Midas Civil桥梁抗震详解(终稿)解析
基于Midas-Civil的桥梁下部结构抗震计算分析与研究
基于Midas/Civil的桥梁下部结构抗震计算分析与研究刘渐成(中山市规划设计院,广东中山 528400)摘要:文章以中山市石岐区广丰工业大道南六涌桥为工程背景,运用有限元软件Midas/Civil建立模型,根据抗震规范要求,运用反应谱法对桥梁下部墩柱分别进行E1、E2地震力作用下的受力分析,以指导结构设计。
关键词:Midas/Civil;桥梁下部结构;抗震计算U442 :A :1009-2374(2014)09-0005-031 工程概况本工程位于中山市石岐区岐港片区,广丰工业大道(石岐段)上,跨越现状南六涌,河涌宽约38m。
根据水利及航道部门技术要求,南六涌无通航要求,水位受水系的水闸控制,设计洪水位取2.3m。
根据现状河道走向、地形及周边环境,拟建桥梁与主河道斜交,约成30度角。
桥跨布置为3×16m预应力砼简支空心板梁桥,共两幅,每幅桥宽20m。
下部结构采用桩柱式桥墩,直径1m的柱接1.2m的钻孔灌注桩,桥台采用薄壁式台,桩基础,台前设4m 长的M7.5浆砌片石铺砌,台后用碎石与粗砂混合料回填。
拟建桥梁两侧均有水泥路到达场地,交通较方便,原始地貌单元为珠江三角洲海陆交互沉积平原,地形开阔,无池塘、坑道、土洞等不良地质。
区域内水网密布,地表水系发育,地下水对混凝土结构无腐蚀性。
2 技术指标安全等级:二级;设计基准期:100年;环境类别:Ⅰ类环境;设计速度:50;设计荷载:公路-Ⅰ级;净空:无通航净空要求;地震动峰值加速度:0.1g。
3 结构荷载取值3.1 永久作用桥梁永久荷载考虑上部板梁自重及二期恒载,二期恒载包括桥面铺装和栏杆等,以均布荷载形式加载,合计95.4KN/m。
下部桥墩自重。
混凝土容重取26kN/m3,计算时将荷载转化为质量。
3.2 地震计算参数根据《中国地震动参数区划图》(GB18306-2001)、《建筑抗震设计规范》(GB50011-2001)等相关资料,本项目区域地震基本烈度Ⅶ度(加速度取0.10g)。
Midas-城市桥梁抗震分析及验算资料讲解
• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。 在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。 验算内容和注意事项见附件。
结论
此课件下载可自行编辑修改,仅供参考! 感谢您的支持,我们努力做得更好!谢谢
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 荷载工况
完成反应谱分析后,需要定义混凝土的荷载工况,一般点击自动生成。规范选择城市桥梁抗震设 计规范。
Midas 抗震分析后处理
2. 后处理验算
点击设计-RC设计
①RC设计参数
这里的规范同前,也需要选 择城市桥梁抗震设计规范。
Midas 抗震分析后处理
E2弹塑性验算
根据规范要进行刚度进行调整
在E2地震作用下桥墩的强度不能满足要求,桥墩 进入了塑性阶段,所以接下来要进行弹塑性验算。
Midas 抗震分析后处理
第一个表格中的数值可以在特性的材料 和截面中查询,第二个表格是第一个表 格计算得到的,第三个表格是根据弯矩 曲率中理想化屈服的弯矩曲率得到(y和 z分别是0和90度)。
(b)结构振动引起的破坏 例如:地震强度过大,或者强度延性不足,结构的布置或者构造不合 理。
延性设计理念
3. 延性设计
桥梁结构体系中设置延性构件,桥梁在E2地震作用下,延性构件进入塑 性状态进行耗能,同时可以减小结构刚度,增大结构周期,达到减小地 震动响应的目的。
类型 Ⅰ
类型 Ⅱ
延性设计理念
规范中延性设计理念的体现
Midas 抗震分析前处理
2. 反应谱分析
MidasCivil配套资料-抗震专题时程分析3
midas Civil
边界非线性时程分析
边界非线性时程分析
边界非线性时程分析是结构的一部分处于非线性时,适用的非线性时程分析方法。主要用于分析安装减隔震装 置的桥梁非线性特性的功能。减隔震装置防止结构构件在设计荷载下产生塑性变形,使结构处于弹性状态,非 线性主要发生在减隔震装置上。
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
(3) 滑动前刚度取值
midas Civil
边界非线性时程分析
时程分析工况定义
所以,需要将恒载定义为一个非线性静力类型的时程荷 载工况,由地震时程工况接续该工况进行分析!
