高考中的常考二级结论及其应用 (1)
2023年高考数学:高中数学常用二级结论
高中数学40条秒杀公式1.适用条件:[直线过焦点],必有ecosA=(x-1)/(x+1),其中A为直线与焦点所在轴夹角,是锐角。
x为分离比,必须大于1。
注上述公式适合一切圆锥曲线。
如果焦点内分(指的是焦点在所截线段上),用该公式;如果外分(焦点在所截线段延长线上),右边为(x+1)/(x-1),其他不变。
2.函数的周期性问题(记忆三个):(1)若f(x)=-f(x+k),则T=2k;(2)若f(x)=m/(x+k)(m不为0),则T=2k;(3)若f(x)=f(x+k)+f(x-k),则T=6k。
注意点:a.周期函数,周期必无限b.周期函数未必存在最小周期,如:常数函数。
c.周期函数加周期函数未必是周期函数,如:y=sinxy=sin派x相加不是周期函数。
3.关于对称问题(无数人搞不懂的问题)总结如下:(1)若在R上(下同)满足:f(a+x)=f(b-x)恒成立,对称轴为x=(a+b)/2(2)函数y=f(a+x)与y=f(b-x)的图像关于x=(b-a)/2对称(3)若f(a+x)+f(a-x)=2b,则f(x)图像关于(a,b)中心对称4.函数奇偶性:(1)对于属于R上的奇函数有f(0)=0(2)对于含参函数,奇函数没有偶次方项,偶函数没有奇次方项(3)奇偶性作用不大,一般用于选择填空5.数列爆强定律:1.等差数列中:S奇=na中,例如S13=13a72.等差数列中:S(n)、S(2n)-S(n)、S(3n)-S(2n)成等差3.等比数列中,上述2中各项在公比不为负一时成等比,在q=-1时,未必成立4.等比数列爆强公式:S(n+m)=S(m)+q²mS(n)可以迅速求q6.数列的终极利器,特征根方程。
(如果看不懂就算了)。
首先介绍公式:对于a n+1=pa n+q,a1已知,那么特征根x=q/(1-p),则数列通项公式为an=(a1-x)p²(n-1)+x,这是一阶特征根方程的运用。
高等考试物理常用的“二级结论”
高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便:T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(m/s ): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g = 7.相对运动:共同的分运动不产生相对位移。
重点高中高考数学所有二级结论《完整版》
重点高中高考数学所有二级结论《完整版》————————————————————————————————作者:————————————————————————————————日期:高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+byy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则: ①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin41cos cos cos CB AC B A +=++ ③2sin 2sin 2sin 212sin 2sin 2sin222CB AC B A -=++ ④4sin 4sin 4sin 412sin 2sin 2sinC B A C B A ---+=++πππ ⑤2sin 2sin 2sin4sin sin sin CB AC B A =++ ⑥2cot 2cot 2cot 2cot 2cot 2cotCB AC B A =++ )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++⑦12tan 2tan 2tan 2tan 2tan 2tan=++A C C B B A ⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin222≥++C B A ⑩12tan 2tan 2tan222≥++CB A ⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2H h =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=-立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e Λ 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心 (4)OC OB OA ==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M nX D 49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心 (3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心第 11 页 (4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅ 55.m >n 时,22n m nm n m e nm e e e e +>-->+。
高考物理常用的“二级结论”
高考物理常用的 “二级结论”一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大小≥F 合≥F 大-F 小。
三个大小相等的共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:貌合神离,弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,“没有记忆力”。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: T S S V V V V t 2221212+=+== 3.匀变速直线运动:时间等分时, S S aT n n -=-12 ,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度:T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶…… 5.自由落体:n 秒末速度(): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 22m v h g= 7.相对运动:共同的分运动不产生相对位移。
高中数学解题必备的50个二级结论
高中数学解题必备的50个二级结论高中数学是数学的一个重要阶段,涉及到各种数学概念、定理和方法。
在高中数学中,我们常常会遇到一些常用的二级结论,这些结论在解题时经常会起到关键的作用。
下面是高中数学解题必备的50个二级结论:1.直线与平面的交点个数:直线与平面交于一点、无交点、交于无穷远点。
2.平面与平面的交线情况:平面与平面相交于一条直线、平行、重合。
3.两直线夹角为锐角或钝角,其对应的两对平行线夹角也为锐角或钝角。
4.两相交直线的一对对应角互补,则两相交直线平行。
5.两相交直线的一对对应角互补,则这两条直线必不互相垂直。
6.锐角两边垂直平分线之交点在锐角内部。
7.直线垂直平分线与直线相交,则相交点到直线的两个端点的距离相等。
8.平行线两边的夹角相等。
9.平行线与一直线的交角相等。
10.两直线平行,那么它们的垂直平分线也平行。
11.两平行线之间的距离是不变的。
12.两垂直平分线的交点为原线段的中点。
13.锐角两边垂直平分线的交点到顶点的连线为高。
14.在一个等腰三角形中,底边上的高和底边中点的连线垂直,且互相垂直平分。
15.在一个等腰三角形中,底边上的高和与底边垂直的平分线互相垂直。
16.一个三角形内部的任意一条直线与三角形边平行或垂直,则这条直线分割出的小三角形与原始三角形的形状相似。
17.利用辅助线,可以将一个图形分割为几个形状相似的图形,从而简化计算。
18.在一个等腰三角形中,底边上的中线和高互相垂直。
19.在一个等腰三角形中,底边上的中线和与底边平行的高互相垂直。
20.两个互补角,它们的正弦值、余弦值、正切值互为相反数。
21.两个互补角,它们的正弦值、余弦值、正切值互为倒数。
22.在一个直角三角形中,两条直角边的平方和等于斜边的平方。
23. sinA是锐角,那么cosA就是钝角。
24.在一个三角形中,两个角的和等于第三个角的补角。
25.任意一个角的余弦的绝对值小于等于1。
26.钝角的正弦的绝对值小于等于1。
数学高考常用二级结论
数学高考常用二级结论
在数学高考中,二级结论可以说是一种非常重要的概念,在解题
过程中应用广泛。
本文将从生动、全面、有指导意义三个方面来介绍
数学高考常用的二级结论。
生动地说,二级结论就是指在一个定理的证明过程中,我们需要
引用其他定理来帮助我们证明该定理。
其中,被引用的定理或结论便
是二级结论。
例如,在证明勾股定理时,我们需要用到平方差公式,
那么平方差公式就是勾股定理的二级结论。
全面地说,数学高考中常用的二级结论可以分为几类。
首先是基
础性的结论,如平行四边形的对角线互相平分、垂直落在弦上的两条
半径相等等。
这些结论在解题时经常被用到,可以说是数学习惯的一
部分。
其次是特殊性的结论,如等腰三角形底角相等、同侧内角互补等。
这些结论每个都有自己的特点,可以在解题时起到很好的作用。
最后是综合性的结论,如菱形的对角线互相垂直且相等、正方形的对
角线互相垂直且相等。
这类结论具有多种特性,可以在各种解题情景
中起到重要的作用。
有指导意义地说,掌握常用二级结论对于成功解题非常重要。
一
方面,熟练地掌握二级结论,可以帮助我们灵活运用各种定理和结论,简化证明过程,提高解题速度和准确度。
另一方面,掌握常用二级结论,可以在解题过程中引导我们思考,帮助我们找到解题思路,发现
解题方法,提高我们的数学思维。
综上所述,数学高考中常用的二级结论涉及的范围很广,对于成功解题和提高数学思维至关重要。
我们应该熟练掌握这些结论,灵活运用它们,在解题过程中发挥出重要的指导作用。
高考必备的50个二级结论
高考必备的50个二级结论5. 平行四边形对角线平方之和等于四条边平方之和.12. 过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点.13. 圆锥曲线的切线方程求法:隐函数求导.推论:14. 切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程.22. 过椭圆上一点做斜率互为相反数的两条直线交椭圆于A、B两点,则直线AB的斜率为定值.24. 抛物线焦点弦的中点,在准线上的射影与焦点F的连线垂直于该焦点弦.25. 双曲线焦点三角形的内切圆圆心的横坐标为定值a(长半轴长).26. 对任意圆锥曲线,过其上任意一点作两直线,若两直线斜率之积为定值,两直线交曲线于A,B两点,则直线AB恒过定点.32. 角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例。
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线.39. 帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上.45. 三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等;(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心;(3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心;(4)三角形的外心是它的中点三角形的垂心;(5)三角形的重心也是它的中点三角形的重心;(6)三角形的中点三角形的外心也是其垂足三角形的外心;(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍.。
常考二级结论及其应用(含答案)
0,
1],使得f(
f(
证:
x0)=x0 .
f(
若曲线 y =s
变式 1 设函数 f(
x )= ex +x -a (
a ∈ R,
x0 ,
e为自然对数的底数).
i
nx 上存在 点(
).
y0)使得 f(
f(
y0))=y0 ,则 a 的取值范围是(
1]
C
.[
1,
1+e]
D
.[
e-1 ,
e+1]
A.[
y =l
(
x0 ,
x0))与(
x0),
x0)分别在函数 y =f(
x )与反函数 y =f-1(
x )的图像上 .
f(
f(
!5
1
设点 P 在曲线y = ex 上,点 Q 在曲线y =l
n(
2x )上,则 |PQ | 的最小值为(
2
).
