AMN的度数;(2)写出线段AM、BC之间的等量关系,并证明.26.(12分)计算:(1-n)03|+(-13)-1+4cos30°.27.(12分)某商场服装部分为了解服装的销售情况,统计了每位营业员在某月的销售额(单位:万元),并根据统计的这组销售额的数据,绘制出如下的统计图①和图②,请根据相关信息,解答下列问题:(1)该商场服装营业员的人数为,图①中m的值为;(2)求统计的这组销售额数据的平均数、众数和中位数.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】由题意得,x-1≥0且x-3≠0,∴x≥1且x≠3.故选B.2.D【解析】【分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23;3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13[(3﹣4)2+(4﹣4)2+(5﹣4)2]=23;故中位数不相等,方差相等.故选:D.【点睛】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法. 3.B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m=12×14−10=158.故选C.4.B【解析】试题分析:此题的关键描述:“先买优惠卡再凭卡付款,结果节省了人民币10元”,设李明同学此次购书的总价值是人民币是x元,则有:20+0.8x=x﹣10解得:x=150,即:小慧同学不凭卡购书的书价为150元.故选B.考点:一元一次方程的应用5.D【解析】【详解】A.为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;C.为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;D.为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;故选D.6.A【解析】【分析】根据要证明一个结论不成立,可以通过举反例的方法来证明一个命题是假命题.由此即可解答.【详解】∵当a=﹣2,b=1时,(﹣2)2>12,但是﹣2<1,∴a=﹣2,b=1是假命题的反例.故选A.【点睛】本题考查了命题与定理,要说明数学命题的错误,只需举出一个反例即可,这是数学中常用的一种方法.7.B【解析】【分析】首先过点A作AM⊥BC,根据三角形面积求出AM的长,得出直线BC与DE的距离,进而得出直线与圆的位置关系.【详解】解:过点A作AM⊥BC于点M,交DE于点N,∴AM×BC=AC×AB,∴AM=345⨯=125=2.1.∵D、E分别是AC、AB的中点,∴DE∥BC,DE=12BC=2.5,∴AN=MN=12AM,∴MN=1.2.∵以DE为直径的圆半径为1.25,∴r=1.25>1.2,∴以DE为直径的圆与BC的位置关系是:相交.故选B.【点睛】本题考查了直线和圆的位置关系,利用中位线定理得出BC到圆心的距离与半径的大小关系是解题的关键.8.B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.9.D【解析】【分析】过F作FH⊥AE于H,根据矩形的性质得到AB=CD,AB//CD,推出四边形AECF是平行四边形,根据平行四边形的性质得到AF=CE,根据相似三角形的性质得到AE ADAF FH=,于是得到AE=AF,列方程即可得到结论.【详解】解:如图:解:过F作FH⊥AE于H,Q四边形ABCD是矩形, ∴AB=CD,AB∥CD,Q AE//CF, ∴四边形AECF是平行四边形,∴AF=CE,∴DE=BF,∴AF=3-DE,∴Q∠FHA=∠D=∠DAF=90o,∴∠AFH+∠HAF=∠DAE+∠FAH=90, ∴∠DAE=∠AFH, ∴△ADE~△AFH,∴AE AD AF FH=∴AE=AF,∴3DE=-,∴DE=5 6 ,故选D.【点睛】本题主要考查平行四边形的性质及三角形相似,做合适的辅助线是解本题的关键.10.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状11.D【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A、﹣5是整数,是有理数,选项错误;B、72是分数,是有理数,选项错误;C、0是整数,是有理数,选项错误;D、π是无理数,选项正确.故选D.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.A【解析】【分析】利用切线的性质得∠OAP=90°,再利用圆周角定理得到∠C=12∠O,加上∠P=∠C可计算写出∠O=60°,然后根据弧长公式计算劣弧AB的长.【详解】解:∵PA切⊙O于点A,∴OA⊥PA,∴∠OAP=90°,∵∠C=12∠O,∠P=∠C,∴∠O=2∠P,而∠O+∠P=90°,∴∠O=60°,∴劣弧AB的长=60?•11 1803ππ=.故选:A.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.也考查了圆周角定理和弧长公式.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】连接OA,作OM⊥AB于点M,∵正六边形ABCDEF的外接圆半径为2cm∴正六边形的半径为2 cm,即OA=2cm在正六边形ABCDEF中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=323⨯=(cm)故答案为3.14.1 【解析】 【分析】利用平方差公式进行计算即可. 【详解】 原式=()2﹣1=2﹣1 =1,故答案为:1. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式. 15.1 【解析】分析:设D (a ,k a ),利用点D 为矩形OABC 的AB 边的中点得到B (2a ,k a ),则E (2a ,2k a),然后利用三角形面积公式得到12•a•(k a -2ka)=1,最后解方程即可.详解:设D (a ,ka),∵点D 为矩形OABC 的AB 边的中点,∴B (2a ,k a ), ∴E (2a ,2ka),∵△BDE 的面积为1, ∴12•a•(k a -2k a)=1,解得k=1.故答案为1.点睛:本题考查了反比例函数解析式的应用,根据解析式设出点的坐标,结合矩形的性质并利用平面直角坐标系中点的特征确定三角形的两边长,进而结合三角形的面积公式列出方程求解,可确定参数k 的取值. 16.3 【解析】试题分析:设最大利润为w 元,则w=(x ﹣30)(30﹣x )=﹣(x ﹣3)3+3,∵30≤x≤30,∴当x=3时,二次函数有最大值3,故答案为3.考点:3.二次函数的应用;3.销售问题.17.1 3 -【解析】【分析】乘积为1的两数互为相反数,即a的倒数即为1a,符号一致【详解】∵-3的倒数是1 3 -∴答案是1 3 -18.【解析】【分析】如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,利用正方形的性质得到OH为正方形ABCD 的内切圆的半径,∠OAB=45°,然后利用等腰直角三角形的性质得OA=OH即可解答.【详解】解:如图,正方形ABCD为⊙O的内接四边形,作OH⊥AB于H,则OH为正方形ABCD的内切圆的半径,∵∠OAB=45°,∴OA=OH,∴即一个正四边形的内切圆半径与外接圆半径之比为,故答案为:.【点睛】本题考查了正多边形与圆的关系:把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.理解正多边形的有关概念.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1;(2)30°【解析】【分析】(1)由于DE垂直平分AC,那么AE=EC,∠DEC=90°,而∠ABC=∠DEC=90°,∠C=∠C,易证,△ABC∽△DEC,∠A=∠CDE,于是sin∠CDE=sinA=34,AB:AC=DE:DC,而DC=4,易求EC,利用勾股定理可求DE,易知AC=6,利用相似三角形中的比例线段可求AB;(2)连接OE,由于∠DEC=90°,那么∠EDC+∠C=90°,又BE是切线,那么∠BEO=90°,于是∠EOB+∠EBC=90°,而BE是直角三角形斜边上的中线,那么BE=CE,于是∠EBC=∠C,从而有∠EOB=∠EDC,又OE=OD,易证△DEO是等边三角形,那么∠EDC=60°,从而可求∠C.【详解】解:(1)∵AC的垂直平分线交BC于D点,交AC于E点,∴∠DEC=90°,AE=EC,∵∠ABC=90°,∠C=∠C,∴∠A=∠CDE,△ABC∽△DEC,∴sin∠CDE=3sin4A=,AB:AC=DE:DC,∵DC=4,∴ED=3,∴=∴AC=6,∴AB::4,∴AB=2;(2)连接OE,∵∠DEC=90°,∴∠EDC+∠C=90°,∵BE是⊙O的切线,∴∠BEO=90°,∴∠EOB+∠EBC=90°,∵E是AC的中点,∠ABC=90°,∴BE=EC,∴∠EBC=∠C , ∴∠EOB=∠EDC , 又∵OE=OD ,∴△DOE 是等边三角形, ∴∠EDC=60°, ∴∠C=30°.【点睛】考查了切线的性质、线段垂直平分线的性质、相似三角形的判定和性质、勾股定理、等边三角形的判定和性质.解题的关键是连接OE ,构造直角三角形. 20.(1)见解析;(2)AF ∥CE ,见解析. 【解析】 【分析】(1)直接利用全等三角三角形判定与性质进而得出△FOC ≌△EOA (ASA ),进而得出答案; (2)利用平行四边形的判定与性质进而得出答案. 【详解】(1)证明:∵四边形ABCD 是平行四边形,点O 是对角线AC 、BD 的交点,∴AO=CO ,DC ∥AB ,DC=AB , ∴∠FCA=∠CAB , 在△FOC 和△EOA 中FCO EAO CO AOCOF AOE ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△FOC ≌△EOA (ASA ), ∴FC=AE , ∴DC-FC=AB-AE , 即DF=EB ;(2)AF ∥CE ,理由:∵FC=AE ,FC ∥AE , ∴四边形AECF 是平行四边形, ∴AF ∥CE . 【点睛】此题主要考查了平行四边形的判定与性质以及全等三角形的判定与性质,正确得出△FOC ≌△EOA (ASA )是解题关键. 21.(1)60°;(2)见解析 【解析】 【分析】(1)连接BD ,由AD 为圆的直径,得到∠ABD 为直角,再利用30度角所对的直角边等于斜边的一半求出BD 的长,根据CD 与AB 平行,得到一对内错角相等,确定出∠CDB 为直角,在直角三角形BCD 中,利用锐角三角函数定义求出tanC 的值,即可确定出∠C 的度数;(2)连接OB ,由OA=OB ,利用等边对等角得到一对角相等,再由CD 与AB 平行,得到一对同旁内角互补,求出∠ABC 度数,由∠ABC ﹣∠ABO 度数确定出∠OBC 度数为90,即可得证; 【详解】(1)如图,连接BD ,∵AD 为圆O 的直径, ∴∠ABD=90°, ∴BD=12AD=3, ∵CD ∥AB ,∠ABD=90°, ∴∠CDB=∠ABD=90°, 在Rt △CDB 中,tanC=33BD CD == ∴∠C=60°; (2)连接OB , ∵∠A=30°,OA=OB , ∴∠OBA=∠A=30°, ∵CD ∥AB ,∠C=60°,∴∠ABC=180°﹣∠C=120°,∴∠OBC=∠ABC﹣∠ABO=120°﹣30°=90°,∴OB⊥BC,∴BC为圆O的切线.【点睛】此题考查了切线的判定,熟练掌握性质及定理是解本题的关键.22.不等式组的解是x≥3;图见解析【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【详解】解:()22113x xxx⎧-≥-⎪⎨≤+⎪⎩①②∵解不等式①,得x≥3,解不等式②,得x≥-1.5,∴不等式组的解是x≥3,在数轴上表示为:.