midas Civil
边界非线性时程分析
时程分析结果
midas Civil
边界非线性座,仅输入参数发生变化。对于程序采用同样方法处理。 2.高阻尼中给出了竖向压缩刚度,便于我们输入竖向刚度。
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
摩擦系 数 (μ)
用户输入(一般采用默认值 0.5) 用户输入
时程分析时自动计算
根据公式1 2自动计算
midas Civil
边界非线性时程分析
减隔震支座模拟-摩擦摆式减隔震橡胶支座
厂家规格表
一般厂家会提供各规格支座实验数值 (右图为《桥梁减震、隔振支座和装置》 p180页插图) 通过实验数据可确定快时及慢时摩擦系 数,以及速度变化参数r: μ一般在0.01-0.06之间,根据产品实验 曲线比较容易确定。本例取 0.04/0.03 r一般取20sec/m这个数量级,本例取22
基于Midas civil的桥建合一高架车站结构抗震分析
S e i s mi c An a l y s i s o f Bu i l d i n g a n d Br i d g e Un i ie f d El e v a t e d S t a t i o n Ba s e d o n Mi d a s Ci v l i
F E NG Qi n g
( Ch i n a Ra i l wa y S i y u a n S u r v e y a n d De s i g n Gr o u p Co . , Lt d . Wu h a n 4 3 0 0 6 3 )
[ A b s t r a c t ]B a s e d o n Mi d a s C i v i l , t h e i f n i t e e l e me n t mo d e l o f b u i l d i n g a n d b r i d g e u n i i f e d e l e v a t e d s t a t i o n
简化 为节 点荷 载施 加于 盖梁 上 。 采用 Mi d a s / C i v i l 软件进 行抗 震相关 计算 分析 。
及其上 承荷 载 , 1 / 3号和 1 / 5号桥墩 盖梁 主要承 担部 分楼 面荷 载和楼 扶梯 荷载 ; 除上述 4个桥 墩 以外 的 主要 支撑 轨道 梁 、 站 台梁 及 其上 承荷 载 , 下层盖 梁
【 摘
要】 基于Mi d a s c i v i l 软件, 建立某轨道交通工程高架车站空间模型, 分析其在多遇地震、 设计地震、
罕遇地震作用下的抗震性能。 通过计算分析, 为该 高架车站提供设计依据 , 也为同类结构的分析方法提供 参考。
【 关键词】 桥架合一 高架地铁车站 抗震分析
midas迈达斯抗震专题PPT课件
桥梁震害
• 百花大桥-主梁移位
• 角隅损坏
桥梁震害
桥梁震害
桥梁震害
• 挡块破坏
桥梁震害
• 挡块破坏
桥梁震害
桥梁震害
• 板式橡胶支座剪切破坏
震害形式
• 按位置划分震害形式
– 下部墩柱 – 上部梁段 – 局部破坏
• 按受力划分震害形式
– 强度破坏(弯曲、剪切) – 刚度破坏(位移)
震害特点
• 只对预期塑性铰出现构件进行细致设计, 有效的、经济的提高整个结构的抗震能力
规范变化
– 单一水准(50年超越概率10%)~两水准设防(E1不坏、E2可修 or不倒);
– 基于强度的单一阶段设计~两阶段设计,不再以强度作为唯一标 准,允许塑性,但对塑性变形能力进行校核;
– 使用烈度来描述地震作用强度~用地面运动加速度值这个地震动 参数来量化描述地震作用强度
单自由度弹性体系 周期T
假定地震输入
最大值
假定结构反应
规范反应谱
S Smax
0 0.1
Tg 水平设计加速度反应谱
10 T(s)
Sma x2.2C 5iC sC dA
式中,Ci为重要性系数,Cs为场地系数,Cd为阻尼调整系数,A 为设计基本地震动加速度峰值。
抗震计算方法
三者的优缺点?
反应谱说明
• 相同阻尼比,不同固有周期的结构(质点)的地震响应 最值连线构成了反应谱曲线
桥墩和墩梁连接部位震害较多; 不同结构类型受损程度有差异性; 有明显的方向性特点;
采用有限元软件进行抗震设计
注意事项
注意事项
注意事项
总结
总结
总结
总结
欢迎交流! 谢谢!