1-l
n2)
C.
1+l
n2
D.2(
1+l
n2)
A.1-l
n2
B.2(
x )]在 D 上是增函数;若f(
x )与g(
x )的单调性相反,则y =f[
x )]在 D 上是减
g(
g(
函数,即“同增异减”.
特别地,若f(
x )是 定义域 D 上的单调函数,且方程f[
x )]=x 在D 上有解为
f(
x0 ,则 f(
x0)=x0 .
!7
对于定义域为[
0,
1]的连续函数 f(
x ),如果同时满足以下 3 个条件:
高考物理解题“利器”--二级结论,有效节约考试时间,提高正确率
高考物理解题“利器”--二级结论,有效节约考试时间,提高正确率高考物理二级结论(1)物理概念、规律和课本上的知识是“一级物理知识”,此外,有一些在做题时常常用到的物理关系或者做题的经验,叫做“二级结论”。
这是在一些常见的物理情景中,由基本规律和基本公式导出的推论,或者解决某类习题的经验,这些知识在做题时出现率非常高,如果能记住这些二级结论,那么在做填空题或者选择题时就可以直接使用。
在做计算题时,虽然必须一步步列方程,不能直接引用二级结论,但是记得二级结论能预知结果,可以简化计算和提高思维起点,因此也是有用的。
一般地讲,做的题多了,细心的同学自然会熟悉并记住某些二级结论。
如果刻意加以整理、理解和记忆,那么二级结论就能发挥出更大的作用。
常说内行人“心中有数”,二级结论就是物理内行心中的“数”。
运用“二级结论”的风险是出现张冠李戴,提出两点建议:1.每个“二级结论”都要熟悉它的推导过程,一则可以在做计算题时顺利列出有关方程,二则可以在记不清楚时进行推导。
2.记忆“二级结论”,要同时记清它的适用条件,避免错用。
受力平衡的“二级结论”1.多个力下平衡:•几个力平衡,则一个力与其它力的合力等大、反向、共线。
•几个力平衡,仅其中一个力消失,其它力保持不变,则剩余力的合力是消失力的相反力。
•几个力平衡,将这些力的图示按顺序首尾相接,形成闭合多边形(三个力形成闭合三角形)。
2.两个力的合力:三个大小相等的共点力平衡,力之间的夹角为120°。
3.研究对象的选取:•整体法——分析系统外力;典型模型——几物体相对静止•隔离法——分析系统内力必须用隔离法(外力也可用隔离法)4.重力——考虑与否:•力学:打击、碰撞、爆炸类问题中,可不考虑,但缓冲模型及其他必须考虑;•电磁学:基本粒子不考虑,但宏观带电体(液滴、小球、金属棒等)必须考虑重力。
5.轻绳、轻杆、轻弹簧弹力(1)轻绳:滑轮模型与结点模型•滑轮模型——轻绳跨过光滑滑轮(或光滑挂钩)等,则滑轮两侧的绳子是同一段绳子,而同一段绳中张力处处相等;•结点模型——几段绳子栓结于某一点,则这几段绳子中张力一般不相等。
(高考考生考前必读)高中物理常用二级结论(整理全)
高中物理常用二级结论(整理全)1、“二级结论”是常见知识和经验的总结,基本定理定律推导而来。
2、必须熟知结论条件,切勿盲目照搬、套用。
3、用于解选择题,可以提高解题速度。
对计算题分析有一定作用。
一、静力学:1.几个力平衡,则一个力是与其它力合力平衡的力。
2.两个力的合力:F 大+F 小≥F 合≥F 大-F 小。
三个大小相等的共面共点力平衡,力之间的夹角为1200。
3.力的合成和分解是一种等效代换,分力与合力都不是真实的力,求合力和分力是处理力学问题时的一种方法、手段。
4.三力共点且平衡,则312123sin sin sin F F F ααα==(拉密定理)。
5.物体沿斜面匀速下滑,则tan μα=。
6.两个一起运动的物体“刚好脱离”时:接触但弹力为零。
此时速度、加速度相等,此后不等。
7.轻绳不可伸长,其两端拉力大小相等,线上各点张力大小相等。
因其形变被忽略,其拉力可以发生突变,形变瞬间完成。
8.轻弹簧两端弹力大小相等,弹簧的弹力不能发生突变。
9.轻杆能承受纵向拉力、压力,还能承受横向力。
力可以发生突变,“没有记忆力”。
10、轻杆一端连绞链,另一端受合力方向:沿杆方向。
二、运动学:1.在描述运动时,在纯运动学问题中,可以任意选取参照物;在处理动力学问题时,只能以地为参照物。
2.匀变速直线运动:用平均速度思考匀变速直线运动问题,总是带来方便: TS S V V V V t 2221212+=+==3.匀变速直线运动:时间等分时, S S aT n n -=-12 ,位移中点的即时速度V V V S212222=+, V V S t 22> 纸带点痕求速度、加速度: T S S V t2212+= ,212T S S a -=,()a S S n T n =--121 4.匀变速直线运动,v 0 = 0时:时间等分点:各时刻速度比:1:2:3:4:5各时刻总位移比:1:4:9:16:25各段时间内位移比:1:3:5:7:9位移等分点:各时刻速度比:1∶2∶3∶……到达各分点时间比1∶2∶3∶……通过各段时间比1∶()12-∶(23-)∶……5.自由落体: (g 取10m/s 2)n 秒末速度(m/s ): 10,20,30,40,50n 秒末下落高度(m):5、20、45、80、125第n 秒内下落高度(m):5、15、25、35、456.上抛运动:对称性:t t 下上=,v v =下上, 202m v h g = 7.相对运动:共同的分运动不产生相对位移。
高中数学二级结论(精)
高中数学二级结论一、函数性质1、奇偶函数概念的推广及其周期(1)对于函数f (x ),若存在常数a ,使得f (a -x )=f (a +x )(*),则称f (x )为广义型偶函数(图像关于直线a x =轴对称),且当有两个相异实数a ,b 同时满足(*)时,f (x )为周期函数T =2|b -a |;(2)对于函数f (x ),若存在常数a ,使得f (a -x )=—f (a +x )(*),则称f (x )为广义型奇函数(图像关于点()0a ,中心对称),当有两个相异实数a ,b 同时满足(*)时,f (x )为周期函数T =2|b -a |2、抽象函数的对称性(1)若f (x )满足f (a +x )+f (b -x )=c ,则函数关于(,)成中心对称(充要)(2)若f (x )满足f (a +x )=f (b -x ),则函数关于直线x =成轴对称(充要)3、()()f x k k f x =方程有解,则的取值范围为的值域4、有几个交点的图像与直线有几个解方程k y x f y k x f ==⇔=)()(5、()()恒成立,,恒成立,,k x f n m x k x x x f x f n m x x >'∈∀⇔>--∈∀)()()(,212121二、导数应用(一)常用不等式放缩①1+≥x e x 、1ln 11-≤≤-<-x x xx x、)1(>>x ex e x 、()2ln x e ax x a >>;②()11ln 10x x x x -<<->、2ln(1)2x x x x -<+<()0x >;③)2(≤≥--a ax e e x x 推论:)0(ln 21>≥-t t t t 、ln (002)axx x a x a≥>≤≤+,;④x x 2111+≈+;()11nx nx +≥+;⑤sin tan x x x <<)2,0(π∈x ;πx x 2sin >)2,0(π∈x .(二)洛必达法则法则1:若函数f (x )和g (x )满足下列条件:(1)()lim 0x a f x →=及()lim 0x a g x →=;(2)在点a 的去心邻域内,f (x )与g (x )可导且g '(x )≠0;(3)()()limx af x lg x →'=',那么()()lim x a f x g x →=()()lim x a f x l g x →'='.法则2:若函数f (x )和g (x )满足下列条件:(1)()lim x a f x →=∞及()lim x ag x →=∞;(2)在点a 的去心邻域内,f (x )与g (x )可导且g '(x )≠0;(3)()()limx a f x l g x →'=',那么()()limx af xg x →=()()lim x af x lg x →'='.三、解三角形1、面积公式(1)111sin sin sin 222C S bc ab C ac ∆A B =A ==B (2)()()()122111221,,,2CS x y x y b x y c x y ∆A B ==-==其中r r (3)已知三角形三边,求面积可用下述方法:①海伦公式变式:如下图,图中的圆为大三角形的内切圆,大三角形三边长分别为a ,b ,c ,大三角形面积为縰 th ( t hᦙ縰②xz z y y x S z y x c x z b z y a y x ⋅+⋅+⋅==+=+=+21222再代入、、解得,,由2、外接圆半径3、任意三角形内切圆半径r =cb a S++2(S 为面积)(若C 为直角,则△ABC 的内切圆半径为2cb a -+)4、余弦定理推论:2222b c a AB AC +-⋅=5、射影定理:a =bc osC +cc os B ;b =cc osA +ac osC ;c =ac os B +bc os A6、正切定理:tanA +tanB +tan C=tanAtanBtan C7、三角形其它边角关系①()b c a a b c a +>⎧⎪⎨-<⎪⎩为最大边时②()222sin cos sin cos sin cos sin cos sin cos sin cos A BA CB CABC b c a a B A C A C B>⎧⎪>⎪⎪>∆⇔+>⇔⎨>⎪⎪>⎪>⎩为锐角三角形为最大边时③()222tan tan tan 0a b c A a A B C a b c ⎧>+∠⇔⇔++<⎨<+⎩为钝角的三角形为最大边时四、平面向量1、三点共线定理:2、等和线定理:3、燕尾定理:在三角形ABC 