圆锥曲线弦长公式

合集下载

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程
=
二.双曲线:
设直线与双曲线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
=
三.抛物线:
(1)核心弦:已知抛物线y²=2px,A(x1,y1),B(x2,y2),AB为抛物线的核心弦,则
同理 的核心弦长为
的核心弦长为 ,所以抛物线的核心弦长为
由以上三种情形可知应用直线竖直角求过核心的弦长,异常简略明白,应予以控制.
圆锥曲线的弦长公式
一.椭圆:
设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
则 ,由余弦定理可得 , ,
整顿可得,
是以核心在x轴的核心弦长为
同理可得核心在y轴上的核心弦长公式
个中a为实半轴,b为虚半轴,c为半焦距, 为AB的竖直角.
三. 抛物线的核心弦长
若抛物线 与过核心 的直线 订交于两点 ,若 的竖直角为 ,求弦长|AB|.(图4)
解:过A.B两点分离向x轴作垂线AA1.BB1,A1.B1为垂足, ,则点A的横坐标为 ,点B横坐标为 ,由抛物线定
设双曲线 个中两核心坐标为 ,过F1的直线 的竖直角为 ,交双曲线于两点 求弦长|AB|.
解:(1)当 时,(如图2)
直线 与双曲线的两个交点A.B在统一支上,连 ,设 ,由双曲线界说可得 ,由余弦定理可得
整顿可得 , ,则可求得弦长
(2) ,如图3,
直线 与双曲线交点 在两支上,连F2A,F2B,设
|AB|=x1+x2+p或|AB|=2p/(sin² ){ 为弦AB的竖直角}

圆锥曲线:弦长公式与面积的12类题型考法总结 高考数学

圆锥曲线:弦长公式与面积的12类题型考法总结 高考数学

PQ = 3.
【答案】(1)求椭圆C的方程;(2)求△ 面积的取值范围.
试卷讲评课件
【详解】(1)依题意, = ,当直线的斜率不存在时,由 = ,
得直线过点



+



,


,于是

+


= ,解得 = ,所以椭圆的方程
= .
(2)依题意,直线不垂直于轴,设直线的方程为
【解析】 = .
试卷讲评课件
(3)是否存在常数,使得 + = ⋅ 恒成立?若存在,
求的值;若不存在,请说明理由.
【解析】由于PF 的方程为 = �� + ,将其代入椭圆方程得
+ − + − = ,由违达定理得

+

+


− − +
− +
+
=
试卷讲评课件
3.特殊方法:拆分法,可以将三角形沿着轴或者轴拆分成两个三角形,
不过在拆分的时候给定的顶点一般在轴或者轴上,此时,便于找到两
个三角形的底边长.


= + = ∣ ∣∣ − ∣






由 >,得0< < ,所以 <<.综上可得:





≤ ,即 ∈

( ,

].
试卷讲评课件
例2.已知 P 为椭圆
x2
8
+
y2
2
= 1 上的一个

直线与圆锥曲线相交的弦长公式

直线与圆锥曲线相交的弦长公式

直线与圆锥曲线相交的弦长公式
直线与圆锥曲线的相交弦长公式是一类运用圆锥曲线的基本问题。

圆锥曲线可
以对比认为是一类极端复杂的二维曲线,而从数学角度出发,计算问题又被抽象为一个常见的的求解类型--求直线与曲线之间的相交点。

针对这种计算问题,已经有多种方法提供解决方案。

当一条直线与圆锥曲线相交时,首先要求出相交点将这条直线和这条曲线相连接,而相交弦长公式则介入此处以帮助理解相交点的交叉构造。

相交弦长公式的具体表达如下:假设L是一条直线,S是圆锥曲线,P是直线L与曲线S所形成的一
条弦,那么这条弦P的长度将可以用一下公式来表示:
P=∫_(α=α_1)^(α_2)∣∣r_α∥dα,其中α_1,α_2为直线L与曲线S之间
的两个起点和终点经度,r_α则是经度α处曲线S的切线方程。

借助相交弦长公式,我们可以得到直线L与曲线S之间的相交长度。

另外,应
用相交弦长公式,还可以用来解决如下两个典型问题:
(1)当某条弦长固定时,求两交点坐标;
(2)当某点在圆锥曲线上,以及其切线方程给出时,求其在直线上的坐标。

此外,相交弦长公式的应用可以不仅仅限于上述这两类求解问题,它可以被扩
展用于求解更复杂的数学模型和更加精确的函数调节问题。

由此可见,这一公式能够为我们解决不少圆锥曲线问题,并为理解复杂场景和真实系统提供强有力的助力。

圆锥曲线知识点总结

圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是高中数学中的重要内容,包括椭圆、双曲线和抛物线。

掌握圆锥曲线的相关知识对于解决数学问题和理解数学的应用具有重要意义。

一、椭圆1、定义平面内与两个定点 F1、F2 的距离之和等于常数(大于|F1F2|)的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点间的距离叫做焦距。