MIDASCivil桥梁抗震分析与设计
动力平衡方程的解法
3、数值方法
可适用于线性和非线性领域 中心差分法 、常加速度法、线性加速度法
Newmark- 法 、Wilson- 法
不同参数对应的逐步积分法
特征值问题
当没有外荷载和阻尼时,n个自由度体系的运动方程
特征值问题 : 固有圆频率
模态向量
振型分析的原理
n个自由度体系的n个自振频率和模态向量:
表3.1.2-1 各类公路桥梁抗震措施等级
地震基
6
7
8
9
本烈度
桥梁分类
0.05 0.1 0.15 0.2 0.3 0.4
A
8
9
9
更高,专门研究
B
7
8
8
9
9 >=9
C
6
7
7
8
8
9
D
6
7
7
8
8
9
桥梁抗震设防标准
多遇地震烈度(地震影响E1):50年内超越概率为63%的地震烈度(=I-1.55) 设计地震烈度(地震影响E2) :50年内超越概率为10%的地震烈度(=I) 罕遇地震烈度:50年内超越概率为2~3%的地震烈度(=I+1)
u 2 nu n2u 0
临界阻尼?
惯性力
惯性力
mu(t) cu(t) ku(t) mug (t)
达朗贝尔原理 (D’ Alembert’s Principle)
p(t)-fS -fD = mu
牛顿第二定律
静止/匀速运动
加速度运动
动力平衡方程的解法
mu cu ku mug
1、经典解法
总则1.0.5条:铁路工程应按多遇地震、设计地震、罕遇 地震三个地震动水准进行抗震设计。
civil抗震问题汇总(终版)
12、斜拉桥索力的调整详细操作
13、希望计算书中能看见详细的计算过程(目前只能看见程序处理后的结果)
14、Midas的RC和PSC验算时程序的错误?
15、人行桥梁人行时程激励分析及舒适度评价;
16、钢混组合结构分析;
17、对分叉(裤衩)桥的精确模拟方法
27.抗震计算中非线性分析。
28、由于现在城市抗震规范的实施与目前整个中国区域的相对地震等级较高,由于近些年的项目没有重视到抗震设计,希望从更多的设计资料中学习抗震计算。
29、针对轨道梁桥的特点做抗震方面的计算,包括建模及设置抗震选项的操作等(包括反应谱和动力时程分析),以及后处理内容的解释说明和针对设计出计算书所需要从后处理中提取哪些结果内容,以及内容的含义
16.集中塑性铰与纤维单元法在软件中实现时,各定义参数的意义;
17.动力弹塑性分析时是否可以同时考虑P-Δ效应或大位移分析;
18.介绍一下滑动盆式支座模拟的详细工程。
19.如何利用midas、根据设计加速度反应谱拟合设计加速度时程。
20.利用已有的地震动加速度计录,如何通过时域方法调整,使其加速度反应谱与规范的设计加速度反应谱匹配。
23用civil梁格法做的高架匝道弯梁模型钢束坐标能否直接导出全局坐标系的绝对坐标别是边斜腹板的钢束前段时间做过一个匝道的模型想把civil中的梁格法模型与midasfea实体模型的计算结果进行对比在fea中建立钢束的时候一直没有找到便捷的方法来精确确定匝道边斜腹板钢束的坐标因为civil梁格法屮的边斜腹板的钢束是跟着单元走的导出的钢束mct文件屮钢束的竖弯和帄弯信息也是参考单元走的并不是整体坐标系中的绝对坐标civil在和fea互导模型的时候有没有这方面的考虑
Midas 城市桥梁抗震分析及验算
SRSS(平方和平方根法)适用: 平动的振型分解反应谱法 CQC (完全二次项平方根法)适 用:扭转耦联的振型分解反应谱 法。
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
类型 Ⅰ
类型 Ⅱ
规范流程图参照:11抗震设 计规范81-83页
规范中延性设计理念的体现
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
Midas 城市桥梁抗震分析及验算
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
目 录
• 一、延性设计理念
• 二、Midas 抗震分析前处理 • 三、Midas 抗震分析后处理 • 四、结论
1. 抗震设计规范
《公路桥梁抗震细则》 2008年
2. 反应谱分析