中,AD ,BE ,CF 相交于同一点O ,那么::ABO ACO S S BD DC ∆∆=.4、奔驰定理已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=五、直线和圆的方程1、到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-23、直线向量式方程:(112121=x x y y x x y y ----,,或()()()()211211x x y y y y x x --=--4、点(x ,y )关于直线Ax +By +C =0的对称点坐标为⎪⎭⎫ ⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x 5、以()()1122,,,A x y B x y 为直径端点的圆方程为()()()()12120x x x x y y y y --+--=6、过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--7、抛物线px y 22=上一点00(,)P x y 处的切线方程是00()y y p x x =+.8、切点弦方程(平面内一点),(00y x P 引曲线的两条切线,两切点所在直线的方程)①圆222)()(r b y a x =-+-的切点弦方程为200))(())((r b y b y a x a x =--+--②椭圆)0,0(12222>>=+b a by a x 的切点弦方程为12020=+b y y a x x ③双曲线)0,0(12222>>=-b a by a x 的切点弦方程为12020=-b y y a x x ④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=六、圆锥曲线OFE DCBA1、e=2、椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+3、双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-4、若直线y=kx+m 与椭圆)0(12222>>=+b ab y a x 相交于两点,则2222212bk a mb y y +=+5、弦长公式:AB=6、椭圆的焦半径公式:1020,PF a ex PF a ex =+=-7、已知点是离心率为的圆锥曲线的焦点,过点的弦与的焦点所在的轴的夹角为,且,焦准距(焦点到对应准线的距离)为,则①22cos cos b b FA FB a c a c θθ==-+,,;②当焦点内分弦时,有;③当焦点外分弦时(此时曲线为双曲线),有.8、已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21PF F ,则221cos e -≥θ(P 点在y 轴上时,θ角最大)证明:()()222222222121221222121212122+42+422cos =1111222+2a c r r c r r r r c b b e r r r r r r a r r θ----==-≥-=-=-⎛⎫⎪⎝⎭9、()()111221sin 2,,sin sin sin sin sin r r cPF F PF F e αβαβαβαααβ+∠=∠===⇒=++若则()2222tan APB tan AP P 1a x a xab y y y H B H a x a x a b y y+-+-∠=∠+∠==+---⋅22PA PB b k k a ⋅=-)10、在椭圆22221x y a b+=(a >b >0),F 1,F 2分别为左、右焦点,P 为椭圆上一点,则△PF 1F 2的面积122tan 2PF F S b θ= ,其中θ=∠F 1PF 2.①()()222222121212121224=+2cos +421cos =1cos b c r r rr r r c rr rr θθθ-=-=+⇒+②11、在双曲线22221x y a b-=1(a >0,b >0)中,F 1,F 2分别为左、右焦点,P 为双曲线上一点,则△PF 1F 2的面积122tan2PF F b S θ=,其中θ=∠F 1PF 2.12、关于抛物线焦点弦的一些结论:设AB 为过抛物线22(0)y p x p =>焦点的弦,1122(,)(,)A x y B x y 、,直线AB 的倾斜角为θ,斜率为k ,则⑴焦点F 对A B 、在准线上射影的张角为2π以AB 为直径的圆与准线相切.⑵2212121112=042222p p p p p x x y y p FA FB y y ⎛⎫⎛⎫⎛⎫==-⋅--⋅--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,uuu r uuu r ,y 1+y 2=;⑶()222221212442=2222p p p k px px p AB p y y ==+--+,221221sin p AB p k θ⎛⎫=+= ⎪⎝⎭;⑷21224==1+2FAp k FB x x p λλλ=+--当时,11212()22p p x x x x λλ⎛⎫⎧-=-⎪ ⎪⎨ ⎪ ⎪⎪=⎩⎝⎭;⑸112||||FA FB P +=.13、在椭圆E :22221x y a b+=(a >b >0)中:(1)如图①所示,若直线y =kx (k ≠0)与椭圆E 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ',有l ∥l ',设其斜率为k 0,则k 0·k =22b a-.(2)如图②所示,若直线y =kx 与椭圆E 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线P A ,PB 的斜率存在,且分别为k 1,k 2,则k 1·k 2=22b a-.(3)如图③所示,若直线y =kx +m (k ≠0且m ≠0)与椭圆E 交于A ,B 两点,P 为弦AB 的中点,设直线P O 的斜率为k 0,则k 0·k =22b a-.推论:以椭圆22221x y a b+=内任意一点(x 0,y 0)为中点的弦AB 的斜率k =2020x b a y -⋅.14、在双曲线E :22221x y a b-=(a >0,b >0)中,类比上述结论有:(1)k 0·k =22b a .(2)k 1·k 2=22b a .(3)k 0·k =22b a.15、与双曲线12222=-b y a x 有相同渐近线的双曲线方程为λ=-2222by a x (0>λ时,焦点在x 轴上;0<λ时,焦点在y 轴上)七、立体几何1、棱长为a 的正四面体内切球半径r =612a ,外接球半径R =64a .2、任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积)3、斜二测画法直观图面积为原图形面积的42倍4、向量法判断位置关系(1)设直线l m 、的方向向量分别是 、a b ,平面αβ、的法向量分别是、u v ,则:①线线平行:l ∥m ⇔a ∥b ⇔=a kb②线面平行:l ∥α⇔a ⊥ u 0⇔= a u ③面面平行:////αβ⇔⇔=u v u kv注意:这里的线线平行包括线线重合,线面平行包括线在面内,面面平行包括面面重合.(2)设直线l m 、的方向向量分别是m n 、,平面α内任意向量 、a b ,平面β内任意向量c,则:①线线垂直:⊥⇔l m 0m n =②线面垂直:α⊥⇔l 00m a m b ⎧⋅=⎪⎨⋅=⎪⎩u r ru r r③面面垂直:βα⊥⇔0c a c b ⎧⋅=⎪⎨⋅=⎪⎩r r r r 5、向量法求空间角(设直线l m 、的方向向量分别是 、a b ,平面αβ、的法向量分别是、u v )(1)直线l m 、所成的角(0)2πθθ≤≤满足:cos θ⋅=a b a b(2)直线l 与平面α所成的角(0)2πθθ≤≤满足:sin θ⋅=a u a u(3)平面α与平面β所成的二面角的平面角(0)θθπ≤≤满足:cos θ⋅=u vu v八、数列1、通项公式的求法类型一()1n n a a f n +-=的数列(逐差累加法)类型二:1n n a pa q +=+(法一)()()111111111,,,n n n n n n n n n n n n n n n q q a pa q a pa q p a p pb a b pb b b p a p a a a p 令解得再令,得l ll l l l l l l l l++---+++=+Þ+=++=+==+=\==+=+\=+-(法二)由q pa a n n +=+1得1(2)n n a pa q n -=+≥两式相减并整理得11,n nn n a a p a a +--=-则{}1n n a a +-构成以21a a -为首项,以p 为公比的等比数列,得到{}1n n a a +-的通项:()1n n a a f n +-=(类型一)1()n n a pa f n +=+两边同时除以1n p +可得到111()n n n n n a a f n p p p +++=+,令n n n a b p =,则11()n nn f n b b p ++=+(类型一)11n n n a pa qa +-=+()()()11111,()n n n n n n n n n p xy qa x y a xya a ya x a ya a ya f n 令类型三+-+-++==-=+-Þ-=-Þ-=11n n n n a a da a ---=⇒111n n d a a --=(等差数列)1n n n pa q a a k ++=+()()111+1111 ,11111,,=n n n n n n n n n n nn n n n n n q kp a p pa q pa qa a a k a ka ka k q kq k a p p a p k k b b a p a a p p 令解得再令得 类型二l l ll l l l ll l l l ll l l l l l l l++++++++++=Û+=+=+++++Þ=×=++++++--Þ=×+=+++++++2、放缩裂项求和211(1)k kk <-,211(1)k k k >+=<*,1)k N k >∈>()()()()()11111111111111111n n n n n n n n n k k k k k k k k k k k +++++-⎛⎫=<=⋅- ⎪--------⎝⎭九、随机变量的期望和方差1、二项分布:()k k n kn P X k p q-==C 2、几何分布:()1n P X k q p -==3、超几何分布:()K n k M N MnNC C P X k C --==4、数学期望的性质(1)()()E a b aE b ξξ+=+.