【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.23.(1)14;(2)13.【解析】【分析】(1)一共4个小球,则任取一个球,共有4种不同结果,摸出球上的汉字刚好是“美”的概率为14;(2)列表或画出树状图,根据一共出现的等可能的情况及恰能组成“美丽”或“光明”的情况进行解答即可. 【详解】(1) ∵“美”、“丽”、“光”、“明”的四个小球,任取一球,共有4种不同结果,∴任取一个球,摸出球上的汉字刚好是“美”的概率P=1 4(2)列表如下:美丽光明美 ---- (美,丽) (光,美) (美,明) 丽 (美,丽) ---- (光,丽) (明,丽) 光 (美,光) (光,丽) ---- (光,明) 明(美,明)(明,丽)(光,明)-------根据表格可得:共有12中等可能的结果,其中恰能组成“美丽”或“光明”共有4种,故 取出的两个球上的汉字恰能组成“美丽”或“光明”的概率13P =. 【点睛】此题考查的是用列表法或树状图法求概率与不等式的性质.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比. 24.B 60 【解析】分析:(1)根据旋转的性质可得出结论;(2)根据旋转的性质可得BF=CF ,则点F 在线段BC 的垂直平分线上,又由AC=AB ,可得点A 在线段BC 的垂直平分线上,由AF 垂直平分BC,即∠CQP=90,进而得出∠APC 的度数. 详解:(1)B,60;(2)补全图形如图所示;APC ∠的大小保持不变,理由如下:设AF 与BC 交于点Q ∵直线CD 是等边ABC ∆的对称轴 ∴AE BE =,1302DCB ACD ACB ∠=∠=∠=︒ ∵ABE ∆经顺时针旋转后与BCF ∆重合 ∴ BE BF =,AE CF = ∴BF CF =∴点F 在线段BC 的垂直平分线上 ∵AC AB =∴点A 在线段BC 的垂直平分线上 ∴AF 垂直平分BC ,即90CQP ∠=︒ ∴120CPA PCB CQP ∠=∠+∠=︒点睛:本题考查了旋转的性质,解题的关键是熟记旋转的性质及垂直平分线的性质,注意只证明一点是不能说明这条直线是垂直平分线的. 25.(1)45°(2)2AM BC =,理由见解析【解析】 【分析】(1)由线段的垂直平分线的性质可得PM =PN ,PO ⊥MN ,由等腰三角形的性质可得∠PMN =∠PNM =α,由正方形的性质可得AP =PN ,∠APN =90°,可得∠APO =α,由三角形内角和定理可求∠AMN 的度数;(2)由等腰直角三角形的性质和正方形的性质可得2MN CN =,2AN BN =,∠MNC =∠ANB =45°,可证△CBN ∽△MAN ,可得2AM BC =.【详解】解:(1)如图,连接MP ,∵直线l 是线段MN 的垂直平分线, ∴PM =PN ,PO ⊥MN ∴∠PMN =∠PNM =α ∴∠MPO =∠NPO =90°-α, ∵四边形ABNP 是正方形 ∴AP =PN ,∠APN =90°∴AP =MP ,∠APO =90°-(90°-α)=α∴∠APM =∠MPO -∠APO =(90°-α)-α=90°-2α, ∵AP =PM∴()180902452a PMA PAM a ︒-︒-∠∠=︒+==,∴∠AMN =∠AMP -∠PMN =45°+α-α=45° (2)2AM BC =理由如下:如图,连接AN ,CN ,∵直线l 是线段MN 的垂直平分线, ∴CM =CN ,∴∠CMN =∠CNM =45°, ∴∠MCN =90° ∴2MN CN =,∵四边形APNB 是正方形 ∴∠ANB =∠BAN =45° ∴2AN BN =,∠MNC =∠ANB =45°∴∠ANM =∠BNC 又∵2MN ANCN BN== ∴△CBN ∽△MAN ∴2AM MN BC CN==∴2AM BC =【点睛】本题考查了正方形的性质,线段垂直平分线的性质,相似三角形的判定和性质,添加恰当辅助线构造相似三角形是本题的关键. 26.1 【解析】 【分析】根据实数的混合计算,先把各数化简再进行合并. 【详解】原式33=1【点睛】此题主要考查实数的计算,解题的关键是将它们化成最简形式再进行计算.27.(1)25;28;(2)平均数:1.2;众数:3;中位数:1.【解析】【分析】(1)观察统计图可得,该商场服装部营业员人数为2+5+7+8+3=25人,m%=1-32%-12%-8%-20%=28%,即m=28;(2)计算出所有营业员的销售总额除以营业员的总人数即可的平均数;观察统计图,根据众数、中位数的定义即可得答案.【详解】解:(1)根据条形图2+5+7+8+3=25(人),m=100-20-32-12-8=28;故答案为:25;28;(2)观察条形统计图,∵12215518721824318.6.25x⨯+⨯+⨯+⨯+⨯==∴这组数据的平均数是1.2.∵在这组数据中,3 出现了8次,出现的次数最多,∴这组数据的众数是3.∵将这组数据按照由小到大的顺序排列,其中处于中间位置的数是1,∴这组数据的中位数是1.【点睛】此题主要考查了平均数、众数、中位数的统计意义以及利用样本估计总体等知识.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;平均数是指在一组数据中所有数据之和再除以数据的个数.。
2019年湖南省株洲中考数学试卷-答案
湖南省株洲市2019年初中学业水平考试数学答案解析 【解析】133⎛-⨯- ⎝的倒数是13-。
2.【答案】B4=。
故选:B 。
【提示】直接利用二次根式的乘法运算法则计算得出答案。
【考点】二次根式的乘法运算。
3.【答案】C【解析】A .52x 与233x y 不是同类项,故本选项错误;B .323x y 与233x y 不是同类项,故本选项错误;C .2312x y -与233x y 是同类项,故本选项正确; D .513y -与233x y 是同类项,故本选项错误;故选:C 。
【提示】根据同类项:所含字母相同,并且相同字母的指数也相同,进行判断即可。
【考点】同类项的知识。
4.【答案】C【解析】A .矩形的对角线相等,但不垂直,故此选项错误;B .矩形的邻边都互相垂直,对边互相平行,故此选项错误;C .矩形的四个角都相等,正确;D .矩形是轴对称图形,也是中心对称图形,故此选项错误。
故选:C 。
【提示】直接利用矩形的性质分析得出答案。
【考点】矩形的性质。
5.【答案】B【解析】去分母得:2650x x --=,解得:2x =-,经检验2x =-是分式方程的解,故选:B 。
【提示】分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解。
【考点】解分式方程。
6.【答案】D【解析】点A 坐标为()2,3-,则它位于第四象限,故选:D 。
【提示】根据各象限内点的坐标特征解答即可。
【考点】各象限内点的坐标的符号特征。
7.【答案】A【解析】当1x ≤时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当13x <<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =; 当36x ≤<时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去); 当6x ≥时,中位数与平均数相等,则得到:()1316335x ++++=,解得2x =(舍去)。
株洲市芦淞区2019届中考数学模拟试卷
株洲市芦淞区2019届中考数学模拟试卷一、选择题(本大题共有15小题,每小题3分,共45分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.5的相反数是()A.B.C.﹣5 D. 52.下列运算正确的是()A.x2+x4=x6B.(﹣x3)2=x6C.2a+3b=5ab D.x6÷x3=x23.下图的几何体是由三个同样大小的立方体搭成的,其左视图为()A.B.C.D.4.据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000.数字1720000用科学记数法表示为()A.17.2×105B.1.72×106C.1.72×105D.0.172×1075.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50°B.60°C.80°D.90°6.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD7.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.8.如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM 的和最小时,ME的长度为()A.B.C.D.9.如图所示,已知A(0.2,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(0.5,0)B.(1,0)C.(1.5,0)D.(2.5,0)10.正方形ABCD的位置在坐标系中如图,点A、D的坐标分别为(1,0)、(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…,按这样的规律进行下去,第2015个正方形的面积为()A.B.C.D.11.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm12.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是()A.7 B.8 C.9 D.1013.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.14.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于该班40名同学一周参加体育锻炼时间的说法错误的是()A.极差是3B.中位数为8C.众数是8D.锻炼时间超过8小时的有21人15.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)16.函数的自变量x的取值范围是.17.单项式﹣4x2y3的系数是,次数是.18.一个多边形的内角和是720°,这个多边形的边数是.19.分解因式:a3﹣a=.20.若圆锥的底面半径为3,母线长为6,则圆锥的侧面积等于.21.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是.22.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=30°,那么∠2的度数为.23.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于.24.当宽为2cm的刻度尺的一边与圆相切时,另一边与图的两个交点处的度数如图,那么该圆的半径为cm.25.如图,直角坐标系中,矩形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴的正半轴上,若点B的坐标为(4,6),双曲线y=(x>0)的图象经过BC的中点D,与AB交于点E,F为OC边上一点,把△BCF沿直线BF翻折,使点C落在点C′处(C′在矩形OABC内部),且C′E∥BC,则CF的长为.三、解答题(本大题共45分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)26.(1)计算:|﹣2|﹣()﹣1+4sin45°(2)解方程:﹣=0.27.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足什么条件时,四边形BFCE是菱形?28.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?29.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?30.