湖南省岳阳经济技术开发区2019-2020学年七年级上学期期中考试数学试卷
2019-2020年七年级上学期期中考试数学试卷含答案
2019-2020学年七年级(上册)期中考试数学试卷一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×10104.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)25.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,26.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab27.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187二.填空题(共8小题)11.直接写出结果:(1)﹣1+2=;(2)﹣1﹣1=;(3)(﹣3)3=;(4)6÷(﹣1)=;(5)(﹣1)2n﹣(﹣1)2n﹣1=(n为正整数);(6)方程4x=0的解为;(7)方程﹣x=2的解为.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有个.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=;b=;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=,b=,c=;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x =,最小值为.(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.参考答案与试题解析一.选择题(共10小题)1.2019的相反数是()A.2019 B.﹣2019 C.D.﹣【分析】由相反数的定义即可得到答案.【解答】解:2019的相反数是﹣2019.故选:B.2.(﹣7)6的意义是()A.﹣7×6 B.6﹣7相加C.6个﹣7相乘D.7个﹣6相乘【分析】根据有理数乘方的定义解答即可.【解答】解:(﹣7)6的意义是6个﹣7相乘.故选:C.3.2019年2月5日《流浪地球》上映,这部由刘慈欣小说改编的同名电影,5天累计票房达到了16亿元,成为名副其实的首部国产科幻大片,数据16亿用科学记数法表示为()A.1.6×108B.16×108C.1.6×109D.0.16×1010【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n是负数.【解答】解:16亿=1600000000=1.6×109,故选:C.4.下列各组数中,运算结果相同的是()A.﹣(﹣2)和|﹣2| B.(﹣2)2和﹣22C.()2和D.(﹣2)3和(﹣3)2【分析】选项A根据相反数以及绝对值的定义判断;选项B、C、D根据有理数的乘方的定义判断.【解答】解:A.﹣(﹣2)=2,|﹣2|=2,∴﹣(﹣2)=|﹣2|,故本选项符合题意;B.(﹣2)2=4,﹣22=﹣4,故本选项不合题意;C.,,故本选项不合题意;D.(﹣2)3=﹣8,(﹣3)2=9,故本选项不合题意.故选:A.5.单项式的系数和次数分别是()A.B.﹣C.D.﹣2,2【分析】单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数,由此可得出答案.【解答】解:单项式的系数和次数分别是﹣π、3.故选:C.6.下列化简正确的是()A.4a﹣2a=2 B.3xy﹣4yx=﹣xyC.﹣2m+6n=4mn D.3ab2﹣5ba2=﹣2ab2【分析】根据合并同类项的法则计算即可.【解答】解:A、4a﹣2a=2a,故不符合题意;B、3xy﹣4yx=﹣xy,故符合题意;C、﹣2m+6n,不是同类项,不能合并;故不符合题意;D、3ab2﹣5ba2,不是同类项,不能合并;故不符合题意;故选:B.7.已知ax=ay,下列等式中成立的是()A.x=y B.ax+1=ay﹣1 C.ax=﹣ay D.3•ax=3•ay【分析】根据等式的性质,逐项判断即可.【解答】解:∵ax=ay,a=0时,x、y不一定相等,∴选项A不符合题意;∵ax=ay,∴ax+1=ay+1,∴选项B不符合题意;∵ax=ay,∴ax=﹣ay不一定成立,∴选项C不符合题意;∵ax=ay,∴3•ax=3•ay,∴选项D符合题意.故选:D.8.在算式3﹣|﹣4□5|中,要使计算出来的值最小,填入□的运算符号应为()A.+ B.﹣C.×D.÷【分析】利用运算法则计算即可确定出相应的运算符号.【解答】解:在算式3﹣|﹣4□5|中的“□”所在的位置中,要使计算出来的值最小,则应填入的运算符号为×,故选:C.9.已知x<0,x+y>0,那么x,y,x+y这三个数中最小的数是()A.x B.y C.x+y D.无法确定【分析】根据有理数的加法运算法则判断出y>0,然后根据有理数的大小比较方法判断出最小的数为x.【解答】解:∵x<0,x+y>0,∴y>0,∴x,y,x+y这三个数中最小的数是x.故选:A.10.将一个两位数的十位和个位调换位置后得到一个新数,将新数与原数相加,所得的结果不可能是以下的()A.99 B.132 C.145 D.187【分析】可设一个两位数的十位是a,个位是b,表示出该两位数和的调换位置后得到一个新数,得到所得的结果是11的倍数,再找到不是11的倍数的数即为所求.【解答】解:设一个两位数的十位是a,个位是b,则10a+b+10b+a=11a+11b=11(a+b),则所得的结果是11的倍数,在99,132,145,187中,只有145不是11的倍数.故选:C.二.填空题(共8小题)11.直接写出结果:(1)﹣1+2= 1 ;(2)﹣1﹣1=﹣2 ;(3)(﹣3)3=﹣27 ;(4)6÷(﹣1)=﹣4 ;(5)(﹣1)2n﹣(﹣1)2n﹣1= 2 (n为正整数);(6)方程4x=0的解为x=0 ;(7)方程﹣x=2的解为x=﹣6 .【分析】依据有理数的运算法则正确计算即可,利用一元一次方程的解法求解即可.【解答】解:(1)﹣1+2=+(2﹣1)=1;(2)﹣1﹣1=﹣(1+1)=﹣2;(3)(﹣3)3=(﹣3)(﹣3)(﹣3)=﹣27;(4)6÷(﹣1)=6×(﹣)=﹣4;(5))(﹣1)2n﹣(﹣1)2n﹣1=1﹣(﹣1)=2;(6)方程4x=0的两边都除以4得:x=0,故解为x=0;(7)方程﹣x=2的两边都乘以(﹣3)得:x=﹣6;故答案为:(1)1,(2)﹣2,(3)﹣27,(4)﹣4,(5)2,(6)x=0,(7)x=﹣6.12.在所给数:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有 3 个.【分析】根据负有理数的定义得出即可.【解答】解:﹣2,0.01,﹣2019,0,﹣5.中,负有理数有:﹣2,﹣2019,﹣5.,一共3个.故答案为:3.13.图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1 .【分析】根据等式的性质判断即可.【解答】解:图1所示框图表示解方程3x+20=4x﹣25的流程.其中,“移项”的依据是等式的基本性质1.故答案为:等式的基本性质1.14.写出一个只含字母x的二次三项式,使得常数为﹣1,并按降幂排列:x2﹣2x﹣1 .【分析】根据二次三项式和多项式的系数、常数项的有关概念以及只含字母x,即可得出答案,(答案不唯一).【解答】解:这个二次三项式的常项是﹣1,只含字母x,∴这个二次三项式是:x2﹣2x﹣1;故答案为:x2﹣2x﹣1.15.a3x+1b与﹣2a3b y﹣1是同类项,则x y的值为.【分析】根据同类项的定义中相同字母的指数也相同,可求得x和y的值.同类项的定义:所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:∵a3x+1b与﹣2a3b y﹣1是同类项,∴3x+1=3,y﹣1=1,解得,y=2.∴.故答案为:16.已知x=﹣1是关于x的方程5x﹣a=﹣2的解,则a=﹣3 .【分析】把x=﹣1代入方程即可得到一个关于a的方程,解方程求得a的值.【解答】解:把x=﹣1代入方程得:﹣5﹣a=﹣2,解得:a=﹣3.故答案是:﹣3.17.如图,点A、B为数轴上的两点,O为原点,A、B表示的数分别是x、x+2,B、O两点之间的距离等于A、B两点间的距离,则x的值是﹣4 .【分析】由B,O两点之间的距离等于A,B两点间的距离,可得出关于x的一元一次方程,解之即可得出结论.【解答】解:根据题意得:0﹣(x+2)=x+2﹣x,解得:x=﹣4.故答案为:﹣4.18.如图,是由形状相同的正六边形和正三角形镶嵌而成的一组有规律的图案,则第n个图案中阴影小三角形的个数是4n﹣2(或2+4(n﹣1))个.【分析】对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.【解答】解:由图可知:第一个图案有阴影小三角形2个.第二图案有阴影小三角形2+4=6个.第三个图案有阴影小三角形2+8=10个,那么第n个就有阴影小三角形2+4(n﹣1)=4n﹣2个,故答案为:4n﹣2(或2+4(n﹣1))个.三.解答题(共11小题)19.画出数轴并把下列各数标在数轴上:﹣2.5,,3,0.【分析】把各点在数轴上表示出来即可.【解答】解:如图所示:20.计算下列各题:(1)(﹣3)﹣(﹣5)﹣(+7)(2)﹣8×+14÷(﹣7)(3)()×(﹣30)(4)﹣24+(1)×|3﹣(﹣3)2|【分析】(1)先化简再计算;(2)先算乘除,最后算加法;(3)根据乘法分配律简便计算;(4)先算乘方,再算乘法,最后算加减;如果有括号和绝对值,要先做括号和绝对值内的运算.【解答】解:(1)(﹣3)﹣(﹣5)﹣(+7)=﹣3+5﹣7=﹣5;(2)﹣8×+14÷(﹣7)=﹣4﹣2=﹣6;(3)()×(﹣30)=×(﹣30))﹣×(﹣30)+×(﹣30)=﹣3+4﹣25=﹣24;(4)﹣24+(1)×|3﹣(﹣3)2|=﹣16+×|3﹣9|=﹣16+×6=﹣16+4=﹣12.21.化简下列各题:(1)2ab﹣3ab+(﹣ab)(2)3(x﹣1)﹣(x﹣5)(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]【分析】(1)合并同类项即可求解;(2)先去括号,然后合并同类项即可求解;(3)先去括号,然后合并同类项即可求解.【解答】解:(1)2ab﹣3ab+(﹣ab)=(2﹣3﹣1)ab=﹣2ab;(2)3(x﹣1)﹣(x﹣5)=3x﹣3﹣x+5=2x+2;(3)3a2﹣[a﹣(5a﹣a2)+a2﹣1]=3a2﹣[a﹣5a+a2+a2﹣1]=3a2﹣a+5a﹣a2﹣a2+1=a2+4a+1.22.解下列方程:(1)2x=x﹣5(2)5x﹣2=1+9x【分析】(1)移项、合并同类项,依此即可求解;(2)移项、合并同类项、系数化为1,依此即可求解.【解答】解:(1)2x=x﹣52x﹣x=﹣5,x=﹣5;(2)5x﹣2=1+9x,5x﹣9x=1+2,﹣4x=3,x=﹣.23.先化简,再求值(3a2﹣ab﹣1)﹣(5ab+4a2﹣3),其中a=﹣2,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:原式=3a2﹣ab﹣1﹣5ab﹣4a2+3=﹣a2﹣6ab+2,当a=﹣2,b=时,原式=﹣(﹣2)2﹣6×(﹣2)×+2=2.24.某校七(1)班学生的平均身高是160厘米,如表给出了该班6名学生的身高情况(单位:厘米)学生A B C D E F身高157 162 158 154 163 165身高与平均身高的差值﹣3 +2 ﹣2 a+3 b(1)计算得出表中的数据a=﹣6 ;b=+5 ;(2)这6名学生的平均身高是多少厘米?(结果精确到0.1)【分析】(1)根据学生的平均身高为160厘米,即可填写出表格中的数值;(2)求出6名学生的平均身高.【解答】解:(1)由题意:a=154﹣160=﹣6,b=165﹣160=+5;故答案为:﹣6,+5;(2)6名学生的平均身高=160+≈159.8cm,∴这6名学生的平均身高是159.8厘米.25.“囧”(jiong)曾经是风靡网络的流行语,像一个人脸郁闷的神情.如图所示,一张边长为20的正方形的纸片,剪去两个一样的小直角三角形和一个长方形得到一个“囧”字图案(阴影部分),设剪去的小长方形边长为x、y,剪去的两个小直角三角形的两直角边长也分别为x、y.(1)用含有x、y的代数式表示图中“囧”(阴影部分)的面积;(2)当x、y互为倒数时,求此时“囧”的面积.【分析】(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积;(2)由图可知,20=3y,则可分别求出x、y的值,将x、y的值代入S=40x﹣2xy即可求解.【解答】解:(1)阴影部分的面积=长方形的面积﹣小长方形的面积﹣两个直角三角形的面积,∴S=20(x+x)﹣xy﹣2××xy=40x﹣2xy;(2)由图可知,20=3y,∴y=,当xy=1时,x=,∴S=40x﹣2=6﹣2=4.26.列一元一次方程解决问题:在一张普通的月历中,相邻三行里同一列的三个日期数之和能否为24?如果能,这三个日期数分别是多少?【分析】设中间的数为x,其它两个为(x﹣7)与(x+7),表示出之和,根据三个日期数之和为24,列出方程,如果求出的解符合题意,那么相邻三行里同一列的三个日期数之和能为24,否则不能.【解答】解:设中间的数为x,其它两个为(x﹣7)与(x+7),根据题意得:x﹣7+x+x+7=24,解得:x=8,∴x﹣7=1,x+7=15,答:这三个日期数分别是1,8,15.27.定义:若a+b=ab,则称a、b是“相伴数”例如:3+1.5=3×1.5,因此3和1.5是一组“相伴数”(1)﹣1与是一组“相伴数”;(2)若m、n是一组“相伴数”,2mn﹣[3m+2(n﹣m)+3mn﹣6]的值.【分析】(1)设﹣1与m是一组“相伴数”,根据“相伴数”的定义列式计算,得到答案;(2)根据“相伴数”的定义得到m+n=mn,根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:(1)设﹣1与m是一组“相伴数”,由题意得,﹣1+m=﹣m,解得,m=,故答案为:;(2)∵m、n是一组“相伴数”,∴m+n=mn,则2mn﹣[3m+2(n﹣m)+3mn﹣6]=2mn﹣m﹣(n﹣m)﹣mn+3=2mn﹣m﹣n+m﹣mn+3=mn﹣(m+n)+3=3.28.你知道为什么任何无限循环小数都可以写成分数形式吗?下面的解答过程会告诉你原因和方法.阅读下列材料:问题:利用一元一次方程将0.化成分数.解:设0.=x.方程两边都乘以10,可得10×0.=10x由0.=0.777…,可知10×0.=7.777…=7+0.即7+x=10x.(请你体会将方程两边都乘以10起到的作用)可解得x=,即0.=.(1)填空:将0.写成分数形式为.(2)请你仿照上述方法把下列两个小数化成分数,要求写出利用一元一次方程进行解答的过程:①0.,②0.43.【分析】(1)根据0.化成分数的方法,设0.=x,仿照例题的解法即可得出结论;(2)①根据0.化成分数的方法,设0.=m,仿照例题的解法(×10换成×100)即可得出结论;②根据0.化成分数的方法,设0.43=n,仿照例题的解法即可得出结论.【解答】解:(1)设0.=x,方程两边都乘以10,可得10×0.=10x即4+x=10x解得x=,即0.=(2)①设0.=m,方程两边都乘以100,可得100×0.=100m即15+m=100m解得m=,即0.=,②设0.43=n,方程两边都乘以10,可得10×0.43=10n由0.43=0.43222…可知10×0.43=4.3222…=3.89+0.43,即3.89+n=10n解得n=,即0.43=,29.如图,在数轴上A点表示数a,B点表示数b,C点表示数c,且a、c满足|a+3|+(c﹣9)2=0.若点A与点B之间的距离表示为AB=|a﹣b|,点B与点C之间的距离表示为BC=|b﹣c|,点B在点A、C之间,且满足BC=2AB.(1)a=﹣3 ,b= 1 ,c=9 ;(2)若点P为数轴上一动点,其对应的数为x,当代数式|x﹣a|+|x﹣b|+|x﹣c|取得最小值时,此时x = 1 ,最小值为12 .(3)动点M从A点位置出发,沿数轴以每秒1个单位的速度向终点C运动,设运动时间为t秒,当点M 运动到B点时,点N从A点出发,以每秒2个单位的速度沿数轴向C点运动,N点到达C点后,再立即以同样的速度返回,运动到终点A.问:在点N开始运动后,M、N两点之间的距离能否为2个单位?如果能,请求出运动的时间t的值以及此时对应的M点所表示的数:如果不能,请说明理由.【分析】(1)利用绝对值及偶次方的非负性可求出a,c的值,结合BC=2AB可求出b值;(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,结合当x=1时|x﹣b|=0,即可得出结论;(3)用含t的代数式表示出点M,N表示的数,结合MN=2,即可得出关于t的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)∵a、c满足|a+3|+(c﹣9)2=0,∴a+3=0,c﹣9=0,∴a=﹣3,c=9.又∵点B在点A、C之间,且满足BC=2AB,∴9﹣b=2[b﹣(﹣3)],∴b=1.故答案为:﹣3;1;9.(2)当﹣3≤x≤9时,|x﹣a|+|x﹣c|取得最小值,最小值为9﹣(﹣3)=12.∵|x﹣b|≥0,b=1,∴当x=b=1时,|x﹣b|取得最小值,最小值为0,∴当x=1时,|x﹣a|+|x﹣c|+|x﹣b|取得最小值,最小值为12.故答案为:1;12.(3)12÷2=6(秒),4+6=10(秒).当0≤t≤12时,点M表示的数为t﹣3;当t>12时,点M表示的数为9;当4≤t≤10时,点N表示的数为2(t﹣4)﹣3=2t﹣11;当10<t≤16时,点N表示的数为9﹣2(t﹣10)=29﹣2t.①当4≤t≤10时,MN=|t﹣3﹣(2t﹣11)|=2,解得:t=6或t=10,∴t﹣3=3或7;②当10<t≤12时,MN=|t﹣3﹣(29﹣2t)|=2,解得:t=10(舍去)或t=,∴t=3=;③当12<t≤16时,MN=|9﹣(29﹣2t)|=2,解得:t=9(舍去)或者t=11(舍去).综上所述:当t的值为6,10或时,M、N两点之间的距离为2个单位,此时点M表示的数为3,7或.。
2019-2020学年上学期期中考试七年级数学试卷
2019-2020学年上学期期中考试七年级数学试卷本试卷共6页,25小题,满分150分。
考试用时120分钟注意事项:1.答卷前,考生务必用黑色字迹的钢年或签字笔将自己的姓名和考生号、试室号、座位号填写在答题卡上。
用2B 铅笔将试卷类型(B)填涂在答题卡相应位置上 2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑:如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试卷上3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上:如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效 4,考生必须保持答题卡的整洁。
第I 卷(100分)一、选择题(10小题,每小题3分,共30分) 1.在-4,2,-1,3这四个数中,比-2小的数是( ) A.-4 B.2 C.-1 D.32.有一种记分法:80分以上如88分记做+8分,某同学得分74分,则应记作( ) A.+74分 B.+6分 C.-6分 D.-14分3.下列各式中,一定成立的是( )A.2=(-2) B2=(2) c.-2=|-2| D.-2=|(-2)|4.地球的表面积约为51000000km,将51009000用科学记数法表示为( ) A.0.51x109 B.5.1×109 C.5.1×108 D.0.51×107 5.下列为同类项的一组是( ) A.ab 与7a B.-xy 2与41yx C.x 与2 D.7与-316.下列等式变形正确的是( ) A.如果x=y,那么x-2=y-2 B.如果一21x=8,那么x=-4 C.如果mx=my 那么x=y D.如果|x|=|y|,那么x=y 7.“x 与y 的差的立方”用代数式表示为( ) A.x 3-y B.x-y 3 C.x 3-y 3 D.(x-y )3 8.下列说法正确的是( ) A.任何一个有理数的绝对值都是正数 B.有理数可以分为正有理数和负有理数 C.多顶式3πa 3+4a 2-8的次数是4 D.x 的系数和次数都是19.如图,四个数a 、b 、c 、d 在数轴上的位置如图所示,则下列式子中结果为正数的有(( )①ac ②|a+b| ③-(b-c) ④b+d ⑤d+c-b. A.2个 B.3个 C.4个 D.5个10.a 为有理数,定义运算符号▽:当a>-2时,▽a=-a ;当a<-2时,▽a=a ;当a=-2时,▽a=0.根据这种运算,则[4+▽(2-5)]的值为( ) A.-1 B.7 C.-7 D.1二、填空题(6小题,每小题3分,共18分)11.比较大小:4 54(填“>”或“<”) 12.当x= 时,式子x+2与式子2x-8的值相等.13.若m 2-2m=-3则8-2m 2+4m 的值为 . 14.近似数3.8×103精确到 位.15.某地对居民用电的收费标准为:每月如果不超过100度,那么每度电价按a 元收费,如果超过100度,超出部分每度电价按b 元收费,某户居民一个月用电160度,该户居民这个月应交纳电费是 元. (用含a 、b 的代数式表示) 16,如下一组数:3315-17793-51,,,,请用你发现的规律,猜想第2018个数为 .三、解答题(共102分)17,计算(本题有2小题,每小题5分,满分10分) (1)-16+23+(-17)-(7) (2)222-21311-6514-)(⨯÷+18.化简(本题有2小题,每小题5分,满分10分)(1)3a 2+5b-2a 2-2a+3a-8b (2)3(2x-5y)-4(3x-5y)+519.解下列方程(本题有2小题,每小题5分,满分10分) (1)4-1.5x=-0.5x-9 (2)x-3x-1.2=4.8-5X20.(本题满分10分)已知:A=a2-2ab+b2,B=a2+2ab+b2,且2A-3B+C=0(1)求C的表达式;(2)当a=1,b=-1时,求C的值21.(本题满分12分)某学校准备印刷宣传材料,甲印刷厂提出:每份材料收0.2元印刷费,另收500元制版费;乙印刷厂提出每份材料收0.4元印刷费,不收制版费.(1)设印制宣传村料数量x(份),请用含x的式子表示甲印刷厂的收费元.乙印刷厂的收费元.(2)若学校准备印制3000份宣传材料,试通过计算说明选择哪家印刷厂比较合算.(3)若学校准备印制x份宣传材料,你会如何选择?第Ⅱ卷(50分)22.(本题满分10分)(1)|b-1|+|a-1|=(2)化简la+bl+la+cl-|a-bl+|b-cl23.(本题满分12分)已知A=2x 2+xy+3y-1,B=x 2-xy (1)若x=-2,y=3,求A-2B 的值(2)若A-2B 的值与y 的取值无关,求x 的值24.(本题满分14分)如图,在数轴上A 点表示数a,B 点表示数b,AB 表示A 点和B 点之间的距离,C 是AB 的中点,且a 、b 满足|a+3|+(b+3a)2=0 (1)求点C 表示的数:(2)点P 从A 点以3个单位每秒向右运动,点Q 同时从B 点以2个单位每秒向左运动 (i)当P 、Q 两点在数轴上D 点相遇时,求此时C 、D 两点之间的距离; (ii),若AP+BQ=2PQ,求时间t.25,(本题满分14分)若a 、b 互为相反数,b 、C 互为倒数,并且m 的立方等于它本身 (1)求2m 2b2a +++ac 值;(2)若a >1,且m <0,S=|2a-3b|-2|b-m|-|b+21|,求2a-S 的值. (3)若m≠0,试讨论:x 为有理数时|x+m|-|x-m|是否存在最大值?若存在,求出这个最大值:若不存在,请说明理由.参考答案一、选择题二、填空题三、解答题17、(1)解:原式=-33+30 (2)解:原式=-16+611×113×49 =-3 =-16+89=8714-18、(1)解:原式=3a 2-2a 2+5b-8b -2a+3a (2)解:原式= 6x-15y-12x+20y+5 =a 2-3b+a =-6x+5y+5 19、(1)x=13 (2)x=2 20、(1)解:∵2A-3B+C=0,∴C=3B-2A=3(a 2+2ab+b 2)-2(a 2-2ab+b 2)=a 2+10ab+b 2 (2)把a=1,b=-1代入C 得 a 2+10ab+b 2=1-10+1=-821、(1)甲印刷厂:0.2x+500;乙印刷厂:0.4x故答案为:0.2x+500;0.4x (2)当x=3000时,甲印刷厂:0.2x+500=0.2×300+500=1100(元), 乙印刷厂:0.4x=0.4×3000=1200(元)因为1100<1200,所以选择甲印刷厂比较合算 (3)当02x+500=0.4x 时,m=2500, 所以当:x<2500份时,选择乙印刷厂 当x>2500份时,选择甲印刷厂, 当x=2500份时,甲乙相同。