A 类规则桥梁 , E1 பைடு நூலகம் E2 地震 均选择MM法
地震反应谱的确定
根据设计参数,选择 E1 地震 动反应谱参数。
E1地震作用下反应谱设计参数
E2地震作用下反应谱设计参数
反应谱荷载工况定义
一般情况下,城市桥梁可只考虑水平向地震作用,直线桥可分别考虑顺桥向X和横桥向Y的地震 作用,横桥向在输入的时候,地震角度填写90度。
midas抗震设计-反应谱分析
北京迈达斯技术有限公司目录简要 (1)设定操作环境及定义材料和截面 (2)定义材料 (2)定义截面 (3)建立结构模型 (4)主梁及横向联系梁模型 (4)输入横向联系梁 (5)输入桥墩 (5)刚性连接 (7)建立桥墩和系梁 (9)输入边界条件 (10)输入支座的边界条件 (10)刚性连接 (11)输入横向联系梁的梁端刚域 (12)输入桥台的边界条件 (13)输入二期恒载 (14)输入质量 (15)输入反应谱数据 (17)输入反应谱函数 (17)输入反应谱荷载工况 (18)运行结构分析 (19)查看结果 (20)荷载组合 (20)查看振型形状和频率 (21)查看桥墩的支座反力 (24)简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 140 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)[单位:mm]图1. 桥梁剖面图设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
Midas-城市桥梁抗震分析及验算资料讲解
• 四、结论
反应谱抗震验算主要桥墩强度验算,能力保护构件的验算参照规 范根据设计要求进行设置验算。 在验算分析参数设置过程中,需要注意很多方面,防止程序无法 进行验算。 验算内容和注意事项见附件。
规范流程图参照:11抗震设 计规范81-83页
延性设计理念
• 一、延性设计理念
目录
• 二、Midas 抗震分析前处理
• 三、Midas 抗震分析后处理
• 四、结论
1. 工程案例
城市主干路上的混凝土空心板结构,桥梁上部结构为2孔20米的简支梁, 下部结构为柱式墩台,墩柱一体。顶部设有盖梁,柱高30米。
Midas 抗震分析前处理
模型特征值分析
在进行反应谱分析之前要计算模型的振型:首先c在结构类型中将模型定义为3D的,勾选将自重 转化为质量,同时还要将外荷载转化为质量(自重不必要转化)。
Midas 抗震分析前处理
采用多重Ritz向量法进行特征值分析,水平向 各取40阶振型,保证振型参与质量达到90% 以上。
E1 E2(弹性) E2(弹塑性)
Midas 抗震分析后处理
②RC材料性能 参数
注意:进行抗震设计的混凝土 材料及钢筋材料特性必须选择 JTG04(RC)规范,否则程序 提示“抗震设计单元材料选择 不正确”(结构分析时可不受 此限制)。
Midas 抗震分析后处理
③RC设计截面 配筋
注意:程序默认只有竖直的单 元才进行RC验算,如果在截面 列表中未出现截面说明有水平 的单元与竖直的单元共用一种 截面。 另:进行抗震设计的盖梁截面 必须是“设计截面”中的截面, 其他构件截面必须是“数据库/ 用户”中的截面,否则程序提 示“抗震设计用数据不存在”。
运行后可在结果-振型中查看周期 与振型。 同时点击自振模态可以输出周期 与振型的数据表格。
midas抗震设计-反应谱分析
midas抗震设计-反应谱分析反应谱分析北京迈达斯技术有限公司简要本例题介绍使用MIDAS/CIVIL的反应谱分析功能来进行抗震设计的方法。
例题模型使用的是简化了的钢箱型桥梁模型,由主梁、横向联系梁和桥墩构成。
桥台部分由于刚度很大,不另外建立模型只输入边界条件;基础部分假设完全固定,也只按边界条件来定义。
下面是桥梁的一些基本数据。
跨径:45 m + 50 m + 45 m = 1 40 m桥宽:11.4 m主梁形式:钢箱梁钢材:GB(S) Grade3(主梁)混凝土:GB_Civil(RC) 30(桥墩)图1. 桥梁剖面图[单位:mm]设定操作环境及定义材料和截面开新文件(新项目),以‘Response.mcb’为名保存(保存)。