如图,已知抛物线C0:y=x2,顶点记作A0.首先我们将抛物线C0关于直线y=1对称翻折过去得到抛物线C1称为第一次操作,再将抛物线C1关于直线y=2对称翻折过去得到抛物线C2称为第二次操作,…,将抛物线C n﹣1关于直线y=2n﹣1对称翻折过去得到抛物线C n(顶点记作A n)称为第n此操作(n=1,2,3…),….设抛物线C0与抛物线C1交于两点B0与B1,顺次连接A0、B0、A1、B1四个点得到四边形A0B0A1B1,抛物线C2与抛物线C3交于两点B2与B3,顺次连接A2、B2、A3、B3四个点得到四边形A2B2A3B3,…,抛物线C k﹣1与抛物线C k交于两点B k﹣1与B k,顺次连接A k﹣1、B k﹣1、A k、B k四个点得到四边形A k﹣1B k﹣1A k B k(k=1,3,5…),….(1)请分别直接写出抛物线C n(n=1,2,3,4)的解析式;(2)一系列四边形A k﹣1B k﹣1A k B k(k=1,3,5…)为哪种特殊的四边形(说明理由)?它们都相似吗?如果全都相似,请证明之;如果不全都相似,请举出一对不相似的反例;(3)试归纳出抛物线C n的解析式,无需证明.并利用你归纳出来的C n的解析式,求四边形A k﹣1B k﹣1A k B k(k=1,3,5…)的面积(用含k的式子表示).株洲市芦淞区2019届中考数学模拟试卷参考答案与试题解析一、选择题(本大题共有15小题,每小题3分,共45分.在每小题所给出的四个选项中,只有一项是符合题目要求的,请将正确选项的字母代号填涂在答题卡相应位置上)1.5的相反数是()A.B.C.﹣5 D. 5考点:相反数.分析:根据只有符号不同的两个数互为相反数,可得答案.解答:解:5的相反数是﹣5,故选:C.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.2.下列运算正确的是()A.x2+x4=x6B.(﹣x3)2=x6C.2a+3b=5ab D.x6÷x3=x2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方.分析:分别根据幂的乘方、合并同类项、同底数幂的除法逐一进行判断即可.解答:解:A、x2与x4不是同类项,不能合并,故本选项错误;B、(﹣x3)2=x6,正确;C、2a与3b不是同类项,不能合并,故本选项错误;D、应为x6÷x3=x6﹣3=x3,故本选项错误.故选B.点评:本题考查合并同类项,同底数幂的除法,积的乘方的性质,熟练掌握运算性质是解题的关键,不是同类项的一定不能合并.3.下图的几何体是由三个同样大小的立方体搭成的,其左视图为()A.B.C.D.考点:简单组合体的三视图.专题:压轴题.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面会看到两个竖列的正方形.故选A.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.据教育部通报,2014年参加全国硕士研究生入学考试的人数约为1720000.数字1720000用科学记数法表示为()A.17.2×105B.1.72×106C.1.72×105D.0.172×107考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将1720000用科学记数法表示为:1.72×106.故选B.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.如图,C是⊙O上一点,若圆周角∠ACB=40°,则圆心角∠AOB的度数是()A.50°B.60°C.80°D.90°考点:圆周角定理.专题:压轴题.分析:根据一条弧所对的圆周角的度数等于它所对的圆心角的度数的一半求解即可.解答:解:∵∠ACB=40°,∴∠AOB=2∠C=80°.故选C.点评:此题主要是根据圆周角定理得到圆周角和圆心角之间的关系.6.如图,四边形ABCD的对角线互相平分,要使它成为矩形,那么需要添加的条件是()A.AB=CD B.AD=BC C.AB=BC D.AC=BD考点:矩形的判定.分析:由四边形ABCD的对角线互相平分,可得四边形ABCD是平行四边形,再添加AC=BD,可根据对角线相等的平行四边形是矩形证明四边形ABCD是矩形.解答:解:可添加AC=BD,∵四边形ABCD的对角线互相平分,∴四边形ABCD是平行四边形,∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,∴四边形ABCD是矩形,故选:D.点评:此题主要考查了矩形的判定,关键是矩形的判定:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.7.已知一次函数y=kx+b,y随着x的增大而减小,且kb<0,则在直角坐标系内它的大致图象是()A.B.C.D.考点:一次函数图象与系数的关系.分析:利用一次函数的性质进行判断.解答:解:∵一次函数y=kx+b,y随着x的增大而减小∴k<0又∵kb<0∴b>0∴此一次函数图形过第一,二,四象限.故选A.点评:熟练掌握一次函数的性质.k>0,图象过第1,3象限;k<0,图象过第2,4象限.b>o,图象与y轴正半轴相交;b=0,图象过原点;b<0,图象与y轴负半轴相交.8.如图,已知在矩形ABCD中,AB=4,BC=2,点M,E在AD上,点F在边AB上,并且DM=1,现将△AEF沿着直线EF折叠,使点A落在边CD上的点P处,则当PB+PM 的和最小时,ME的长度为()A.B.C.D.考点:翻折变换(折叠问题);线段的性质:两点之间线段最短;勾股定理;相似三角形的判定与性质.分析:延长AD到M′,使得DM′=DM=1,连接PM′,如图,当PB+PM的和最小时,M′、P、B三点共线,易证△DPM′∽△CPB,根据相似三角形的性质可求出DP,设AE=x,则PE=x,DE=2﹣x,然后在Rt△PDE中运用勾股定理求出x,由此可求出EM的值.解答:解:延长AD到M′,使得DM′=DM=1,连接PM′,如图.当PB+PM的和最小时,M′、P、B三点共线.∵四边形ABCD是矩形,AB=4,BC=2,∴DC=AB=4,AD=BC=2,AD∥BC,∴△DPM′∽△CPB,∴==,∴DP=PC,∴DP=DC=.设AE=x,则PE=x,DE=2﹣x,在Rt△PDE中,∵DE2+DP2=PE2,∴(2﹣x)2+()2=x2,解得:x=,∴ME=AE﹣AM=﹣1=.故选B.点评:本题主要考查了轴对称的性质、矩形的性质、相似三角形的判定与性质、勾股定理、两点之间线段最短等知识,在折叠矩形中通常可运用勾股定理来求线段长度.9.如图所示,已知A(0.2,y1),B(2,y2)为反比例函数y=图象上的两点,动点P(x,0)在x轴正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(0.5,0)B.(1,0)C.(1.5,0)D.(2.5,0)考点:反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;轴对称-最短路线问题.分析:先根据反比例函数图象上点的坐标特征确定A点坐标为(0.2,5),B点坐标为(2,),再利用待定系数法确定直线AB的解析式为y=﹣x+,然后根据三角形三边的关系得到|PA﹣PB|≤AB,当点P为直线AB与x轴的交点时,取等号,则线段AP 与线段BP之差达到最大,然后确定直线y=﹣x+与x轴的交点坐标即可.解答:解:把A(0.2,y1),B(2,y2)代入y=得y1=5,y2=,则A点坐标为(0.2,5),B点坐标为(2,),设直线AB的解析式为y=kx+b,把A(0.2,5),B(2,)代入得,解得b,所以直线AB的解析式为y=﹣y=﹣x+,因为|PA﹣PB|≤AB,所以当点P为直线AB与x轴的交点时,线段AP与线段BP之差达到最大,把y=0代入y=﹣x+,得=0﹣x+解得x=2.5,所以P点坐标为(2.5,0).故选D.点评:本题考查了反比例函数图象上点的坐标特征:反比例函数y=(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.10.正方形ABCD的位置在坐标系中如图,点A、D的坐标分别为(1,0)、(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,…,按这样的规律进行下去,第2015个正方形的面积为()A.B.C.D.考点:正方形的性质;坐标与图形性质.专题:规律型.分析:推出AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,求出∠ADO=∠BAA1,证△DOA∽△ABA1,得出,求出AB,BA1,求出边长A1C=,求出面积即可;求出第3个正方形的边长,面积;第4个正方形的面积;依此类推得出第2015个正方形的边长是,面积是,即可得出答案.解答:解:∵四边形ABCD是正方形,∴AD=AB,∠DAB=∠ABC=∠ABA1=90°=∠DOA,∴∠ADO+∠DAO=90°,∠DAO+∠BAA1=90°,∴∠ADO=∠BAA1,∵∠DOA=∠ABA1,∴△DOA∽△ABA1,∴,∵AB=AD=,∴BA1=,∴第2个正方形A1B1C1C的边长A1C=A1B+BC=,面积=;同理第3个正方形的边长是,面积是:;第4个正方形的面积是;…第2015个正方形的边长是,面积是,故选C点评:本题考查了正方形的性质,相似三角形的性质和判定,勾股定理的应用,解此题的关键是根据计算的结果得出规律,题目比较好,但是一道比较容易出错的题目.11.如图,正六边形螺帽的边长是2cm,这个扳手的开口a的值应是()A.cm B.cm C.cm D.1cm考点:正多边形和圆.专题:应用题;压轴题.分析:连接AC,作BD⊥AC于D;根据正六边形的特点求出∠ABC的度数,再由等腰三角形的性质求出∠BAD的度数,由特殊角的三角函数值求出AD的长,进而可求出AC的长.解答:解:连接AC,过B作BD⊥AC于D;∵AB=BC,∴△ABC是等腰三角形,∴AD=CD;∵此多边形为正六边形,∴∠ABC==120°,∴∠ABD==60°,∴∠BAD=30°,AD=AB•cos30°=2×=,∴a=2cm.故选A.点评:此题比较简单,解答此题的关键是作出辅助线,根据等腰三角形及正六边形的性质求解.12.在一次信息技术考试中,某兴趣小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是()A.7 B.8 C.9 D.10考点:众数.分析:由于众数是一组数据中次数出现最多的数据,由此可以确定数据的众数.解答:解:依题意得9出现了三次,次数最多,∴这组数据的众数是9.故选C.点评:此题考查了众数的定义,注意众数是指一组数据中出现次数最多的数据,它反映了一组数据的多数水平,一组数据的众数可能不是唯一的.13.手工制作课上,小红利用一些花布的边角料,剪裁后装饰手工画,下面四个图案是她剪裁出的空心不等边三角形、等边三角形、正方形、矩形花边,其中,每个图案花边的宽度都相等,那么,每个图案中花边的内外边缘所围成的几何图形不一定相似的是()A.B.C.D.考点:相似图形.分析:根据相似图形的定义,结合图形,对选项一一分析,排除不符合要求答案.解答:解:A:形状相同,符合相似形的定义,对应角相等,所以三角形相似,故A 选项不符合要求;B:形状相同,符合相似形的定义,故B选项不符合要求;C:形状相同,符合相似形的定义,故C选项不符合要求;D:两个矩形,虽然四个角对应相等,但对应边不成比例,故D选项符合要求;故选:D.点评:本题考查的是相似形的定义,联系图形,即形状相同,大小不一定相同的图形叫做相似形.全等形是相似形的一个特例.14.如图是根据某班40名同学一周的体育锻炼情况绘制的条形统计图.那么关于该班40名同学一周参加体育锻炼时间的说法错误的是()A.极差是3B.中位数为8C.众数是8D.锻炼时间超过8小时的有21人考点:条形统计图;中位数;众数;极差.专题:图表型.分析:根据中位数、众数和极差的概念分别求得这组数据的中位数、众数和极差,由图可知锻炼时间超过8小时的有14+7=21人.即可判断四个选项的正确与否.