(2)若ξ~(,)B n p ,则E np ξ=.(3)若ξ~(),g n p ,则1E pξ=.5、方差与标准差()()()2221122n n D x E p x E p x E p ξξξξ=-⋅+-⋅++-⋅+L L ,σξ=ξD .6、方差的性质(1)()2D a b a D ξξ+=;(2)若ξ~(,)B n p ,则(1)D np p ξ=-.(3)若ξ~(),g n p ,且()1k P k q p ξ-==,则2q D p ξ=.十、排列组合1、隔板法I把n 个元素放到m 个集合中,所得集合均非空,则有种,例如x 1+x 2+…+x m =n的正整数解个数为.2、隔板法II把n 个元素放到m 个集合中,所得集合可为空,则有种,例如x 1+x 2+…+x m =n的非负整数解个数为,例如(a 1x 1+a 2x 2+…+a m x m )n 展开式的项数为.3、圆排列从n 个元素中抽取m 个元素,按照一定的顺序排列成一圈,叫做一个圆排列,圆排列的个数4、重复组合从n 个元素中抽取m 个元素,元素可以重复选取,不管顺序,组成一组,叫重复组合,重复组合个数.5、(ax +by )n 展开式中,第k 项系数绝对值最大,则 縰其中[]表示高斯函数,即取整函数.十一、常用不等式1、三个正数的均值不等式3a b c ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号).2绝对值不等式:a b a b a b-≤±≤+3、二维形式的柯西不等式:22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈当且仅当ad bc =时,等号成立.4+1122(,,,).x y x y R ∈。
重点高中高考数学所有二级结论《完整版》
重点高中高考数学所有二级结论《完整版》————————————————————————————————作者:————————————————————————————————日期:高中数学二级结论1.任意的简单n 面体内切球半径为表S V3(V 是简单n 面体的体积,表S 是简单n 面体的表面积) 2.在任意ABC △内,都有tan A +tan B +tan C =tan A ·tan B ·tan C推论:在ABC △内,若tan A +tan B +tan C <0,则ABC △为钝角三角形3.斜二测画法直观图面积为原图形面积的42倍 4.过椭圆准线上一点作椭圆的两条切线,两切点连线所在直线必经过椭圆相应的焦点5.导数题常用放缩1+≥x e x、1ln 11-≤≤-<-x x xx x 、)1(>>x ex e x 6.椭圆)0,0(12222>>=+b a by a x 的面积S 为πab S =7.圆锥曲线的切线方程求法:隐函数求导推论:①过圆222)()(r b y a x =-+-上任意一点),(00y x P 的切线方程为200))(())((r b y b y a x a x =--+--②过椭圆)0,0(12222>>=+b a b y a x 上任意一点),(00y x P 的切线方程为12020=+b yy a xx③过双曲线)0,0(12222>>=-b a by a x 上任意一点),(00y x P 的切线方程为12020=-b yy a xx8.切点弦方程:平面内一点引曲线的两条切线,两切点所在直线的方程叫做曲线的切点弦方程 ①圆022=++++F Ey Dx y x 的切点弦方程为0220000=++++++F E y y D x x y y x x ②椭圆)0,0(12222>>=+b a b y a x 的切点弦方程为12020=+byy a x x③双曲线)0,0(12222>>=-b a b y a x 的切点弦方程为12020=-byy a x x④抛物线)0(22>=p px y 的切点弦方程为)(00x x p y y +=⑤二次曲线的切点弦方程为0222000000=++++++++F yy E x x D y Cy x y y x Bx Ax 9.①椭圆)0,0(12222>>=+b a b y a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =+②双曲线)0,0(12222>>=-b a by a x 与直线)0·(0≠=++B A C By Ax 相切的条件是22222C b B a A =-10.若A 、B 、C 、D 是圆锥曲线(二次曲线)上顺次四点,则四点共圆(常用相交弦定理)的一个充要条件是:直线AC 、BD 的斜率存在且不等于零,并有0=+BD AC k k ,(AC k ,BD k 分别表示AC 和BD 的斜率)11.已知椭圆方程为)0(12222>>=+b a by a x ,两焦点分别为1F ,2F ,设焦点三角形21F PF 中θ=∠21F PF ,则221cos e -≥θ(2m ax 21cos e -=θ)12.椭圆的焦半径(椭圆的一个焦点到椭圆上一点横坐标为0x 的点P 的距离)公式02,1ex a r ±=13.已知1k ,2k ,3k 为过原点的直线1l ,2l ,3l 的斜率,其中2l 是1l 和3l 的角平分线,则1k ,2k ,3k 满足下述转化关系:3222223321212k k k k k k k k +-+-=,31231231312)()1(1k k k k k k k k k +++-±-=,2122221123212k k k k k k k k +-+-= 14.任意满足r by ax n n =+的二次方程,过函数上一点),(11y x 的切线方程为r y by x ax n n =+--111115.已知f (x )的渐近线方程为y=ax+b ,则a xx f x =∝+→)(lim,b ax x f x =-∝+→])([lim16.椭圆)0(12222>>=+b a b y a x 绕Ox 坐标轴旋转所得的旋转体的体积为πab V 34=17.平行四边形对角线平方之和等于四条边平方之和18.在锐角三角形中C B A C B A cos cos cos sin sin sin ++>++19.函数f (x )具有对称轴a x =,b x =)(b a ≠,则f (x )为周期函数且一个正周期为|22|b a -20.y=kx+m 与椭圆)0(12222>>=+b a b y a x 相交于两点,则纵坐标之和为22222b k a mb +21.已知三角形三边x ,y ,z ,求面积可用下述方法(一些情况下比海伦公式更实用,如27,28,29)AC C B B A S zA C y CB x B A ⋅+⋅+⋅==+=+=+222222.圆锥曲线的第二定义:椭圆的第二定义:平面上到定点F 距离与到定直线间距离之比为常数e (即椭圆的偏心率,ace =)的点的集合(定点F 不在定直线上,该常数为小于1的正数)双曲线第二定义:平面内,到给定一点及一直线的距离之比大于1且为常数的点的轨迹称为双曲线23.到角公式:若把直线1l 依逆时针方向旋转到与2l 第一次重合时所转的角是θ,则21121tan k k k k θ=⋅+-24.A 、B 、C 三点共线⇔OD nm OB OC n OA m OD +=+=1,(同时除以m+n ) 25.过双曲线)0,0(12222>>=-b a b y a x 上任意一点作两条渐近线的平行线,与渐近线围成的四边形面积为2ab26.反比例函数)0(>=k xky 为双曲线,其焦点为)2,2(k k 和)2,2(k k --,k <0 27.面积射影定理:如图,设平面α外的△ABC 在平面α内的射影为△ABO ,分别记△ABC 的面积和△ABO 的面积为S 和S′ ,记△ABC 所在平面和平面α所成的二面角为θ,则cos θ = S′ : S28,角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线 29.数列不动点:定义:方程的根称为函数的不动点利用递推数列的不动点,可将某些递推关系所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法定理1:若是的不动点,满足递推关系,则,即是公比为的等比数列.x x f =)()(x f )(x f )(1-=n n a f a ),1,0()(≠≠+=a a b ax x f p )(x f n a )1(),(1>=-n a f a n n )(1p a a p a n n -=--}{p a n -a定理2:设,满足递推关系,初值条件(1)若有两个相异的不动点,则 (这里)(2)若只有唯一不动点,则(这里)定理3:设函数有两个不同的不动点,且由确定着数列,那么当且仅当时,30.