2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} +\frac{y^2}{b^2} = 1\)(\(a > b > 0\)),其中\(a\)为长半轴长,\(b\)为短半轴长,\(c\)为半焦距,满足\(c^2 = a^2 b^2\)。

(2)焦点在 y 轴上:\(\frac{y^2}{a^2} +\frac{x^2}{b^2} = 1\)(\(a > b > 0\))。

3、椭圆的性质(1)对称性:椭圆关于 x 轴、y 轴和原点对称。

(2)范围:\(a \leq x \leq a\),\(b \leq y \leq b\)。

点为\((\pm a, 0)\),\((0, \pm b)\);焦点在 y 轴上时,顶点为\((0, \pm a)\),\((\pm b, 0)\)。

(4)离心率:椭圆的离心率\(e =\frac{c}{a}\)(\(0 < e < 1\)),它反映了椭圆的扁平程度,\(e\)越接近 0,椭圆越接近于圆;\(e\)越接近 1,椭圆越扁。

二、双曲线1、定义平面内与两个定点 F1、F2 的距离之差的绝对值等于常数(小于|F1F2|)的点的轨迹叫做双曲线。

这两个定点叫做双曲线的焦点,两焦点间的距离叫做焦距。

2、标准方程(1)焦点在 x 轴上:\(\frac{x^2}{a^2} \frac{y^2}{b^2} =1\),其中\(a\)为实半轴长,\(b\)为虚半轴长,\(c\)为半焦距,满足\(c^2 = a^2 + b^2\)。

(2)焦点在 y 轴上:\(\frac{y^2}{a^2} \frac{x^2}{b^2} =1\)。

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论

圆锥曲线常用的二级结论有:1.离心率定义式:$e = \frac{\sqrt{a^2 - b^2}}{a}$,其中$a$ 为长半轴,$b$ 为短半轴。

2.曲率公式:$\kappa = \frac{|\text{二阶导数}|}{(1 + y'^2)^{\frac{3}{2}}}$,其中$\kappa$ 为曲率,$y'$ 为导数。

3.两点之间的弦长公式:$L = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$,其中$(x_1,y_1)$ 和$(x_2, y_2)$ 为两点的坐标。

4.圆锥曲线的极坐标方程:$r = \frac{p}{1 + e\cos\theta}$,其中$r$ 为点到焦点的距离,$\theta$ 为点的极角,$p$ 为直线到焦点的距离,$e$ 为离心率。

5.焦点公式:$F = \sqrt{a^2 - b^2}$,其中$a$ 为长半轴,$b$ 为短半轴,$F$ 为焦点到中心的距离。

6.弦的中点公式:$(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2})$,其中$(x_1, y_1)$ 和$(x_2, y_2)$ 为弦两个端点的坐标。

7.椭圆的标准方程:$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

8.双曲线的标准方程:$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$,其中$a$ 为长半轴,$b$ 为短半轴。

9.抛物线的标准方程:$y = ax^2$,其中$a$ 为常数。

10.焦半径公式:$r_f = \frac{p}{e}$,其中$p$ 为直线到焦点的距离,$e$ 为离心率,$r_f$ 为以焦点为圆心,$p$ 为半径的圆的半径长度。

圆锥曲线常用的二级结论包括但不限于以下内容:1.设直线$l$ 与圆锥曲线$C$ 相交于两点$P,Q$,则$P,Q$ 间的线段垂直于轴线。

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程
|AB|=x1+x2+p或|AB|=2p/(sin² ){ 为弦AB的倾斜角}
(2)设直线与抛物线交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
=
时间:二O二一年七月二十九日
一、椭圆的焦点弦长
若椭圆方程为 ,半焦距为c>0,焦点 ,设过 的直线 的倾斜角为 交椭圆于两点 求弦长 .
解:连结 ,设 ,由椭圆界说得 ,由余弦定理得 ,整理可得 ,同理可求得 ,则 ;
同理可求得焦点在y轴上的过焦点弦长为 (a为长半轴,b为短半轴,c为半焦距).
结论:椭圆过焦点弦长公式:
二、双曲线的焦点弦长
同理 的焦点弦长为
的焦点弦长为 ,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握.
圆锥曲线的弦长公式
一、椭圆:
设直线与椭圆交于P1(x1,y1),P2(x2,y2),且P1P2斜率为K,则
|P1P2|=|x1-x2| 或|P1P2|=|y1-y2| {K=(y2-y1)/(x2-x1)}
圆锥曲线的弦长公式及其推导过程之阿布丰王创作
时间:二O二一年七月二十九日
关于直线与圆锥曲线相交求弦长,通用方法是将直线 代入曲线方程,化为关于x的一元二次方程,设出交点坐标 利用韦达定理及弦长公式 求出弦长,这种整体代换、设而不求的思想方法对求直线与曲线相交弦长是十分有效的,然而对过焦点的圆锥曲线弦长求解利用这种方法相比力而言有点繁琐,若利用圆锥曲线的界说及有关定理导出各种曲线的焦点弦长公式就更为简捷.
则 ,由余弦定理可得 , ,