解答:解:众数是一组数据中出现次数最多的数,即8;而将这组数据从小到大的顺序排列后,处于中间位置的那个数,由中位数的定义可知,这组数据的中位数不是8,是9;极差就是这组数中最大值与最小值的差10﹣7=3;锻炼时间超过8小时的有14+7=21人.所以,错误的是第二个.故选:B.点评:考查了中位数、众数和极差的概念.本题为统计题,考查众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会错误地将这组数据最中间的那个数当作中位数.15.如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间的函数关系的图象大致为()A.B.C.D.考点:中心投影;函数的图象.专题:压轴题.分析:等高的物体垂直地面时,在灯光下,离点光源近的物体它的影子短,离点光源远的物体它的影子长.解答:解:设身高GE=h,CF=l,AF=a,当x≤a时,在△OEG和△OFC中,∠GOE=∠COF(公共角),∠AEG=∠AFC=90°,∴△OEG∽△OFC,∴=,∴=,∴y=﹣x+,∵a、h、l都是固定的常数,∴自变量x的系数是固定值,∴这个函数图象肯定是一次函数图象,即是直线;∵影长将随着离灯光越来越近而越来越短,到灯下的时候,将是一个点,进而随着离灯光的越来越远而影长将变大.故选:A.点评:本题综合考查了中心投影的特点和规律.注意离点光源的远近决定影长的大小.二、填空题(本大题共有10小题,每小题3分,共30分.不需写出解答过程,请将答案直接写在答题卡相应位置上)16.函数的自变量x的取值范围是x≤2.考点:函数自变量的取值范围;二次根式有意义的条件.分析:求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.解答:解:依题意,得2﹣x≥0,解得x≤2.点评:本题考查的知识点为:二次根式的被开方数是非负数.17.单项式﹣4x2y3的系数是﹣4,次数是5.考点:单项式.专题:计算题.分析:单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数.解答:解:单项式﹣4x2y3的系数是﹣4,次数是5.故答案为:﹣4、5.点评:此题考查了单项式的知识,掌握单项式的系数、次数的定义是解答本题的关键.18.一个多边形的内角和是720°,这个多边形的边数是6.考点:多边形内角与外角.分析:根据内角和定理180°•(n﹣2)即可求得.解答:解:∵多边形的内角和公式为(n﹣2)•180°,∴(n﹣2)×180°=720°,解得n=6,∴这个多边形的边数是6.故答案为:6.点评:本题主要考查了多边形的内角和定理即180°•(n﹣2),难度适中.19.分解因式:a3﹣a=a(a+1)(a﹣1).考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式a,再对余下的多项式利用平方差公式继续分解.解答:解:a3﹣a,=a(a2﹣1),=a(a+1)(a﹣1).故答案为:a(a+1)(a﹣1).点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.20.若圆锥的底面半径为3,母线长为6,则圆锥的侧面积等于18π.考点:圆锥的计算.分析:根据圆锥的侧面积就等于经母线长乘底面周长的一半.依此公式计算即可解决问题.解答:解:圆锥的侧面积=6×6π÷2=18π.故答案为:18π.点评:本题主要考查了圆锥的侧面积的计算公式.熟练掌握圆锥侧面积公式是解题关键.21.若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是﹣1.考点:根的判别式.分析:根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.解答:解:∵关于x的方程x2﹣2x﹣m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4×1×(﹣m)=0,解得m=﹣1.点评:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.22.如图,把一块直角三角板的直角顶点放在直尺的一边上,如果∠1=30°,那么∠2的度数为60°.考点:平行线的性质.分析:由∠ACB=90°,∠1=30°,即可求得∠3的度数,又由a∥b,根据两直线平行,同位角相等,即可求得∠2的度数.解答:解:∵∠ACB=90°,∠1=30°,∴∠3=∠ACB﹣∠1=90°﹣30°=60°,∵a∥b,∴∠2=∠3=60°.故答案为:60°.点评:此题考查了平行线的性质.此题比较简单,解题的关键是注意掌握两直线平行,同位角相等定理的应用.23.如图所示,菱形ABCD中,对角线AC,BD相交于点O,H为AD边中点,菱形ABCD的周长为24,则OH的长等于3.考点:菱形的性质;直角三角形斜边上的中线.专题:计算题.分析:根据已知可求得菱形的边长,再根据对角线互相垂直平分,H为AD的中点,从而求得OH的长.解答:解:∵菱形ABCD的周长等于24,∴AD==6,在Rt△AOD中,OH为斜边上的中线,∴OH=AD=3.故答案为:3.点评:此题主要考查直角三角形中,斜边上的中线等于斜边的一半,还综合利用了菱形的性质.24.当宽为2cm的刻度尺的一边与圆相切时,另一边与图的两个交点处的度数如图,那么该圆的半径为5cm.考点:切线的性质;勾股定理;垂径定理的应用.分析:连接OA,过点O作OD⊥AB于点D,由垂径定理可知,AD=AB=(9﹣1)=4,设OA=r,则OD=r﹣3,在Rt△OAD中利用勾股定理求出r的值即可.解答:解:连接OA,过点O作OD⊥AB于点D,∵OD⊥AB,∴AD=AB=(9﹣1)=4cm,设OA=r,则OD=r﹣3,在Rt△OAD中,OA2﹣OD2=AD2,即r2﹣(r﹣2)2=42,解得r=5.故答案是:5.点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.25.如图,直角坐标系中,矩形OABC的顶点O与原点重合,顶点A、C分别在x轴、y轴的正半轴上,若点B的坐标为(4,6),双曲线y=(x>0)的图象经过BC的中点D,与AB交于点E,F为OC边上一点,把△BCF沿直线BF翻折,使点C落在点C′处(C′在矩形OABC内部),且C′E∥BC,则CF的长为.考点:反比例函数综合题.分析:根据B点坐标及D为BC中点求出D点坐标,将D代入反比例函数解析式,求出k的值,从而求出E的坐标,延长EC′交y轴于G,则EG⊥y轴,设C′(a,3),则C′G=a,C′E=4﹣a,在Rt△C′ED中根据勾股定理求出a的值,设CF=b,则GF=﹣b,在Rt△FGC′中由勾股定理求出b的值,进而得出结论.解答:解:∵B(4,6),D为BC中点,∴D(2,6),将D(2,6)代入y=(x>0)得k=12,解析式为y=,∴E(4,3),延长EC′交y轴于G,则EG⊥y轴,设C′(a,3),则C′G=a,C′E=4﹣a,在Rt△C′EB中,32+(4﹣a)2=42,解得a1=4+>4,舍去;a2=4﹣.设CF=C′F=b,则GF=3﹣b,在Rt△FGC′中,(3﹣b)2+(4﹣)2=b2,解得b=,即CF=.故答案为:.点评:本题考查了反比例函数综合题,涉及待定系数法求函数解析式、翻折变换、勾股定理等知识,综合性较强,考查全面,值得探究.三、解答题(本大题共45分.请在答题卡指定区域内作答,解答时应写出文字说明、推理过程或演算步骤)26.(1)计算:|﹣2|﹣()﹣1+4sin45°(2)解方程:﹣=0.考点:实数的运算;负整数指数幂;解分式方程;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:(1)原式=2﹣3+2=2﹣1;(2)去分母得:5x﹣4x﹣4=0,解得:x=4,经检验x=4是分式方程的解.点评:此题考查了实数的运算,以及解分式方程,熟练掌握运算法则是解本题的关键.27.如图,在△ABC中,D是BC边的中点,E、F分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE;(2)当△ABC满足什么条件时,四边形BFCE是菱形?考点:全等三角形的判定与性质;菱形的判定.分析:(1)由平行线的性质得出∠DBF=∠DCE,由ASA即可证明△BDF≌△CDE;(2)由△CDE≌△BDF,得出DE=DF,证出四边形BFCE是平行四边形,再由AB=AC,根据等腰三角形的三线合一性质得出EF⊥BC,即可证出四边形BFCE是菱形.解答:(1)证明:∵D是BC的中点,∴BD=CD,∵CE∥BF,∴∠DBF=∠DCE,在△BDF和△CDE中,,∴△BDF≌△CDE(ASA);(2)解:当△ABC是等腰三角形,即AB=AC时,四边形BFCE是菱形;理由如下:∵△BDF≌△CDE,∴DF=DE,∵BD=CD,∴四边形BFCE是平行四边形,在△ABC中,∵AB=AC,BD=CD,∴AD⊥BC,即EF⊥BC∴四边形BFCE是菱形.点评:本题考查了全等三角形的判定与性质、等腰三角形的性质、菱形的判定;熟练掌握全等三角形的判定与性质,并能进行推理论证是解决问题的关键.28.某学校组织八年级学生参加社会实践活动,若单独租用35座客车若干辆,则刚好坐满;若单独租用55座客车,则可以少租一辆,且余45个空座位.(1)求该校八年级学生参加社会实践活动的人数;(2)已知35座客车的租金为每辆320元,55座客车的租金为每辆400元,根据租车资金不超过1500元的预算,学校决定同时租用这两种客车共4辆(可以坐不满).请你计算本次社会实践活动所需车辆的租金?考点:一元一次不等式组的应用;一元一次方程的应用.专题:工程问题.分析:(1)设单独租用35座客车需x辆.根据单独租用35座客车若干辆,则刚好坐满和单独租用55座客车,则可以少租一辆,且余45个空座位,分别表示出总人数,从而列方程求解;(2)设租35座客车y辆,则租55座客车(4﹣y)辆.根据不等关系:①两种车坐的总人数不小于175人;②租车资金不超过1500元.列不等式组分析求解.解答:解:(1)设单独租用35座客车需x辆.由题意得:35x=55(x﹣1)﹣45,解得:x=5.∴35x=35×5=175(人).答:该校八年级参加社会实践活动的人数为175人.(2)设租35座客车y辆,则租55座客车(4﹣y)辆.由题意得:,解这个不等式组,得∵y取正整数,∴y=2.∴4﹣y=4﹣2=2.∴租金为:320×2+400×2=1440(元).答:本次社会实践活动所需车辆的租金为1440元.点评:本题考查了一元一次方程的应用和一元一次不等式组的应用,解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系和不等关系.29.如图1,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,点D在边AB上运动,DE 平分∠CDB交边BC于点E,EM⊥BD垂足为M,EN⊥CD垂足为N.(1)当AD=CD时,求证:DE∥AC;(2)探究:AD为何值时,以B,M,E为顶点的三角形与以C,E,N为顶点的三角形相似?。
2019-2020年株洲市初三中考数学第一次模拟试卷