(1)⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧+=-+=+==-=++342cos 2cos 2cos 4242sin 2sin 2sin 4142cos 2cos 2cos 442sin 2sin 2sin 4)sin()sin()sin(k n nC nB nA k n nC nB nA k n nC nB nA k n nC nB nA nC nB nA ,*N ∈k(2)若πC B A =++,则: ①2sin 2sin 2sin 8sin sin sin 2sin 2sin 2sin CB AC B A C B A =++++②2sin 2sin 2sin41cos cos cos CB AC B A +=++ ③2sin 2sin 2sin 212sin 2sin 2sin222CB AC B A -=++ ④4sin 4sin 4sin 412sin 2sin 2sinC B A C B A ---+=++πππ ⑤2sin 2sin 2sin4sin sin sin CB AC B A =++ ⑥2cot 2cot 2cot 2cot 2cot 2cotCB AC B A =++ )0,0()(≠-≠++=bc ad c dcx bax x f }{n a 1),(1>=-n a f a n n )(11a f a ≠)(x f q p ,q a p a k q a p a n n n n --⋅=----11qca pca k --=)(x f p k p a p a n n +-=--111da c k +=2)0,0()(2≠≠+++=e af ex cbx ax x f 21,x x )(1n n u f u =+}{n u a e b 2,0==2212111)(x u x u x u x u n n n n --=--++⑦12tan 2tan 2tan 2tan 2tan 2tan=++A C C B B A ⑧C B A C B A B A C A C B sin sin sin 4)sin()sin()sin(=-++-++-+ (3)在任意△ABC 中,有: ①812sin 2sin 2sin≤⋅⋅C B A ②8332cos 2cos 2cos ≤⋅⋅C B A ③232sin 2sin 2sin≤++C B A ④2332cos 2cos 2cos≤++C B A ⑤833sin sin sin ≤⋅⋅C B A ⑥81cos cos cos ≤⋅⋅C B A ⑦233sin sin sin ≤++C B A ⑧23cos cos cos ≤++C B A ⑨432sin 2sin 2sin222≥++C B A ⑩12tan 2tan 2tan222≥++CB A ⑪32tan 2tan 2tan≥++CB A ⑫932tan 2tan 2tan≤⋅⋅C B A ⑬332cot 2cot 2cot≥++CB A ⑭3cot cot cot ≥++C B A(4)在任意锐角△ABC 中,有: ①33tan tan tan ≥⋅⋅C B A②93cot cot cot ≤⋅⋅C B A③9tan tan tan 222≥++C B A④1cot cot cot 222≥++C B A31.帕斯卡定理:如果一个六边形内接于一条二次曲线(椭圆、双曲线、抛物线),那么它的三对对边的交点在同一条直线上32.拟柱体:所有的顶点都在两个平行平面内的多面体叫做拟柱体,它在这两个平面内的面叫做拟柱体的底面,其余各面叫做拟柱体的侧面,两底面之间的垂直距离叫做拟柱体的高拟柱体体积公式[辛普森(Simpson )公式]:设拟柱体的高为H ,如果用平行于底面的平面γ去截该图形,所得到的截面面积是平面γ与一个底面之间距离h 的不超过3次的函数,那么该拟柱体的体积V 为H S S S V )4(61201++=,式中,1S 和2S 是两底面的面积,0S 是中截面的面积(即平面γ与底面之间距离2H h =时得到的截面的面积)事实上,不光是拟柱体,其他符合条件(所有顶点都在两个平行平面上、用平行于底面的平面去截该图形时所得到的截面面积是该平面与一底之间距离的不超过3次的函数)的立体图形也可以利用该公式求体积33.三余弦定理:设A 为面上一点,过A 的斜线AO 在面上的射影为AB ,AC 为面上的一条直线,那么∠OAC ,∠BAC ,∠OAB 三角的余弦关系为:cos ∠OAC=cos ∠BAC ·cos ∠OAB (∠BAC 和∠OAB 只能是锐角)34.在Rt △ABC 中,C 为直角,内角A ,B ,C 所对的边分别是a ,b ,c ,则△ABC 的内切圆半径为2cb a -+ 35.立方差公式:))((2233b ab a b a b a +--=-立方和公式:))((2233b ab a b a b a +-+=+36.已知△ABC ,O 为其外心,H 为其垂心,则OC OB OA OH ++=37.过原点的直线与椭圆的两个交点和椭圆上不与左右顶点重合的任一点构成的直线斜率乘积为定值)0(22>>-b a ba 推论:椭圆上不与左右顶点重合的任一点与左右顶点构成的直线斜率乘积为定值)0(22>>-b a b a38.12)!1(!!21+++++++=n θxn xx n e n x x x e Λ 推论:212x x e x++>39.)2(≤≥--a ax ee xx推论:①)0(ln 21>≥-t t tt②)20,0(ln ≤≤>+≥a x ax axx 40.抛物线焦点弦的中点,在准线上的射影与焦点F 的连线垂直于该焦点弦 41.双曲线焦点三角形的内切圆圆心的横坐标为定值a (长半轴长)42.向量与三角形四心:在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c (1)⇔=++0OC OB OA O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心 (3)O OC c OB b OA a ⇔=++0为ABC ∆的内心 (4)OC OB OA ==⇔O 为ABC ∆的外心43.正弦平方差公式:)sin()sin(sin sin 22βαβαβα+-=-44.对任意圆锥曲线,过其上任意一点作两直线,若两射线斜率之积为定值,则两交点连线所在直线过定点45.三角函数数列求和裂项相消:21cos2)21sin()21sin(sin --+=x x x 46.点(x ,y )关于直线A x+B y+C =0的对称点坐标为⎪⎭⎫⎝⎛+++-+++-2222)(2,)(2B A C By Ax B y B A C By Ax A x47.圆锥曲线统一的极坐标方程:θρcos 1e ep-=(e 为圆锥曲线的离心率)48.超几何分布的期望:若),,(M N n X~H ,则N nM X E =)((其中NM为符合要求元素的频率),)111)(1()(----=N n N M N M nX D 49.{}n a 为公差为d 的等差数列,{}n b 为公比为q 的等比数列,若数列{}n c 满足n n n b a c ⋅=,则数列{}n c 的前n项和n S 为2121)1(-+-=+q c c q c S n n n 50.若圆的直径端点()()1122,,,A x y B x y ,则圆的方程为()()()()12120x x x x y y y y --+--= 51.过椭圆上一点做斜率互为相反数的两条直线交椭圆于A 、B 两点,则直线AB 的斜率为定值52.二项式定理的计算中不定系数变为定系数的公式:11--=k n k n nC kC53.三角形五心的一些性质:(1)三角形的重心与三顶点的连线所构成的三个三角形面积相等(2)三角形的垂心与三顶点这四点中,任一点是其余三点所构成的三角形的垂心 (3)三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的垂心第 11 页 (4)三角形的外心是它的中点三角形的垂心(5)三角形的重心也是它的中点三角形的重心(6)三角形的中点三角形的外心也是其垂足三角形的外心(7)三角形的任一顶点到垂心的距离,等于外心到对边的距离的二倍54.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,则2222c b a AC AB -+=⋅ 55.m >n 时,22n m nm n m e nm e e e e +>-->+。
高中数学常用二级结论
高中数学常用二级结论在高中数学的学习中,掌握一些常用的二级结论可以大大提高解题的效率和准确性。
下面就为大家整理和介绍一些在解题中经常能用到的二级结论。
一、函数相关1、若函数\(f(x)\)的定义域为\(a,b\),且\(f(x)\)在\(a,c\)和\(c,b\)上均单调递增(减),则\(f(x)\)在\(a,b\)上不一定单调递增(减),但如果\(f(x)\)在\(a,c\)和\(c,b\)上均单调递增(减)且\(f(x)\)在\(x = c\)处连续,则\(f(x)\)在\(a,b\)上单调递增(减)。
2、对于函数\(f(x)\),若\(f(a + x) = f(b x)\),则函数\(f(x)\)的图象关于直线\(x =\frac{a + b}{2}\)对称。
3、函数\(y = f(x)\)的图象与直线\(x = a\),\(x = b\)及\(x\)轴所围成的曲边梯形的面积为\(S =\int_{a}^{b} |f(x)|dx\)。