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程

圆锥曲线的弦长公式及其推导过程关于直线与圆锥曲线相交求弦长,通用方法是将直线y kx b代入曲线方程,化为关于x的一元二次方程,设出交点坐标 A X i, y i , B X2, y ,利用韦达定理及弦长公式7(1 k2)[(x i X2)24x1X2]求出弦长,这种整体代换、设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,若利用圆锥曲线的定义及有关定理导出各种曲线的焦点弦长公式就更为简捷.、椭圆的焦点弦长2若椭圆方程为丰1(a b 0),半焦距为c>0,焦点F1( c,0), F2(c,0),设过F1的直线I的倾斜角为,l交椭圆于两点Ax1,y1 ,B x2, y2,求弦长AB .解:连结F2A, F2B,设|F i A x,|F i B| y,由椭圆定义得卩2円2a x, F2B 2a y,由余弦定理得x2(2c)2 2x 2c cos (2a x)2,整理可得xb2,同理可求a c cos得y —a c cos2 2cl b b 2ab,则A B x y --------------- ------------ —__2 ----- 2b22同理可求得焦点在y轴上的过焦点弦长为|AB| 2 2宁2 ( a为长半轴,b为短a c sin半轴,c为半焦距).结论:椭圆过焦点弦长公式:2ab2I ~2 2 2AB a c cps22a b2(焦点在y轴上).(焦点在X轴上),D1二、双曲线的焦点弦长2 2设双曲线冷1a 0,— 0,其中两焦点坐标为F I( C,0),F2(C,0),过F I的直线I的a b倾斜角为,交双曲线于两点 A x1, y1 ,B x2, y2 ,求弦长|AB|.b解: (1)当arctan —a arctan —时,(如图2)a直线l与双曲线的两个交点A、由双曲线定义可得『2人2 2X (2c) 2x 2c cos整理可得X|AB|X y—2(2)当0B 在同一支上,连F Q A^B,设I F I A X,|F I BX 2a, F2B(X 2a)2,y2—2a c cosa c cosarcta n—或a直线l与双曲线交点X 2a, F2B—2c cosb arctan—ay,,y 2a,由余弦定理可得(2c)2 2y 2c cos( ) (y 2a)2—2y ----------- ,则可求得弦长a c cos2a—2~2 2 2a c cos时,如图3,A X i,y i ,B X2, y2在两支上,连F?A,F?B设|只円x,2a,由余弦定理可得F I B y,.yAB2 2X (2c) 2x 2c cos2 2 2 2(X 2a)2, y2(2c)2 2y 2c cos (y 2a)2,因此焦点在x 轴的焦点弦长为抛物线的焦点弦长若抛物线/2p x (p0)与过焦点F(号,0)的直线1相交于两点Ax1,y1,Bx2,y2,若I 的倾斜角为,求弦长|AB|.(图4)解:过A 、B 两点分别向x 轴作垂线AA i 、BB , A i 、F则点A 的横坐标为22xcos,点B 横坐标为1 ycos,由抛物线定义知2 x cosx,2 ycos子y,即x - 1 cosP 1 cosp 1 cosP 2p1 cos 1 cos 22p.2 Sin同理y 22px (p 0)的焦点弦长为|AB |2p.2Sin整理可得,xb 2c cos-,则ab 2b 2|AB I y xc cos a c cos2ab 22cos a22ab~22 2|AB | a2 c cos ''2ab 2~22~b(arcta n —aarcta n —或ab arcta n— ), a arctanba).同理可得焦点在 y 轴上的焦点弦长公式2ab 2~2|AB | a22 (0arcta nP 或c sin a2ab 2 b ———2 ----- (arcta n — c sin a aarcta a b arcta n —).a),其中a 为实半轴,b 为虚半轴,c 为半焦距,为AB 的倾斜角.B i 为垂足,设I F A X ,|FB2py(p 0)的焦点弦长为AB2p ,,所以抛物线的焦点弦长为cos2P (焦点在X轴上),sin2p (焦点在y轴上).cos由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握|AB圆锥曲线的弦长公式一、椭圆:设直线与椭圆交于P i(x i,y i)R(X2,y2),且P1P2斜率为K,则|P i P2| = |X i-X2| 寸—或|P i P2| = |y i-y2| i/K2) {K=(y?-y i)/(x2-x i)}J 2 2=讥1 k )[(x i X2) 4x1X2]二、双曲线:设直线与双曲线交于P i(X i,y i),P2(X2,y2),且PP2斜率为K,则|P I P2|=|X i-X2| ~K2)或|P i P2|=|y i-y2| 2i/K ) {K=(护-y i)/(x2-x i)}2 2k )[(X i X2) 4X i X2]三、抛物线:(1)焦点弦:已知抛物线y2=2px,A(x,y i),B(X2,y2),AB为抛物线的焦点弦,则|AB|=x i+X2+p 或|AB|=2p/(sin2 ){为弦AB 的倾斜角}或|AB|2P—匕三(k为弦AB所在直线的斜率)1 k(2)设直线与抛物线交于P i(X i,y i),P2(X2,y2),且P i P2斜率为K,贝U|P i P2|=|x i-X2| K2)或|P i P2|=|y i-y2| \ {K=(y>-y i)/(x2-x i)} = J(1 k2)[(X i X2)24x1X2]。