文件/ 新项目t文件/ 保存( Response )将单位体系设定为kN(力), m(长度)。
工具/ 单位体系长度>m; 力>kN ↵定义材料分别输入主梁和桥墩的材料数据。
模型/ 材料和截面特性/ 材料材料号(1); 类型>S钢材规范>GB(S); 数据库>Grade3 ↵材料号(2); 类型>混凝土规范>GB-Civil(RC); 数据库>30 ↵图2. 定义材料定义截面使用用户定义来输入主梁、横向联系梁以及桥墩的截面数据。
主 梁: 箱型截面 2000×2500×12×16/18横向联系梁: 工字型截面 1500×300×12×12/12柱 帽: 实腹长方形截面 1.5×1.5桥 墩: 实腹圆形截面 1.5主梁与桥墩连接的支座部分使用弹性连接(Elastic Link)来模拟。
模型 / 材料和截面特性 / 截面数据库/用户名称 (Girder) ; 截面形状>箱型截面 ; 用户 偏心>中-中心H ( 2 ) ; B ( 2.5 ) ; tw ( 0.012 )tf1 ( 0.016 ) ; C ( 2.3 ) ; tf2 ( 0.018 )名称 (Cross) ; 截面形状>工型截面 ; 用户偏心>中-中心H ( 1.5 ) ; B ( 0.3 ) ; tw ( 0.012 ) ; tf1 ( 0.012 )名称( Coping ) ; 截面形状>实腹长方形截面偏心>中-中心 用户 ; H ( 1.5 ) ; B ( 1.5 ) ↵名称 ( Column ) ; 截面形状>实腹圆形截面用户 ; D ( 1.5 ) ↵输入截面尺寸时,若只输入tf1,不输入tf2,则tf2与tf1相同。
基于MidasCivil的连续刚构桥抗震安全性分析
基于Midas Civil的连续刚构桥抗震安全性分析摘要:桥梁工程作为城市交通中的生命线工程,设计人员对其抗震安全性的研究从未停止。
本文采用Midas Civil建立某高速公路段连续刚构桥的三维空间模型,以公路桥梁抗震设计规范(JTG-T2231-01-2020)为依据,采用反应谱分析法,对桥梁整体在E1、E2地震作用下的抗震性能进行验算分析。
其分析方法及结论可为今后同类型桥梁抗震设计提供参考。
关键词:反应谱法、连续刚构桥地震响应、抗震分析引言我国部分地区直属于两大地震带范围内,地震活动较为频繁[1]。
2008年,汶川发生的8.0级大地震,死亡失踪人数高达8.7万,造成经济损失近6000亿元;2010年,青海玉树发生7.1地震,死亡失踪人数2968人,直接经济损失近150亿元[2]。
灾情之严重让人痛心不已。
随着我国交通事业的蓬勃发展,大量连续刚构桥得以修建,若桥梁在地震作用下遭受破坏,导致震区交通瘫痪,这势必会对震后救援工作造成极大困难,造成的人、财损失将不可估量。
面对地震的突发性、破坏性,桥梁等重要交通建设必须从设计阶段入手,严格把控其抗震安全性能。
一、工程概况某高速公路段60+100+60m三跨变截面连续刚构桥项目,上部结构为预应力混凝土单箱单室箱梁,支点梁高6.8m,跨中梁高3m,采用公路Ⅰ级设计荷载;下部结构为单柱式薄壁空心墩,长8.5m,宽3.2m,桩基础为4根直径1.6m的圆柱桩,桩长15m。
二、计算模型建立采用Midas Civil2021及Midas Civil Designer2021进行建模、分析,C50混凝土箱梁、C40混凝土桥墩和C25混凝土桩基采用梁单元模拟。
全桥共计160个节点,147个单元,所建桥梁三维模型见图1所示。
图1结构模型三、模态分析采用Midas Civil中的多重Ritz向量法进行特征值分析,按照地震波最不利输入方向(顺桥向、横桥)取前100阶振型对桥梁三维有限元模型进行模态分析[3]。
midas civil 桥梁荷载试验实例精析
在撰写这篇文章之前,我对于midas civil 桥梁荷载试验实例精析这个主题有了相关的了解,首先让我们明确一下文章的主要内容和结构。
文章将以midas civil 桥梁荷载试验实例为主线索,深入解析其原理、方法和应用,并结合实际案例进行分析和论证。
整篇文章将分为引言、midas civil 桥梁荷载试验原理与方法、实例精析、个人观点和总结回顾五个部分。