4、若函数\(f(x)\)为奇函数,且\(f(0)\)有定义,则\(f(0) =0\)。
二、数列相关1、在等差数列\(\{a_{n}\}\)中,若\(m + n = p + q\)(\(m\),\(n\),\(p\),\(q \in N^\)),则\(a_{m} + a_{n} = a_{p} + a_{q}\);特别地,若\(m + n = 2p\),则\(a_{m} + a_{n} = 2a_{p}\)。
2、在等比数列\(\{a_{n}\}\)中,若\(m + n = p + q\)(\(m\),\(n\),\(p\),\(q \in N^\)),则\(a_{m} \cdot a_{n} = a_{p} \cdot a_{q}\);特别地,若\(m + n = 2p\),则\(a_{m} \cdot a_{n} = a_{p}^{2}\)。
3、若数列\(\{a_{n}\}\)的前\(n\)项和为\(S_{n}\),且\(S_{n} = An^{2} + Bn + C\)(\(A\neq 0\)),则当\(C =0\)时,数列\(\{a_{n}\}\)为等差数列;当\(C \neq 0\)时,数列\(\{a_{n}\}\)从第二项起为等差数列。
高中高考数学所有二级结论《完整版》
一、基本知识点
直线 的方向向量分别为 ,平面 的法向量分别为 (若只涉及一个平面 ,则用 表示其法向量)并在下面都不考虑线线重合、面面重合及线在面内的情况。
3、夹角问题
1)异面直线 所成的角 (范围: )
2)线面角 (范围: ),
3)二面角 (范围: )
4、距离问题
1)点A到点B的距离:
2)点A到线l的距离
在直线 上任取点
,
,
3)点A到面 的距离
在平面 上任取点
26、角平分线定理:三角形一个角的平分线分其对边所成的两条线段与这个角的两边对应成比例
角平分线定理逆定理:如果三角形一边上的某个点分这条边所成的两条线段与这条边的对角的两边对应成比例,那么该点与对角顶点的连线是三角形的一条角平分线
27、数列不动点:
定义:方程 的根称为函数 的不动点
利用递推数列 的不动点,可将某些递推关系 所确定的数列化为等比数列或较易求通项的数列,这种方法称为不动点法
1、任意的简单n面体内切球半径为 (V是简单n面体的体积, 是简单n面体的表面积)
2、在任意 内,都有tanA+tanB+tanC=tanA·tanB·tanC
3、若a是非零常数,若对于函数y=f(x)定义域内的任一变量x点有下列条件之一成立,则函数y=f(x)是周期函数,且2|a|是它的一个周期。①f(x+a)=f(x-a)②f(x+a)=-f(x)③f(x+a)=1/f(x)④f(x+a)=-1/f(x)
(3)三角形的外心:中垂线的交点(外接圆圆心,正弦定理求外接圆半径)
(5)三角形的内心:角平分线交点(内切圆圆心,面积法求内切圆半径)
40、在△ABC中,角A,B,C所对的边分别是a,b,c,则
备战2023高考数学考前必备4(二级结论)
备战2023高考数学考前必备4——二级结论1:子集的个数问题若一个集合A 含有n (n *∈N )个元素,则集合A 有2n 个子集,有()21n -个真子集,有()21n-个非空子集,有()22n-个非空真子集.理解:A 的子集有2n 个,从每个元素的取舍来理解,例如每个元素都有两种选择,则n 个元素共有2n 种选择,该结论需要掌握并会灵活应用.对解决有关集合的个数问题,可以直接利用这些公式进行计算.计算时要分清这个集合的元素是从哪里来的,有哪些,即若可供选择的元素有个,就转化为求这个元素集合的子集问题.另外要注意子集、真子集、子集、非空真子集之间的联系有区别.2:子集、交集、并集、补集之间的关系()()I I A B A A B B A B A C BA B I =⇔=⇔⊆⇔=∅⇔= ð(其中I 为全集).(1)当=A B 时,显然成立;(2)当A B Ö时,venn 图如图所示,结论正确.这个结论通过集合的交、并、补运算与集合的包含关系的转换解决问题.3.均值不等式链222++1122+a b a b ab a b ≤≤≤(>0,>0a b ,当且仅当=a b 时取等号)4.两个经典超越不等式(1)对数形式:1+ln (>0)x x x ≥,当且仅当=1x 时,等号成立.(2)指数形式:+1()x e x x R ≥∈,当且仅当=0x 时,等号成立.进一步可得到一组不等式链:>+1>>1+ln x e x x x (0x >且1x ≠)上述两个经典不等式的原型是来自于泰勒级数:()2+1=1+++++2!!+1!n xxn x x e e x x n n θ ,()()()23+1+1ln 1+=-+-+-1+23+1n n n x x x x x o x n ,截取片段:()()()+1R , ln 1+>-1x e x x x x x ≥∈≤,当且仅当=0x 时,等号成立;进而:()ln -1>0x x x ≤,当且仅当=1x 时,等号成立.1.奇函数的最值性质已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.2.函数周期性问题【结论阐述】已知函数f(x)是定义在区间D 上的奇函数,则对任意的x ∈D ,都有f(x)+f(-x)=0.特别地,若奇函数f(x)在D 上有最值,则f(x)max+f(x)min=0,且若0∈D ,则f(0)=0.已知定义在R 上的函数f(x),若对任意x ∈R ,总存在非零常数T ,使得f(x+T)=f(x),则称f(x)是周期函数,T 为其一个周期.除周期函数的定义外,还有一些常见的与周期函数有关的结论如下:(1)如果f (x +a )=-f (x )(a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(2)如果f (x +a )=()1f x (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(3)如果f (x +a )+f (x )=c (a ≠0),那么f (x )是周期函数,其中的一个周期T =2a .(4)如果f (x )=f (x +a )+f (x -a )(a ≠0),那么f (x )是周期函数,其中的一个周期T =6a .3.不同底的指数函数图像变化规律当底数大于1时,底数越大指数函数的图像越靠近y 轴;当底数大于0且小于1时,底数越小,指数函数的图像越靠近y 轴.即如图1所示的指数函数图像中,底数的大小关系为:01c d b a <<<<<,即图1中由y 轴右侧观察,图像从下至上,指数函数的底数依次增大.图14.不同底的对数函数图像变化规律当底数大于0且小于1时,底数越小,对数函数的图像越靠近x 轴;当底数大于1时,底数越大,对数函数的图像越靠近x 轴.即如图2所示的对数函数图像中,底数的大小关系为:01b a d c <<<<<,即图2中,在x 轴上侧观察,图像从左向右,对数函数的底数依次增大.图25.方程()x f x k +=的根为1x ,方程()1x f x k -+=的根若函数=()y f x 是定义在非空数集D 上的单调函数,则存在反函数1()y f x -=.特别地,x y a =与log a y x =(0a >且1a ≠)互为反函数.在同一直角坐标系内,两函数互为反函数图像关于=y x 对称,即()()00,x f x 与()()00,f x x 分别在函数()=y f x 与反函数()1y f x -=的图像上.若方程()x f x k +=的根为1x ,方程()1x f x k -+=的根为2x ,则12x x k +=.1.降幂扩角公式【结论阐述】()()221cos =1+cos2,21sin =1cos2.2ααα-α⎧⎪⎪⎨⎪⎪⎩2.升幂缩角公式【结论阐述】221+cos2=2cos ,1cos2=2sin .αα-αα⎧⎨⎩3.万能公式【结论阐述】①22tan2sin =1+tan 2ααα;②221tan 2cos =1+tan 2α-αα;③22tan2tan 1tan 2ααα=-.3.正切恒等式tan tan tan tan tan tan ++=A B C A B C若△为斜三角形,则有tan tan tan tan tan tan ++=A B C A B C (正切恒等式).4.射影定理在ABC 中,cos cos ,cos cos ,cos cos a b C c B b a C c A c a B b A =+=+=+.1.等差数列的性质设n S 为等差数列{}n a 的前n 项和,则有如下性质:项的性质在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md从第二项起每一项是它前一项与后一项的等差中项,也是与它等间距的两项的等差中项:()()1122,2n n n n n k n k a a a n a a a n k -+-+=+≥=+>两和式项数相同,下标和相等,则两式和相等:即若m n r s +=+,则m n r s a a a a +=+;若,m n p r s t ++=++则m n p r s ta a a a a a ++=++若{}{},n n a b 为项数相同的等差数列,则{}n n ka lb ±仍为等差数列(,k l 为常数)等差数列的图像是直线上一列均匀分布的孤立点(当0d ≠时,()1na dn a d =+-是n的一次函数)和的性质①232,,,n n n n n S S S S S -- 也成等差数列,公差为2n d②当0d ≠时,2122n d d S n a n ⎛⎫=+- ⎪⎝⎭是n 的二次函数③n S n ⎧⎫⎨⎬⎩⎭是等差数列③n 为奇数时,121,,1n n S n S S a S na S n +--===+奇奇中偶偶;n 为偶数时,212,=2nna S nS S d S a +-=奇奇偶偶④若{}{},n n a b 为项数相同的等差数列,且前n 项和分别为n S 与,n T 则()()2121212121,21n m m n m m m m m S a S a b T b n T -----==-(处理方法分别设221122,n n S A n B n T A n B n=+=+)单调性在等差数列中,等距离取出若干项也构成一个等差数列,即2,,,n n m n m a a a ++ 为等差数列,公差为md2.