圆锥曲线弦长公式精编版

圆锥曲线弦长公式精编版

⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯最新料介绍⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯圆锥曲线弦长公式对于直线与圆锥曲线订交求弦长,通用方法是将直线代入曲线方程,化为对于 x 的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这类整体代换,设而不求的思想方法对于求直线与曲线订交弦长是十分有效的,但是对于过焦点的圆锥曲线弦长求解利用这类方法对比较而言有点繁琐,利用圆锥曲线定义及相关定理导出各样曲线的焦点弦长公式就更加简捷。

. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连接,设,由椭圆定义得,由余弦定理得,整理可得,同理可求得,则弦长同理可求得焦点在y 轴上的过焦点弦长为(a为长半轴, b 为短半轴, c 为半焦距)结论:椭圆过焦点弦长公式:二.双曲线的焦点弦长设双曲线,此中两焦点坐标为,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:( 1)当时,(如图2)直线与双曲线的两个交点 A、B 在同一交点上,连,设,由双曲线定义可得,由余弦定理可得整理可得,同理,则可求得弦长( 2)当或时,如图3,直线l与双曲线交点A、B 在两支上,连,设,则,,由余弦定理可得,整理可得,则所以焦点在 x 轴的焦点弦长为同理可得焦点在y 轴上的焦点弦长公式三此中 a 为实半轴, b 为虚半轴, c 为半焦距,为 AB的倾斜角。

. 抛物线的焦点弦长若抛物线与过焦点的直线订交于A、B两点,若的倾斜角为,求弦长 |AB| ?(图 4)解:过 A、B两点分别向 x 轴作垂线为垂足,设,,则点 A 的横坐标为,点B横坐标为,由抛物线定义可得即则同理的焦点弦长为的焦点弦长为,所以抛物线的焦点弦长为由以上三种状况可知利用直线倾斜角求过焦点的弦长,特别简单明确,应予以掌握。

一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

圆锥曲线弦长公式
关于直线与圆锥曲线相交求弦长,通用方法是将直线代入曲线方程,化为关于x的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长,这种整体代换,设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式就更为简捷。

. 椭圆的焦点弦长若椭圆方程为,半焦距为,焦点,设过的直线的倾斜角为交椭圆于A、B两点,求弦长。

解:连结,设,由椭圆定义得,由余弦定理得
,整理可得,同理可求得,则弦长
同理可求得焦点在y轴上的过焦点弦长为(a为长半轴,b为短半轴,c为半焦距)
结论:椭圆过焦点弦长公式:

. 双曲线的焦点弦长
设双曲线,其中两焦点坐标为
,过的直线的倾斜角为,交双曲线于A、B两点,求弦长|AB|。

解:(1)当时,(如图2)直线与双曲线的两个交点A、B在同一交点上,连,设,由双曲线定义可得,由余弦定理可得
整理可得,同理,则可求得弦长
(2)当或时,如图3,直线l与双曲线交点A、B在两支上,连,设,则,,由余弦定理可得,
整理可得,则
因此焦点在x轴的焦点弦长为
同理可得焦点在y轴上的焦点弦长公式

其中a为实半轴,b为虚半轴,c为半焦距,为AB的倾斜角。

. 抛物线的焦点弦长
若抛物线与过焦点的直线相交于A、B两点,若的倾斜角为,求弦长|AB|(图4)
解:过A、B两点分别向x轴作垂线为垂足,设,,则点A的横坐标为,点B横坐标为,由抛物线定义可得


同理的焦点弦长为
的焦点弦长为,所以抛物线的焦点弦长为
由以上三种情况可知利用直线倾斜角求过焦点的弦长,非常简单明确,应予以掌握。

一。

相关文档
最新文档