2019-2020学年七年级(上)期中数学试卷
2019-2020学年七年级(上)期中数学试卷一、选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是正确的,请把正确选项的字母代号填在表格相应位置上1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.82.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×1053.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.76.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种二、填空题(本大题共10小题,每小题2分,共20分请将答案填在题中相应的横线上)9.的倒数是.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作11.写出一个比3大且比4小的无理数:.12.若a<0,且|a|=2,则a﹣1=13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是.17.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示(结果能化简的要化简)18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有(填写所有正确结论的序号)三、解谷题(本大题共7题,计56分)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)9920.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.参考答案与试题解析一.选择题(共8小题)1.给出四个数﹣2,0,1,8,其中最小的是()A.﹣2 B.0 C.1 D.8【分析】先比较数的大小,再得出选项即可.【解答】解:﹣2<0<1<8,最小的数是﹣2,故选:A.2.地球绕太阳每小时转动经过的路程约为110000米,将110000用科学记数法表示为()A.11×104B.0.11×107C.1.1×106D.1.1×105【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:110000=1.1×105,故选:D.3.实数a、b在数轴上的位置如图所示,下列各式正确的是()A.a+b>0 B.a﹣b<0 C.ab>0 D.|b|>a【分析】根据数轴左边的数小于右边的数即可直接解答.【解答】解:根据实数实数a、0、b在数轴上的位置可以得知:b<0<a,且a距离原点比b近.,故|b|>a,故选:D.4.下列运算正确的是()A.﹣32=9 B.2ab﹣3ab=﹣abC.a3﹣a2=a D.2a+3b=5ab【分析】根据有理数的运算法则以及合并同类项法则即可求出答案.【解答】解:(A)原式=﹣9,故A错误;(C)原式=a3﹣a2,故C错误;(D)原式=2a+3b,故D错误;故选:B.5.已知x﹣2y=﹣2,那么代数式3﹣2x+4y的值是()A.﹣1 B.5 C.6 D.7 【分析】将3﹣2x+4y变形为3﹣2(x﹣2y),然后代入数值进行计算即可.【解答】解:∵x﹣2y=﹣2,∴3﹣2x+4y=3﹣2(x﹣2y)=3﹣2×(﹣2)=7;故选:D.6.下列判断正确的是()A.3a2b与ba2不是同类项B.不是整式C.单项式﹣x3y2的系数是﹣1D.3x2﹣y+5xy2是二次三项式【分析】分别根据单项式、多项式、整式及同类项的定义判断各选项即可.【解答】解:A、3a2b与ba2是同类项,故本选项错误;B、是整式,故本选项错误;C、单项式﹣x3y2的系数是﹣1,故本选项正确;D、3x2﹣y+5xy2是三次三项式,故本选项错误.故选:C.7.下列说法正确的是()A.绝对值等于3的数是﹣3B.绝对值不大于2的数有±2,±1,0C.若|a|=﹣a,则a≤0D.一个数的绝对值一定大于这个数的相反数【分析】利用绝对值的知识分别判断后即可确定正确的选项.【解答】解:A、绝对值等于3的数是3和﹣3,故错误;B、绝对值不大于2的整数有±2,±1,0,故错误;C、若|a|=﹣a,则a≤0,正确,D、负数的绝对值等于这个数的相反数,故错误,故选:C.8.按下面的程序计算:若输入n=100,输出结果是501;若输入n=25,输出结果是631,若开始输入的n值为正整数,最后输出的结果为656,则开始输入的n值可能有()A.1种B.2种C.3种D.4种【分析】根据运算程序列出方程,然后求解即可.【解答】解:由题意得,5n+1=656,解得n=131,5n+1=131,解得n=26,5n+1=26,解得n=5,5n+1=5,解得n=(不符合),所以,满足条件的n的不同值有3个二.填空题(共10小题)9.的倒数是﹣3 .【分析】根据倒数的定义.【解答】解:因为(﹣)×(﹣3)=1,所以的倒数是﹣3.10.小张妈妈有记账的习惯,如果收入180元记作+180元,那么支出120元记作﹣120元【分析】首先审清题意,明确“正”和“负”所表示的意义,再结合题意作答.【解答】解:如果收入180元记作+180元,那么支出120元记作﹣120元.故答案为﹣120元.11.写出一个比3大且比4小的无理数:π.【分析】根据无理数的定义即可.【解答】解:写出一个比3大且比4小的无理数:π,故答案为:π.12.若a<0,且|a|=2,则a﹣1=﹣3【分析】直接利用绝对值的性质得出a的值进而得出答案.【解答】解:∵a<0,且|a|=2,∴a=﹣2,∴a﹣1=﹣3.故答案为:﹣3.13.若关于x的方程mx m﹣1﹣m+2=0是一元一次方程,则这个方程的解x=0 【分析】直接利用一元一次方程的定义分析得出答案.【解答】解:∵关于x的方程mx m﹣1﹣m+2=0是一元一次方程,∴m﹣1=1,解得:m=2,故2x=0,解得:x=0.故答案为:0.14.某超市店庆促销,某种书包原价每个x元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,可得到方程为0.8x﹣10=90【分析】设某种书包原价每个x元,根据两次降价后售价为90元,即可得出关于x的一元一次方程,此题得解.【解答】解:设某种书包原价每个x元,根据题意得:0.8x﹣10=90.故答案为:0.8x﹣10=90.15.若“!”是一种数学运算符号,并且:1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则=.【分析】原式利用已知新定义化简,计算即可得到结果.【解答】解:原式==,故答案为:16.已知A=3x3+2x2﹣5x+7m+2,B=2x2+mx﹣3,若多项式A+B不含一次项,则多项式A+B 的常数项是34 .【分析】首先求出A+B,根据多项式A+B不含一次项,列出方程求出m的值即可解决问题.【解答】解:∵A+B=(3x3+2x2﹣5x+7m+2)+(2x2+mx﹣3)=3x3+2x2﹣5x+7m+2+2x2+mx﹣3=3x2+4x2+(m﹣5)x+7m﹣1∵多项式A+B不含一次项,∴m﹣5=0,∴m=5,∴多项式A+B的常数项是34,故答案为3417.一个两位数,个位上的数字为a,十位上的数字比个位上的数字小1,若将这个两位数放到数字3的左边组成一个三位数,则这个三位数可以用含a的代数式表示110a﹣97 (结果能化简的要化简)【分析】根据个位上的数字为a,十位上的数字比个位上的数字小1可以求出三左边的数字,再加上个位上的三,即可求出答案.【解答】解:∵个位上的数字为a,十位上的数字比个位上的数字小1,∴3的左边的数是100(a﹣1)+10a,∴这个三位数可以表示为100(a﹣1)+10a+3=100a﹣100+10a+3=110a﹣97.故答案为:110a﹣97.18.设[x)表示大于x的最小整数,如[3)=4,[﹣1.2)=﹣1,则下列结论:①[0)=0;②[x)﹣x的最小值是0;③[x)﹣x的最大值是0;④存在实数x,使[x)﹣x=0.4成立,正确的有④(填写所有正确结论的序号)【分析】利用题中的新定义判断即可.【解答】解:①[0)=1;②[x)﹣x无最小值;③[x)﹣x无最大值;④存在实数x,使[x)﹣x=0.4成立,故答案为:④三.解答题(共7小题)19.计算(1)23+(﹣17)+(+7)+(﹣13)(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99【分析】(1)根据有理数的加法的运算方法,求出每个算式的值各是多少即可.(2)先计算乘方,再利用乘法分配律变形,利用除法法则计算即可得到结果;【解答】解:(1)23+(﹣17)+(+7)+(﹣13),=23﹣17+7﹣13,=23+7﹣17﹣13,=30﹣30,=0;(2)(﹣﹣)×(﹣24)+42÷(﹣2)3+(﹣1)99,=﹣24×+24×+24×+16÷(﹣8)﹣1,=﹣16+12+30﹣2﹣1,=﹣19+42,=23.20.化简与求值(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b)(2)先化简,再求值:x﹣2(x﹣y)+(﹣x+y)其中x=﹣2,y=【分析】(1)原式去括号、合并同类项即可化简;(2)先将原式去括号、合并同类项化为最简形式,再将x,y的值代入计算可得.【解答】解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2;(2)原式=x﹣2x+y﹣x+y=﹣3x+y,当x=﹣2,y=时,原式=﹣3×(﹣2)+=6.21.先列式,再计算(1)﹣1减去﹣与的所得差是多少?(2)已知多项式A=2x2﹣x+5,多项式A与多项式B的和为4x2﹣6x﹣3,求多项式B?【分析】(1)根据题意列出算式,再根据有理数的减法法则计算可得;(2)根据题意列出算式B=4x2﹣6x﹣3﹣(2x2﹣x+5),再去括号、合并即可得.【解答】解:(1)根据题意,得:[(﹣1)﹣(﹣)]﹣=﹣1+﹣=﹣;(2)根据题意,得B=4x2﹣6x﹣3﹣(2x2﹣x+5)=4x2﹣6x﹣3﹣2x2+x﹣5=2x2﹣5x﹣8.22.为了有效控制酒后驾车,某市城管的汽车在一条东西方向的公路上巡逻,若规定向东为正,向西为负,从出发点开始所走的路程为:+2,﹣3,+2,+1,﹣2,﹣1,﹣2(单位:千米)(1)此时,这辆城管的汽车司机如何向队长描述他所处的位置?(2)如果队长命令他马上返回出发点,这次巡逻(含返回)共耗油多少升?(已知每千米耗油0.15升)【分析】(1)求出这些数的和,即可得出答案;(2)求出这些数的绝对值的和,再乘以0.15升即可.【解答】解:(1)∵(+2)+(﹣3)+(+2)+(+1)+(﹣2)+(﹣1)+(﹣2)=﹣3(千米),∴这辆城管的汽车司机向队长描述他的位置为出发点以西3千米;(2)|+2|+|﹣3|+|+2|+|+1|+|﹣2|+|﹣1|+|﹣2|+|﹣3|=16(千米),16×0.15=2.4(升),故这次巡逻(含返回)共耗油2.4升.23.人在运动时每分钟心跳的次数通常和人的年龄有关,如果用a表示一个人的年龄,用b 表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么b=0.8(220﹣a).(1)正常情况下,在运动时一个20岁的人所能承受的每分钟心跳的最高次数是多少?(2)一个50岁的人运动时10秒心跳的次数为23,请问他有危险吗?为什么?【分析】(1)根据题意给出的等式,将a=20代入即可求出b的值.(2)根据题意给出的等式,将a=50时代入求出b的值,然后将b与23相比较即可知道是否有危险.【解答】解:(1)当a=20时,b=0.8(220﹣a)=0.8×(220﹣20)=160,所以在运动时一个20岁的人所能承受的每分钟心跳的最高次数是160;(2)他有危险,当a=50时,b=0.8(220﹣a)=0.8×(220﹣50)=136,因为136÷60×10=<23,所以此人有危险.24.某经销商去水产批发市场采购湖蟹,他看中了A,B两商家的某种品质相近的湖蟹,其中A商家零售价为60元/千克,B商家零售价为70元/千克,两商家的批发价信息如下A商家:批发数量不超过100千克,按零售价的95%出售;超过100千克但不超过200千克,按零售价的90%出售;超过200千克的按零售价的85%出售B商家:批发价信息如下表:(1)如果他批发80千克湖蟹,请通过计算说明他在哪家批发分别合算?(2)如果他批发x千克湖蟹(150<x<200),请你分别用含字母x的式子表示他在A、B 两家批发所需的费用.【分析】(1)根据A、B两家的优惠办法分别求出两家购买需要的费用即可;(2)根据题意列出式子分别表示出购买x千克太湖蟹所相应的费用即可.【解答】解:(1)A:80×60×95%=4560(元),B:50×70×90%+(80﹣50)×70×85%=4935(元),∵4560元<4935元,∴他在A商家批发合算;(2)A:60×90%x=54x(元),B:50×70×90%+100×70×85%+(x﹣150)×70×80%=56x+700(元).25.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面﹣层有一个圆圈,以下各层均比上﹣层多一个圆圈,一共堆了n层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆圈的个数为1+2+3+…+n=.如果图1中的圆圈共有12层,(1)我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1,2,3,4,…,则最底层最左边这个圆圈中的数是;(2)我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数﹣23,﹣22,﹣21,…,求图4中所有圆圈中各数的绝对值之和.【分析】(1)12层时最底层最左边这个圆圈中的数是11层的数字之和再加1;(2)首先计算圆圈的个数,从而分析出23个负数后,又有多少个正数.【解答】解:(1)1+2+3+…+11+1=6×11+1=67;(2)图4中所有圆圈中共有1+2+3+…+12==78个数,其中23个负数,1个0,54个正数,所以图4中所有圆圈中各数的绝对值之和=|﹣23|+|﹣22|+...+|﹣1|+0+1+2+ (54)(1+2+3+…+23)+(1+2+3+…+54)=276+1485=1761.另解:第一层有一个数,第二层有两个数,同理第n层有n个数,故原题中1+2+.+11为11层数的个数即为第11层最后的圆圈中的数字,加上1即为12层的第一个数字.。
2019-2020学年七年级数学上学期期中试题(含解析)湘教版(I)
2019-2020 学年七年级数学上学期期中试题(含解析)湘教版 (I)一、选择题( 3×12=36 分)1.若向东走 5m,记为 +5m,则﹣ 3m表示为 ( )A.向东走 3m B.向南走 3m C.向西走 3m D.向北走 3m2. 3 的相反数是 ()A.B.C. 3D.﹣ 33.新开通的万家丽快速桥全长约16500 米,将 16500用科学记数法表示为( ) A.16.5 ×10 3 B.1.65 ×10 4 C.1.65 ×10 3 D.0.165 ×10 44.数轴上到原点O距离 3 个单位长度的点表示的数是( )A.﹣ 3 B. 3C.﹣ 3 或 3D.﹣ 3 或 05.与 4a2b2是同类项的是 ()A. 4ab22C.33 B.﹣ 5a b3a b D.﹣ ab6.以下计算中正确的选项是()A. a3+a3=2a3 B. a3+a3=a6C. a3+a3=2a6 D. a3+a3=a97.把 12+( +9) +(﹣ 6)写成省略加号的和的形式,正确的选项是() A. 12﹣ 9﹣6 B . 12+9﹣ 6C.﹣ 12+9+6 D . 12﹣ 9+68.有理数 a, b 在数轴上的地址以下列图,那么以下式子中成立的是() A. a> b B. a+b> 0C. ab< 0D. |a| < |b|9.以下是一元一次方程的是()A.﹣ 5+3=﹣ 2B. 2x+3=x ﹣ 1C. 2x+4y ﹣1=0D. 10x﹣ 5+2x+2 10.化简:﹣ 2a+( 2a﹣ 1)的结果是 ( )A.﹣ 4a﹣ 1 B. 4a﹣ 1C. 1D.﹣ 111.以下说法中正确的选项是()A.单项式的系数是﹣2,次数是 3B.﹣ a 是单项式,表示负数C.﹣ 6x2y+4x﹣ 1 是二次三项式D.单项式﹣的次数是2,系数是﹣12.若是代数式A.﹣ 2 B. 24y2﹣ 2y+5 的值为C. 3D. 47,那么代数式2y2﹣ y+1的值为 ()二、填空题(3×6=18 分)13. | ﹣ 6|=__________ .14.请自编一个解为x=2 的方程 __________ .15.比较大小:﹣__________(填“>”或“<”).16.若方程:( m﹣ 1) x|m|﹣ 2=0 是一元一次方程,则m的值为 __________ .17.若单项式﹣3x 4a y 与 9x8y b+4是同类项,则a+b=__________.18.为庆祝“六 ?一”少儿节,某幼儿园举行用火柴棒摆“金鱼”比赛.以下列图:依照上面的规律,摆第( n)图,需用火柴棒的根数为 __________ .三、解答题(共66 分)19.计算题:(1)(+ ﹣)×(﹣36)2 3(2) | ﹣ 3|+ (﹣ 2) +8÷2.20.计算:(1) 2x﹣ 5y﹣ 3y+4x(2)( 2x﹣y)﹣ 2(3x﹣ y)21.解方程:﹣3x+2x ﹣ 5x=12.22.化简求值:( a2﹣ 2ab﹣ b2)﹣( a2﹣ b2),其中 a=﹣ 1, b=2.23.振子从一点 A 开始左右来回振动8 次,若是规定向右为正,向左为负,这8 次振动记录为(单位:毫米):+10,﹣ 9,+8,﹣ 6, +8,﹣ 7.(1)求振子停止时所在地址距A 点多远?(2)若是每毫米需时间 0.02 秒,则共用时间多少秒?24.小明同学做一道数学题时,误将求“ A﹣B”看作求“ A+B”,结果求出的答案是3x2﹣2x+5.已知 A=4x2﹣ 3x﹣6.请你帮助小明同学求出A﹣ B.25.某城市出租车收费标准以下: 3 公里以内(含 3 公里)收费10 元,高出 3 公里的部分每公里加收 2 元(不足一公里按一公里计算).(1)小明一次乘坐出租车行驶 4 公里应付车费多少元?(2)若行驶 x 公里( x 为整数),试问应付车费多少元?(3)小华出门做事,先乘坐一辆出租车行驶公里到 A 地,办完事后又乘坐另一辆出租车行驶 5.2 公里到 B地做事,最后打车直接回到出发地,小华此次出门共付车费多少元?(注:A、 B 两地和出发地在同一条道路上)26.已知: b 是最小的正整数,且a, b 满足( c﹣5)2+|a+b|=0,请回答以下问题:(1)请直接写出 a、 b、 c 的值.a=__________ b=__________ c=__________.(2) a、b、 c 所对应的点分别为A、B、 C,点 P为动点,其对应的数为x,当点 P 在数轴上什么地址时, P 到 A点的与 P 到 B 点的距离之和最小? __________.A.在 A 点时B.在 B 点时C.在 AB 之间(包括 A, B 两点)D.在 BC之间(包括 B, C 两点)(3)在( 1)( 2)的条件下,点A、B、C开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C分别以每秒 2 个单位长度和 5 个单位长度的速度向右运动,假设 t 秒钟事后,若点 B 与点 C之间的距离表示为BC,点 A 与点 B 之间的距离表示为AB.请问:BC﹣ AB的值可否随着时间 t 的变化而变化?若变化,请说明原由:若不变,央求其值.2015-2016 学年湖南省长沙市明德中学等六校联考七年级(上)期中数学试卷一、选择题(3×12=36 分)1.若向东走5m,记为 +5m,则﹣ 3m表示为 ( )A.向东走3m B.向南走3m C.向西走 3m D.向北走 3m【考点】正数和负数.【解析】依照正数和负数表示相反意义的量,向东走记为正,可得向西走的表示方法.【解答】解:向东走5m,记为 +5m,则﹣ 3m表示为向西走3 米,应选: C.【谈论】此题观察了正数和负数,相反意义的量用正数和负数表示.2. 3 的相反数是 ( )A.B.C. 3D.﹣ 3【考点】相反数.【解析】依照相反数的定义即可求解.【解答】解: 3 的相反数是:﹣ 3.应选 D.