以下是对每个部分的简要讨论:引言:在本部分,我将简要介绍midas civil 桥梁荷载试验的背景和意义,并指出本文的主要研究目的和方法。
midas civil 桥梁荷载试验原理与方法:本部分将重点介绍midas civil 桥梁荷载试验的原理和方法,包括其基本理论、模拟原理和具体操作步骤,以便读者能够深入理解其实质。
实例精析:在这一部分,我将结合真实案例,针对具体的midas civil 桥梁荷载试验实例进行分析和论证,重点剖析试验结果、数据分析和结论推断,以印证前文所述的原理和方法。
个人观点:这一部分将是我对midas civil 桥梁荷载试验的个人理解和经验总结,包括其优势、不足以及进一步发展方向等,与读者共享我的见解和思考。
总结回顾:最后一部分将是对全文的总结和回顾,通过对前文内容的归纳和总结,使读者能够全面、深刻和灵活地理解midas civil 桥梁荷载试验的相关知识和应用。
现在我会开始撰写文章,包括以上提到的五个部分。
文章字数将超过3000字,格式将遵循普通文本的知识文章格式,并在内容中多次提及指定的主题文字。
文章将通过逐步展开的方式,深入解析和讲解midas civil 桥梁荷载试验实例,以期为您提供一篇高质量、深度和广度兼具的中文文章。
如果您对文章的结构或内容有任何特殊要求,请随时告诉我,我会尽力满足您的需求。
在引言部分,我将会介绍midas civil 桥梁荷载试验的背景和意义。
midas civil 软件是一款专业的结构分析与设计软件,其在桥梁设计领域具有广泛的应用。
midas中如何进行桥梁地震时程分析.doc
midas中如何进行桥梁地震时程分析
关于midas中如何进行桥梁地震时程分析?下面下面为大家详细介绍一下,以供参考。
由于目前建筑抗震规范对于时程分析采用的最大加速度有了硬性的规定,因此首先就是要将时程的地震波比如简单的elcentro波进行系数调整,根据抗震规范5.1.2.2表中的规定,将.Elcentro的最大峰值与5.1.2.2规定的最大值进行比较得到修正系数,=0.1,注意选择的是无量刚加速度),填写到放大系数里面,点击生成地震反映谱,函数值就是所需要的一条曲线的a谱,不需要再除以g了。
按照规范需要两条实际一条人工模拟曲线,将得到的地震反映谱曲线进行数据拟和分析与实际场地采用的规范规定的a谱进行比较,保证在各个周期点上相差不大于20%,人工波的选择一般是对于特大桥梁或者重要桥梁进行现场的试验后得到一定的模拟曲线,一般桥梁搞几条波就够了不要人工模拟。
开始错误的以为直接将地震波简单处理与a普比较,实际这里的地面运动的加速度波只是一个自由度体系的反应,而a谱则是多个自由度体系经过一系列的分析处理而得到的,因此必须将地震波进行转换,幸好有了midas的转换工具可以直接生成,不然要自己编写傅立叶转换程序了。
注意理解公式各项的意思。
MidasCivil桥梁抗震详解终
案例三:某古老桥梁抗震加固方案
总结词
对于古老的桥梁,由于其结构形式和材料特性的限制,需要采取特殊的抗震加固方案。
详细描述
在某古老桥梁的抗震加固方案中,根据MIDAS Civil软件的模拟分析结果,采用了增设支撑结构和加强节点连接 等措施来提高桥梁的抗震性能。同时,考虑到古老桥梁的历史和文化价值,加固方案尽可能地保留了原有结构的 特点和风格。
的影响。
分类设防
根据桥梁的重要性和潜 在震害程度,采取不同
的设防标准和方法。
多道抗震防线
通过设置多道抗震防线, 降低地震对桥梁的破坏
程度。
综合考虑
综合考虑桥梁的结构特 点、场地条件、震害经 验等因素,进行综合抗
震设计。
04 MIDAS Civil在桥梁抗震设计中的应用
CHAPTER
建立模型
建立精细化模型
地震波
地震波是地震发生时从震源向外传播的振动波, 分为体波和面波两大类。
桥梁震害及其原因
桥梁震害
桥梁在地震中受到不同程度的破坏,包 括支座破坏、桥墩剪切破坏、桥面塌落 等。
VS
震害原因
桥梁震害主要由于设计不当、施工质量差 、材料老化等因素导致结构抗震能力不足 。
抗震设计基本原则
以预防为主
通过合理的设计和施工 措施,提高桥梁的抗震 能力,减少地震对桥梁
案例二:某复杂桥梁抗震分析
总结词
复杂桥梁的抗震分析需要借助先进的数值模拟软件,对桥梁在不同地震作用下的 响应进行分析。