等比数列的性质设n S 为等比数列{}n a 的前n 项和,则有如下性质:项的性质在等比数列中,等距离取出若干项也构成一个等比列,即2,,,n n m n m a a a ++ 为等比数列,公比为.mq 从第二项起每一项是它前一项与后一项的等比数列,也是与它等间距的两项的等比中项.两积式项数相同,下标和相等,则两式积相等:即若,m n r s +=+则m n r s a a a a =;若,m n p r s t ++=++则m n p r s ta a a a a a =若{}{},n n a b 为项数相同的等比数列,则①{}log c n a (其中0,n a c >为常数)为等差数列;②{}{}{}{}{}{}1,,,,,,,kn n n n nnmnnn n a ka a b a a a a a b ⎧⎫⎧⎫⎨⎬⎨⎬⎩⎭⎩⎭(其中0,n a k >为常数)为等比数列.等比数列的图像是一列分布的孤立点(当0q ≠时,nn a Aq =是n 的指数型函数)1212221223,,k k k k k k k A a a a B a a a C a a a ++++=== ,则,,A B C 成等比数列和①若{}n a 是1q ≠-的等比数列,则数列232,,,n n n n n S S S S S -- 也成等比数列(其中n 为常数);的性质1q =-且n 为偶数时,数列232,,,nn n n n S S S S S -- 是常数列{}0,它不是等比数列;②m n m n m n n m S S q S S q S +=+=+;③在等比数列{}n a 中,当项数为偶数2n 时,S qS =奇偶;项数为奇数21n -时,1S a qS =+奇偶单调性①1q =时,数列{}n a 是常数列,如数列2,2,2,2, ;②0q <时,数列{}n a 是摆动数列,如数列1,2,4,8,16,-- ;③10,01a q ><<时,数列{}n a 是递减数列,如数列1111,,,,248 ;④10,1a q >>时,数列{}n a 是递增数列,如数列1,2,4,8, ;⑤10,01a q <<<时,数列{}n a 是递增数列,如数列1111,,,,248---- ;⑥10,1a q <>时,数列{}n a 是递减数列,如数列1,2,4,8,---- .1.极化恒等式(1)极化恒等式:()()2214⎡⎤⋅=+--⎣⎦a b a b a b ;(2)极化恒等式平行四边形型:在平行四边形ABCD 中,()2214AB AD AC BD ⋅=- ,即向量的数量积可以表示为以这组向量为邻边的平行四边形的“和对角线”与“差对角线”平方差的14;(3)极化恒等式三角形模型:在ABC 中,M 为边BC 中点,则;2214AB AC AM BC ⋅=- .说明:(1)三角形模式是平面向量极化恒等式的终极模式,几乎所有的问题都是用它解决;(2)记忆规律:向量的数量积等于第三边的中线长与第三边长的一半的平方差.2.三角形“四心”向量形式的充要条件设O 为ABC ∆所在平面上一点,内角A ,B ,C 所对的边分别为a ,b ,c ,则(1)O 为ABC ∆的外心()()()02sin aOA OB OC OA OB AB OB OC BC OA OC AC A⇔===⇔+⋅=+⋅=+⋅= .(如图1)(2)如图2,O 为ABC ∆的重心⇔OA OB OC ++=0 .(3)如图2,O 为ABC ∆的垂心⇔OA OB OB OC OC OA ⋅=⋅=⋅.(4)如图3,O 为ABC ∆的内心sin sin sin aOA bOB cOC A OA B OB C OC ⇔++=⇔⋅+⋅+⋅=00.说明:三角形“四心”——重心,垂心,内心,外心(1)重心——中线的交点:重心将中线长度分成2:1;(2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等.3.奔驰定理奔驰定理:设O 是ABC ∆内一点,BOC ∆,AOC ∆,AOB ∆的面积分别记作A S ,B S ,C S 则0A B C S OA S OB S OC ⋅+⋅+⋅= .说明:本定理图形酷似奔驰的车标而得名.奔驰定理在三角形四心中的具体形式:①O 是ABC ∆的重心⇔::1:1:1A B C S S S =⇔0OA OB OC ++=.②O 是ABC ∆的内心⇔::::A B C S S S a b c =⇔0aOA bOB cOC ++=.③O 是ABC ∆的外心::sin 2:sin 2:sin 2sin 2sin 2sin 20A B C S S S A B C A OA B OB C OC ⇔=⇔⋅+⋅+⋅=.④O 是ABC ∆的垂心⇔::tan :tan :tan A B CS S S A B C =⇔tan tan tan 0A OA B OB C OC ⋅+⋅+⋅=.奔驰定理是三角形四心向量式的完美统一.立体几何1.三余弦定理与三正弦定理三余弦定理(又称最小角定理):如图①,AB 是平面的一条斜线,BC 是平面内的一条直线,OA ⊥平面π于O ,OC BC ⊥于C ,则cos =cos cos ABC OBC OBA ∠∠⋅∠,即斜线与平面内一条直线夹角γ的余弦值等于斜线与平面所成角α的余弦值乘以射影与平面内直线夹角β的余弦值:cos =cos cos γα⋅β;说明:为方便记忆,我们约定γ为线线角,α为线面角,β为射影角,则由三余弦定理可得线面角是最小的线线角,即平面的斜线和它在平面内的射影所成的角,是这条斜线和这个平面内任一条直线所成角中的最小者.三正弦定理(又称最大角定理):如图②,设二面角--AB θδ的平面角为α,AC ⊂平面θ,CO ⊥平面δ,OB AB ⊥,设=,=CAB CAO ∠β∠γ,则sin =sin sin γα⋅β.说明:为方便记忆,我们约定α为二面角,β为线棱角,γ为线面角,则由三正弦定理可得二面角是最大的线面角,即对于一个锐二面角,在其中一个半平面内的任一条直线与另一个半平面所成的线面角的最大值等于该二面角的平面角.2.多面体的外接球和内切球类型一球的内切问题(等体积法)例如:如图①,在四棱锥P ABCD -中,内切球为球O ,求球半径.方法如下:------=++++P ABCD O ABCD O PBC O PCD O PAD O PABV V V V V V即:-11111=++++33333P ABCD ABCD PBC PCD PAD PAB V S r S r S r S r S r ⋅⋅⋅⋅⋅,可求出.类型二球的外接问题1.公式法正方体或长方体的外接球的球心为其体对角线的中点2.补形法(补长方体或正方体)①墙角模型(三条线两个垂直)题设:三条棱两两垂直②对棱相等模型(补形为长方体)题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(AB=CD ,AD=BC ,AC=BD )3.单面定球心法(定+算)步骤:①定一个面外接圆圆心:选中一个面如图:在三棱锥-P ABC 中,选中底面ABC ∆,确定其外接圆圆心1O (正三角形外心就是中心,直角三角形外心在斜边中点上,普通三角形用正弦定理定外心2=sin ar A);②过外心1O 做(找)底面ABC ∆的垂线,如图中1PO ⊥面ABC ,则球心一定在直线(注意不一定在线段1PO 上)1PO 上;③计算求半径R :在直线1PO 上任取一点O 如图:则==OP OA R ,利用公式22211=+OA O A OO 可计算出球半径R .4.双面定球心法(两次单面定球心)如图:在三棱锥-P ABC 中:①选定底面ABC ∆,定ABC ∆外接圆圆心1O ;②选定面PAB ∆,定PAB ∆外接圆圆心2O ;③分别过1O 做面ABC 的垂线,和2O 做面PAB 的垂线,两垂线交点即为外接球球心O .解析几何1.焦点三角形的面积公式1.椭圆中焦点三角形面积公式在椭圆22221x y a b+=(0a b >>)中,1F ,2F 分别为左、右焦点,P 为椭圆上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F S b θ,其中12=F PF θ∠.2.双曲线中焦点三角形面积公式在双曲线22221x y a b-=(0a >,0b >)中,1F ,2F 分别为左、右焦点,P 为双曲线上一点,12F PF θ∠=,12PF F ∆的面积记为12ΔPF F S ,则:①12Δ121=||||=||2PF F p p S F F y c y ;②12Δ121=|||||sin 2PF F S PF PF θ;③122Δ=tan 2PF F b S θ.注意:在求圆锥曲线中焦点三角形面积时,根据题意选择适合的公式,注意结合圆锥曲线的定义,余弦定理,基本不等式等综合应用.2.圆锥曲线的切线问题1.过圆C :222()+()=x a y b R --上一点00(,)P x y 的切线方程为200()()+()()=x a x a y b y b R ----.2.过椭圆22221x y a b+=上一点00(,)P x y 的切线方程为00221x x y y a b +=.3.