【谈论】此题主要观察了绝对值的定义, a 的相反数是﹣ a.3.新开通的万家丽快速桥全长约16500 米,将16500 用科学记数法表示为 ()A.16.5 ×10 3 B.1.65 ×10 4 C.1.65 ×10 3 D.0.165 ×10 4【考点】科学记数法—表示较大的数.【解析】科学记数法的表示形式为a×10 n的形式,其中 1≤|a|< 10,n 为整数.确定n 的值时,要看把原数变成 a 时,小数点搬动了多少位, n 的绝对值与小数点搬动的位数相同.当原数绝对值> 1 时, n 是正数;当原数的绝对值< 1 时, n 是负数.【解答】解:×10 4,应选 B.【谈论】此题观察科学记数法的表示方法.科学记数法的表示形式为a×10 n的形式,其中1≤|a| < 10, n 为整数,表示时重点要正确确定 a 的值以及 n 的值.4.数轴上到原点O距离 3 个单位长度的点表示的数是 ( )A.﹣ 3 B. 3C.﹣ 3 或 3D.﹣ 3 或 0【考点】数轴.【解析】依照数轴的特点,分点在原点左边与右边两种情况谈论求解.【解答】解:若点在原点左边,则点表示﹣3,若点在原点右边,则点表示3,因此,点表示数﹣ 3 或 3.应选: C.【谈论】此题观察了数轴,难点在于要分点在原点的左右两边两种情况.5.与 4a2b2是同类项的是 ()A. 4ab B.﹣ 5a2b2C. 3a3b D.﹣ab3【考点】同类项.【解析】依照所含字母相同且相同字母的指数也相同的项是同类项,可得答案.【解答】解: A、相同字母的指数不相同,故 A 错误;B、所含字母相同且相同字母的指数也相同的项是同类项,故 B 正确;C、相同字母的指数不相同,故 C 错误;D、相同字母的指数不相同,故 D 错误;应选: B.【谈论】此题观察了同类项,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,因此成了中考的常考点.6.以下计算中正确的选项是()A. a3+a3=2a3 B. a3+a3=a6C. a3+a3=2a6D. a3+a3=a9【考点】合并同类项.【解析】直接利用合并同类项法规计算判断即可.333则B、C、D全部错误;应选: A.【谈论】此题主要观察了合并同类项,正确掌握运算法规是解题重点.7.把 12+( +9) +(﹣ 6)写成省略加号的和的形式,正确的选项是()A. 12﹣ 9﹣6 B . 12+9﹣ 6C.﹣ 12+9+6 D . 12﹣ 9+6【考点】有理数的加法.【解析】依照题意直接去括号即可,特别要注意符号的变化.【解答】解: 12+( +9) +(﹣ 6) =12+9﹣6,应选: B.【谈论】此题观察了有理数的加减混杂运算,解题的重点是去括号,注意符号的变化.8.有理数a, b 在数轴上的地址以下列图,那么以下式子中成立的是( )A. a> b B. a+b> 0C. ab< 0D. |a| < |b|【考点】数轴.【解析】依照数轴得出 a<﹣ 2< 0< b< 2,再依据有理数的乘法,有理数的大小比较,绝对值进行判断即可.【解答】解:∵从数轴可知:a<﹣ 2< 0< b< 2,∴a< b, a+b< 0, ab< 0, |a| > |b| ,∴只有选项 C 正确,选项 A、B、 D 都错误;应选 C.【谈论】此题观察了有理数的乘法,有理数的大小比较,绝对值,数轴的应用,能灵便运用知识点进行判断是解此题的重点.9.以下是一元一次方程的是( )A.﹣ 5+3=﹣ 2B. 2x+3=x ﹣ 1C. 2x+4y ﹣1=0【考点】一元一次方程的定义.【解析】只含有一个未知数(元),并且未知数的指数是的一般形式是ax+b=0( a, b 是常数且a≠0).D. 10x﹣ 5+2x+21(次)的方程叫做一元一次方程.它【解答】解: A、﹣ 5+3=﹣ 2,不是方程.故本选项错误;B、 2x+3=x﹣ 1,吻合一元一次方程的定义.故本选项正确;C、2x+4y ﹣1=0 中含有两个未知数,属于二元一次方程.故本选项错误;D、 10x ﹣ 5+2x+2 不是方程.故本选项错误;应选 B.【谈论】此题主要观察了一元一次方程的定义,只含有一个未知数,且未知数的指数是 1,一次项系数不是 0.10.化简:﹣ 2a+( 2a﹣ 1)的结果是 ( )A.﹣ 4a﹣ 1 B. 4a﹣ 1C. 1D.﹣ 1【考点】整式的加减.【解析】此题观察了整式的加减.先依照去括号法规去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:﹣ 2a+( 2a﹣ 1)=﹣ 2a+2a﹣ 1=﹣ 1.应选 D.【谈论】整式的加减运算实质上就是去括号、合并同类项,这是各地中考的常考点.去括号法规:﹣﹣得+,﹣ +得﹣, ++得+, +﹣得﹣.合并同类项时把系数相加减,字母与字母的指数不变.11.以下说法中正确的选项是()A.单项式的系数是﹣2,次数是3B.﹣ a 是单项式,表示负数2C.﹣ 6x y+4x﹣ 1 是二次三项式D.单项式﹣的次数是2,系数是﹣【考点】单项式;多项式.【解析】依照单项式的系数是数字因数,单项式的次数是字母指数和,可判断 A、 D;依照单项式的定义判断 B,依照多项式的次数是多项式中次数最高的单项式的次数,每个单项式是多项式的项,可判断C.【解答】解: A、单项式的系数是﹣,次数是3,错误;B、﹣ a 是单项式,不用然表示负数,错误;C、﹣ 6x2y+4x﹣ 1 是三次三项式,错误;D、单项式﹣的次数是2,系数是﹣,正确;应选 D.【谈论】此题观察了单项式,单项式的系数是数字因数,单项式的次数是字母指数和,注意π 是常数不是字母.12.若是代数式4y2﹣ 2y+5 的值为 7,那么代数式2y2﹣ y+1 的值为 ( )A.﹣ 2 B. 2C. 3D. 4【考点】代数式求值.【专题】整体思想.【解析】由代数式 4y2﹣ 2y+5 的值为 7,可获取 4y 2﹣ 2y=2,两边除以 2 获取 2y2﹣ y=1,然22后把 2y ﹣ y=1 代入 2y ﹣y+1 即可获取答案.2【解答】解:∵ 4y ﹣ 2y+5=7,∴4y 2﹣ 2y=2,∴2y 2﹣ y=1,∴2y 2﹣ y+1=1+1=2.应选 B.【谈论】此题观察了代数式求值:先把代数式变形,尔后利用整体代入的方法求代数式的值.二、填空题(3×6=18 分)13. | ﹣ 6|=6 .【考点】绝对值.【专题】计算题.【解析】依照绝对值的化简,由﹣6< 0,可得 | ﹣ 6|= ﹣(﹣ 6) =6,即得答案.【解答】解:﹣ 6< 0,则|﹣ 6|= ﹣(﹣ 6) =6,故答案为 6.【谈论】此题观察绝对值的化简求值,即|a|=.14.请自编一个解为x=2 的方程 2x=4.【考点】方程的解.【专题】开放型.【解析】依照使方程左右两边的值相等的未知数的值是该方程的解,可得答案.【解答】解:自编一个解为x=2 的方程为2x=4 ,故答案为: 2x=4.【谈论】此题观察了方程的解,解题的重点是依照方程的解的定义,使方程左右两边的值相等的未知数的值是该方程的解.15.比较大小:﹣>(填“>”或“<”).【考点】有理数大小比较.【解析】求出两个数的绝对值,再比较即可.【解答】解:∵ | ﹣|=,|﹣|=,∴ >,故答案:>其大的反【点】本考了有理数的大小比的用,注意:两个数比大小,而小.16.若方程:( m 1) x|m|2=0 是一元一次方程,m的1.【考点】一元一次方程的定.【解析】依照一元二次方程的定解答即可.【解答】解:∵( m 1) x|m|2=0 是一元一次方程,∴,∴m= 1;故答案: 1.1,一次【点】本考了一元一次方程的看法,只含有一个未知数,且未知数的指数是系数不是0,是目考的重点.17.若式3x 4a y 与 9x8y b+4是同,a+b= 1.【考点】同.a, b 【解析】依照同的定(所含字母相同,相同字母的指数相同)列出方程,求出的,再代入代数式算即可.【解答】解:∵ 式3x4a y 与 9x8y b+4是同,∴4a=8, b+4=1,∴a=2, b= 3,∴a+b=2+( 3) = 1;故答案: 1.相同字母的指数相同,是易混【点】此考了同,同定中的两个“相同”:点,因此成了中考的常考点.18.祝“六 ?一”少儿,某幼儿园行用火柴棒“金”比.如所示:依照上面的律,第( n),需用火柴棒的根数 6n+2.【考点】律型:形的化.【】律型.【解析】察不,后一个形比前一个形多 6 根火柴棒,尔后依照此律写出第 n 个形的火柴棒的根数即可.【解答】解:第 1 个形有 8 根火柴棒,第2 个形有 14 根火柴棒,第3 个形有 20 根火柴棒,⋯,第 n 个图形有 6n+2 根火柴棒.故答案为: 6n+2.【谈论】此题是对图形变化规律的观察,查出前三个图形的火柴棒的根数,并观察出后一个图形比前一个图形多 6 根火柴棒是解题的重点.三、解答题(共66 分)19.计算题:(1)(+ ﹣)×(﹣36)2 3(2) | ﹣ 3|+ (﹣ 2)+8÷2.【考点】有理数的混杂运算.【解析】( 1)利用乘法分配律简算;(2)先算乘方和绝对值,再算除法,最后算加法.【解答】解:( 1)原式 = ×(﹣ 36) + ×(﹣ 36)﹣×(﹣36)=﹣ 4﹣ 6+9=﹣ 1;(2)原式 =3+4+8÷8=3+4+1=8.【谈论】此题观察有理数的混杂运算,掌握运算序次与计算方法是解决问题的重点.20.计算:(1) 2x﹣ 5y﹣ 3y+4x(2)( 2x﹣y)﹣ 2(3x﹣ y)【考点】整式的加减.【解析】( 1)直接合并同类项即可;(2)先去括号,再合并同类项即可.【解答】解:( 1)原式 =( 2+4) x﹣( 5+3) y=6x﹣ 8y;(2)原式 =2x﹣ y﹣6x+y =﹣ 4x.【谈论】此题观察的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的重点.21.解方程:﹣3x+2x ﹣ 5x=12.【考点】解一元一次方程.【专题】计算题;一次方程(组)及应用.【解析】方程合并后,将x 系数化为1,即可求出解.【解答】解:合并得:﹣6x=12,解得: x=﹣2.【谈论】此题观察认识一元一次方程,熟练掌握运算法规是解此题的重点.222222.化简求值:( a ﹣ 2ab﹣ b )﹣( a ﹣ b ),其中 a=﹣ 1, b=2.【专题】计算题;整式.【解析】原式去括号合并获取最简结果,把 a 与 b 的值代入计算即可求出值.2222【解答】解:原式 =a ﹣2ab﹣ b ﹣a +b =﹣ 2ab,当a=﹣ 1,b=2 时,原式 =4.【谈论】此题观察了整式的加减﹣化简求值,熟练掌握运算法规是解此题的重点.8 次振动记23.振子从一点 A 开始左右来回振动8 次,若是规定向右为正,向左为负,这录为(单位:毫米):+10,﹣ 9,+8,﹣ 6, +8,﹣ 7.(1)求振子停止时所在地址距A 点多远?(2)若是每毫米需时间 0.02 秒,则共用时间多少秒?【考点】正数和负数.【解析】( 1)依据有理数的加法,即可解答;(2)把绝对值相加,再乘以0.02 ,即可获取共用时间.【解答】解:( 1) 10﹣ 9+8﹣6+8﹣ 7=4.答:振子停止时所在地址距 A 点 4 毫米;(2) |10|+| ﹣ 9|+|+8|+| ﹣ 6|+|+8|+| ﹣ 7|=48 ,48×0.02=0.96 (秒).答:则共用时间 0.96 秒.【谈论】此题观察了正数和负数,有理数的加法是解题重点.24.小明同学做一道数学题时,误将求“ A﹣B”看作求“ A+B”,结果求出的答案是3x2﹣2x+5.已知 A=4x2﹣ 3x﹣6.请你帮助小明同学求出 A﹣ B.【考点】整式的加减.【专题】应用题.【解析】 B 等于 A 与 B 的和减去 A,求出 B,再计算A﹣ B.注意去括号时,若是括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:由题意,知 B=3x2﹣ 2x+5﹣( 4x2﹣ 3x﹣6)=3x2﹣ 2x+5 ﹣4x2+3x+6= ﹣x2+x+11.2 2 2 22【谈论】已知两个数的和及其中一个加数求另一个加数用减法,这也适用于代数式.注意掌握去括号法规以及合并同类项.25.某城市出租车收费标准以下: 3 公里以内(含 3 公里)收费10 元,高出 3 公里的部分每公里加收 2 元(不足一公里按一公里计算).(1)小明一次乘坐出租车行驶 4 公里应付车费多少元?(2)若行驶x 公里( x 为整数),试问应付车费多少元?(3)小华出门做事,先乘坐一辆出租车行驶 2.7 公里到 A 地,办完事后又乘坐另一辆出租车行驶 5.2 公里到 B地做事,最后打车直接回到出发地,小华此次出门共付车费多少元?(注:A、 B 两地和出发地在同一条道路上)【考点】列代数式;代数式求值.【解析】( 1)分两段收费: 3 公里收费 10 元,节余的 1 公里收 2 元;(2)当 x≤3时,应付车费是10 元;当 x> 3 且为整数,因此应付车费=10+( x﹣ 3)× 2;(3)分三段:先到 A 地 10 元;又乘另一辆出租车行驶 5.2 公里到 B 地:10+3×2; 10+5×2.【解答】解:( 1) 10+( 4﹣ 3)× 2=12(元).答:小明一次乘坐出租车行驶 4 公里应付车费 12 元;(2)当 x≤3时,应付车费是10 元;当 x> 3 且为整数,应付车费:10+( x﹣ 3)× 2=2x+4;(3)先乘一辆出租车行驶 2.7 公里到 A地付车费是: 10 元;办完事后又乘另一辆出租车行驶5.2 公里到 B 地做事时, 5.2 ﹣3=2.2 (公里),按 3 公里收费,则付车费是: 10+3×2 =16(元);打车直接回到出发地时,﹣(公里),按 5 公里收费,则付车费是: 10+5×2=20(元);共付车费是: 10+1 6+20=46(元).答:小华此次出门共付车费46 元.【谈论】此题观察了列代数式和有理数的混杂运算.需仔细解析题意,即可列出所求的代数式,要掌握出租车的收费标准.26.已知: b 是最小的正整数,且a, b 满足( c﹣5)2+|a+b|=0,请回答以下问题:(1)请直接写出 a、 b、 c 的值.a=﹣ 1 b=1 c=5 .(2) a、b、 c 所对应的点分别为A、 B、C,点 P 为动点,其对应的数为x,当点 P 在数轴上什么地址时, P 到 A点的与 P 到 B 点的距离之和最小? C.A.在 A 点时B.在 B 点时C.在 AB 之间(包括 A, B 两点)D.在 BC之间(包括 B, C 两点)(3)在( 1)( 2)的条件下,点 A、B、C开始在数轴上运动,若点 A 以每秒 1 个单位长度的速度向左运动,同时,点 B 和点 C分别以每秒 2 个单位长度和 5 个单位长度的速度向右运动,假设 t 秒钟事后,若点 B 与点 C之间的距离表示为BC,点 A 与点 B 之间的距离表示为 AB.请问:BC﹣ AB的值可否随着时间t 的变化而变化?若变化,请说明原由:若不变,央求其值.【考点】数轴;非负数的性质:绝对值;非负数的性质:偶次方.【解析】( 1)依照﹣ 1 是最小正整和非负数的性质,即可解答;(2)依照绝对值的几何意义,可适合点P 在 AB之间(包括 A, B 两点), P 到 A 点与 P 到 B 点的距离之和最小;(3)依照 A, B, C的运动情况即可确定 AB, BC的变化情况,即可确定 AB﹣BC的值.【解答】解:( 1)∵( c﹣ 5)2 +|a+b|=0 ,b 是最小的正整数,∴c﹣ 5=0,b=1, a+b=0,∴a=﹣ 1, b=1, c=5.故答案为:﹣ 1, 1,5;(2)当点 P 在在 AB之间(包括 A, B 两点)时, P 到 A 点的与 P 到 B 点的距离之和最小.应选: C.(3)不变.∵点 A 以每秒 1 个单位长度的速度向左运动,点 B 每秒 2 个单位长度向右运动,∴A, B 每秒钟增加 3 个单位长度;∵点 B 和点 C 分别以每秒 2 个单位长度和 5 个单位长度的速度向右运动,∴B, C 每秒钟增加 3 个单位长度.∴BC﹣ AB=2, BC﹣ AB的值不随着时间t 的变化而改变.【谈论】此题观察了数轴与绝对值,正确理解AB, BC的变化情况是重点.。
2019—2020学年上学期期中考试试卷 七年级数学
2019—2020学年上学期期中考试试卷七年级数学(第五章~第七章)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷30分,第Ⅱ卷70分,共100分,考试时间90分钟.第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分) 1.在平面直角坐标系中,点(0,6)位于 ()A .x 轴正半轴上B .y 轴负半轴上C .x 轴负半轴上D .y 轴正半轴上2.9的平方根是±3,用数学符号表示为 ()A .√9B .±√9C .√9=±3D .±√9=±33.已知点P 位于y 轴右侧,距离y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 的坐标为()A .(-3,4)B .(3,4)C .(-4,3)D .(4,3)4.下列结论正确的是 ()A .64的立方根是±4B .-18没有立方根C .立方根等于本身的数一定是0D .√-273=-√2735.下列命题中,是真命题的是()A .同位角相等B .邻补角一定互补C .相等的角是对顶角D .过一点有且只有一条直线与已知直线垂直6.在平面直角坐标系中,将三角形各点的横坐标都加上4,纵坐标保持不变,所得图形与原图形相比()A .向右平移了4个单位长度B .向左平移了4个单位长度C .向上平移了4个单位长度D .向下平移了4个单位长度图JD3-17.用两块相同的三角尺按如图JD3-1所示的方式作平行线AB和CD,能解释其中的道理的依据是()A.内错角相等,两直线平行B.同位角相等,两直线平行C.同旁内角互补,两直线平行D.两直线平行,内错角相等8.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补9.如图JD3-2,表示√7的点在数轴上应在哪两个字母之间()图JD3-2A.C与DB.A与BC.A与CD.B与C10.如图JD3-3,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0),…,根据这个规律探索可得,第102个点的坐标为()图JD3-3A.(14,9)B.(14,10)C.(14,11)D.(14,12)请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 总分答案第Ⅱ卷(非选择题共70分)二、填空题(每小题3分,共18分)11.若剧院里5排2号可以用(5,2)表示,则7排4号可以用表示.12.命题“如果两条直线都与第三条直线平行,那么这两条直线也互相平行”的题设是,结论是.13.在平面直角坐标系中点P-1,m4+1一定在第象限.14.已知3x-4是25的算术平方根,则x的值是.15.如图JD3-4所示,直线AB,CD,EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG=°.图JD3-4图JD3-516.表示m的点在数轴上的位置如图JD3-5所示,化简√(m-1)2+√(m-2)2=.三、解答题(共52分)17.(6分)完成下面的推理过程.图JD3-6如图JD3-6,已知∠1=∠2.求证:∠3+∠4=180°.证明:∵∠1=∠2,∴a∥b(),∴∠3+∠5=180°().又∵∠4=∠5(),∴∠3+∠4=180°.18.(6分)如图JD3-7,已知∠DAB+∠D=180°,AC平分∠DAB,且∠CAD=25°,∠B=95°.(1)求∠DCA的度数;(2)求∠DCE的度数.图JD3-719.(6分)若a,b互为相反数,c,d互为倒数,|m|=√2,求a2-b2+cd÷(1+m2)的值.20.(6分)已知(1-3a)2+√b-3=0,求(ab)b的平方根与立方根.图JD3-821.(6分)已知:如图JD3-8,AD⊥BC,垂足为D,EF⊥BC,垂足为F,∠BEF=∠ADG.求证:DG∥AB.证明:∵AD⊥BC,EF⊥BC(已知),∴∠EFB=∠ADB=90°(),∴EF∥( ),∴∠BEF=( ).∵∠BEF=∠ADG(已知),∴∠ADG=( ),∴DG∥AB( ).22.(6分)如图JD3-9,已知A村庄的坐标为(2,3),一辆汽车从原点O出发,在x轴上行驶.(1)汽车行驶到什么位置时离A村最近?在图中找出该点并写出此点的坐标;(2)这样的点有几个?为什么?图JD3-923.(8分)阅读下面的文字,并解答问题.大家知道√2是无理数,而无理数是无限不循环小数,因此√2的小数部分我们不可能全部写出来,于是小亮用√2-1来表示√2的小数部分,你同意小亮的表示方法吗?事实上,小亮的表示方法是有道理的,因为√2的整数部分是1,用原数减去其整数部分,差就是小数部分.请解答:已知10+√3的整数部分为x,小数部分为y,求x-y的相反数.24.(8分)如图JD3-10,在平面直角坐标系中,A,B,C三点的坐标分别为(0,1),(3,0),(2,2).(1)求三角形ABC的面积;(2)如果在第二象限内有一点P(a,2),试用含a的式子表示四边形ABOP的面积;(3)在(2)的条件下是否存在点P,使得四边形ABOP的面积与三角形ABC的面积相等?若存在,请求出点P的坐标;若不存在,请说明理由.图JD3-10阶段综合测试三(期中二)1.D2.D3.B4.D5.[全品导学号:58834031]B6.A7.A8.D9.A 10.[全品导学号:58834032]B 11.(7,4)12.两条直线都与第三条直线平行 这两条直线互相平行 13.二 14.3 15.55 16.[全品导学号:58834033]117.同位角相等,两直线平行 两直线平行,同旁内角互补 对顶角相等 18.解:(1)∵∠DAB+∠D=180°, ∴DC ∥AB ,∴∠DCA=∠CAB. ∵AC 平分∠DAB ,∠CAD=25°, ∴∠CAB=∠CAD=25°, ∴∠DCA=25°.(2)∵DC ∥AB ,∠B=95°,∴∠DCE=∠B=95°. 19.解:∵a ,b 互为相反数, ∴a=-b ,∴a 2=b 2,∴a 2-b 2=0. ∵c ,d 互为倒数,∴cd=1.∵|m|=√2, ∴ m 2=2,∴a 2-b 2+cd÷(1+m 2)=0+1÷(1+2)=13. 20.解:∵(1-3a )2≥0,√b -3≥0,∴由题意知1-3a=0,b-3=0,∴a=13,b=3,∴(ab )b =(13×3)3=1,∴(ab )b 的平方根是±1,立方根是1.21.垂直的定义 AD 同位角相等,两直线平行 ∠BAD 两直线平行,同位角相等 ∠BAD 等量代换 内错角相等,两直线平行22.解:(1)如图,汽车行驶到点B 的位置时,离A 村最近,此时点B 的坐标为(2,0).(2)一个.理由:在同一平面内,过一点有且只有一条直线与已知直线垂直. 23.[全品导学号:58834034]解:因为√3的整数部分是1, 所以x=10+1=11,y=10+√3-11=√3-1. 所以x-y=11-(√3-1)=11-√3+1=12-√3. 所以x-y 的相反数为√3-12.24.[全品导学号:58834035]解:(1)S 三角形ABC =12×(2+3)×2-12×2×1-12×1×3=52. (2)如图,因为点P (a ,2)在第二象限,所以a<0,所以S 四边形ABOP =S 三角形AOP +S 三角形AOB =12×1×(-a )+12×1×3=32-a 2.(3)假设存在,由题意知32-a 2=52,解得a=-2,所以存在符合条件的点P ,点P 的坐标为(-2,2).。