2019-2020年株洲市初三中考数学第一次模拟试卷一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,∴FM=CM=EH=DH,设FM=CM=EH=DH=x,则FC=2x,EM=HC=3﹣x,∵△CDE:△CEF的面积=3:5,∴,解得:x=,∴FC=1,BF=BC﹣FC=2,∴AF==,∴cos∠GEF=cos∠BAF===;故答案为:.三、解答题17.解:(1)原式=+2+1﹣﹣=2﹣2;(2)原式=x2+8x+16﹣x2+3x=11x+16,当x=时,原式=11×+16=25.18.(1)证明:∵△ABC≌△DEF,∴AB=DE,AC=DF,∠F=∠C,∴BF=CE,在△BOF与△EOC中,,∴△BOF≌△COE(AAS);(2)解:∵∠ABC=∠DEF=90°,∠F=30°,AE=1,∴∠C=∠F=30°,∴AC=2AE=2,∴CE=1,∵∠CEO=∠DEO=90°,∴OC==.19.解:(1)若从中任意摸出一个球,则摸出白球的概率为;(2)树状图如下所示:∴两次摸出的球恰好颜色相同的概率为=.20.解:(1)如图点D即为所求.(2)如图点O即为所求.21.(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.解:(1)将点A(4,﹣2)、D(2,0)代入,得:,解得:,∴抛物线的表达式为y=﹣x2+x;(2)①如图1,连接BD、DE,作EP⊥AB,并延长交OD于Q,∵抛物线的对称轴为直线x=﹣=1,∴点A(4,﹣2)关于对称轴对称的点B坐标为(﹣2,﹣2),∴BD==2,设C(m,﹣2),则BC=CE=m+2,DE=BD=2,∵QD=1,PQ=2,∴PE=QE﹣PQ=﹣1=﹣1,∵PC=1﹣m,∴由PC2+PE2=CE2可得(1﹣m)2+(﹣1)2=(m+2)2,解得m=,∴点C的坐标为(,﹣2);②如图2,∵DB=DE=2,∴点E在以D为圆心、2长为半径的⊙D上,连接DA,并延长交⊙D于点E′,此时AE′取得最小值,∵DA==2,则AE的最小值为DE﹣DA=2﹣2,故答案为:2﹣2.23.解:(1)30+0.5×10=35元,答:放养10天后出售,则活虾的市场价为每千克35元,故答案为:35;(2)由题意得,(30+0.5x)(1000﹣10x)+200x=36000,解得:x1=20,x2=60(不合题意舍去),答:x的值为20;(3)设经销商销售总额为y元,根据题意得,y=(30+0.5x)(1000﹣10x)+200x﹣30000﹣ax,且20≤x≤30,整理得y=﹣5x2+(400﹣a)x,对称轴x=,当0≤a≤100时,当x=30时,y有最大值,则﹣4500+30(400﹣a)=1800,解得a=190(舍去);当a≥200时,当x=20时,y有最大值,则﹣2000+20(400﹣a)=1800,解得a=210;当100<a<200时,当x=时,y取得最大值,y=(a2﹣800a+16000),最大值由题意得(a2﹣800a+16000)=1800,解得a=400(均不符合题意,舍去);综上,a的值为210.故答案为:210.24.解:(1)设CD=x,则BD=10﹣x,在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,依题意得:,解得x=6,∴AD==8.(2)∵四边形BFEP是圆内接四边形,∴∠EFB=∠DPB,又∵∠FBE=∠PDB,∴△BEF∽△BDP.(3)由(1)得BD=6,∵PD=3,∴BP==,∴cos∠PBD=,当△DEP为等腰三角形时,有三种情况:Ⅰ.当PE=DP=3 时,BE=BP﹣EP=,∴BF===.Ⅱ.当DE=PE时,E是BP中点,BE=,∴BF===,Ⅲ.当DP=DE=3时,PE=2×PD cos∠BPD==,∴BE=3,∴BF===,若DP=3,当△DEP为等腰三角形时,BF的长为、、.(4)连接EG交P D于M点,∵DG∥BP∴∠EPD=∠EDF=∠PDG,∴PG=DG,∵EP=PG,ED=DG,∴四边形PEDG是菱形,∴EM=MG,PM=DM,EG⊥AD,又∵BD⊥AD,∴EG∥BC,∴EM=,∴,∴AM=6,∴DM=PM=2,∴PD=4,AP=4,∴S△APG==×4×3=6,S△PDG==×4×3=6,S△GDC===4.∴S1:S2:S3=6:6:2=3:3:2.中学数学一模模拟试卷一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,∴FM=CM=EH=DH,设FM=CM=EH=DH=x,则FC=2x,EM=HC=3﹣x,∵△CDE:△CEF的面积=3:5,∴,解得:x=,∴FC=1,BF=BC﹣FC=2,∴AF==,∴cos∠GEF=cos∠BAF===;故答案为:.三、解答题17.解:(1)原式=+2+1﹣﹣=2﹣2;(2)原式=x2+8x+16﹣x2+3x=11x+16,当x=时,原式=11×+16=25.18.(1)证明:∵△ABC≌△DEF,∴AB=DE,AC=DF,∠F=∠C,∴BF=CE,在△BOF与△EOC中,,∴△BOF≌△COE(AAS);(2)解:∵∠ABC=∠DEF=90°,∠F=30°,AE=1,∴∠C=∠F=30°,∴AC=2AE=2,∴CE=1,∵∠CEO=∠DEO=90°,∴OC==.19.解:(1)若从中任意摸出一个球,则摸出白球的概率为;(2)树状图如下所示:∴两次摸出的球恰好颜色相同的概率为=.20.解:(1)如图点D即为所求.(2)如图点O即为所求.21.(1)证明:∵AE与⊙O相切,AB是⊙O的直径∴∠BAE=90°,∠ADB=90°,∴∠ADC=90°,∵CE∥AB,∴∠BAE+∠E=180°,∴∠E=90°,∴∠E=∠ADB,∵在△ABC中,AB=BC,∴∠BAC=∠BCA,∵∠BAC+∠EAC=90°,∠ACE+∠EAC=90°,∴∠BAC=∠ACE,∴∠BCA=∠ACE,在△ADC和△AEC中,,∴△ADC≌△AEC(AAS),∴AD=AE;(2)解:连接BF,如图所示:∵∠CBF=∠DAC,∠AFB=90°,∴∠CFB=90°,sin∠CBF==sin∠DAC=,∵AB=BC=10,∴CF=2,∵BF⊥AC,∴AC=2CF=4,在Rt△ACD中,sin∠DAC==,∴CD=×4=4,∴AD===8.22.解:(1)将点A(4,﹣2)、D(2,0)代入,得:,解得:,∴抛物线的表达式为y=﹣x2+x;(2)①如图1,连接BD、DE,作EP⊥AB,并延长交OD于Q,∵抛物线的对称轴为直线x=﹣=1,∴点A(4,﹣2)关于对称轴对称的点B坐标为(﹣2,﹣2),∴BD==2,设C(m,﹣2),则BC=CE=m+2,DE=BD=2,∵QD=1,PQ=2,∴PE=QE﹣PQ=﹣1=﹣1,∵PC=1﹣m,∴由PC2+PE2=CE2可得(1﹣m)2+(﹣1)2=(m+2)2,解得m=,∴点C的坐标为(,﹣2);②如图2,∵DB=DE=2,∴点E在以D为圆心、2长为半径的⊙D上,连接DA,并延长交⊙D于点E′,此时AE′取得最小值,∵DA==2,则AE的最小值为DE﹣DA=2﹣2,故答案为:2﹣2.23.解:(1)30+0.5×10=35元,答:放养10天后出售,则活虾的市场价为每千克35元,故答案为:35;(2)由题意得,(30+0.5x)(1000﹣10x)+200x=36000,解得:x1=20,x2=60(不合题意舍去),答:x的值为20;(3)设经销商销售总额为y元,根据题意得,y=(30+0.5x)(1000﹣10x)+200x﹣30000﹣ax,且20≤x≤30,整理得y=﹣5x2+(400﹣a)x,对称轴x=,当0≤a≤100时,当x=30时,y有最大值,则﹣4500+30(400﹣a)=1800,解得a=190(舍去);当a≥200时,当x=20时,y有最大值,则﹣2000+20(400﹣a)=1800,解得a=210;当100<a<200时,当x=时,y取得最大值,y=(a2﹣800a+16000),最大值由题意得(a2﹣800a+16000)=1800,解得a=400(均不符合题意,舍去);综上,a的值为210.故答案为:210.24.解:(1)设CD=x,则BD=10﹣x,在Rt△ABD和Rt△ACD中,AD2=AB2﹣BD2=AC2﹣CD2,依题意得:,解得x=6,∴AD==8.(2)∵四边形BFEP是圆内接四边形,∴∠EFB=∠DPB,又∵∠FBE=∠PDB,∴△BEF∽△BDP.(3)由(1)得BD=6,∵PD=3,∴BP==,∴cos∠PBD=,当△DEP为等腰三角形时,有三种情况:Ⅰ.当PE=DP=3 时,BE=BP﹣EP=,∴BF===.Ⅱ.当DE=PE时,E是BP中点,BE=,∴BF===,Ⅲ.当DP=DE=3时,PE=2×PD cos∠BPD==,∴BE=3,∴BF===,若DP=3,当△DEP为等腰三角形时,BF的长为、、.(4)连接EG交P D于M点,∵DG∥BP∴∠EPD=∠EDF=∠PDG,∴PG=DG,∵EP=PG,ED=DG,∴四边形PEDG是菱形,∴EM=MG,PM=DM,EG⊥AD,又∵BD⊥AD,∴EG∥BC,∴EM=,∴,∴AM=6,∴DM=PM=2,∴PD=4,AP=4,∴S△APG==×4×3=6,S△PDG==×4×3=6,S△GDC===4.∴S1:S2:S3=6:6:2=3:3:2.中学数学一模模拟试卷一、选择题(每小题4分,共40分)1.﹣2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.如图所示的几何体的左视图是()A.B.C.D.3.鞋店要进一批新鞋,你是店长,应关注下列哪个统计量()A.平均数B.方差C.众数D.中位数4.下列四幅图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.5.下列运算正确的是()A.x3+x2=x5B.(x﹣3)2=x2﹣9C.(x2)3=x5D.5x2•x3=5x56.一个圆锥的高是4cm,底面半径是3cm,那么这个圆锥的侧面积为()A.15cm2B.12cm2C.15πcm2D.12πcm27.某公司承担了制作300个道路交通指引标志的任务,原计划x天完成,实际平均每天多制作了5个,因此提前10天完成任务.根据题意,下列方程正确的是()A.B.C.D.8.已知m是方程x2﹣2019x+1=0的一个根,则代数式m2﹣2018m++2的值是()A.2018 B.2019 C.2020 D.20219.如图,将矩形ABCD的四边BA,CB,DC,AD分别延长至点EF,G,H,使得AE=BF=CG =DH.已知AB=1,BC=2,∠BEF=30°,则tan∠AEH的值为()A.2 B.C.﹣1 D. +1 10.如图,一次函数分别与x轴,y轴交于AB两点,与反比例函数交于C、D两点,若CD=5AB,则k的值是()A.B.6C.8D.﹣4二、填空题(每小题5分,共30分)11.因式分解:a2+2ab=.12.不等式的解集是.13.如图,AB∥CD,EF平分∠AEC,EG⊥EF.若∠C=110°,则∠BEG的度数为度.14.如图,已知直线y=+b交y轴正半轴于点B,在x轴负半轴上取点A,使2BO=3AO,AC⊥x轴交直线y=+b于点C,若△OAC的面积为,则b的值为.15.如图,在直角坐标系中,⊙A的圆心坐标为(,a)半径为,函数y=2x﹣2的图象被⊙A截得的弦长为2,则a的值为.16.如图,在正方形ABCD中,AB=3,点E是对角线BD上的一点,连结AE,过点E作EF 垂直AE交BC于点F,连结AF,交对角线BD于G.若三角形AED与四边形DEFC的面积之比为3:8,则cos∠GEF=.三、解答题17.(10分)(1)计算:2﹣1++(2019+π)0﹣7sin30°(2)先化简,再求值:(x+4)2﹣x(x﹣3),其中x=18.(8分)两块完全相同的直角三角形纸板ABC和DEF,按如图所示的方式叠放,其中∠ABC =∠DEF=90°,点O为边BC和EF的交点.(1)求证:△BOF≌△COE.(2)若∠F=30°,AE=1,求OC的长.19.(8分)在一个不透明的布袋里装有4个球,其中3个白球,1个红球,它们除颜色外其余都相同.(1)若从中任意摸出一个球,求摸出白球的概率;(2)若摸出1个球,记下颜色后不放回,再摸出1个球,求两次摸出的球恰好颜色相同的概率(要求画树状图或列表)20.(8分)已知网格的小正方形的边长均为1,格点三角形ABC如图所示,请仅使用无刻度的直尺,且不能用直尺中的直角,画出满足条件的图形(保留作图痕迹)(1)在图甲AB边上取点D,使得△BCD的面积是△ABC的;(2)在图乙中,画出△ABC所在外接圆的圆心位置.21.(10分)如图,在△ABC中,AB=BC,以AB为直径的⊙O交BC于点D,交AC于点F,过点C作CE∥AB,与过点A的切线相交于点E,连接AD.(1)求证:AD=AE.(2)若AB=10,sin∠DAC=,求AD的长.22.(10分)如图,过抛物线y=ax2+bx上一点A(4,﹣2)作x轴的平行线,交抛物线于另一点B,点C在直线AB上,抛物线交x轴正半轴于点D(2,0),点B与点E关于直线CD对称.