详细描述
在某复杂桥梁的抗震分析中,利用MIDAS Civil软件对桥梁在不同地震作用下的 响应进行了详细分析。通过调整模型参数和边界条件,模拟了多种工况下的地震 响应,为优化桥梁抗震设计提供了依据。
midas civil桥梁工程实例精解
Midas Civil桥梁工程实例精解一、引言Midas Civil是一款专门针对桥梁工程设计和分析的软件,其功能强大、应用广泛。
本文将重点讨论Midas Civil在桥梁工程实例中的应用和精解,以帮助读者更好地了解该软件的工程实践价值。
二、Midas Civil桥梁工程实例分析1. 拱桥设计与分析以某某大型拱桥工程为例,介绍Midas Civil在拱桥设计与分析中的具体应用。
包括结构建模、材料设定、荷载分析、抗震设计等方面。
2. 梁桥设计与分析以某某梁桥工程为例,介绍Midas Civil在梁桥设计与分析中的具体应用。
包括纵横断面设计、施工阶段分析、架设过程模拟等方面。
3. 悬索桥设计与分析以某某悬索桥工程为例,介绍Midas Civil在悬索桥设计与分析中的具体应用。
包括索塔设计、索缆分析、振动稳定性分析等方面。
4. 桥梁监测与维护介绍Midas Civil在桥梁监测与维护方面的应用,如结构健康监测、裂缝分析、加固方案评估等。
三、Midas Civil在桥梁工程中的优势和应用价值1. 强大的建模和分析功能Midas Civil具有强大的建模和分析功能,能够准确模拟各类桥梁结构,在设计和施工阶段提供可靠的分析结果。
2. 多场景下的适用性Midas Civil不仅适用于各类桥梁类型,还可以应用于不同地理、气候条件下的工程实践,具有较强的通用性和灵活性。
3. 创新的工程实践技术Midas Civil在桥梁工程实践中引入了许多创新的技术和方法,如基于BIM的协同设计、结构优化算法等,推动了桥梁工程实践的进步。
4. 提高工程质量和效率通过Midas Civil的应用,桥梁工程的设计质量和施工效率得到了有效提升,有力支撑了工程质量和进度的保障。
四、Midas Civil在桥梁工程中的应用案例1. 桥梁工程A案例介绍Midas Civil在桥梁工程A中的应用情况,包括具体的建模分析过程、工程效果和成果展示等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北京迈达斯技术有限公司
桥梁抗震培训
JTG/T B02-01-2008
一、桥梁场地和地基
1、桥梁场地概况:
该桥位于某7度区二级公路上,水平向基本地震加 速度值 0.15g。按《中国地震动反应谱特征周期 区划图》查的场地特征周期为:0.45s。经现场勘 察测得场地土质和剪切波速如下:
桥梁抗震培训
JTG/T B02-01-2008
一、桥梁场地和地基
2、场地类别确定:
a、确定土层平均剪切波速:
土层平均剪切波速为:209.8m/s
桥梁抗震培训
JTG/T B02-01-2008
一、桥梁场地和地基
2、场地类别确定:
b、确定工程场地覆盖层厚度:
按此条规范确认为:11.5m。
桥梁抗震培训
桥梁抗震培训
JTG/T B02-01-2008
E1地震作用下抗震分析步骤
桥梁抗震培训
JTG/T B02-01-2008
1、确定桥梁类型:
确定为规则桥梁
桥梁抗震培训 JTG/T B02-01-2008
2、确定分析方法:
采用MM法。
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
判别地基不液化,不需 进行抗液化措施。
桥梁抗震培训
JTG/T B02-01-2008
二、桥梁构造、材料概况
桥梁形式:三跨混凝土悬臂梁 桥梁长度:L = 30+50+30 = 110.0 m,其中中跨为挂孔结 构,挂孔梁为普通钢筋混凝土梁,梁长16m ,墩为钢筋混 凝土双柱桥墩,墩高9m 预应力布置形式:T构部分配置顶板预应力,边跨配置底 板预应力 跨中箱梁截面 墩顶箱梁截面
桥梁抗震培训
JTG/T B02-01-2008
4、空间动力分析模型的建立:
----参见规范6.3 刚度:
构件刚度在地震往复作用下一般会降低,理论上应使用 各个构件的相对动刚度,但选择静刚度满足工程要求。