湖南省岳阳市 七年级(上)期中数学试卷-(含答案)
七年级(上)期中数学试卷一、选择题(本大题共10小题,共30.0分)1.一个数加上-12等于-5,则这个数是()A. 17B. 7C.D.2.下列计算正确的是()A. B.C. D.3.当x=1,y=-2时,代数式2x+y-1的值是()A. 1B.C. 2D.4.下列说法不正确的是()A. 0既不是正数,也不是负数B. 1是绝对值最小的数C. 一个有理数不是整数就是分数D. 0的绝对值是05.比较-2.4,-0.5,-(-2),-3的大小,下列正确的是()A. B.C. D.6.若|y|=5,则y=()A. 5B.C. 5或D. 任何数7.(-1)2003+(-1)2004=()A. 0B.C. 1或者D. 18.代数式2a2+3a+1的值是6,则6a2+9a+5的值是()A. 18B. 16C. 15D. 209.在我国南海某海域探明可燃冰储量约有194亿立方米,数字19 400 000 000用科学记数法表示正确的是()A. B. C. D.10.已知a、b在数轴上的位置如图所示,那么下面结论正确的是( )A. B. C. D.二、填空题(本大题共8小题,共24.0分)11.规定向东为正,那么向西走2千米记作______ 千米.12.的倒数的相反数是______ .13.绝对值小于2的整数是______.14.钢笔每枝x元,铅笔每枝y元,某同学买了3枝钢笔、5枝铅笔共付钱______ 元.15.多项式-πa2-a+1的最高次项是______ ,最高次项的系数是______ .16.x2-2x+y=x2-(______ ).17.如果|x-3|+(y+)2=0,那么x-y=______.19.计算题(1)26+(-14)+(-16)+8(2)(-+-)×(-36)(3)+(-3)2×(-)(4)100÷(-2)2-(-2)÷(-)20.已知A=a3-2a+1,B=-3a3-4a+2,计算当a=-1时,3A-B的值.21.若规定*是一种运算符号,且a*b=ab-ba,试计算5*(3*2)的值.22.如图是某居民小区的一块长为2a米,宽为b米的长方形空地,为了美化环境,准备在这个长方形的四个顶点处修建一个半径为a米的扇形花台,然后在花台内种花,其余种草.如果建造花台及种花费用每平方米需要资金100元,种草每平方米需要资金50元,那么美化这块空地共需资金多少元?四、解答题(本大题共5小题,共32.0分)23.去括号,并合并同类项:3(5m-6n)+2(3m-4n).24.已知a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,求式子(a+b)+m-cd+m.25.如图所示,下列图形是用棋子摆成的,观察图形,找出规律.(1)第4个图形中小圆圈的个数是______ ;(2)第20个图形中小圆圈的个数是______ ;(3)第n个图形中小圆圈的个数是______ .26.有一道题“先化简,再求值:(-4x2+2x-8y)-(x-2y),其中x=,y=2015.”小玲做题时把“y=2015”错抄成了“y=-2015”,但她的计算结果仍是正确的,请你解释这是怎么回事?27.某市出租车收费标准是:起步价10元,可乘3千米;3千米到5千米,每千米价1.3元;超过5千米,每千米价2.4元.(1)若某人乘坐了x(x>5)千米的路程,则他应支付的费用是多少?(2)若他支付了15元车费,你能算出他乘坐的路程吗?答案和解析1.【答案】B【解析】解:设这个数为x,由题意可知x+(-12)=-5,解得x=7.所以这个数是7.故选B.本题是有理数的运算与方程的结合试题,根据题意列出算式,然后根据算法计算即可.此类文字题只要审清题意正确列出算式,然后利用有理数的运算法则可求.2.【答案】A【解析】解:A、原式=-6,正确;B、原式=-2,错误;C、原式=2,错误;D、原式=1,错误.故选A.原式各项计算得到结果,即可做出判断.此题考查了有理数的乘除法,以及加减法,熟练掌握运算法则是解本题的关键.3.【答案】D【解析】解:当x=1,y=-2时,原式=2×1+(-2)-1=2-2-1=-1.故选D.此题直接把已知的数值代入计算即可.本题主要考查代数式求值,由于已知多项式已经是最简多项式了,直接代入x、y的值计算即可.4.【答案】B【解析】解:0既不是正数,也不是负数,A正确;绝对值最小的数是0,B错误;整数和分数统称为有理数,C正确;0的绝对值是0,D正确.故选:B.先根据:0既不是正数,也不是负数;整数和分数统称为有理数;0的绝对值是0;判断出A、C、D正确;再根据绝对值最小的数是0,得出B错误.本题主要考查正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0,熟练掌握绝对值的性质是解题的关键.5.【答案】C【解析】解:-(-2)=2,各点在数轴上表示为:由数轴上各点的位置可知,-(-2)>-0.5>-2.4>-3.故选C.先把各数化简再在数轴上表示出来,根据数轴的性质便可直观解答.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.6.【答案】C【解析】解:∵|y|=5,∴y=±5.绝对值等于一个正数的数有两个,并且互为相反数.考查了绝对值的性质:绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.7.【答案】A【解析】解:(-1)2003+(-1)2004=-1+1=0故选:A.首先计算乘方,然后计算加法,求出算式的值是多少即可.此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.8.【答案】D【解析】解:∵2a2+3a+1=6,∴2a2+3a=5,∴6a2+9a+5=3(2a2+3a)+5=3×5+5=15+5=20.故选:D.先据2a2+3a+1=6求出2a2+3a的值,再将6a2+9a+5化简为含有2a2+3a的代数式,然后整体代入即可求出所求的结果.此题考查了代数式求值,从多项式中整理成已知条件的形式,然后利用“整体代入法”求代数式的值.9.【答案】A【解析】解:将19 400 000000用科学记数法表示为:1.94×1010.故选:A.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.10.【答案】C【解析】解:根据点在数轴的位置,知:a>0,b<0,|a|<|b|,A、∵a>0,b<0,|a|<|b|,∴a-b>0,故本选项错误;B、∵a>0,b<0,|a|<|b|,∴a+b<0,故本选项错误;C、∵a>0,b<0,∴ab<0,故本选项正确;D、∵a>0,b<0,∴<0,故本选项错误.故选:C.先根据数轴可以得到a>0,b<0,再利用实数的运算法则即可判断.本题主要考查了利用数轴来进行实数大小比较.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.11.【答案】-2【解析】解:规定向东为正,那么向西走2千米记作-2千米,故答案为:-2.根据正数和负数表示相反意义的量,向东记为正,可得向西的表示方法.本题考查了正数和负数,相反意义的量用正数和负数表示.12.【答案】-【解析】解:的倒数是,,的相反数是-.故答案为:-.先求出的倒数,再求出的倒数的相反数.本题主要考查相反数,倒数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0;倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.13.【答案】-1,0,1【解析】解:绝对值小于2的整数是:-1,0,1.可以根据数轴得到答案,到原点距离小于2的整数只有三个:-1,1,0.本题考查了绝对值的概念.14.【答案】3x+5y【解析】解:∵钢笔每枝x元,铅笔每枝y元,∴故买3枝钢笔、5枝铅笔共付钱3x+5y元.故答案为3x+5y.知道一枝铅笔和一枝钢笔的价钱,故能计算出买3枝钢笔和5枝铅笔所需的钱,再相加即可解得.本题考查了根据数字列代数式,把问题中有关的词语,用含有数字、字母和运算符号的式子表示出来,就是列代数式.解题的关键是读懂题意,正确表达.15.【答案】-πa2;-π【解析】解:多项式-πa2-a+1的最高次项是-πa2,最高次项的系数是-π.故答案为:-πa2,-π.根据多项式次数的定义和各项系数的定义即可解决问题.本题考查了多项式的知识,解题的关键是弄清多项式次数是多项式中次数最高的项的次数.16.【答案】2x-y【解析】解:根据添括号的法则可知,x2-2x+y=x2-(2x-y),故答案为:2x-y.本题添了1个括号,且所添的括号前为负号,括号内各项改变符号.本题考查添括号的方法:添括号时,若括号前是“+”,添括号后,括号里的各项都不改变符号;若括号前是“-”,添括号后,括号里的各项都改变符号.17.【答案】【解析】解:由题意得,x-3=0,y+=0,解得x=3,y=-,所以,x-y=3-(-)=.故答案为:.根据非负数的性质列式求出x、y的值,然后代入代数式进行计算即可得解.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.18.【答案】7【解析】解:∵3a m-1bc2和-2a3b n-2c2是同类项,∴m-1=3,n-2=1,∴m=4,n=3,则m+n=7.故答案为:7.根据同类项的定义:所含字母相同,并且相同字母的指数也相同,求得m,n的值,代入求解即可.本题考查了同类项的定义,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.19.【答案】解:(1)原式=(26+8)+(-14-16)=34-30=4;(2)原式=-18+20-30+21=-7;(3)原式=-=-4;(4)原式=25-3=22.【解析】(1)原式结合后,相加即可得到结果;(2)原式利用乘法分配律计算即可得到结果;(3)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果;(4)原式先计算乘方运算,再计算除法运算,最后算加减运算即可得到结果.此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.20.【答案】解:3A-B=3(a3-2a+1)-(-3a3-4a+2),=3a3-6a+13+3a3+4a-2,=6a3-2a+1,当a=-1时,原式=6a3-2a+1,=6×(-1)-2×(-1)+1,=-3.【解析】根据题意可得3A-B=3(a3-2a+1)-(-3a3-4a+2),去括号后合并可得出最简整式,将a的值代入可得出答案.本题考查整式的化简求值,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.21.【答案】解:根据题中的新定义得:原式=5*(6-6)=5*0=0.【解析】原式利用已知的新运算计算即可得到结果.此题考查了有理数的混合运算,弄清题中的新定义是解本题的关键.22.【答案】解:100×πa2+50(2ab-πa2)=50πa2+100ab(元).【解析】花台面积为πa2平方米,所需资金为πa2×100.草地面积为(2ab-πa2)平方米,所需资金为(2ab-πa2)×50.共需资金为花台所需资金+草地所需资金.本题考查列代数式.先求面积再求所需资金的和.23.【答案】解:3(5m-6n)+2(3m-4n)=15m-18n+6m-8n=21m-26n【解析】利用去括号法则,如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反,进而合并同类项即可.此题主要考查了去括号法则以及合并同类项,正确去括号是解题关键.24.【答案】解:∵a和b互为相反数,c和d互为倒数,m是绝对值等于2的数,∴当m=2时,原式=0+2-1+2=3;当m=-2时,原式=0-2-1-2=-5.【解析】根据相反数之和为0,倒数之积等于1,可得a+b=0,cd=1,再根据绝对值的性质可得m=±2,然后代入计算即可.此题主要考查了代数式求值,关键是掌握相反数之和为0,倒数之积等于1是解题的关键.25.【答案】12;60;3n【解析】解:∵第1个图形中小圆圈的个数是3×2-3=3;第2个图形中小圆圈的个数是3×3-3=6;第3个图形中小圆圈的个数是3×4-3=9;∴(1)第4个图形中小圆圈的个数是3×5-3=12;(2)第20个图形中小圆圈的个数是3×21-3=60;(3)第n个图形中小圆圈的个数是3(n+1)-3=3n,故答案为:12,60,3n.根据图象的变化,找到规律,利用规律求解即可.此题考查了图形的变化类问题,解题的关键是能够根据图象的变化确定变化的规律,难度不大.26.【答案】解:(-4x2+2x-8y)-(x-2y)=-x2+x-2y-x+2y=-x2,所以代数式的值与y的取值无关,故小玲做题时把“y=2015”错抄成了“y=-2015”,但她的计算结果仍是正确的.【解析】先将代数式去括号、合并同类项化成最简形式,再分析y=2015和y=-2015代数式的值不变.本题主要考查整式的加减-化简求值:化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材.27.【答案】解:(1)由题意,应支付的费用=10+2×1.3+2.4×(x-5)=2.4x+0.6;(2)如果走5千米,应该付的车费是10+1.3×2=12.6<15,因此这人的乘坐的路程应该在5千米以上,由(2)可知:15=2.4x+0.6,得出x=6,因此此人乘坐的路程为6千米.【解析】(1)人应支付的费用=起步价+3-5千米的收费标准×2+超过5千米的收费标准×超过5千米的距离.由此可列出所求的式子;(2)要先判断15元车费大致行驶的距离在什么范围内,然后再进行计算.一次函数的综合应用题常出现于销售、收费、行程等实际问题当中,读清题意,找对等量关系是解题的关键.。
湖南省岳阳市七年级上学期期中数学试卷
湖南省岳阳市七年级上学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) -3的相反数是()A .B .C . 3D . -32. (2分) (2016八下·寿光期中) 下列正确的是()A . 任何数都有平方根B . ﹣9的立方根是﹣3C . 0的算术平方根是0D . 8的立方根是±33. (2分)吸烟有害健康.据中央电视台2012年5月30日报道,全世界每因吸烟引起的疾病致死的人数大约为600万,数据600万用科学记数法表示为()A . 0.6×107B . 6×106C . 60×105D . 6×1054. (2分) (2016七上·老河口期中) 下列各式正确的是()A . ﹣32+(﹣3)2=0B . ﹣32﹣32=0C . ﹣32﹣(﹣3)2=0D . (﹣3)2+32=05. (2分)江西省总面积为16.69万平方千米,约占我国国土面积的1.7%, 16.69万平方千米用科学记数法表示为(保留三个有效数字)()A . 1.7×107B . 1.66×107C . 1.669×107D . 1.67×1056. (2分) (2018七上·无锡期中) 如图是计算机程序计算,若开始输入x= 则最后输出的结果是()A . 11B . -11C . 12D . -127. (2分)据统计,2014年河南省机动车保有量突破280万辆,对数据“280万”的理解错误的是()A . 精确到万位B . 有三个有效数字C . 这是一个精确数D . 用科学记数法表示为2.80×1068. (2分)有下列四个命题:①经过三个点一定可以作圆;②等弧所对的圆周角相等;③三角形的外心到三角形各顶点的距离都相等;④直径是弦.其中正确的有()A . 4个B . 3个C . 2个D . 1个9. (2分) (2018七上·易门期中) 一种面粉的质量标识为“25±0.25千克”,则下列面粉中合格的有()A . 25.30千克B . 25.51千克C . 24.80千克D . 24.70千克10. (2分)已知a、b两个实数在数轴上的对应点如图所示,则下列式子中正确的是()A . |a|>|b|B . a+b>0C . a-b<0D . ab<a二、填空题 (共10题;共17分)11. (3分) (2019七上·湖州月考) 把下列各数的序号填到相应的横线上:①1;②﹣;③0.5;④+7;⑤0;⑥﹣6.4;⑦﹣9;⑧5%.负有理数:________;整数:________;正分数:________.12. (3分)﹣1的相反数是________,﹣0.1的倒数是________,﹣11的绝对值是________.13. (1分) (2018七下·苏州期中) 如果,那么a,b,c的大小关系为________14. (1分)(2020·连云港) 我市某天的最高气温是4℃,最低气温是,则这天的日温差是________℃.15. (1分) (2018七下·龙岩期中) 若某一个正数的平方根是和,则m的值是________.16. (1分) (2019七上·石家庄月考) 如图是一个简单的数值运算程序,当输入的x的值为﹣1时,则输出的值为________.17. (3分) (2016七上·蕲春期中) 的相反数是________,绝对值是________,倒数是________.18. (1分)数轴上有三点A,B,C,且A,B两点间的距离是3,B,C两点的距离是1.若点A表示的数是﹣2,则点C表示的数是________19. (1分) (2019八上·凉州期末) 若A(2,b),B(a,﹣3)两点关于y轴对称,则a+b=________.20. (2分)绝对值大于5并且小于8的所有整数是________ .所有绝对值小于4的负整数的乘积是________ .三、解答题 (共6题;共42分)21. (4分)把下列各数填入它所在的数集内:﹣,﹣,﹣0.1010010001…,0,﹣(﹣2.28),﹣|﹣4|,﹣32正数集合:{________…}负分数集合:{________…}非正整数集合:{________…}无理数集合:{________…}.22. (5分)已知:a、b在数轴上如图所示,化简.23. (7分) (2019七上·萧山期中) 数学活动课上,王老师说:“ 是无理数,无理数就是无限不循环小数,同学们,你能把的小数部分全部写出来吗?”大家议论纷纷,小明同学说:“要把它的小数部分全部写出来是非常难的,但我们可以用﹣1表示它的小数部分.”王老师说:“小明同学的说法是正确的,因为的整数部分是1,将这个数减去其整数部分,差就是小数部分,”请你解答:(1)填空题:的整数部分是________;小数部分是________.(2)已知8+ =x+y,其中x是一个整数,且0<y<1,求出2x+(y- )2012的值.24. (9分) (2020八下·重庆期中) 阅读下面的文字,解答问题:大家知道是无理数,而无理数是无限不循环小数,因此的小数部分我们不可能全部地写出来,但是由于1<<2,所以的整数部分为1,将减去其整数部分1,差就是小数部分,根据以上的内容,解答下面的问题:(1)的整数部分是________,小数部分是________;(2)的整数部分是________,小数部分是________;(3)若设整数部分是x,小数部分是y,求x﹣ y的值.25. (10分) (2015七上·献县期中) 某公路养护小组乘车沿东西向公路巡视维护.某天早晨从A地出发,最后收工时到达B地.约定向东为正方向,当天的行驶记录如下(单位:千米):+13,﹣14,+11,﹣10,﹣8,+9,﹣12,+8.(1)问B地在A地的哪个方向?它们相距多少千米?(2)若汽车行驶每千米耗油x升,求该天共耗油多少升?26. (7分) (2019七上·郑州月考) 观察下列等式,,,以上三个等式两边分别相加得:(1)猜想并写出: ________(2)计算: ________(3)探究并计算:参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共10题;共17分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、20-1、三、解答题 (共6题;共42分) 21-1、22-1、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、。
2019-2020学年七年级数学上学期期中原创卷A卷(湖南)(参考答案)
2019-2020 学年上学期期中原创卷A 卷七年级数学·参考答案13.114.–215.116.10017.-218.50419.【解析】(1)原式=-5+x 2+3x +9-6x 2=-5x 2+3x +4.(3 分) (2)原式=7y -3z -16y +10z=-9y +7z .(6 分)20.【解析】将各数表示在数轴上,如图所示:| - 0.5| = 0.5 ,(3 分)∴ -3 1< -1< 0 <| - 0.5| < +2 < 4 .(6 分)23 521.【解析】(1)(-24)×(1+ - )4 6= (-24) ⨯1+(-24) ⨯ 3 - (-24) ⨯ 5(2 分)4 6=–24–18+20=–22.(4 分)7 (2)36÷(-3)2×( 9-1)+(-1)3+(-1)2= 36 ÷ 9 ⨯ (- 2) -1+1(6 分)9 = 4 ⨯ (- 2)9 = - 8.(8 分)922.【解析】(1)去括号,得 7y -9y -6=6,移项,得 7y -9y =6+6,(2 分) 合并同类项,得-2y =12,系数化为 1,得 y =-6.(4 分)去括号,得2x+2+6=6x-3x+3,(6 分)移项,得2x-6x+3x=3-2-6,合并同类项,得-x=-5,系数化为1,得x=5.(8 分)23.【解析】∵a,b 互为相反数,c,d 互为倒数,x 是最大的负整数,m 是绝对值最小的数,∴ a +b = 0 ,cd = 1,x =-1 ,m = 0 ,(4 分)∴x2 + (a +b +cd )x + (a +b)2019 + (-cd )2019 -m2019= (-1)2 + (0 +1) ⨯ (-1) + 02019 + (-1)2019 - 02019 (6 分)=1-1+ 0 -1- 0=-1 .(9 分)24.【解析】(1)原式=2ab 2 −4a 2 b−3ab 2 +3a 2 b+2ab 2 −2a 2 b=ab 2 −3a 2 b,(3 分)当a=2,b=1 时,原式=2−12=−10.(5 分)(2)原式= 1x - 2x +2y2 -3x +1y2 =-3x +y2 ,(7 分)2 3 2 3当x = 2 ,y =-2 时,原式=–6+4=–2.(9 分)25.【解析】(1)甲店:30×5+5×(x-5)=5x+125(元),乙店:90%(30×5+5x)=4.5x+135(元).(2 分)5x+125=4.5x+135,解得:x=20.(4 分)(2)当购买15 盒乒乓球时,若在甲店购买,则费用是:5×15+125=200 元,若在乙店购买,则费用是:4.5×15+135=202.5元.则应该在甲店购买;(7 分)当购买30 盒乒乓球时,若在甲店购买,则费用是:30×5+125=275 元,若在乙店购买,则费用是:30×4.5+135=270 元,应该在乙店购买.答:当购买乒乓球20 盒时,在甲、乙两店所需支付的费用一样;当购买15 盒乒乓球时,应该在甲店购买;当购买30 盒乒乓球时,应该在乙店购买.(10 分)26.【解析】(1)40;15.(4 分)∵点A 表示的数为–10,∴OA=10,∵OB=4OA,∴OB=40,∴数轴上点B 对应的数是40,线段AB 的中点C 对应的数是15,故答案为:40;15.(2)设经过x 秒,点M、点N 分别到原点O 的距离相等,①点M、点N 在点O 两侧,则10+2x=40–3x,解得x=6;②点M、点N 重合,则3x–40=2x,解得x=40.所以经过4 秒或40 秒,点M、点N 分别到原点O 的距离相等.(7 分)(3)设经过y 秒,点M 与点N 相距20 个单位长度,①点M、点N 在点A 两侧,则10+40–3y+2y=20,解得y=30(不合题意舍去);②点M、点N 在点A 的同侧,则2y+3y–40–10=20,解得y=30.∴当M 运动到–70 的位置时,点M 与点N 相距20 个单位长度.(10 分)。