(1)求抛物线的表达式;(2)①若点E落在抛物线的对称轴上,且在x轴下方时,求点C的坐标.②AE最小值为.23.(12分)某水产经销商从批发市场以30元每千克的价格收购了1000千克的虾,了解到市场价在一个月内会以每天0.5元每千克的价格上涨,经销商打算先在塘里放养几天后再出售(但不超过一个月).假设放养期间虾的个体质量保持不变,但每天有10千克的虾死去.死去的虾会在当天以20元每千克的价格售出.(1)若放养10天后出售,则活虾的市场价为每千克元.(2)若放养x天后将活虾一次性售出,这1000千克的虾总共获得的销售额为36000元,求x的值.(3)若放养期间,每天会有各种其他的各种费用支出为a元,经销商在放养x天后全部售出,当20≤x≤30时,经销商日获利的最大值为1800元,则a的值为(日获利=日销售总额﹣收购成本﹣其他费用)24.(14分)如图,在ABC中,已知AB=BC=10,AC=4,AD为边BC上的高线,P为边AD上一点,连结BP,E为线段BP上一点,过D、P、E三点的圆交边BC于F,连结EF.(1)求AD的长;(2)求证:△BEF∽△BDP;(3)连结DE,若DP=3,当△DEP为等腰三角形时,求BF的长;(4)把△DEP沿着直线DP翻折得到△DGP,若G落在边AC上,且DG∥BP,记△APG、△PDG、△GDC的面积分别为S1、S2、S3,则S1:S2:S3的值为.参考答案一、选择题1.解:因为a的相反数是﹣a,所以﹣2019的相反数是2019.故选:A.2.解:从左边看第一层是两个小正方形,第二层是一个小正方形,故选:B.3.解:由于众数是数据中出现次数最多的数,故应最关心这组数据中的众数.故选:C.4.解:A、不是轴对称图形,也不是中心对称图形,不符合题意;B、是轴对称图形,不是中心对称图形,不符合题意;C、不是中心对称图形,是轴对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,符合题意.故选:D.5.解:A、x3和x2不能合并同类项,故本选项不符合题意;B、结果是x2﹣6x+9,故本选项不符合题意;C、结果是x6,故本选项不符合题意;D、结果是5x5,故本选项,符合题意;故选:D.6.解:圆锥的母线长==5,所以这个圆锥的侧面积=×5×2π×3=15π(cm2).故选:C.7.解:设原计划x天完成,根据题意得:﹣=5.故选:B.8.解:∵m是方程x2﹣2019x+1=0的一个根,∴m2﹣2019m+1=0,∴m2=2019m﹣1,∴m2﹣2018m++2=2019m﹣2018m﹣1++2=m++1=+1=+1=2019+1=2020.故选:C.9.解:设AE=BF=CG=DH=x,∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,∴∠EAD=∠EBF=90°,∵AB=1,∠BEF=30°,∴BE=BF,∴x+1=x,解得:x=,∴AE=BF=CG=DH=,∴AH=AD+DH=2+=,∴tan∠AEH===2﹣1,故选:C.10.解:作CE⊥y轴于E,DF⊥x轴于F,连接EF,DE、CF,设D(x,),则F(x,0),由图象可知x>0,k>0,∴△DE F的面积是וx=k,同理可知:△CEF的面积是k,∴△CEF的面积等于△DEF的面积,∴边EF上的高相等,∴CD∥EF,∵BD∥EF,DF∥BE,∴四边形BDFE是平行四边形,∴BD=EF,同理EF=AC,∴AC=BD,∵CD=5AB,∴AD=3AB,由一次函数分别与x轴,y轴交于AB两点,∴A(﹣1,0),B(0,),∴OA=1,OB=,∵OB∥DF,∴===,∴DF=3,AF=3,∴OF=3﹣1=2,∴D(2,3),∵点D在反比例函数图象上,∴k=2×=6,故选:B.二、填空题11.解:原式=a(a+2b),故答案为:a(a+2b)12.解:,由①得:x≤,由②得:x>0,∴不等式组的解集为:0<x≤.故答案为:0<x≤.13.解:∵AB∥CD,∴∠C+∠AEC=180°,∵∠C=110°,∴∠AEC=70°,∵EF平分∠AEC,∴∠AEF=35°,∵EF⊥EG,∴∠FEG=90°,∴∠BEG=90°﹣35°=55°,故答案为:5514.解:∵y=+b交y轴正半轴于点B,∴B(0,b),∵在x轴负半轴上取点A,使2BO=3AO,∴B(0,b),当x=﹣时,y=2b,∴C(﹣,2b),∴△OAC的面积=×2b=,∴b=,故答案为.15.解:作AC⊥x轴于C,交CB于D,作AE⊥CB于E,连结AB,如图,∵⊙A的圆心坐标为(,a),∴OC=,AC=a,把x=代入y=2x﹣2得y=2﹣2,∴D点坐标为(,2﹣2),∴CD=2﹣2,∵AE⊥CB,∴CE=BE=BC=1,在Rt△ACE中,AC=,∴AE===2,∵y=2x﹣2,当x=0时,y=﹣2;当y=0时,x=1,∴G(0,﹣2),F(1,0),∴OG=2,OF=1,∵AC∥y轴,∴∠ADE=∠CDF=∠OGF,∴tan∠ADE==tan∠OGF==,∴DE=2AE=4,∴AD===2,∴a=AC=AD+CD=2+2﹣2=4﹣2,故答案为:4﹣2.16.解:连接CE,作EH⊥CD于H,EM⊥BC于M,如图所示:则四边形EMCH是矩形,∴EM=CH,CM=EH,∵四边形ABCD是正方形,∴BC=CD=3,∠ABC=90°,AB=CB,∠ABE=∠CBE=∠BDC=45°,在△ABE和△CBE中,,∴△ABE≌△CBE(SAS),∴EA=EF,∠BAE=∠BCE,同理:△ADE≌△CDE,∴△ADE的面积=△CDE的面积,∵△AED与四边形DEFC的面积之比为3:8,∴△CDE:△CEF的面积=3:5,∵EF⊥AE,∴∠AEF=90°,∴∠ABC+∠AEF=180°,∴A、B、F、E四点共圆,∴∠GEF=∠BAF,∠EFC=∠BAE=∠BCE,∴EF=EC,∵EM⊥BC,。
湖南省株洲市中考数学一模试卷
湖南省株洲市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七上·江阴期中) -2的倒数是()A . -2B . -C .D . 22. (2分) (2016八上·鄂托克旗期末) 下列运算正确的是()A .B .C .D .3. (2分)据《宁波市休闲旅游基地和商务会议基地建设五年行动计划》预计到2012年,宁波市接待游客容量将达到4640万人次。
其中4640万用科学记数法可表示为()A . 0.464×109B . 4.64×108C . 4.64×107D . 46.4×1074. (2分)(2018·南海模拟) 如图所示几何体的左视图是()A .B .C .D .5. (2分)若=x+,则A为()A . 3x+1B . 3x﹣1C . ﹣2x﹣1D . +2x﹣16. (2分)(2017·广西模拟) 多项式x2﹣4分解因式的结果是()A . (x+2)(x﹣2)B . (x﹣2)2C . (x+4)(x﹣4)D . x(x﹣4)7. (2分)(2017·吴中模拟) 一组数据:10,15,10,17,18,20.对于这组数据,下列说法错误的是()A . 平均数是15B . 众数是10C . 中位数是17D . 方差是8. (2分) (2017八下·弥勒期末) 如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm,则四边形DEFG的周长是()A . 14cmB . 18cmC . 24cmD . 28cm9. (2分)(2017·玄武模拟) 如图,正六边形ABCDEF的边长为6cm,P是对角线BE上一动点,过点P作直线l与BE垂直,动点P从B点出发且以1cm/s的速度匀速平移至E点.设直线l扫过正六边形ABCDEF区域的面积为S(cm2),点P的运动时间为t(s),下列能反映S与t之间函数关系的大致图象是()A .B .C .D .10. (2分)在一个边长不超过8厘米的大正方形ABCD中,如图所示,放入3张面积都是20平方厘米的小正方形纸片BEFG、OPNC、IQKJ,已知3张小正方形纸片盖住的总面积为44平方厘米,那么大正方形ABCD和小正方形BEFG的边长之比为()A . 5:3B . 3:2C . 10:7D . 8:5二、填空题 (共4题;共4分)11. (1分)不等式组的解集是________ .12. (1分) (2016九上·乌拉特前旗期中) 某商店四月份的利润为6.3万元,此后两个月进入淡季,利润均以相同的百分比下降,至六月份利润为5.4万元.设下降的百分比为x,由题意列出方程________.13. (1分) (2019九上·如皋期末) 如图,A,B是上的两点,,点C在优弧上,则________度14. (1分) (2020七上·自贡期末) 如图,长方形纸片ABCD,点E,F分别在边AB,CD上,连接EF,将∠BEF 对折 B落在直线EF上的点B′处,得折痕EM;将∠AEF对折,点A落在直线EF上的点A′得折痕EN,若∠BEM=62°15′ ,则∠AEN=________.三、解答题 (共9题;共77分)15. (20分) (2016七上·六盘水期末) 计算题(2)利用乘法分配律及去括号法则先去括号,然后再合并同类项即可;(1)计算(2)化简(3)解方程(4)先化简,再求值,其中a=2,b=-116. (5分)如图,P为等边△ABC的中心.(1)画出将△ABP绕A逆时针旋转60°的图形;(不写画法,保留作图痕迹)(2)经过什么样的图形变换,可以把△ABP变换到右边的△CMN,请写出简要的文字说明.17. (7分)(2019·濮阳模拟) 如图,△ABC内接于⊙O且AB=AC,延长BC至点D,使CD=CA,连接AD交⊙O于点E,连接BE、CE.(1)求证:△ABE≌△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形;②若AE=6,EF=4,DE的长为________.18. (4分)(2017·和县模拟) 如图①,把∠α=60°的一个单独的菱形称作一个基本图形,将此基本图形不断的复制并平移,使得下一个菱形的一个顶点与前一个菱形的中线重合,这样得到图②,图③,…(1)观察以上图形并完成下表:图形名称基本图形的个数菱形的个数图①11图②23图③37图④4________………猜想:在图(n)中,菱形的个数为________(用含有n(n≥3)的代数式表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,1),则x1=________;第2017个基本图形的中心O2017的坐标为________.19. (5分)学校校园内有一小山坡AB,经测量,坡角∠ABC=30°,斜坡AB长为12米.为方便学生行走,决定开挖小山坡,使斜坡BD的坡比是1∶3(即为CD与BC的长度之比).A,D两点处于同一铅垂线上,求开挖后小山坡下降的高度AD.20. (5分)如图,在平面直角坐标系xOy中,双曲线y=与直线y=kx﹣2交于点A(3,1).(1)求直线和双曲线的解析式;(2)直线y=kx﹣2与x轴交于点B,点P是双曲线y=上一点,过点P作直线PC∥x轴,交y轴于点C,交直线y=kx﹣2于点D.若DC=2OB,写出点P的坐标.21. (10分)(2017·泰兴模拟) 在一个不透明袋子中有1个红球和3个白球,这些球除颜色外都相同.(1)从袋中任意摸出2个球,用树状图或列表求摸出的2个球颜色不同的概率;(2)在袋子中再放入x个白球后,进行如下实验:从袋中随机摸出1个球,记录下颜色后放回袋子中并搅匀.经大量试验,发现摸到白球的频率稳定在0.95左右,求x的值.22. (11分)某公司市场营销部的营销员的个人月收入与该营销员每月的销量成一次函数关系,其图象如图所示.根据图象提供的信息,解答下列问题:(1)求出营销人员的个人月收入y元与该营销员每月的销售量x万件(x≥0)之间的函数关系式:________.(2)已知该公司营销员小李5月份的销售量为1.2万件,求小李5月份的收入.(3)若营销员小张5月份的收入为2800元,求小张5月份的销售量.23. (10分)(2016·邵阳) 尤秀同学遇到了这样一个问题:如图1所示,已知AF,BE是△ABC的中线,且AF⊥BE,垂足为P,设BC=a,AC=b,AB=c.求证:a2+b2=5c2该同学仔细分析后,得到如下解题思路:先连接EF,利用EF为△ABC的中位线得到△EPF∽△BPA,故,设PF=m,PE=n,用m,n 把PA,PB分别表示出来,再在Rt△APE,Rt△BPF中利用勾股定理计算,消去m,n即可得证(1)请你根据以上解题思路帮尤秀同学写出证明过程.(2)利用题中的结论,解答下列问题:在边长为3的菱形ABCD中,O为对角线AC,BD的交点,E,F分别为线段AO,DO的中点,连接BE,CF并延长交于点M,BM,CM分别交AD于点G,H,如图2所示,求MG2+MH2的值.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共77分)15-1、15-2、15-3、15-4、16-1、17-1、17-2、18-1、18-2、19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、。