阻尼: 一般使用阻尼比 来反应整个桥梁的全部阻尼。
1、钢筋混凝土、预应力钢筋混凝土梁桥阻尼比一般选择 0.05 2、钢桥阻尼比一般选择 0.02 3、钢混结合梁桥分别定义钢构件组组阻尼比 、混凝土构件 组组阻尼比 ,程序计算各阶振型阻尼比: 0.04 4、钢混叠合梁桥可使用介于0.02-0.05之间的阻尼比如:
桥梁抗震培训
JTG/T B02-01-2008
刚度
4、空间动力分析模型的建立:
----参见规范6.3 质量:
将建立的模型进行质量转换。 集中质量法:一般梁桥选择, 计算省时,不能考虑扭转振 型。一致质量法:通用,耗 时,可以考虑扭转振型。
路灯质量转换
将二期等反映铺装的荷载转换 成质量。
对于没用荷载表示的附属构件, 如路灯等,可在节点上施加相 应的质量块。
Cs 1.0
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
c、确定设计基本地震动加速度峰值A:
在设防烈度7度区,A值为0.15g
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
d、调整设计加速度反应谱特征周期 Tg
Tg 0.45s 调整后为:
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
a、确定重要性系数 Ci :
得该桥在E1地震作用下重要性系数为 Ci 0.43 ,在E2地震作用下重要性系数 为 Ci 1.3
桥梁抗震培训 JTG/T B02-01-2008
3、E1地震反应谱的确定:
b、确定场地系数 Cs
桥梁抗震培训
JTG/T B02-01-2008
3、E1地震反应谱的确定:
e、对阻尼比为0.05的标准反应谱进行修正
阻尼比为:0.05,计算JTG/T B02-01-2008
3、E1地震反应谱的确定:
f、生成反应谱
桥梁抗震培训
JTG/T B02-01-2008
4、空间动力分析模型的建立:
----参见规范6.3
与静力分析模型的区别:不在精细地模拟,而重点是 要真实、准确地反映结构质量、结构及构件刚度、结 构阻尼及边界条件。
质量
(t ) mu (t ) p(t ) 模ku 型 (t ) cu
阻尼 边界条件
桥梁抗震培训 JTG/T B02-01-2008
JTG/T B02-01-2008
一、桥梁场地和地基
2、场地类别确定:
查得场地类别为Ⅱ类场地
桥梁抗震培训
JTG/T B02-01-2008
一、桥梁场地和地基
3、地基抗震验算:
桥梁抗震培训
JTG/T B02-01-2008
一、桥梁场地和地基
4、液化判别:
根据土质判断是否需要抗液化措施:
桥梁抗震培训
JTG/T B02-01-2008
三、基本参数确定
1、确定桥梁抗震设防类别:
二级公路大桥,故该桥为B类桥梁。
桥梁抗震培训
JTG/T B02-01-2008
三、基本参数确定
2、确定抗震设防等级:
在7度区,按8度构造措施设防
桥梁抗震培训
JTG/T B02-01-2008
抗震设计总流程
桥梁抗震培训
JTG/T B02-01-2008
二、桥梁构造、材料概况
桥梁抗震培训
JTG/T B02-01-2008
二、桥梁构造、材料概况
材料
混凝土
主梁采用JTG04(RC)规范的C50混凝土 桥墩采用JTG04(RC)规范的C40混凝土
钢材
采用JTG04(S)规范,在数据库中选Strand1860
荷载
恒荷载
自重,在程序中按自重输入,由程序自动计算
桥梁抗震培训
JTG/T B02-01-2008
二、桥梁构造、材料概况
预应力
钢束(φ15.2 mm×31) 截面面积: Au = 4340 mm2 孔道直径: 130 mm 钢筋松弛系数(开),选择JTG04和0.3(低松弛) 超张拉(开) 预应力钢筋抗拉强度标准值(fpk):1860N/mm^2 预应力钢筋与管道壁的摩擦系数:0.25 管道每米局部偏差对摩擦的影响系数:1.5e-006(1/mm) 锚具变形、钢筋回缩和接缝压缩值: 开始点:6mm 结束点:6mm 张拉力:抗拉强度标准值的75%,张拉控制应力1395MPa