2019-2020学年上学期期中考试七年级数学试卷
2019-2020学年上学期期中考试七年级数学试卷一、选择题(每题3分) 1. 在2213223,0,2,1,,,32354x y x a ab b x x y----++这些代数式中,整式的个数为( ) A. 2个B. 3个C. 4个D. 5个专题】常规题型;整式.【分析】根据整式的定义即可得.【点评】本题主要考查整式,解题的关键是掌握整式的定义2. 下列计算正确的是( )A. 2x x x ⋅=B. 321x x -=C. 222()a b a b -=-D. 224()a a -=-【分析】根据同底数幂的乘法法则,合并同类项法则,完全平方公式即可作出判断.【解答】解:A 、正确; B 、3x-2x=x ,故选项错误;C 、(a-b )2=a 2-2ab+b 2,故选项错误;D 、(-a 2)2=a 4,故选项错误. 故选:A .【点评】本题考查了同底数幂的乘法法则,合并同类项法则,完全平方公式,熟记公式的几个变形公式对解题大有帮助.3. 如果一个两位数的个位、十位上的数字分别是a 、b ,那么这个数可用代数式表示为( )A. baB. 10b a +C. 10a b +D. 10()a b +【专题】应用题.【分析】两位数=10×十位数字+个位数字,把相关字母代入即可求解. 【解答】解:∵个位上的数字是a ,十位上的数字是b , ∴这个两位数可表示为 10b+a . 故选:B .【点评】本题考查列代数式,找到所求式子的等量关系是解决问题的关键.用到的知识点为:两位数=10×十位数字+个位数字.4. 下列乘法中,能应用平方差公式的是( )A. ()()x y y x --B. (23)(23)x y y x -+C. ()()x y y x --+D. (23)(32)x y y x ---【专题】计算题.【分析】利用平方差公式的结构特征判断即可.【解答】解:能用平方差公式计算的是(-2x-3y )(3y-2x )=4x 2-9y 2. 故选:D .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.5. 若22()(7)x px q x +++的计算结果中,不含2x 项,则q 的值是( )A. 0B. 7C. -7D. 7±【分析】把式子展开,找到所有x 2项的系数,令它的系数分别为0,列式求解即可.【解答】解:∵(x 2+px+q )(x 2+7) =x 4+7x 2+px 3+7px+qx 2+7q =x 4+px 3+(7+q )x 2+7px+7q . ∵乘积中不含x 2项, ∴7+p=0, ∴q=-7. 故选:C .【点评】考查了多项式乘多项式,灵活掌握多项式乘以多项式的法则,注意各项符号的处理.6. 我们规定:!(1)(2)321n n n n =⨯-⨯-⨯⨯⨯,如:1!1,2!21,3!321,,100!100999821==⨯=⨯⨯=⨯⨯⨯⨯,那么,1!2!3!100!++++的个位数字是( ) A. 1 B. 2C. 3D. 4【专题】规律型.【分析】由于1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0,依此可求1!+2!+3!+…+100!的个位数字.【解答】解:∵1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1=24,5!=5×4×3×2×1=120,后面的个位数字是都是0, 1+2+6+24=33,∴1!+2!+3!+…+100!的个位数字是3. 故选:C .【点评】本题主要考查了尾数特征,规律型:数字的变化类,在解题时要注意找出规律列出式子并运用简便方法的计算是本题关键.二、填空题(每题2分)7. 已知正方形的边长为a ,用含a 的代数式表示正方形的周长,应为____________.【分析】利用正方形的周长计算公式直接列式即可. 【解答】解:正方形的边长为a ,周长为4a . 故答案为:4a .【点评】此题考查列代数式,掌握正方形的周长计算方法是解决问题的关键. 8. 单项式233a bc -的次数是____________. 【分析】根据单项式次数的概念求解. 【解答】解:单项式-3a 2bc 3的次数是6. 故答案为:6.【点评】本题考查了单项式的知识,一个单项式中所有字母的指数的和叫做单项式的次数.9. 当4a =时,代数式1(2)2a a -的值为____________. 【专题】计算题;实数.【分析】把a 的值代入代数式计算即可求出值. 【解答】故答案为:4【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 10. 把多项式23324133535a b a b a --+按字母a 的降幂排列是____________. 【专题】常规题型.【分析】先分清多项式的各项,然后按多项式降幂排列的定义排列. 【解答】【点评】此题主要考查了多项式,我们把一个多项式的各项按照某个字母的指数从大到小或从小到大的顺序排列,称为按这个字母的降幂或升幂排列.要注意,在排列多项式各项时,要保持其原有的符号.11. 如果122x ab -与315y a b +-是同类项,那么x y ⋅=____________.【专题】整式.【分析】根据同类项的定义,所含字母相同且相同字母的指数也相同的项是同类项,可得答案.注意同类项与字母的顺序无关,与系数无关. 【解答】解:由题意,得 x-1=3,y+1=2, 解得x=4,y=1, xy=4, 故答案为:4.【点评】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.12. 计算:239632ab ab a b ⎛⎫--+= ⎪⎝⎭____________. 【专题】常规题型.【分析】直接利用单项式乘以多项式运算法则计算得出答案.【解答】故答案为:-6a 2b 2+a 2b-4ab 2.【点评】此题主要考查了单项式乘以多项式,正确掌握运算法则是解题关键.13. 计算:(34)(2)a b a b --=____________. 【专题】整式.【分析】根据多项式乘多项式,可得答案. 【解答】解:原式=3a 2-6ab-4ab+8b 2 =3a 2-10ab+8b 2,故答案为:3a 2-10ab+8b 2.【点评】本题考查了多项式乘多项式,利用多项式的乘法是解题关键.14. 三个连续偶数,中间一个数为n ,则这三个数的积为____________. 【专题】常规题型.【分析】根据连续偶数的特征表示出另外两个偶数,再求出它们的积即可.【解答】解:根据题意得:(n-2)•n•(n+2)=n (n 2-4)=n 3-4n . 故答案为:n 3-4n .【点评】此题考查了列代数式以及单项式乘多项式,正确表示出另外两个偶数是解本题的关键.15. 若231m n +-的值为4,则代数式2263m n +-的值为____________.【专题】计算题;实数.【分析】由题意确定出m 2+3n 的值,原式变形后代入计算即可求出值. 【解答】解:由题意得:m 2+3n-1=4,即m 2+3n=5, 则原式=2(m 2+3n )-3=10-3=7, 故答案为:7【点评】此题考查了代数式求值,熟练掌握运算法则是解本题的关键. 16. 若2,3mna a ==,则32m na+=____________.【分析】利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形,进而求出答案.【解答】解:∵a m =2,a n =3, ∴a 3m+2n=(a m )3×(a n )2 =23×32 =72.故答案为:72.【点评】此题主要考查了幂的乘方运算以及同底数幂的乘法运算,正确将原式变形是解题关键.17. 若多项式2925x mx ++是一个完全平方式,则m =____________. 【专题】计算题.【分析】利用完全平方公式的结构特征判断即可确定出m 的值. 【解答】解:∵9x 2+mx+25是一个完全平方式, ∴m=±30. 故答案为:±30.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.18. 为确保信息安全,信息需加密传输,发送方由明文→密文(加密);接收方由密文→明文(解密)。
湖南省岳阳市七年级上学期数学期中考试试卷
湖南省岳阳市七年级上学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各数, -(-2),(-2)2 ,(-2)3 , -22中,负数的个数为()A . 1个B . 2个C . 3 个D . 4个2. (2分) (2016高一下·锦屏期末) 如果a是有理数,则下列判断中正确的是()A . -a是负数B . |a|是正数C . |a|不是负数D . -|a|不是负数3. (2分)化简m-n-(m+n)的结果是()A . 0B . 2mC . -2nD . 2m-2n4. (2分)一只海豚从水面先潜入水下40米,然后又上升了23米,此时海豚离水面()A . 63米B . 17米C . 23米D . 40米5. (2分)(2017·临沂模拟) 临沂市去年全年的旅游总收入约300.6亿元,将300.6亿元用科学记数法可表示为()A . 30.06×108元B . 30.06×109C . 3.006×1010元D . 3.006×109元6. (2分) (2019七上·杭州期末) 下列代数式中:①3x2-1;②xyz;③ ;④ ,单项式的是()A .B .C .D .7. (2分) (2019七上·金华期末) 下列计算正确的是()A . 5m-2n=3B . 6x3+4x7=10x10C . 3a+2a=5a2D . 8a2b-8ba2=08. (2分)在﹣22 ,﹣(﹣2),+(﹣),﹣|﹣2|这四个数中,负数的个数是()A . 1个B . 2个C . 3个D . 4个9. (2分)已知a,b两数在数轴上对应的点的位置如图所示,则化简代数式|a+b|﹣|a﹣2|+|b+2|的结果是()A . 2a+2bB . 2b+3C . 2a﹣3D . -110. (2分) (2018七上·梁平期末) 日常生活中我们使用的数是十进制数而计算机使用的数是二进制数,即数的进位方法是“逢二进一” 二进制数只使用数字0,1,如二进制数1101记为,通过式子可以转换为十进制数13,仿照上面的转换方法,将二进制数转换为十进制数是()A . 4B . 25C . 29D . 33二、填空题 (共6题;共10分)11. (1分) (2019七上·南浔月考) 的绝对值为 ________;的倒数为________;的值为________.12. (1分)绝对值等于4的所有整数是________ .13. (5分) (2016七上·莆田期中) 在数轴上的点A表示的数为2.5,则与A点相距3个单位长度的点表示的数是________.14. (1分) (2017七上·忻城期中) 计算:-56÷(-28)+(-2)×5=________.15. (1分) (2019七下·郑州开学考) 若x2−4x+5的值为7,则的值为________.16. (1分)观察下面一列数,按某种规律填上适当的数:1,﹣2,4,﹣8,________,________.三、解答题 (共8题;共80分)17. (10分) (2019七上·泰州月考) 计算:(1)(2)18. (5分) |a-2|+|b-3|+|c-4|=0,求a+2b+3c的值.19. (10分) (2017七上·抚顺期中) 某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)星期一二三四五六日增减﹣5+7﹣3+4+10﹣9﹣25(1)本周三生产了多少辆摩托车?(2)本周总生产量与计划生产量相比,是增加还是减少?并求出增加或减少的数量(3)产量最多的一天比产量最少的一天多生产了多少辆?20. (5分)已知|a+5|+|b-3|+|c+2|=0,求-abc的值.21. (10分) (2017七上·北京期中) 化简(1) 5x2+x+3+4x﹣8x2﹣2(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)(3) 3 (x2﹣5x+1)﹣2 (3x﹣6+x2)22. (15分) (2019七上·安庆期中) 桐城市实验中学在“创建文明校园”活动中,为了便于垃圾的投放回收,计划购买A,B,C三种型号的垃圾桶共20个,经市场调查,收集到以下信息:垃圾桶型号A B C单价(元)200165180(1)若A型垃圾桶x个,B型垃圾桶y个,列代数式表示,购买这20个垃圾桶的费用。
2019-2020学年七年级(上)期中数学试卷
2019-2020学年七年级(上)期中数学试卷一、选择题:本大题共10小题,每小题4分,共40分.1.(4分)下列运算结果为﹣3的是()A.+|﹣3| B.﹣(﹣3)C.+(﹣3)D.|﹣(+3)|2.(4分)(﹣5)3表示的意义为()A.(﹣5)×(﹣5)×(﹣5)B.﹣5×5×5C.(﹣5)+(﹣5)+(﹣5)D.(﹣5)×33.(4分)已知一个单项式的系数是5,次数是2,则这个单项式可以是()A.5xy2B.2x5C.5x2+y D.5xy4.(4分)下列式子中,与2x2y不是同类项的是()A.﹣3x2y B.4xy2C.yx2D.5.(4分)多项式a2+5ab2﹣2的次数和常数项分别是()A.2和2 B.2和﹣2 C.3和2 D.3和﹣26.(4分)两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.+1 D.不能确定7.(4分)有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③()+(),④﹣3÷()=9.其中正确的有()A.0个B.1个C.2个D.3个8.(4分)下列四组有理数的大小比较正确的是()A.>B.﹣|﹣2|>﹣|+2| C.<D.||>||9.(4分)若两个非零有理数a,b满足|a|=a,|b|=﹣b,且a+b<0,则a,b取值符合题意的是()A.a=﹣2,b=﹣3 B.a=2,b=﹣3C.a=3,b=﹣2 D.a=﹣3,b=210.(4分)点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)计算下列各题:(1)5+(﹣3)=;(2)﹣3﹣(﹣2)=;(3)1÷5×()=;(4)33×()=.12.(4分)①用四舍五入法,精确到0.01,对2.017取近似数的结果是.②用科学记数法表示136000,其结果是.13.(4分)①.②若a<1时,|a﹣1|=.14.(4分)若A是一个多项式,B是一个单项式,且A+B=2,请写出一组符合条件的整式A 和B,则A=;B=.15.(4分)已知a,b为常数,且三个单项式5xy2,axy b,﹣5xy中有2个相加得到的和为零,那么a和b的值可能是.16.(4分)将整数1,2,3,……,2016按下列方式排列成数表,用斜十字框“X”框出任意的5个数,如果用a,b,c,d,m(m处于斜十字的中心)表示类似“X”框中的五个数.如图中的a=10,b=12,c=24,d=26,m=18.请问框中的a+b+c+d能否等于986?①;(填上“能”或“不能”)②说明理由.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(7分)在数轴上表示下列各数:,﹣(﹣2),0,,﹣1,并把所有的数用“<”号连接起来.18.(9分)计算:(Ⅰ)10+2(﹣2)(Ⅱ)(﹣1)3+[(﹣4)2﹣32×2]19.(9分)化简:(Ⅰ)4x2+2y2﹣(2x2﹣y2)(Ⅱ)3(a2b3+ab2)﹣2(ab2﹣2a2b3)20.(7分)求多项式2(x3﹣2y2)+(2y2﹣x)﹣(x﹣3y2+2x3)的值,其中x=3,y=﹣2.21.(8分)在本次校运会上,初一年(1)(2)(3)班团体总分情况,若(1)班团体总分为x 分,(2)班团体总分比(1)班团体总分的2倍少60分,(3)班团体总分比(2)班团体总分多了10%.(Ⅰ)求初一年(1)(2)(3)班团体总分一共是多少分?(用含x的式子表示);(Ⅱ)若x=70,求初一年(1)(2)(3)班团体总分一共是多少分?22.(10分)已知:A=4x2﹣mx+1,B=x2﹣3x﹣4.(Ⅰ)若A﹣4B的值与x的值无关,求m的值;(Ⅱ)若m=3,试比较A与B的大小.23.(10分)定义一种新运算:观察下列各式:(Ⅰ)请计算(﹣1)⊕;(Ⅱ)请猜一猜:a⊕b=.(用含a,b的代数式表示);(Ⅲ)若a⊕(﹣6b)=﹣2,请计算(2a+b)⊕(2a﹣5b)的值.24.(12分)已知数轴上两点A、B,点A在点B的左边,A点表示的数为a,点B表示的数为b,且A、B两点的距离是6.(Ⅰ)当a=﹣2时,b=;当|b|=4时,a=;(Ⅱ)当a取何值时,|a|+|b|的值最小?最小值是多少;(Ⅲ)若|a+b|=|a|+|b|,求a的取值范围.25.(14分)如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.1.(4分)下列运算结果为﹣3的是()A.+|﹣3| B.﹣(﹣3)C.+(﹣3)D.|﹣(+3)|【分析】根据相反数和绝对值化简可得答案.【解答】解:A、+|﹣3|=3,故这个选项不符合题意;B、﹣(﹣3)=3,故这个选项不符合题意;C、+(﹣3)=﹣3,故这个选项符合题意;D、|﹣(+3)|=3,故这个选项不符合题意.故选:C.【点评】本题考查了相反数和绝对值,解题的关键是掌握相反数和绝对值的意义.2.(4分)(﹣5)3表示的意义为()A.(﹣5)×(﹣5)×(﹣5)B.﹣5×5×5C.(﹣5)+(﹣5)+(﹣5)D.(﹣5)×3【分析】根据有理数的乘方的意义,即可作出判断.【解答】解:(﹣5)3表示的意义为(﹣5)×(﹣5)×(﹣5),故选:A.【点评】此题考查了有理数的乘方,以及有理数的加法,熟练掌握运算法则是解本题的关键.3.(4分)已知一个单项式的系数是5,次数是2,则这个单项式可以是()A.5xy2B.2x5C.5x2+y D.5xy【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【解答】解:此题规定了单项式的系数和次数,但没规定单项式中含几个字母.A、5xy2系数是5,次数是3,故选项错误;B、2x5系数是2,次数是5,故选项错误;C、5x2+y是多项式,故选项错误;D、5xy系数是5,次数是2,故选项正确.故选:D.【点评】此题考查单项式问题,解答此题需灵活掌握单项式的系数和次数的定义.4.(4分)下列式子中,与2x2y不是同类项的是()A.﹣3x2y B.4xy2C.yx2D.【分析】所含字母相同且相同字母的指数也相同的项是同类项.【解答】解:与2x2y不是同类项的是4xy2,故选:B.【点评】此题考查同类项,关键是根据同类项定义中的两个“相同”解答:(1)所含字母相同;(2)相同字母的指数相同5.(4分)多项式a2+5ab2﹣2的次数和常数项分别是()A.2和2 B.2和﹣2 C.3和2 D.3和﹣2【分析】直接利用多项式的次数以及常数项的定义得出答案.【解答】解:多项式a2+5ab2﹣2的次数是:3,常数项是:﹣2.故选:D.【点评】此题主要考查了多项式,正确把握相关定义是解题关键.6.(4分)两个非零有理数的和为零,则它们的商是()A.0 B.﹣1 C.+1 D.不能确定【分析】首先根据条件判断这两个数是一对非零的相反数,由相反数的性质,可知它们符号相反,绝对值相等,再根据有理数的除法法则得出结果.【解答】解:∵两个非零有理数的和为零,∴这两个数是一对相反数,∴它们符号不同,绝对值相等,∴它们的商是﹣1.故选:B.【点评】考查了相反数的定义、性质及有理数的除法运算法则:两数相除,同号得正,异号得负,并把绝对值相除.7.(4分)有下列四个算式:①(﹣5)+(+3)=﹣8,②﹣(﹣2)3=6,③()+(),④﹣3÷()=9.其中正确的有()A.0个B.1个C.2个D.3个【分析】原式各项计算得到结果,即可做出判断.【解答】解:①(﹣5)+(+3)=﹣2,错误;②﹣(﹣2)3=﹣(﹣8)=8,错误;③()+(),错误;④﹣3÷()=﹣3×(﹣3)=9,正确.则其中正确的有1个.故选:B.【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.8.(4分)下列四组有理数的大小比较正确的是()A.>B.﹣|﹣2|>﹣|+2| C.<D.||>||【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【解答】解:∵<,∴选项A不符合题意;∵﹣|﹣2|=﹣|+2|,∴选项B不符合题意;∵>,∴选项C不符合题意;∵||>||,∴选项D符合题意.故选:D.【点评】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.9.(4分)若两个非零有理数a,b满足|a|=a,|b|=﹣b,且a+b<0,则a,b取值符合题意的是()A.a=﹣2,b=﹣3 B.a=2,b=﹣3 C.a=3,b=﹣2 D.a=﹣3,b=2【分析】根据绝对值的意义,由|a|=a,|b|=﹣b,a+b<0可得出a>0,b<0,且|a|<|b|,由此来检查四个选项即可得出结论.