湖南省株洲市数学中考一模试卷
湖南省株洲市数学中考一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分) (2019七上·绿园期末) -5的倒数是()A .B . 5C . -D . -52. (2分)(2020·广元) 如图所示的几何体是由5个相同的小正方体组成,其主视图为()A .B .C .D .3. (2分) (2019七下·楚雄期末) 下列事件中,属于必然事件的是()A . 任意抛掷一枚质地均匀的骰子,朝上的点数是6B . 投掷一枚质地均匀的硬币100次,正面向上的次数为50次C . 任意画一个三角形,其内角和是180°D . 打开电视,正在播放动画片4. (2分)我国南海海域面积为3 500 000 km2 ,用科学记数法表示正确的是()A .B .C .D .5. (2分) (2016七下·费县期中) 如图,将直线l1沿着AB的方向平移得到直线l2 ,若∠1=50°,则∠2的度数是()A . 40°B . 50°C . 90°D . 130°6. (2分)(2020·锦江模拟) 下列计算正确的是()A . 4m6÷2m3=2m2B . 2x2+x3=3x5C . (ab2)3=a3b5D . 2a2•a2=2a47. (2分)如图,直线CD是线段AB的垂直平分线,P为直线CD上的一点,已知线段PA=5,则线段PB的长度为()A . 6B . 5C . 4D . 38. (2分)(2016·江西) 将不等式3x﹣2<1的解集表示在数轴上,正确的是()A .B .C .D .9. (2分)反比例函数图象上有三个点(),(),(),其中 ,则的大小关系是().A .B .C .D .10. (2分) (2019九上·武汉开学考) 某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干和小分支总数共73.若设主干长出x个支干,则可列方程是()A . (1+x)2=73B . 1+x+x2=73C . (1+x)x=73D . 1+x+2x=7311. (2分)如图所示,热气球探测器在A点处,点B为楼顶,点C为楼底,AD为水平线,EF为经过点A的铅垂线,则下列说法正确的有()①∠1为仰角; ②∠2为仰角; ③∠3为俯角; ④∠4为俯角.A . 1个B . 2个C . 3个D . 4个12. (2分)(2017·桂林模拟) 如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①b2﹣4ac<0;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③2a+b=0;④当y>0时,x的取值范围是﹣1<x<3;⑤当x>0时,y随x增大而减小.其中结论正确的个数是()A . 4个B . 3个C . 2个D . 1个二、填空题 (共6题;共6分)13. (1分)(2017·鄂托克旗模拟) 函数y= 的自变量x的取值范围是________.14. (1分) (2020九下·无锡期中) 因式分解: ________.15. (1分)(2020·上海模拟) 一组数据3、12、8、12、20、9的众数为________.16. (1分)(2019·高台模拟) 已知菱形的周长为20cm,一条对角线长为6cm,则这个菱形的面积是________cm2.17. (1分) (2020八下·曲阳期末) 已知菱形的周长为,两条对角线的和为6,则菱形的面积为________18. (1分) (2016八上·鄂托克旗期末) 计算:12-22+32-42+52-62+...- 1002+1012=________.三、解答题 (共8题;共77分)19. (5分)(2019·润州模拟)(1)(2)20. (5分)(2020·宁波模拟) 解方程:21. (10分)(2017·埇桥模拟) 如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).①将△ABC先向右平移5个单位长度,再向下平移3个单位长度,画出平移后得到的△A1B1C1 .②将△ABC绕点O按逆时针方向旋转90°得到△A2B2C2 ,画出旋转后得到的△A2B2C2 .22. (15分) (2020八下·南京期中) 某中学现有在校学生 1250 人,为了解本校学生的课余活动情况,采取随机抽样的方法从阅读、运动、娱乐、其它四个方面调查了若干名学生,并将调查的结果绘制了如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:(1)本次调査共取了多少名学生?(2)通过计算补全条形图,并求出扇形统计图中阅读部分圆心角的度数;(3)请你估计该中学在课余时间参加阅读和其他活动的学生一共有多少名23. (2分) (2018八上·自贡期末) 如图,已知△ABC(1)①用直尺和圆规作出∠ACB的角平分线CD;(不写作法,但保留作图痕迹)②过点D画出△ADC的高DE和△D CB的高DF;(2)量出DE,DF的长度,你有怎样的发现?并把你的发现用文字语言表达出来.24. (10分)绿化改造工程正如火如荼的进行,某施工队准备对建设路进行绿化改造,已知购买甲种树苗2棵,乙种树苗3棵共需资金1300元;购买甲种树苗20棵,乙种树苗10棵共需资金7000元.(1)求甲、乙两种树苗每棵各多少元?(2)购买甲、乙两种树苗共400棵,且购买甲种树苗的金额不少于购买乙种树苗的金额,至少应购买甲种树苗多少棵?25. (15分)(2020·上城模拟) 如图,点A,P,B,C是圆O上的四个点,延长BP到D点,使∠DAP=∠PBA(1)求证:AD是⊙O的切线;(2)若∠APC=∠BPC=60°,证明:PA+PB=PC;(3)在第(2)问的条件下,若AD=2,PD=1,求线段AC的长.26. (15分) (2019九上·湖州月考) 如图,已知抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),C(0,3)三点,其顶点为D,对称轴是直线l,l与x轴交于点H.(1)求该抛物线的解析式;(2)若点P是该抛物线对称轴l上的一个动点,求△PBC周长的最小值;(3)如图(2),若E是线段AD上的一个动点( E与A.D不重合),过E点作平行于y轴的直线交抛物线于点F,交x轴于点G,设点E的横坐标为m,△ADF的面积为S.①求S与m的函数关系式;②S是否存在最大值?若存在,求出最大值及此时点E的坐标;若不存在,请说明理由.参考答案一、选择题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共6题;共6分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共77分)19-1、19-2、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、25-1、25-2、25-3、26-1、26-2、26-3、。
湖南省株洲市中考数学一模试卷
湖南省株洲市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·南关模拟) 在这四个数中,最小的数是()A .B .C .D .2. (2分)(2017·南岗模拟) 下列计算中正确的是()A . a+a2=2a2B . 2a•a=2a2C . (2a2)2=2a4D . 6a3﹣3a2=3a63. (2分)如图,由几个小正方体组成的立体图形的左视图是A .B .C .D .4. (2分)(2019·台州模拟) 目前,世界上能制造出的最小晶体管的长度只有0.00000004m,将0.00000004用科学记数法表示为()A . 0.4×108B . 4×108C . 4×10﹣8D . ﹣4×1085. (2分) (2017七下·金乡期中) 如果∠A和∠B的两边分别平行,∠A=60°,那么∠B是()A . 60°B . 30°或120°C . 120°D . 60°或120°6. (2分) (2019九上·南山期末) 某县为做大旅游产业,在2015年投入资金3.2亿元,预计2017年投入资金6亿元,设旅游产业投资的年平均增长率为x,则可列方程为()A . 3.2+x=6B . 3.2x=6C . 3.2(1+x)=6D . 3.2(1+x)2=67. (2分) (2017八下·万盛期末) 2016年,某市发生了严重干旱,该市政府号召居民节约用水,为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图,则关于这10户家庭的月用水量,下列说法错误的是()A . 众数是6B . 中位数是6C . 平均数是6D . 方差是48. (2分)关于x的一元二次方程x2+2mx+2n=0有两个整数根且乘积为正,关于y的一元二次方程y2+2ny+2m=0同样也有两个整数根且乘积为正,给出三个结论:①这两个方程的根都负根;②(m﹣1)2+(n﹣1)2≥2;③﹣1≤2m ﹣2n≤1,其中正确结论的个数是()A . 0个B . 1个C . 2个D . 3个9. (2分)以下是某市自来水价格调整表:自来水价格调整表(部分)单位:元/立方米用水类别现行水价拟调整后水价一、居民生活用水0.721.一户一表第一阶梯:月用水量在 0~30立方米/户 0.82第二阶梯:月用水量超过 30立方米/户 1.232.集体表略则AC调整水价后某户居民月用水量x(立方米)与应交水费y(元)的函数图象是()A .B .C .D .10. (2分) (2017八下·洪山期中) 如图,点E、G分别是正方形ABCD的边CD、BC上的点,连接AE、AG分别交对角线BD于点P、Q.若∠EAG=45°,BQ=4,PD=3,则正方形ABCD的边长为()A . 6B . 7C . 7D . 5二、填空题 (共4题;共4分)11. (1分)(2017·新疆模拟) 分解因式:3a2+6a+3=________.12. (1分) (2017七下·丰台期中) 不等式组的正整数解为________.13. (1分) (2018九上·郑州开学考) 如图,在菱形ABCD中,对角线AC、BD相交于点O.AC=8cm,BD=6cm,点P为AC上一动点,点P以1cm/的速度从点A出发沿AC向点C运动.设运动时间为ts,当t=________s时,△PAB 为等腰三角形.14. (1分) (2019九上·博白期中) 已知关于x的方程2+(x﹣m)(x﹣n)=0,存在a,b是方程2+(x﹣m)(x﹣n)=0的两个根,则实数m,n,a,b的大小关系可能是________.三、解答题 (共9题;共70分)15. (5分)(2019·中山模拟) 计算:-(2019+π)0+17. (5分)某数为x,根据下列条件列方程.(1)某数与8的差等于某数的与4的和.