已知点00(,)M x y ,抛物线C :2=2(0)y px p ≠和直线l :00()y y p x x =+.(1)当点00(,)M x y 在抛物线C 上时,直线l 与抛物线C 相切,其中M 为切点,l 为切线.(2)当点00(,)M x y 在抛物线C 外时,直线l 与抛物线C 相交,其中两交点与点M 的连线分别是抛物线的切线,即直线l 为切点弦所在的直线.(3)当点00(,)M x y 在抛物线C 内时,直线l 与抛物线C 相离.3.圆锥曲线的中点弦问题1.在椭圆C :22221(0)x y a b a b+=>>中(特别提醒此题结论适用焦点在x 轴上椭圆):(1)如图①所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,过A ,B 两点作椭圆的切线l ,l ',有l //l ',设其斜率为0k ,则202=bk k a-.(2)如图②所示,若直线(0)y kx k =≠与椭圆C 交于A ,B 两点,P 为椭圆上异于A ,B 的点,若直线PA ,PB 的斜率存在,且分别为1k ,2k ,则2122=b k k a -.(3)如图③所示,若直线=+(0,0)y kx b k m ≠≠与椭圆C 交于A ,B 两点,P 为弦AB 的中点,设直线PO 的斜率为0k ,则202=b k k a-.2.在双曲线C :22221(0,0)x y a b a b -=>>中,类比上述结论有(特别提醒此题结论):(1)202=b k k a ;(2)2122b k k a =;(3)202=b k k a.3.在抛物线C :22(0)y px p =>中类比1(3)的结论有00=(0)pk y y ≠.4:圆锥曲线中的定值问题1.在椭圆中:已知椭圆22221(0)x y a b a b+=>>,定点00(,)P x y (000x y ≠)在椭圆上,设A ,B 是椭圆上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y .2.在双曲线C :22221(0,0)x y a b a b-=>>中,定点00(,)P x y (000x y ≠)在双曲线上,设A ,B 是双曲线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PBk k +=.则直线AB 的斜率2020=AB b x k a y -.3.在抛物线C :22(0)y px p =>,定点00(,)P x y (000x y ≠)在抛物线上,设A ,B 是抛物线上的两个动点,直线PA ,PB 的斜率分别为PA k ,PB k ,且满足0PA PB k k +=.则直线AB 的斜率0=AB p k y -.5.圆锥曲线中的定点问题若圆锥曲线中内接直角三角形的直角顶点与圆锥曲线的顶点重合,则斜边所在直线过定点.(1)对于椭圆22221x y a b+=(0a b >>)上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222()(,0)+a b aa b-.同理,当以AB 为直径的圆过左顶点(,0)a -时,直线AB l 过定点2222()(,0)+a b a a b --.(2)对于双曲线22221(0,0)x y a b a b-=>>上异于右顶点的两动点A ,B ,以AB 为直径的圆经过右顶点(,0)a ,则直线AB l 过定点2222(+)(,0)a b a a b -.同理,对于左顶点(,0)a -,则定点为2222(+)(,0)a b a a b --.(3)对于抛物线22(0)y px p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则弦AB 所在直线过点(2,0)p .同理,抛物线22(0)x py p =>上异于顶点的两动点A ,B ,若0OA OB ⋅=,则直线AB 过定点(0,2)p .6.圆锥曲线中的定直线问题1.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;2.已知椭圆22221(0)x y a b a b+=>>外一点00(,)P x y ,当过点P 的动直线l 与椭圆相交于不同的两点,A B 时,在线段AB 上取一点Q ,满足||||=.||||AP AQ PB QB则点Q 必在定直线00221x x y y a b +=上;3.已知抛物线22y px =(>0)p ,定点00(,)P x y 不在抛物线上,过点P 的动直线交抛物线于,A B 两点,在直线AB 上取点Q ,满足||||=.||||AP AQ PB QB则点Q 在定直线00()y y p x x =+上.7.抛物线的焦点弦长公式不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,则有如下的焦点弦长公式:21212122212=1+-,=1+-,=++,=sin pAB k x x AB y y AB x x p AB k α.8.抛物线中的三类直线与圆相切问题不妨设抛物线方程为()220y px p =>,如图1,准线2p x =-与x 轴相交于点P ,过焦点,02p F ⎛⎫⎪⎝⎭的直线l 与抛物线相交于()()1122,,,A x y B x y 两点,O 为原点,α为AB 与对称轴正向所成的角,AB 的中点为C ,又作111,,AA l BB l CC l ⊥⊥⊥,垂足分别为111,,A B C ,则有如下结论(图2):图1图2图3①以AB 为直径的圆M 与准线相切;②以AF 为直径的圆C 与y 轴相切;③以BF 为直径的圆D 与y 轴相切;④分别以,,AB AF BF 为直径的圆之间的关系:圆C 与圆D 外切;圆C 与圆D 既与y 轴相切,又与圆M 相内切.结合圆的几何性质易得有关直线垂直关系的结论,如图3有,①以AB 为直径的圆的圆心在准线上的射影1M 与,A B 两点的连线互相垂直,即11M A M B ⊥;②以AF 为直径的圆的圆心在y 轴上的射影1C 与,A F 两点的连线互相垂直,即11C A C F ⊥;③以BF 为直径的圆的圆心在y 轴上的射影1D 与,B F 两点的连线互相垂直,即11D B D F ⊥;④以11A B 为直径的圆必过原点,即11A F B F ⊥;⑤1M F AB ⊥.排列组合及二项式定理1:排列组合中的分组与分配①“非均匀分组”是指将所有元素分成元素个数彼此不相等的组,使用分步组合法;②“均匀分组”是指将所有元素分成所有组元素个数相等或部分组元素个数相等的组.不论是全部均匀分组,还是部分均匀分组,如果有m 个组的元素是均匀的,都有A mm 种顺序不同的分法只能算一种分法;③对于非均匀编号分组采用分步先组合后排列法,部分均匀编号分组采用分组法;④平均分堆问题倍缩法采用缩倍法、除倍法、倍除法、除序法、去除重复法);⑤有序分配问题逐分法采用分步法);⑥全员分配问题采用先组后排法;⑦名额分配问题采用隔板法(或元素相同分配问题隔板法、无差别物品分配问题隔板法);⑧限制条件分配问题采用分类法.2、三项展开式中的特定项(系数)问题的处理方法:(1)通常将三项式转化为二项式积的形式,然后利用多项式积的展开式中的特定项(系数)问题的处理方法求解;(2)将其中某两项看成一个整体,直接利用二项式展开,然后再分类考虑特定项产生的所有可能情形;(3)也可以按照推导二项式定理的方法解决问题.二、几个多项式积的展开式中的特定项(系数)问题的处理方法:可先分别化简或展开为多项式和的形式,再分类考虑特定项产生的每一种情形,求出相应的特定项,最后进行合并即可.3.二项式系数和的性质若()2012...nn n ax b a a x a x a x +=++++,则设()()nf x ax b =+,有:()00a f =;②()0121n a a a a f ++++=L ;③()()012311nn a a a a a f -+-++-=-L ;④()()0246112f f a a a a +-++++=;⑤()()1357112f f a a a a --++++= .【应用场景】函数及其性质1.条件概率计算条件概率有两种方法.(1)定义法:利用定义()()()P AB P B A P A =;(2)压缩事件空间法:若()n A 表示试验中事件A 包含的基本事件的个数,则()()()n AB P B A n A =.【应用场景】(1)注意:利用定义求条件概率时,事件A 与事件B 有时是相互独立事件,有时不是相互独立事件,要弄清()P AB 的求法.(2)当基本事件适合有限性和等可能性时,可借助古典概型概率公式,先求事件A 包含的基本事件数()n A ,再在事件A 发生的条件下求事件B 包含的基本事件数,即()n AB ,2.常见分布的数学期望和方差典型分布数字特征两点分布:()0,1X ,成功概率为p二项分布:(),X B n p 超几何分布:(),,X H n M N 数学期望()E X p =()E X np=()nME X N=方差()()1D X p p =-()()1D X np p =-()()()()21nM N n N M D X N N --=-3.二项分布概率的最值下图是不同参数的二项分布的图象图1.不同参数下的二项分布的图象从图1中可以看出,对于固定的n 及p ,当k 增加时,概率()P X k =先是单调递增到最大值,随后单调减少.可以证明,一般的二项分布也具有这一性质,且:(1)当()1n p +不为整数时,概率()P X k =在()1k n p ⎡⎤=+⎣⎦时达到最大值;(2)当()1n p +为整数时,概率()P X k =在()1k n p =+和()11k n p =+-同时达到最大值.注:[]x 为取整函数,即为不超过x 的最大整数.。