【解答】解:∵|a|=a,|b|=﹣b,a+b<0,∴a>0,b<0,且|a|<|b|,在四个选项中只有B选项符合,故选:B.【点评】本题考查了有理数的加法和绝对值的意义,解题的关键是发现a>0,b<0,且|a|<|b|.10.(4分)点M、N、P和原点O在数轴上的位置如图所示,有理数a、b、c各自对应着M、N、P三个点中的某一点,且ab<0,a+b>0,a+c>b+c,那么表示数b的点为()A.点M B.点N C.点P D.无法确定【分析】根据乘积小于0,可得a,b异号,再根据和大于0,得正数的绝对值较大,从图上点的位置关系可得a,b对应着点M与点P;根据a+c>b+c,变形可得a>b,从而可得答案.【解答】解:∵ab<0,a+b>0,∴a,b异号,且正数的绝对值大于负数的绝对值∴a,b对应着点M与点P∵a+c>b+c,∴a>b∴数b对应的点为点M故选:A.【点评】本题考查了有理数与数轴上的点的对应关系,数形结合、明确有理数的混合运算法则及不等式的性质,是解题的关键.二、填空题:本大题共6小题,每小题4分,共24分.11.(4分)计算下列各题:(1)5+(﹣3)=2;(2)﹣3﹣(﹣2)=﹣1;(3)1÷5×()=;(4)33×()=﹣2.【分析】分别根据有理数的加法、减法、乘除运算及乘方的运算法则逐一计算可得.【解答】解:(1)5+(﹣3)=2;(2)﹣3﹣(﹣2)=﹣3+2=﹣1;(3)1÷5×()();(4)33×()=9×()=﹣2;故答案为:2、﹣1、、﹣2.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.12.(4分)①用四舍五入法,精确到0.01,对2.017取近似数的结果是 2.02.②用科学记数法表示136000,其结果是 1.36×105.【分析】①根据近似数的精确度求解;②科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n是非负数;当原数的绝对值<1时,n是负数.【解答】解:①2.017≈2.02(精确到百分位).故答案为:2.02②用科学记数法表示136 000,其结果是1.36×105,故答案为:1.36×105【点评】①考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.②考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.13.(4分)①.②若a<1时,|a﹣1|=1﹣a.【分析】根据一个负数的绝对值等于它的相反数解答即可.【解答】解:||;因为a<1,所以a﹣1<0所以|a﹣1|=1﹣a,故答案为:,1﹣a.【点评】此题考查了绝对值.解决这类问题要把握以下几点:①互为相反数的两个数绝对值相等;②绝对值等于一个正数的数有两个,绝对值等于0的数有一个,没有绝对值等于负数的数.③有理数的绝对值都是非负数.14.(4分)若A是一个多项式,B是一个单项式,且A+B=2,请写出一组符合条件的整式A 和B,则A=2x+2;B=﹣2x.【分析】直接利用多项式的定义以及合并同类项法则得出一个符合题意的答案.【解答】解:∵A是一个多项式,B是一个单项式,且A+B=2,∴A可以为:2x+2,B可以为:﹣2x,答案不唯一.故答案为:2x+2,﹣2x.【点评】此题主要考查了多项式以及单项式,正确把握相关定义是解题关键.15.(4分)已知a,b为常数,且三个单项式5xy2,axy b,﹣5xy中有2个相加得到的和为零,那么a和b的值可能是a=﹣5,b=2或a=5,b=1.【分析】三个单项式中有2个相加得到的和为零,即有两种情况:5xy2,axy b的和为0;axy b,﹣5xy的和为0,据此求解即可.【解答】解:由题意得,5xy2+axy b=0,或axy b﹣5xy=0,解得:a=﹣5,b=2或a=5,b=1.故答案为:a=﹣5,b=2或a=5,b=1.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.16.(4分)将整数1,2,3,……,2016按下列方式排列成数表,用斜十字框“X”框出任意的5个数,如果用a,b,c,d,m(m处于斜十字的中心)表示类似“X”框中的五个数.如图中的a=10,b=12,c=24,d=26,m=18.请问框中的a+b+c+d能否等于986?①不能;(填上“能”或“不能”)②说明理由.【分析】观察图形,可用含m的代数式表示出a、b、c、d的值,结合a+b+c+d=986,即可得出关于m的一元一次方程,解方程即可得出结果.【解答】解:①不能;故答案为:不能;②理由如下:观察图形可知:a=m﹣8,b=m﹣6,c=m+6,d=m+8,根据题意得:(m﹣8)+(m﹣6)+(m+6)+(m+8)=986,整理,得:4m=986.∴m=986÷4=246.5,∵m是正整数,∴框中的a、b、c、d的和不能为986.【点评】本题考查了一元一次方程的应用以及数字的变化规律,找准等量关系,正确列出一元一次方程是解题的关键.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(7分)在数轴上表示下列各数:,﹣(﹣2),0,,﹣1,并把所有的数用“<”号连接起来.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:<1<0<﹣(﹣2)<3.【点评】此题主要考查了有理数大小比较的方法,以及在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.18.(9分)计算:(Ⅰ)10+2(﹣2)(Ⅱ)(﹣1)3+[(﹣4)2﹣32×2]【分析】(Ⅰ)先计算除法,再计算乘法,最后计算加法即可得;(Ⅱ)根据有理数的混合运算顺序和运算法则计算可得.【解答】解:(Ⅰ)原式=10+2×3×(﹣2)=10﹣12=﹣2;(Ⅱ)原式=﹣1+(16﹣18)=﹣1﹣2=﹣3.【点评】本题主要考查有理数的混合运算,解题的关键是掌握有理数的混合运算顺序和运算法则.19.(9分)化简:(Ⅰ)4x2+2y2﹣(2x2﹣y2)(Ⅱ)3(a2b3+ab2)﹣2(ab2﹣2a2b3)【分析】(Ⅰ)先去括号,然后合并同类项.(Ⅱ)先去括号,然后合并同类项.【解答】解:(Ⅰ)4x2+2y2﹣(2x2﹣y2)=4x2+2y2﹣2x2+y2=2x2+3y2;(Ⅱ)3(a2b3+ab2)﹣2(ab2﹣2a2b3)=3a2b3+3ab2﹣2ab2+4a2b3=7a2b3+ab2.【点评】考查了整式的加减,整式的加减步骤及注意问题:1.整式的加减的实质就是去括号、合并同类项.一般步骤是:先去括号,然后合并同类项.2.去括号时,要注意两个方面:一是括号外的数字因数要乘括号内的每一项;二是当括号外是“﹣”时,去括号后括号内的各项都要改变符号.20.(7分)求多项式2(x3﹣2y2)+(2y2﹣x)﹣(x﹣3y2+2x3)的值,其中x=3,y=﹣2.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=2x3﹣4y2+2y2﹣x﹣x+3y2﹣2x3=y2﹣2x,当x=3,y=﹣2时,原式=4﹣6=﹣2.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.21.(8分)在本次校运会上,初一年(1)(2)(3)班团体总分情况,若(1)班团体总分为x 分,(2)班团体总分比(1)班团体总分的2倍少60分,(3)班团体总分比(2)班团体总分多了10%.(Ⅰ)求初一年(1)(2)(3)班团体总分一共是多少分?(用含x的式子表示);(Ⅱ)若x=70,求初一年(1)(2)(3)班团体总分一共是多少分?【分析】(Ⅰ)根据题意可以用含x的代数式分别表示初一年(1)(2)(3)班团体总分,然后再求它们的和即可;(Ⅱ)将x=70代入(1)中的代数式即可解答本题.【解答】解:(Ⅰ)由题意得:(2)班团体总分为(2x﹣60)分,(3)班团体总分为(2x﹣60)×(1+10%)=(2.2x﹣66)分,∴初一年(1)(2)(3)班团体总分共有x+2x﹣60+2.2x﹣66=(5.2x﹣126)分;答:初一年(1)(2)(3)班团体总分一共是(5.2x﹣126)分;(Ⅱ)当x=70时,5.2x﹣126=5.2×70﹣126=273(分).答:初一年(1)(2)(3)班团体总分一共是273分.【点评】本题考查代数式求值、列代数式,解答本题的关键是明确题意,求出相应的代数式的值.22.(10分)已知:A=4x2﹣mx+1,B=x2﹣3x﹣4.(Ⅰ)若A﹣4B的值与x的值无关,求m的值;(Ⅱ)若m=3,试比较A与B的大小.【分析】(Ⅰ)若A﹣4B的值与x的值无关,求m的值;(Ⅱ)把m=3代入A,利用作差法判断即可.【解答】解:(Ⅰ)∵A=4x2﹣mx+1,B=x2﹣3x﹣4,∴A﹣4B=4x2﹣mx+1﹣4x2+12x+16=(﹣m+12)x+17,由结果与x的值无关,得到﹣m+12=0,解得:m=12,则m的值为12;(Ⅱ)把m=3代入得:A=4x2﹣3x+1,B=x2﹣3x﹣4,∵A﹣B=4x2﹣3x+1﹣x2+3x+4=3x2+5≥5>0,∴A>B.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.23.(10分)定义一种新运算:观察下列各式:(Ⅰ)请计算(﹣1)⊕;(Ⅱ)请猜一猜:a⊕b=3a﹣b.(用含a,b的代数式表示);(Ⅲ)若a⊕(﹣6b)=﹣2,请计算(2a+b)⊕(2a﹣5b)的值.【分析】(Ⅰ)根据新定义的运算,第一个数乘以3,减去第二个数,(Ⅱ)新定义运算符号前面的数的3倍,与新定义运算符号后面的数的差,即可得出a⊕b =a×3﹣b=3a﹣b,(Ⅲ)先根据新定义运算得出a、b之间的关系,再将要求的代数式根据定义的运算转化为通常的运算,化简后整体代入求值即可.【解答】解:(Ⅰ)(﹣1)⊕(﹣1)×3故答案为:,(Ⅱ)a⊕b=a×3﹣b=3a﹣b,故答案为:3a﹣b.(Ⅲ)当a⊕(﹣6b)=﹣2时,即:3a+6b=﹣2,a+2b,∴(2a+b)⊕(2a﹣5b)=(2a+b)×3﹣(2a﹣5b)=6a+3b﹣2a+5b=4a+8b=4(a+2b)=4×()=﹣3【点评】本题考查列代数式,解答本题的关键是明确题意,理解新定义的运算与通常的加、减、乘、除、乘方的关系,列出相应的代数式,再根据通常运算的运算法则进行计算是正确解答的关键.24.(12分)已知数轴上两点A、B,点A在点B的左边,A点表示的数为a,点B表示的数为b,且A、B两点的距离是6.(Ⅰ)当a=﹣2时,b=4;当|b|=4时,a=﹣10或﹣2;(Ⅱ)当a取何值时,|a|+|b|的值最小?最小值是多少;(Ⅲ)若|a+b|=|a|+|b|,求a的取值范围.【分析】(Ⅰ)根据两点间的距离及绝对值的化简可得答案;(Ⅱ)根据当原点在点A和点B之间(包括A、B两点)时,A,B到原点的距离和最小,据此可解;(Ⅲ)根据当a、b同号或至少有一个为0时,|a+b|=|a|+|b|成立,可求得a的范围.【解答】解:(Ⅰ)当a=﹣2时∵点A在点B的左边,且A、B两点的距离是6∴b=4;当|b|=4时b=﹣4或b=4当b=﹣4时,a=﹣10;当b=4时,a=﹣2故答案为:﹣10或﹣2.(Ⅱ)当原点在点A和点B之间(包括A、B两点)时,A,B到原点的距离和最小,∴﹣6≤a≤0时,|a|+|b|的值最小,最小值是6.(Ⅲ)当a、b同号或至少有一个为0时,|a+b|=|a|+|b|成立即点A在原点及原点右边或点B在原点及原点左边∴a≥0或a≤﹣6.∴a的取值范围为a≥0或a≤﹣6.【点评】本题考查了数轴上的点与两点间距离的关系、不同的点所处的不同位置与绝对值的大小关系,本题难度中等,属于中档题.25.(14分)如图,半径为1的小圆与半径为2的大圆上有一点与数轴上原点重合,两圆在数轴上做无滑动的滚动,小圆的运动速度为每秒π个单位,大圆的运动速度为每秒2π个单位.(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣4π;(2)若大圆不动,小圆沿数轴来回滚动,规定小圆向右滚动时间记为正数,向左滚动时间记为负数,依次滚动的情况记录如下(单位:秒):﹣1,+2,﹣4,﹣2,+3,﹣8①第几次滚动后,小圆离原点最远?②当小圆结束运动时,小圆运动的路程共有多少?此时两圆与数轴重合的点之间的距离是多少?(结果保留π)(3)若两圆同时在数轴上各自沿着某一方向连续滚动,滚动一段时间后两圆与数轴重合的点之间相距6π,求此时两圆与数轴重合的点所表示的数.【分析】(1)该圆与数轴重合的点所表示的数,就是大圆的周长;(2)①分别计算出第几次滚动后,小圆离原点的距离,比较作答;②先计算总路程,因为大圆不动,计算各数之和为﹣10,即小圆最后的落点为原点左侧,向左滚动10秒,距离为10π;(3)分四种情况进行讨论:大圆和小圆分别在同侧,异侧时,表示出各自与数轴重合的点所表示的数.根据两圆与数轴重合的点之间相距6π列等式,求出即可.【解答】解:(1)若大圆沿数轴向左滚动1周,则该圆与数轴重合的点所表示的数是﹣2π•2=﹣4π,故答案为:﹣4π;(2)①第1次滚动后,|﹣1|=1,第2次滚动后,|﹣1+2|=1,第3次滚动后,|﹣1+2﹣4|=3,第4次滚动后,|﹣1+2﹣4﹣2|=5,第5次滚动后,|﹣1+2﹣4﹣2+3|=2,第6次滚动后,|﹣1+2﹣4﹣2+3﹣8|=10,则第6次滚动后,小圆离原点最远;②1+2+4+3+2+8=20,20×π=20π,﹣1+2﹣4﹣2+3﹣8=﹣10,∴当小圆结束运动时,小圆运动的路程共有20π,此时两圆与数轴重合的点之间的距离是10π;(3)设时间为t秒,分四种情况讨论:i)当两圆同向右滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:2πt,小圆与数轴重合的点所表示的数为:πt,2πt﹣πt=6π,2t﹣t=6,t=6,2πt=12π,πt=6π,则此时两圆与数轴重合的点所表示的数分别为12π、6π.ii)当两圆同向左滚动,由题意得:t秒时,大圆与数轴重合的点所表示的数:﹣2πt,小圆与数轴重合的点所表示的数:﹣πt,﹣πt+2πt=6π,﹣t+2t=6,t=6,﹣2πt=﹣12π,﹣πt=﹣6π,则此时两圆与数轴重合的点所表示的数分别为﹣12π、﹣6π.iii)当大圆向右滚动,小圆向左滚动时,同理得:2πt﹣(﹣πt)=6π,3t=6,t=2,2πt=4π,﹣πt=﹣2π,则此时两圆与数轴重合的点所表示的数分别为4π、﹣2π.iiii)当大圆向左滚动,小圆向右滚动时,同理得:πt﹣(﹣2πt)=6π,t=2,πt=2π,﹣2πt=﹣4π,则此时两圆与数轴重合的点所表示的数分别为﹣4π、2π.【点评】本题考查了数轴及圆的几何变换,还考查了一元一次方程的应用,用方程解决此类问题比较简单,同时又利用了分类讨论的思想,明确向右移动坐标加的关系,向左移动坐标减的关系.。
2019-2020学年湘教版七年级上学期期中考试数学试卷含解答
2019-2020学年湘教版七年级上学期期中考试数学试卷一、选择题(本大题共12小题,每小题3分,共36分)1.(3分)的倒数是()A.2018B.﹣2018C.﹣D.2.(3分)如果收入15元记作+15元,那么支出20元记作()元.A.+5B.+20C.﹣5D.﹣203.(3分)下列各组数中,互为相反数的是()A.与﹣0.8B.与﹣0.33C.﹣2与﹣D.0与04.(3分)下列代数式中多项式的个数是()(1)a;(2)2x2+2xy+y2;(3)a+1;(4)a2﹣;(5)﹣(x+y)A.1B.2C.3D.45.(3分)在下列单项式中,与2xy是同类项的是()A.2x2y2B.3y C.xy D.4x6.(3分)运用等式性质进行的变形,正确的是()A.如果a=b,那么a+2=b+3B.如果a=b,那么ac=bcC.如果a=b,那么D.如果a2=3a,那么a=37.(3分)下列方程中是一元一次方程的是()A.2x﹣4=y+2B.5x﹣3=6x+1C.xy=2D.x+=28.(3分)下列方程变形中,正确的是()A.方程3x﹣2=2x+1,移项,得3x﹣2x=﹣1+2B.方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x﹣1C.方程t=,系数化为1,得t=1D.方程=,去分母,得5(x﹣1)=2x9.(3分)计算:(﹣1)2017的值是()A.1B.﹣1C.2017D.﹣201710.(3分)已知x m﹣1﹣6=0是关于x的一元一次方程,则m的值是()A.1B.﹣1C.﹣2D.211.(3分)如图,数轴上的两点A、B表示的数分别为a、b,下列结论正确的是()A.b﹣a>0B.a﹣b>0C.ab>0D.a+b>012.(3分)代数式mx﹣2x+y+8的值与x的取值无关,那么m的值是()A.﹣8B.0C.2D.8二、填空题(本题共6个小题,每小题3分,共18分)13.(3分)单项式﹣2ab2的系数是.14.(3分)据测算,我国每年因沙漠造成的直接经济损失超过5 400 000万元,这个数用科学记数法表示为万元.15.(3分)将数1.4920精确到十分位为.16.(3分)如果|m﹣1|+(n﹣2018)2=0,那么mn的值为.17.(3分)某商品每件的售价是192元,销售利润是60%,则该商品每件的进价元,18.(3分)在实数范围内定义一种新运算“⊕”,其运算规则为:a⊕b=﹣2a+3b,如:1⊕5=﹣2×1+3×5=13,则方程x⊕4=0的解为.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.(8分)计算:(1)(﹣10)÷(﹣)×5(2)(﹣1)10×2+(﹣2)3÷420.(8分)解方程:(1)5(x﹣8)=10;(2).21.(8分)先化简,再求值:(x2﹣2x3+1)﹣(﹣1﹣2x3+2x2),其中x=2.22.(8分)已知:x﹣2y﹣2=0.(1)x﹣2y=.(2)求:+(5+4x﹣6y)+2(y﹣x+1)的值.23.(8分)如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为a米,宽为b米.(1)请列式表示广场空地的面积;(2)若休闲广场的长为400米,宽为100米,圆形花坛的半径为10米,求广场空地的面积计算结果保留π).24.(8分)(1)一项工作,甲独做需18天,乙独做需24天,如果两人合做8天后,余下的工作再由甲独做多少天完成?(2)甲一天能加工A种零件50个或加工B种零件20个,1个A种零件与2个B种零件配成一套,那么甲30天时间安排多少天做A种零件,多少天做B种零件,才能使得所有零件都刚好配套?25.(9分)在一元一次方程中,如果两个方程的解相同,则称这两个方程为同解方程;(1)若关于x的两个方程2x=4与mx=m+1是同解方程,求m的值;(2)若关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,求a的值;(3)若关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,求此时符合要求的正整数m,n的值.26.(9分)数轴上两点A、B,其中A、B对应的数分别是a、b(b>0).(1)若A点表示数﹣4,点B表示数7,求线段AB的长;(2)若A点表示数﹣4,点B表示数31,P和Q分别从A和B同时相向而行,P的速度为8个单位秒,Q的速度为1个单位/秒,当P到达点B立即返回后第二次与Q相遇,求出相遇点在数轴上表示的数是多少?(3)若P、Q点分别同时从点A、B向右运动,点P速度为x个单位秒,点Q速度为b个单位/秒,若P对应数为m,Q对应数为n,请问,当x=4时,a、b取何值,才使得P、Q两点对应的数m、n始终满足.参考答案与试题解析一、选择题(本大题共12小题,每小题3分,共36分)1.【解答】解:根据倒数的定义得:×2018=1,因此倒数是2018.故选:A.2.【解答】解:“正”和“负”相对,所以如果收入15元记作+15元,那么支出20元记作﹣20元.故选:D.3.【解答】解:A、与﹣0.8不是相反数,错误;B、与﹣0.33不是相反数,错误;D、﹣2与﹣不是相反数,是倒数,错误;D、0与0是相反数,正确;故选:D.4.【解答】解:(1)单独一个字母a是单项式,故错误;(2)2x2+2xy+y2;(3)a+1;(5)﹣(x+y)都是多项式.故选:C.5.【解答】解:与2xy是同类项的是xy.故选:C.6.【解答】解:A、在等式a=b的两边应该加上同一个数该等式才成立,故本选项错误;B、在等式a=b的两边同时乘以c,该等式仍然成立,故本选项正确;C、当c=0时,该等式不成立,故本选项错误;D、如果a2=3a,那么a=0或a=3,故本选项错误;故选:B.7.【解答】解:A、2x﹣4=y+2,含有2个未知数,不是一元一次方程,选项不符合题意;B、5x﹣3=6x+1是一元一次方程,故选项符合题意;C、xy=2,含有2个未知数,且次数是2次,不是一元一次方程,不符合题意;D、x+=2不是整式方程,不是一元一次方程,选项不符合题意.故选:B.8.【解答】解:A、方程3x﹣2=2x+1,移项,得3x﹣2x=1+2,错误;B、方程3﹣x=2﹣5(x﹣1),去括号,得3﹣x=2﹣5x+5,错误;C、方程t=,系数化为1,得t=,错误;D、方程=,去分母,得5(x﹣1)=2x,正确,故选:D.9.【解答】解:(﹣1)2017=﹣1.故选:B.10.【解答】解:根据题意得:m﹣1=1,解得:m=2,故选:D.11.【解答】解:∵a<﹣1<0<b<1,A、∴b﹣a>0,故本选项正确;B、a﹣b<0;故本选项错误;C、ab<0;故本选项错误;D、a+b<0;故本选项错误.故选:A.12.【解答】解:∵mx﹣2x+y+8=(m﹣2)x+y+8,∴当代数式mx﹣2x+y+8的值与字母x的取值无关时,m﹣2=0.解得:m=2,故选:C.二、填空题(本题共6个小题,每小题3分,共18分)13.【解答】解:单项式﹣2ab2的系数是﹣2,故答案为﹣2.14.【解答】解:5 400 000=5.4×106万元.故答案为5.4×106.15.【解答】解:数1.4920精确到十分位为1.5.故答案为1.5.16.【解答】解:∵|m﹣1|+(n﹣2018)2=0,∴m﹣1=0,n﹣2018=0,解得:m=1,n=2018,故mn=2018.故答案为:2018.17.【解答】解:设该商品每件的进价为x元,根据题意可得:(1+60%)x=192,解得:x=120,故答案为:120.18.【解答】解:∵x⊕4=﹣2x+3×4=﹣2x+12,∴方程x⊕4=0可化为:﹣2x+12=0,解得x=6.故答案为:x=6.三、解答题(19-24题8分一题,25、26题9分一题,共66分)19.【解答】解:(1)(﹣10)÷(﹣)×5=10×5×5=250;(2)(﹣1)10×2+(﹣2)3÷4=1×2+(﹣8)÷4=2+(﹣2)=0.20.【解答】解:(1)去括号得:5x﹣40=10,移项得:5x=40+10,合并同类项得:5x=50,系数化为1得:x=10,(2)去分母得:4(2x﹣1)﹣3(2x﹣6)=12,去括号得:8x﹣4﹣6x+18=12,移项得:8x﹣6x=12﹣18+4,合并同类项得:2x=﹣2,系数化为1得:x=﹣1.21.【解答】解:原式=x2﹣2x3+1+1+2x3﹣2x2=﹣x2+2,当x=2时,原式=﹣4+2=﹣2.22.【解答】解:(1)∵x﹣2y﹣2=0,∴x﹣2y=2.故答案为2;(2)∵x﹣2y=2,∴原式=5+4x﹣6y+2y﹣2x+2=7+2x﹣4y=7+2(x﹣2y)=7+2×2=11.23.【解答】解:(1)广场空地的面积=ab﹣πr2;(2)当a=400,b=100,r=10时,代入(1)得到的式子,得400×100﹣π×102=40000﹣100π(米2).答:广场面积为(40000﹣100π)米2.24.【解答】解:(1)设余下的工作再由甲独做x天完成,根据题意可得:,解得:x=4,答:余下的工作再由甲独做4天完成;(2)设x天制作A种零件,可得方程:2×50x=20(30﹣x),解得:x=5,30﹣5=25,答:甲30天时间安排5天做A种零件,25天做B种零件,才能使得所有零件都刚好配套.25.【解答】解:(1)解方程2x=4得x=2,把x=2代入mx=m+1得2m=m+1,解得m=1;(2)关于x的两个方程2x=a+1与3x﹣a=﹣2得x=,x=,∵关于x的两个方程2x=a+1与3x﹣a=﹣2是同解方程,∴=,解得a=﹣7;(3)解关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)得x=,x=,∵关于x的两个方程5x+(m+1)=mn与2x﹣mn=﹣(m+1)是同解方程,∴=,∴mn﹣3m﹣3=0,mn=3(m﹣1),∵m,n是正整数,∴m=3,n=2.26.【解答】解:(1)AB=|﹣4﹣7|=11;(2)设出发t秒后,P与Q第二次相遇,根据题意得,8t﹣t=AB,即8t﹣t=31﹣(﹣4),解得,t=5,∴第二次相遇点表示的数为:31﹣5=26;(3)设运动时间为t秒,由题意得,m=a+4t,n=b+bt,∵数m、n始终满足,∴数m、n始终满足,即2a﹣b+(8﹣b)t=6对于任意的t值都成立,∴,解得,.。