(2)某数的与某数的的和等于3.18. (6分) (2018七上·皇姑期末) 图1是由若干个小圆圈堆成的一个形如等边三角形的图案,最上面一层有一个圆圈,以下各层均比上一层多一个圆圈,一共堆了层,将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为如果图中的圆圈共有13层,请解决下列问题:(1)若自上往下,在图①每个圆圈中填上一串连续的正整数1,2,3,4,…,得到图3,写出第11层最左边这个圆圈中的数;(2)若自上往下,在图①每个圆圈中填上一串连续的整数-23,-22,-21,20,…,得到图4,写出第10层最右边圆圈内的数;(3)根据以上规律,求图4中第1层到第10层所有圆圈中各数之和(写出计算过程).19. (10分)(2017·岳阳) 某太阳能热水器的横截面示意图如图所示,已知真空热水管AB与支架CD所在直线相交于点O,且OB=OD,支架CD与水平线AE垂直,∠BAC=∠CDE=30°,DE=80cm,AC=165cm.(1)求支架CD的长;(2)求真空热水管AB的长.(结果保留根号)20. (10分)(2017·正定模拟) 在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、第四象限内的A,B两点,与y轴交于C点,过A作AH⊥y轴,垂足为H,AH=4,tan∠AOH= ,点B的坐标为(m,﹣2).(1)求△AHO的周长;(2)求该反比例函数和一次函数的解析式.21. (7分)(2018·菏泽) 为了发展学生的核心素养,培养学生的综合能力,某中学利用“阳光大课间”,组织学生积极参加丰富多彩的课外活动,学校成立了舞蹈队、足球队、篮球队、毽子队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩用如图的折线统计图表示:(甲为实线,乙为虚线)(1)依据折线统计图,得到下面的表格:射击次序(次)12345678910甲的成绩(环)8979867a108乙的成绩(环)679791087b10其中a=________,b=________;(2)甲成绩的众数是________环,乙成绩的中位数是________环;(3)请运用方差的知识,判断甲、乙两人谁的成绩更为稳定?(4)该校射击队要参加市组织的射击比赛,已预选出2名男同学和2名女同学,现要从这4名同学中任意选取2名同学参加比赛,请用列表或画树状图法,求出恰好选到1男1女的概率.22. (2分)(2018·金华模拟) 如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD 相交于点O,与BC相交于点N,连接BM、DN.(1)求证:四边形BMDN是菱形;(2)若,,求菱形BMDN的面积和对角线MN的长.23. (15分) (2016九下·巴南开学考) 已知等腰Rt△ABC和等腰Rt△AED中,∠ACB=∠AED=90°,且AD=AC.(1)发现:如图1,当点E在AB上且点C和点D重合时,若点M、N分别是DB、EC的中点,则MN与EC的位置关系是________,MN与EC的数量关系是________.(2)探究:若把(1)小题中的△AED绕点A顺时针旋转45°得到的图2,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请给予证明,若不成立,请说明理由.(3)若把(1)小题中的△AED绕点A逆时针旋转45°得到的图3,连接BD和EC,并连接DB、EC的中点M、N,则MN与EC的位置关系和数量关系仍然能成立吗?若成立,请给予证明,若不成立,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共4题;共4分)11-1、12-1、13-1、14-1、三、解答题 (共9题;共70分)15-1、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、21-1、21-2、21-3、21-4、22-1、22-2、23-1、23-2、23-3、。
株洲市中考数学一模试卷
株洲市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·平阳模拟) |﹣3|=()A . 3B . ﹣3C .D . ﹣2. (2分) (2017九下·沂源开学考) 下列运算错误的是()A . =1B . x2+x2=2x4C . |a|=|﹣a|D . =3. (2分)如图,从左面看圆柱,则图中圆柱的投影是()A . 圆B . 矩形C . 梯形D . 圆柱4. (2分)关于 x 的一元二次方程 kx2-2x-1=0 有两个不相等的实数根,则 k 的取值范围是()。
A . k>-1B . k>-1且k≠0C . k<1D . k<1且k≠05. (2分)(2019·盐城) 正在建设中的北京大兴国际机场划建设面积约1 400 000平方米的航站极,数据1 400 000用科学记数法应表示为()A .B .C .D .6. (2分)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.点P关于x轴的对称点P′的坐标为(a,b),则a与b的数量关系为()A . a+b=0B . a+b>0C . a﹣b=0D . a﹣b>07. (2分)一根弹簧的原长为12 cm,它能挂的重量不能超过15 kg并且每挂重1kg就伸长1cm,写出挂重后的弹簧长度y(cm)与挂重x(kg)之间的函数关系式是()A . y = x + 12(0<x≤15)B . y = x + 12 (0≤x<15)C . y = x + 12(0≤x≤15)D . y = x + 12 (0<x<15)8. (2分) (2017七下·江苏期中) 下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()A . 1个B . 2个C . 3个D . 4个9. (2分)关于函数y=x2+x,下列说法不正确的是()A . 图形是轴对称图形B . 图形经过点(-1,-1)C . 图形有一个最低点D . x<0时,y随x的增大而减小10. (2分) (2017八下·林甸期末) 如图,在正方形ABCD和正方形DEFG中,点G在CD上,DE=2,将正方形DEFG绕点D顺时针旋转60°,得到正方形DE′F′G′,此时点G′在AC上,连接CE′,则CE′+CG′=()A .B .C .D .二、填空题 (共4题;共5分)11. (1分)(2020·上城模拟) 分解因式:m4﹣81m2=________.12. (1分)(2020·北京模拟) 若分式有意义,则的取值范围是________.13. (2分)如图,反比例函数y1与正比例函数y2的图象的一个交点是A(2,1),若y1>y2>0,则x的取值范围为________.14. (1分)(2018·广州) 如图9,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE③AF:BE=2:3 ④其中正确的结论有________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年中考数学一模试卷
一.选择题(共10小题)
1.﹣5的相反数是()
A.5 B.C.﹣D.﹣5
2.计算2a2+3a2的结果是()
A.5a4B.6a2C.6a4D.5a2
3.亚洲陆地面积约为4400万平方千米,将44000000科学记数法表示为()
A.4.4×106B.4.4×107C.0.44×107D.4.4×103
4.下列银行图标中,属于轴对称图形的是()
A.B.C.D.
5.已知一组数据75,80,80,85,90,则它的众数和中位数分别为()
A.75,80 B.80,85 C.80,90 D.80,80
6.若在实数范围内有意义,则x的取值范围在数轴上表示正确的是()
A.B.
C.D.
7.如图,在同一平面内,将边长相等的正方形、正五边形的一边重合,那么∠1的大小是()
A.8°B.15°C.18°D.28°
8.在某电视台的少儿益智类节目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.
A.5 B.4 C.3 D.2
9.定义[x]为不超过x的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x,下列式子中错误的是()
A.[x]=x(x为整数)B.0≤x﹣[x]<1
C.[x+y]≤[x]+[y] D.[n+x]=n+[x](n为整数)
10.如图,抛物线y=ax2+bx+c(a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a﹣b+c,则P的取值范围是()
A.﹣4<P<0 B.﹣4<P<﹣2 C.﹣2<P<0 D.﹣1<P<0
二.填空题(共8小题)
11.某地某天的最高气温是6℃,最低气温是﹣4℃,则该地当天的温差为℃.
12.比较大小:3 (填“>”、“<”或“=”).
13.因式分解:2a3﹣8a=.
14.给甲、乙、丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率是.15.已知反比例函数的解析式为y=.则a的取值范围是.
16.如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB=°.
17.如图,矩形OABC的顶点A、C分别在坐标轴上,B(8,7),D(5,0),点P是边AB上的一点,连接OP,DP,当△ODP为等腰三角形时,点BP的长度为.
18.如图所示,在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则第2018秒时,点P的坐标是.
三.解答题(共8小题)
19.﹣4sin45°﹣2﹣1
20.先化简,再求值:(﹣1)÷,其中a=﹣1,b=.
21.如图,BC是路边坡角为30°,长为10米的一道斜坡,在坡顶灯杆CD的顶端D处有一探射灯,射出的边缘光线DA和DB与水平路面AB所成的夹角∠DAN和∠DBN分别是37°和60°(图中的点A、B、C、D、M、N均在同一平面内,CM∥AN).
(1)求灯杆CD的高度;
(2)求AB的长度(结果精确到0.1米).(参考数据:=1.73.sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
22.某区在实施居民用水管理前,随机调查了部分家庭(单位:户)去年的月均用水量(单位:t),并将调查数据进行整理,绘制出如下不完整的统计图表:
月均用水量频数频率
0≤x<5 6 12%
5≤x<10 12 24%
10≤x<15 32%
15≤x<20 10 20%
20≤x<25 4
25≤x<30 2 4%
合计100%
请解答以下问题:
(I)把上面的频数分布表和频数分布直方图补充完整;
(Ⅱ)若该小区有2000户家庭,根据此次随机抽查的数据估计,该小区月均用水量不低于20t的家庭有多少户?
(Ⅲ)为了鼓励节约用水,要确定一个月均用水量的标准,超出该标准的部分按1.5倍价格收费,若要使68%的家庭水费支出不受影响,那么,你觉得家庭月均用水量应定为多少?
23.如图,在正方形ABCD中,E是边CD上一点(点E不与点C,D重合),连接BE.取BE的中点M,过点M作FG⊥BE交BC于点F,交AD于点G.
(1)求证:BE=FG.
(2)连接CM,若CM=1,试求FG的长.
24.如图,在平面直角坐标系中,一次函数y=﹣x+3的图象与反比例函数y=(x>0,k是常数)的图象交于A(a,2),B(4,b)两点.
(1)求反比例函数的表达式;
(2)点C是第一象限内一点,连接AC,BC,使AC∥x轴,BC∥y轴,连接OA,OB.若点P在y轴上,且△OPA的面积与四边形OACB的面积相等,求点P的坐标.
25.如图,在△ABC中,∠ABC=90°,以AB的中点O为圆心,OA为半径的圆交AC于点D,E是BC的中点,连接DE,OE.
(1)判断DE与⊙O的位置关系,并说明理由;
(2)求证:BC2=2CD•OE;
(3)若cos∠BAD=,BE=,求OE的长.
26.已知:抛物线y=x2﹣2(m﹣1)x﹣1﹣m
(1)当m=2时,求该抛物线的对称轴和顶点坐标;
(2)设该抛物线与x轴交于A(x1,0)、B(x2,0),x1<0<x2,与y轴交于点C,且满足﹣=,求这个抛物线的解析式;
(3)在(2)的条件下,是否存在着直线y=kx+b与抛物线交于点P、Q,使y轴平分△CPQ的面积?若存在,求出k,b应满足的条件;若不存在,请说明理由.。