[组合]湖南省岳阳市经济技术开发区2019-2020学年七年级上学期期中数学试题共3套
人教版七上数学期中试题(附解析答案)一、选择题(共12小题)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.12.(3分)温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为()A.13×108B.1.3×108C.1.3×109D.1.393.(3分)下列计算正确的是()A.﹣2a+5b=3ab B.﹣22+|﹣3|=7C.3ab2﹣5b2a=﹣2ab2D.+()﹣1=﹣14.(3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考5.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.96.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣27.(3分)若a,b互为相反数,c,d互为倒数,则代数式(a+b﹣1)(cd+1)的值是()A.1B.0C.﹣1D.﹣28.(3分)如图所示,有几滴墨水滴在数轴上,则被墨迹遮住的所有整数的和为()A.﹣11B.1C.﹣15D.﹣69.(3分)已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣510.(3分)下列说法,正确的有()(1)整数和分数统称为有理数;(2)任何有理数都有倒数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个11.(3分)若多项式ax2+2x﹣y2﹣7与x2﹣bx﹣3y2+1的差与x的取值无关,则a﹣b的值为()A.1B.﹣1C.3D.﹣312.(3分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31二、填空题(共4小题)13.(3分)如果风车顺时针旋转60°记作+60°,那么逆时针旋转25°记作.14.(3分)如果对于任何非零有理数a,b定义一种新的运算“★”如下:a★b=,则﹣4★2的值为.15.(3分)若代数式4x2﹣2x+5的值是7,则代数式2x2﹣x+1的值是.16.(3分)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是.﹣4a b c6b﹣2…三、解答题(共7小题)17.计算与化简:(1)(2)(3)(4).18.化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.19.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是(立方单位),表面积是(平方单位)(2)画出该几何体的主视图和左视图.20.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?21.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面长为8,宽为7的长方形盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示设图中小长方形的宽为m.(1)小长方形的长为(用含m的代数式表示);(2)求图②中两块阴影部分周长的和.22.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.23.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是;表示﹣3和2两点之间的距离是;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.2019-2020学年广东省深圳市南山区第二外国语学校七年级(上)期中数学试卷参考答案与试题解析一、选择题(共12小题)1.(3分)在﹣3,﹣1,0,1四个数中,比﹣2小的数是()A.﹣3B.﹣1C.0D.1【分析】利用两个负数,绝对值大的其值反而小,进而得出答案.【解答】解:∵|﹣3|=3,|﹣2|=2,∴比﹣2小的数是:﹣3.故选:A.2.(3分)温家宝总理有句名言:多么小的问题乘以13亿,都会变得很大;多么大的经济总量,除以13亿都会变得很小.将1 300 000 000用科学记数法表示为()A.13×108B.1.3×108C.1.3×109D.1.39【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:1 300 000 000=1.3×109.故选:C.3.(3分)下列计算正确的是()A.﹣2a+5b=3ab B.﹣22+|﹣3|=7C.3ab2﹣5b2a=﹣2ab2D.+()﹣1=﹣1【分析】根据合并同类项的法则及有理数的混合运算法则,分别进行各选项的判断即可.【解答】解:A、﹣2a与5b不是同类项,不能直接合并,故本选项错误;B、﹣22+|﹣3|=﹣4+3=﹣1,故本选项错误;C、3ab2﹣5b2a=﹣2ab2,故本选项正确;D、﹣+(﹣)﹣1=﹣2,故本选项错误;故选:C.4.(3分)如图是每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是()A.冷B.静C.应D.考【分析】利用正方体及其表面展开图的特点解题.【解答】解:这是一个正方体的平面展开图,共有六个面,其中面“静”与面“着”相对,面“沉”与面“应”相对,“冷”与面“考”相对.故选:B.5.(3分)已知|a﹣2|+(b+3)2=0,则b a的值是()A.﹣6B.6C.﹣9D.9【分析】先依据非负数的性质求得a、b的值,然后再代入求解即可.【解答】解:∵|a﹣2|+(b+3)2=0,∴a=2,b=﹣3.∴原式=(﹣3)2=9.故选:D.6.(3分)如果单项式2a2m﹣5b n+2与ab3n﹣2的和是单项式,那么m和n的取值分别为()A.2,3B.3,2C.﹣3,2D.3,﹣2【分析】根据题意可知单项式2a2m﹣5b n+2与ab3n﹣2是同类项,结合同类项的定义中相同字母的指数也相同的条件,可得方程组:,解方程组即可求得m,n的值.【解答】解:根据题意,得解得m=3,n=2.故选:B.7.(3分)若a,b互为相反数,c,d互为倒数,则代数式(a+b﹣1)(cd+1)的值是()A.1B.0C.﹣1D.﹣2【分析】根据互为相反数的定义可得a+b=0,倒数的定义可得cd=1,然后代入代数式进行计算即可得解.【解答】解:∵a,b互为相反数,c,d互为倒数,∴a+b=0,cd=1,∴(a+b﹣1)(cd+1)=(0﹣1)(1+1)=﹣2.故选:D.8.(3分)如图所示,有几滴墨水滴在数轴上,则被墨迹遮住的所有整数的和为()A.﹣11B.1C.﹣15D.﹣6【分析】根据数轴上点的特点,找出被墨迹遮住的所有整数,再加起来进行计算即可.【解答】解:观察数轴可知:被墨迹遮住的所有整数有﹣7,﹣6,﹣5,﹣4,﹣3,2,3,4,5,这些数字的和是:﹣11;故选:A.9.(3分)已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣5【分析】原式去括号整理后,将已知等式代入计算即可求出值.【解答】解:∵a﹣b=3,c+d=2,∴原式=a+c﹣b+d=(a﹣b)+(c+d)=3+2=5.故选:C.10.(3分)下列说法,正确的有()(1)整数和分数统称为有理数;(2)任何有理数都有倒数;(3)一个数的绝对值一定为正数;(4)立方等于本身的数是1和﹣1.A.1个B.2个C.3个D.4个【分析】按照有理数的分类和绝对值的性质进行判断.【解答】解:(1)整数和分数统称为有理数;正确;(2)0没有倒数;错误;(3)0的绝对值为0;错误;(4)立方等于本身的数是0,1和﹣1.错误.故选:A.11.(3分)若多项式ax2+2x﹣y2﹣7与x2﹣bx﹣3y2+1的差与x的取值无关,则a﹣b的值为()A.1B.﹣1C.3D.﹣3【分析】首先列出两个整式差的算式,去括号、合并同类项化简,继而利用多项式与x 无关,得出关于x的同类项系数和为零,进而得出答案.【解答】解:(ax2+2x﹣y2﹣7)﹣(x2﹣bx﹣3y2+1)=ax2+2x﹣y2﹣7﹣x2+bx+3y2﹣1=(a﹣1)x2+(b+2)x+2y2﹣8,∵两个多项式的差与x的取值无关,∴a﹣1=0且b+2=0,解得:a=1,b=﹣2,则a﹣b=1﹣(﹣2)=1+2=3,故选:C.12.(3分)古希腊著名的毕达哥拉斯学派把1,3,6,10…这样的数称为“三角形数”,而把1,4,9,16…这样的数称为“正方形数”.从图中可以发现,任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.下列等式中,符合这一规律的是()A.13=3+10B.25=9+16C.36=15+21D.49=18+31【分析】本题考查探究、归纳的数学思想方法.题中明确指出:任何一个大于1的“正方形数”都可以看作两个相邻“三角形数”之和.由于“正方形数”为两个“三角形数”之和,正方形数可以用代数式表示为:(n+1)2,两个三角形数分别表示为n(n+1)和(n+1)(n+2),所以由正方形数可以推得n的值,然后求得三角形数的值.【解答】解:显然选项A中13不是“正方形数”;选项B、D中等式右侧并不是两个相邻“三角形数”之和.故选:C.二、填空题(共4小题)13.(3分)如果风车顺时针旋转60°记作+60°,那么逆时针旋转25°记作﹣25°.【分析】根据题意,可以表示出逆时针旋转25°,本题得以解决.【解答】解:如果风车顺时针旋转60°记作+60°,那么逆时针旋转25°记作﹣25°,故答案为:﹣25°.14.(3分)如果对于任何非零有理数a,b定义一种新的运算“★”如下:a★b=,则﹣4★2的值为﹣1.【分析】根据题中的新定义将所求式子化为普通运算,计算即可得到结果.【解答】解:根据题意:﹣4★2=﹣1=﹣1.故答案为:﹣115.(3分)若代数式4x2﹣2x+5的值是7,则代数式2x2﹣x+1的值是2.【分析】由于4x2﹣2x+5=7变形得到2x2﹣x=1,然后代入2x2﹣x+1计算即可.【解答】解:∵4x2﹣2x+5=7,∴2x2﹣x=1,∴2x2﹣x+1=1+1=2.故答案为2.16.(3分)如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2013个格子中的整数是﹣2.﹣4a b c6b﹣2…【分析】根据三个相邻格子的整数的和相等列式求出a、c的值,再根据第9个数是﹣2可得b=﹣2,然后找出格子中的数每3个为一个循环组依次循环,在用2013除以3,根据余数的情况确定与第几个数相同即可得解.【解答】解:∵任意三个相邻格子中所填整数之和都相等,∴﹣4+a+b=a+b+c,解得c=﹣4,a+b+c=b+c+6,解得a=6,所以,数据从左到右依次为﹣4、6、b、﹣4、6、b,第9个数与第三个数相同,即b=﹣2,所以,每3个数“﹣4、6、﹣2”为一个循环组依次循环,∵2013÷3=671,∴第2013个格子中的整数与第3个格子中的数相同,为﹣2.故答案为:﹣2.三、解答题(共7小题)17.计算与化简:(1)(2)(3)(4).【分析】(1)原式利用减去一个数等于加上这个数的相反数将减法运算化为加法运算,且利用绝对值的代数意义化简,计算即可得到结果;(2)原式第一项利用同号两数相除的法则计算,第二项约分后,即可得到结果;(3)先计算括号中的乘方运算,再计算乘法运算,约分即可得到结果;(4)先利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,利用乘法分配律变形后,即可得到结果.【解答】解:(1)原式=﹣78+5+0.5+15﹣0.5=﹣58;(2)原式=7+(﹣9)=﹣2;(3)原式=﹣×(﹣9×﹣4)=﹣×(﹣8)=6;(4)原式=(﹣﹣+)×36=﹣×36﹣×36+×36=﹣27﹣20+21=﹣26.18.化简(1)(﹣2ab+3a)﹣2(2a﹣b)+2ab;(2)先化简,再求值:5a2+3b2+2(a2﹣b2)﹣(5a2﹣3b2),其中a=﹣1,b=.【分析】(1)原式去括号合并即可得到结果;(2)原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:(1)原式=﹣2ab+3a﹣4a+2b+2ab=﹣a+2b;(2)原式=5a2+3b2+2a2﹣2b2﹣5a2+3b2=2a2+4b2,当a=﹣1,b=时,原式=2+1=3.19.5个棱长为1的正方体组成如图的几何体.(1)该几何体的体积是5(立方单位),表面积是22(平方单位)(2)画出该几何体的主视图和左视图.【分析】(1)几何体的体积为5个正方体的体积和,表面积为22个正方形的面积;(2)主视图从左往右看3列正方形的个数依次为2,1,2;左视图1列正方形的个数为2.【解答】解:(1)每个正方体的体积为1,∴组合几何体的体积为5×1=5;∵组合几何体的前面和后面共有5×2=10个正方形,上下共有6个正方形,左右共6个正方形(外面4个加里面2个),每个正方形的面积为1,∴组合几何体的表面积为22.故答案为:5,22;(2)作图如下:20.某出租车驾驶员从公司出发,在南北向的人民路上连续接送5批客人,行驶路程记录如下(规定向南为正,向北为负,单位:km):第1批第2批第3批第4批第5批5km2km﹣4km﹣3km10km(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?【分析】(1)根据有理数加法即可求出答案.(2)根据题意列出算式即可求出答案.(3)根据题意列出算式即可求出答案.【解答】解:(1)5+2+(﹣4)+(﹣3)+10=10(km)答:接送完第五批客人后,该驾驶员在公司的南边10千米处.(2)(5+2+|﹣4|+|﹣3|+10)×0.2=24×0.2=4.8(升)答:在这个过程中共耗油4.8升.(3)[10+(5﹣3)×1.8]+10+[10+(4﹣3)×1.8]+10+[10+(10﹣3)×1.8]=68(元)答:在这个过程中该驾驶员共收到车费68元.21.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面长为8,宽为7的长方形盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示设图中小长方形的宽为m.(1)小长方形的长为8﹣2m(用含m的代数式表示);(2)求图②中两块阴影部分周长的和.【分析】(1)根据线段的和差即可求解;(2)设小长方形卡片的长为n,结合图形分别表示出两部分的阴影周长,再相加即可求出答案.【解答】解:(1)小长方形的长为8﹣2m.故答案为:8﹣2m;(2)设小长方形卡片的长为n,则右上小长方形周长为2×(8﹣n+7﹣n)=30﹣4n,左下小长方形周长为2×(n+7﹣2m)=2n+14﹣4m,∴两块阴影部分周长和=30﹣4n+2n+14﹣4m=44﹣2(n+2m)∵8=n+2m,∴两块阴影部分周长和=44﹣16=28.22.观察下列等式,,,将以上三个等式两边分别相加得:.(1)猜想并写出:=﹣.(2)直接写出下列各式的计算结果:①=;②=.(3)探究并计算:.【分析】(1)由算式可以看出=﹣;(2)①②由(1)的规律直接抵消得出答案即可;(3)每一项提取,利用(1)的规律推得出答案即可.【解答】解:(1)=﹣.(2)直接写出下列各式的计算结果:①=;②=.(3)=×(1﹣+﹣+﹣+…+﹣)=×=.23.结合数轴与绝对值的知识回答下列问题:(1)数轴上表示4和1的两点之间的距离是3;表示﹣3和2两点之间的距离是5;一般地,数轴上表示数m和数n的两点之间的距离等于|m﹣n|.如果表示数a和﹣2的两点之间的距离是3,那么a=1或﹣5;(2)若数轴上表示数a的点位于﹣4与2之间,求|a+4|+|a﹣2|的值;(3)当a取何值时,|a+5|+|a﹣1|+|a﹣4|的值最小,最小值是多少?请说明理由.【分析】(1)根据数轴,观察两点之间的距离即可解决;(2)根据|a+4|+|a﹣2|表示数a的点到﹣4与2两点的距离的和.即可求解;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.即可求解.【解答】解:(1)3,5,1或﹣5;(2)因为|a+4|+|a﹣2|表示数轴上数a和﹣4,2之间距离的和.又因为数a位于﹣4与2之间,所以|a+4|+|a﹣2|=6;(3)根据|a+5|+|a﹣1|+|a﹣4|表示一点到﹣5,1,4三点的距离的和.所以当a=1时,式子的值最小,此时|a+5|+|a﹣1|+|a﹣4|的最小值是9.七年级上学期期中考试数学试卷(无答案)一、选择题(每小题3分,共30分) 1. |-3|的相反数是( )A .13-B .3C .13D .-32. 太阳与地球之间的距离约为149 600 000千米.用科学记数法表示为( )A .14.96×108千米B .1.496×108千米C .14.96×107千米D .1.496×107千米3. 你认为下列各式正确的是( )A .a 2=(-a )2B .a 3=(-a )3C .-a 2=|-a 2|D .a 3=|a 3|4. 若(a +3)2+|b -2|=0,则a b 的值是( )A .6B .-6C .9D .-95. 若-3x 2m y 3与2x 4y n 是同类项,则m n =( )A .5B .6C .7D .86. 下列说法正确的是( )A .单项式-2πR 2的次数是3,系数是-2B .单项式2235x y -的系数是3,次数是4C .3a b+不是多项式 D .多项式3x 2-5x 2y 2-6y 4-2是四次四项式7. 如图1,将一个边长为a 的正方形纸片剪去两个长方形,得到一个“S ”的图案,如图2所示,再将剪下的两个小长方形拼成一个新的长方形,如图3所示,则新长方形的周长可表示为( ) A .2a -3bB .2a -4bC .4a -8bD .4a -10baa 图1图2图38. 如图在数轴上点A ,B 分别表示有理数a ,b ,则-a ,-b ,a ,b 四个数的大小关系是( )A .-a <a <b <-bB .-b <b <-a <aC .-a <-b <b <aD .-a <b <-b <aAB a9. 如图,在数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB =BC =3CD ,若A ,D 两点表示的数分别为-5和6,且AC 的中点为E ,BD 的中点为M ,BC 之间距点B 的距离为13BC 的点为N ,则该数轴的原点为( ) A .点EB .点BC .点MD .点NA B C D10. 有理数a ,b 在数轴上的位置如图所示,代数式1111a ab a ba a ab b +---+-+--的值是( ) A .-1B .0C .1D .2b a 21二、填空题(每小题3分,共15分) 11. 比较大小:611-_________813-(在横线上填入“>”“<”或“=”). 12. 已知x -3y =3,则7+6y -2x =__________.13. 若|x |=2,则318x =__________.14. 一名足球守门员练习折返跑,从球门线出发,向前为正,返回为负,他的记录如下(单位:米):+5,-3,+10,-8,+4,-6,+8,-10.守门员全部练习结束后,他共跑了__________米.15. 定义一种对正整数n 的“F 运算”:①当n 为奇数时,结果为3n +5;②当n 为偶数时,结果为2n k (其中k 是使2nk为奇数的最小正整数),并且运算重复进行.例如:取n =26,则运算过程如图:那么当n =898时,第2 020次“F 运算”的结果是___________.F ①F ②F ②第一次第二次第三次26134411……三、解答题(本大题共8个小题,满分75分) 16. (8分)计算:(1)4321(2)(3)15-+------; (2)332020116(2)(3)(1)3⎛⎫÷----÷- ⎪⎝⎭.17. (8分)先化简,再求值:(1)(b +3a )-2(2-5b )-(1-2b -a ),其中:a =2,b =1;(2)222113(159)2()23a a ab a ab ⎡⎤--+-⎢⎥⎣⎦,其中a ,b 满足|a -2|+(b +3)2=0.18. (9分)某空调器销售商,今年四月份销出空调(a -1)台,五月份销售空调比四月份的2倍少1台,六月份销售空调比前两个月的总和的4倍还多5台. (1)用式子表示该销售商今年第二季度共销售空调多少台? (2)若a =220,求第二季度销售的空调总数.19.(9分)在一条不完整的数轴上从左到右有点A,B,C,其中AB=2 cm,BC=4 cm,如图所示,设点A,B,C所对应的数的和是p.(1)若以B为原点,2 cm长为一个单位长度,写出点A,C所对应的数,并计算p的值;(2)若原点O为BC的中点,以1 cm长为一个单位长度,求p的值.20.(10分)如图,长为50 cm、宽为x cm的大长方形被分割为8小块,除阴影A,B外,其余6块是形状、大小完全相同的小长方形,其较短一边长为a cm.(1)由图可知,每个小长方形较长的一边长是________cm(用含a的式子表示);(2)用含x的式子表示图中两块阴影A,B的周长和,并求出当x=40时,此时A,B 的周长和.21.(10分)随着手机的普及,微信(一种聊天软件)的兴起,许多人抓住这种机会,做起了“微商”.很多农产品也改变了原来的销售模式,实行了网上销售,刚大学毕业的小明把自家的冬枣产品也放到了网上,他原计划每天卖100斤冬枣,但由于种种原因,实际每天的销售量与计划量相比有出入.下表是某周的销售情况(超额记为正,不足记为负单位:斤):(2)根据记录的数据可知该周销售量最多的一天比销售量最少的一天多销售__________斤;(3)本周实际销售总量是否达到了计划数量?试通过计算说明理由;(4)若冬枣每斤按8元出售,每斤冬枣的运费平均3元(运费由小明承担),那么小明本周一共收入多少元?22.(10分)观察下面一列数,探求其规律:12,23-,34,45-,56,67-,….(1)写出第7,8,9项的三个数.(2)数20162017和9991000在这列数中吗?若在,请指出它们分别是第几项?若不在,请说明理由.(3)如果这一列数无限排列下去,与哪两个数越来越接近?23.(11分)同学们都知道:|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对应的两点之间的距离.请你借助数轴进行以下探索:(1)数轴上表示x与2的两点之间的距离可以表示为____________.(2)同理|x+3|+|x-1|表示数轴上有理数x所对应的点到-3和1所对应的点的距离之和,请你找出所有符合条件的整数x,使得|x+3|+|x-1|=4,这样的整数是____________.(3)由以上探索猜想|x+10|+|x+2|+|x-8|是否有最小值?如果有,直接写出最小值;如果没有,说明理由;(4)由以上探索及猜想,计算|x-1|+|x-2|+|x-3|+…+|x-2 019|+|x-2 020|的最小值.-661-5-4-2-3-7-1七年级数学第一学期期中试卷(无答案)第Ⅰ卷(本卷满分100分)一、选择题(共10小题,每题3分,共30分)1.下面说法正确的是( )A .有理数是整数B .有理数包括正数和分数C .整数一定是正数D .有理数是正数和负数的统称2.下列方程中是一元一次方程的是( )A .2x =3yB .7x +5=6(x -1)C .x 2+12(x -1)=1 D .3x -5 3.化-2(m -n )为( )A .-2m -nB .-2m +nC .2m -2nD .-2m +2n4.一元一次方程3x -1=5的解为( )A . 1B .2C .3D .45.(缺)6.-(a -b +c )变形后的结是( )A .-a +b +cB .-a +b -cC .-a -b +cD .-a -b -c7.下列方程中,解为x =2的方程是( )A .4x =2B .3x +6=0C .12x =0 D .7x -14=0 8.若关于x 的方程2x -ax +3a =0的解是x =1,则a 的值是( )A .1B .-1C .2D .-29.一个多项式减去-5x 第于3x 2-5x +9,这个多项式是( )A .8x 2-5x +9B .3x 2+9C .3x 2+10x +9D .3x 2-10x +910.下列说法: ①如果a 大于b ,那么a 的倒数小于b 的倒数;②若a 与b 互为相反数,则3a b =-13;③几个有理数相乘,负因数的个数是偶数时,积是正数;④如果mx =my ,那么x =y ,其中正确的有( )A .0B .1C .2D .3二、填空题(每小题3分,共6小题,共18分)11.化简:(-2)2= ;|-1|= .12.太阳的半径的是69660千米,用科学记数法表示约是 米.13.单项式-2πa 2b 3的系数是 ,次数是 .14.点A 在数轴上对应的数为2,若点B 也在数轴上,且AB =3,则点B 在数轴上对应的数为 . 15.若m ,n 互为相反数,a 、b 互为倒数,则2(m +n )-3ab = .16.已知2a +4b =-6,则8-a -2b 的值是 .三、解答题(共5小题,共52分)17.(本题10分)计算:(1)(-12)-5×(-2)2+6 (2)(-2ab+3a)-2(2a-b)+2ab18.(本题10分)用等式的性质解下列方程(1)y+3=2;(2)8m=4m+119.(本题10分)一组数列1,4,7,10……其中有三个相邻的数的和为66,求这三个数.20.(本题10分)己知关于x、y的单项式132m nx y与单式-xy m是同类项,试求整式-12[5m-(2mn+2n-3n)]-(32mn-3n)的值.21.(本题12分)观察下面三行数:2、-4、8、-16、32、-64、……①0、-6、6、-18、30、-66、……②2、-10、14、-34、62、-130……③(1)第①行第n个数是__________;(2)分别说出第②行和第③行的规律?(3)第1列的3个数之和为4,第二列3个数之和为-20,是否存在一列数3数之和为1020?若存在,说明是哪三个数;若不存在,说明理由.第Ⅱ卷(本卷满分50分)四、填空题(共4小题,每小题4分,共16分)22.若abc<0,a+b+c=0,则||b ca++||a cb++||a bc+=__________.23.近似数9.6的准确值a的范围是__________.24.有两组数,第一组:―13,15,―17,第二组数:26,91,-12.从这两组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是__________.25.如果对于某一特定范围内的x的任意允许值,P=|1-x|+|1-2x|+|1-3x|的值恒为常数(即P的值不随x的变化而变化,如A=1-|x|+x,对于x≥0范围的任意取值,A的值恒为常数1),则此常数为__________.五、解答题(共3小题,第26题10分,第27题12分,第28题12分,共34分)26.计算求值:(1)已知x=2时,代数式-ax3-[7-(bx+2ax3)]的值为5.求x=-2时,该代数式的值为多少?(2)已知x=2时,多项式ax5+bx4+cx3+dx2+ex+f和bx4+dx2+f的值分别为4和3,则当x=-2时,ax5+bx4+cx3+dx2+ex+f的值是多少?27.把2012个正整数1,2,3,4,…,2012按如图方式排列成一个表.(1)如图,用一正方形框在表中任意框住4个数,记框中左上角的一个数为x,则另三个数用含x的式子表示出来,从小到大依次是:__________,__________,__________.(2)当(1)中被框住的4个数之和等于416时,x 的值为多少?(3)(1)中能否框住这样的4个数,它们的和等于324?若能,则求出x 的值:若不能,说明理由.28.点A 、B 、C 在数轴上表示的数分别为a ,b ,c ,且a ,b ,c 满足(b +2)2+(c -24)2=0,多项式|3|2a x y -ax 3y +xy 2-1是五次四项式.(1)a 的值为__________,b 的值为__________,c 的值为__________;(2)若数轴上有三个动点M 、N 、P ,分别从点A 、B 、C 开始同时出发在数轴上运动,速度分别为每秒1个单位长度、7个单位长度3个单位长度.①若点P 向左运动,点M 向右运动,点N 先向左运动,遇到点M 后回头再向右运动,遇到点P 后又回头再向左运动,……,这样直到点P 遇到点M 时三点都停止运动,求点N 所走的路程;②若点M 、N 向右运动,点P 向左运动,点Q 为线段PN 中点,在运动过程中,OQ -13MN 的值是否发生变化?若不变,求其值;若变化,说明理由.。
湖南省岳阳市七年级上学期数学期中试卷
湖南省岳阳市七年级上学期数学期中试卷姓名:________班级:________成绩:________一、 单选题 (共 10 题;共 20 分)1. (2 分) (2019 七上·通州期末) 化简下列式子结果为负数的是A.B. C. D. 2. (2 分) (2017·芜湖模拟) ﹣3 的倒数是( ) A.3 B . ﹣3C.﹣D.3. (2 分) (2018 七上·汉滨期中) 下列数中,最小的数是( )A.0B . -8C . 0.001D . -0.254.(2 分)(2017 七上·临川月考) 下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( )城市 平均气温(单位℃)北京 -4.6武汉 3.8广州 13.1哈尔滨 -19.4A . 北京B . 武汉C . 广州D . 哈尔滨5. (2 分) (2019 七上·余杭月考) 太阳中心的温度可达 15 500 000℃,数据 15 500 000 科学记数法表示为()A . 1.5×107B . 1.55×107第 1 页 共 14 页C . 1.6×107 D . 15.5×106 6. (2 分) a 与 b 的平方的和用代数式表示为( ) A . a+b2 B . (a+b) 2 C . a2+b2 D . a2+b 7. (2 分) (-5)6 表示的意义是( ) A . 6 个-5 相乘的积 B . -5 乘以 6 的积 C . 5 个-6 相乘的积 D . 6 个-5 相加的和 8. (2 分) (2019 八上·宜兴月考) 有下列说法:①有理数与数轴上的点一一对应;②直角三角形的两边长 是 5 和 12,则第三边长是 13;③近似数 1.5 万精确到十分位;④无理数是无限小数.其中错误说法的个数有( ) A . 4个 B . 3个 C . 2个 D . 1个 9. (2 分) (2016 七上·绍兴期中) “a 与 b 的差的平方”表示正确的代数式是( ) A . (a﹣b)2 B . a2﹣b2 C . a﹣b2 D . a2﹣b10. (2 分) (2020 七上·卫辉期末) 数 在数轴上的位置如图所示,把 、 大的顺序用“<”连接起来是( )、 、 按从小到A. B.第 2 页 共 14 页C.D.二、 填空题 (共 6 题;共 7 分)11. (1 分) 计算:=________.12. (1 分) (2020 七上·密云期末) a 的 3 倍与 b 的倒数的差,用代数式表示为________.13. (2 分) (2017 七上·临川月考) 数轴上表示有理数-3.5 与 4.5 两点的距离是________.14. (1 分) (2019 七上·花都期中) |-6|=________15.(1 分)(2019 七上·成都期中) 若 a 与 b 互为相反数,c 与 d 互为倒数,m 的绝对值是 2,则 的值为________.16. (1 分) (2016 八上·靖江期末) 当 x 分别取﹣、﹣、﹣、…、﹣ 、﹣2、﹣1、0、1、2、…、2015、2016、2017 时,计算分式的值,再将所得结果相加,其和等于________.三、 解答题 (共 9 题;共 65 分)17. (5 分) (2018 七上·黄陂月考) 将下列各数填在相应的集合里.,, ,,1, , ,0,,整数集合:;分数集合:;正数集合:;负数集合:.18. (5 分) (2019 七上·盐津期中) 把下列各数在数轴上表示出来,并把它们按从大到小的顺序用“﹥”号 连接起来.-2.5,(-2)2 , - ,0,-(-3),19. (10 分) (2019 七上·进贤期中);20. (10 分) (2018 七上·梁子湖期中) 计算:(1) (﹣36)×(﹣ + ﹣ );(2) ﹣42×+|﹣2|3×(﹣ )3.21. (5 分) (2020 七上·津南期中) 计算(1) ( )×(-12);第 3 页 共 14 页(2) 25×5:(3);(4) -3 ×(-2)-4+( ) -(-3)×(-2)22. (10 分) (2019 七上·安庆期中) 桐城市实验中学在“创建文明校园”活动中,为了便于垃圾的投放回收,计划购买 A,B,C 三种型号的垃圾桶共 20 个,经市场调查,收集到以下信息:垃圾桶型号ABC单价(元)200165180(1) 若 A 型垃圾桶 x 个,B 型垃圾桶 y 个,列代数式表示,购买这 20 个垃圾桶的费用。
2020-2021学年湖南省岳阳市经开区七年级(上)期中数学试卷(Word+答案)
2020-2021学年湖南省岳阳市经开区七年级(上)期中数学试卷一、选择题.(每小题3分,共24分)1.(3分)﹣2020的绝对值是()A.﹣2020B.2020C.﹣D.2.(3分)单项式﹣a2b次数为()A.1B.2C.3D.43.(3分)下列各式中,不是同类项的是()A.ab和5ba B.a3和53C.和52xy D.102和4.(3分)岳阳三荷机场开通营运后,岳阳人出行更加便捷.据统计,2020年国庆节假期坐飞机出行的市民约为105000人次,则数据105000用科学记数法表示为()A.1.05×105B.1.05×104C.1.5×105D.10.5×1045.(3分)化简:[x﹣(y﹣z)]﹣[(x﹣y)﹣z]的结果为()A.2y B.2z C.﹣2y D.﹣2z6.(3分)已知|x|=4,|y|=3,且x<y,则x+y的值等于()A.1B.±1C.7D.﹣1或﹣77.(3分)已知代数式y2+2y+7的值是6,则5﹣4y2﹣8y的值是()A.18B.﹣18C.9D.﹣98.(3分)一个正方形和四个全等的小正方形按图①②两种方式摆放,若把图②中未被小正方形覆盖部分(图②中的阴影部分)折成一个无盖的长方体盒子,则此长方体盒子的体积为()A.B.C.D.二、填空题.(每小题4分,共32分)9.(4分)a与b的2倍的差的一半用代数式表示为.10.(4分)﹣1﹣(﹣3)=.11.(4分)岳阳冬季里某一天的最高气温是7℃,最低气温是﹣1℃,则这一天的温差是.12.(4分)化简2(a2﹣2ab+1)﹣4(2ab+a2),并把结果按a的降幂排列为.13.(4分)已知单项式3a m+2b4与﹣a5b n﹣1是同类项,则m=,n=.14.(4分)若|a﹣2|+(b+3)2=0,则(a+b)2020=.15.(4分)比较大小:﹣23(﹣2)3,﹣|﹣5|0(填等号或不等号).16.(4分)李老师到体育用品店买排球,已知排球的单价为a元1个,且商店规定若买10个以上,则超出部分按8折优惠,若李老师买了30个排球,则需付元钱.(用含a的式子表示)三、解答题.(共64分)17.(12分)计算:(1)(﹣7)﹣(+10)+(﹣4)﹣(﹣5);(2)()÷(﹣);(3)1﹣×[3×(﹣)2﹣(﹣1)4]﹣÷(﹣)3.18.(6分)先化简,再求值:x2y﹣[2xy2﹣(xy2+4x2y)﹣xy2]﹣xy2,其中x=2,y=﹣1.19.(6分)已知有理数a,b,c在数轴上的位置如图所示,且|a|=|b|.(1)求a+b与的值;(2)判断b+c,a﹣c,bc,ac的符号.20.(6分)画一根数轴,用数轴上的点把如下的有理数﹣2,﹣0.5,0,﹣4表示出来,并用“<”把它们连接起来.21.(6分)已知a、b互为相反数,m、n互为倒数,求(a+b)+(﹣mn)3﹣mn的值.22.(8分)劳技课上,我县某中学对七年级女生进行了手工制作测试,以能做7个长方体盒子为标准,多于标准的个数记为正数,不足的个数记为负数,其中8名女生的成绩为:+2,﹣1,+3,0,﹣2,﹣3,+1,0.(1)这8名女生中达到标准的占百分之几?(2)她们共做了多少个长方体盒子?23.(10分)我国出租车的收费标准因地而异,甲市:3千米内(含3千米)起步价为6元,3千米以外每千米加收1.5元;乙市:3千米内(含3千米)起步价为10元,3千米以外每千米加收1.2元(超过3千米后不足1千米按1千米算).(1)在甲、乙两市乘坐出租车s(s>3)千米的费用各为多少元?(2)如果在甲、乙两市乘坐出租车的路程都为10千米,那么哪个市的收费高些?高多少?24.(10分)如果有理数a、b满足|ab﹣2|+(1﹣b)2=0,试求:+++…+的值.2020-2021学年湖南省岳阳市经开区七年级(上)期中数学试卷试题解析一、选择题.(每小题3分,共24分)1.解:根据绝对值的概念可知:|﹣2020|=2020,故选:B.2.解:单项式﹣a5b次数为3,故选:C.3.解:A、字母相同且相同字母的指数也相同;B、字母不同,符合题意;C、字母相同且相同字母的指数也相同;D、常数也是同类项;故选:B.4.解:数据105000用科学记数法表示为1.05×105,故选:A.5.解:原式=[x﹣y+z]﹣[x﹣y﹣z]=x﹣y+z﹣x+y+z=2z.故选:B.6.解:∵|x|=4,|y|=3,∴x=±4,y=±3,∵x<y,∴x=﹣4,y=±3,∴x+y=﹣4+3=﹣7或x+y=﹣4+(﹣3)=﹣7.故选:D.7.解:由题意得:y2+2y+4=6,即y2+4y=﹣1,则原式=5﹣2(y2+2y)=4﹣4×(﹣1)=4+4=9.故选:C.8.解:长方体盒子的体积为:b•b•=.故选:C.二、填空题.(每小题4分,共32分)9.解:由题意得,a与b的2倍的差的一半.故答案为:.10.解:﹣1﹣(﹣3)=﹣3+3=2.故答案为4.11.解:根据题意得:7﹣(﹣1)=6+1=8(℃),则这一天的温差是4℃,故答案为:8℃.12.解:原式=2a2﹣2ab+2﹣8ab﹣7a2=﹣2a5﹣12ab+2,故答案为:﹣2a4﹣12ab+213.解:∵3a m+2b3与﹣a5b n﹣1=8是同类项,∴m+2=5,n﹣2=4,∴m=3,n=3,故答案为:3,5.14.解:∵|a﹣2|+(b+3)4=0,∴a﹣2=8,b+3=0,即a=5,b=﹣3,∴(a+b)2020=(2﹣2)2020=(﹣1)2020=1,故答案为:6.15.解:∵﹣23=﹣8,(﹣2)3=﹣5,∴﹣23=(﹣2)3;∵﹣|﹣5|=﹣7,∴﹣|﹣5|≠0.故答案为:=,≠.16.解:由题意得:10a+0.8a(30﹣10),=10a+16a,=26a.故答案为:26a.三、解答题.(共64分)17.解:(1)原式=﹣7﹣10﹣4+7=﹣21+5=﹣16;(2)原式=(﹣﹣)×(﹣36)=×(﹣36)﹣×(﹣36)=﹣6+5+12=10;(3)原式=1﹣×(3×÷(﹣)=1﹣×(×(﹣8)=1﹣×+4=1﹣+2=2.18.解:原式=x2y﹣2xy2+xy2+4x3y+xy5﹣xy2=5x4y﹣xy6,当x=2,y=﹣1时8×(﹣1)﹣×2×(﹣1)5=﹣20﹣=﹣.19.(1)由数轴知:c<b<0<a,∵|a|=|b|,b互为相反数,=﹣1(2)∵c<b<4<a,∴b+c<0;bc>020.解:用数轴表示为:它们的大小关系为﹣4<﹣2<﹣2.5<0.21.解:∵a、b互为相反数,m,∴a+b=0,mn=1,则原式=3+(﹣1)3﹣7=﹣1﹣1=﹣4.22.解:(1)∵2,3,8,1,0,是非负数,∴达标人数:4人,达标率:5÷8=62.6%,答:这8名女生中达到标准的占62.5%;(2)∵+6﹣1+3+3﹣2﹣3+8+0=0,学生做长方体的总个数是:3×8=56(个),答:她们共做了56个长方体盒子.23.解:(1)在甲市乘出租车s(s>3)千米的价钱为:[6+7.5(s﹣3)]元;在乙市乘出租车s(s>4)千米的价钱为:[10+1.2(s﹣4)]元.故两市乘坐出租车s(s>3)千米的价差是:|[6+6.5(s﹣3)]﹣[10+4.2(s﹣3)]|=|6.3s﹣4.5|元;(2)甲市出租车收费:当s=10时,6+1.3(s﹣3)=6+4×1.5=16.6(元),乙市出租车收费:当s=10时,10+1.2(s﹣4)=10+7×1.6=18.4(元),18.4﹣16.2=1.9元.答:乙市出租车收费标准高,高7.9元.24.解:∵|ab﹣2|+(1﹣b)5=0,∴ab﹣2=5,1﹣b=0,解得b=6,a=2,∴原式=+++…+=3﹣++﹣+…+﹣=1﹣=.。
2019年岳阳市初一数学上期中试题及答案
2019年岳阳市初一数学上期中试题及答案一、选择题1.绝对值不大于4的整数的积是( )A .16B .0C .576D .﹣12.﹣3的绝对值是( )A .﹣3B .3C .-13D .133.将一副直角三角尺按如图所示摆放,图中锐角∠1的度数为( )A .58°B .59°C .60°D .61° 4.用科学记数方法表示0.0000907,得( ) A .49.0710-⨯ B .59.0710-⨯ C .690.710-⨯D .790.710-⨯ 5.下列运用等式的性质,变形正确的是( ) A .若x=y ,则x-5=y+5 B .若a=b ,则ac=bcC .若23a b c c =,则2a=3bD .若x=y ,则x y a b= 6.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是( )A .90元B .72元C .120元D .80元 7.下列数中,最小的负数是( )A .-2B .-1C .0D .1 8.有理数a 、b 在数轴上对应的位置如图所示:则下列关系成立的是( )A .a-b>0B .a+b>0C .a-b=0D .a+b<0 9.在如图的2016年6月份的日历表中,任意框出表中竖列上三个相邻的数,这三个数的和不可能是( )A .27B .51C .69D .7210.已知x =2是关于x 的一元一次方程mx+2=0的解,则m 的值为( )A .﹣1B .0C .1D .211.我国古代数学的许多创新和发展都位居世界前列,如南宋数学家杨辉(约13世纪)所著的《详解九章算术》一书中,用如图的三角形解释二项和(a+b )n 的展开式的各项系数,此三角形称为“杨辉三角”.根据“杨辉三角”请计算(a+b )20的展开式中第三项的系数为( )A .2017B .2016C .191D .190 12.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1﹣10%)x =330C .(1﹣10%)2x =330D .(1+10%)x =330 二、填空题13.若代数式5x -5与2x -9的值互为相反数,则x =________.14.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳记数”.如图,一位妇女在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,由图可知,她一共采集到的野果数量为_____个.15.若有理数a 、b 、c 在数轴上的位置如图所示,则化简:| a |+| a -b |-| c +b |=________.16.几个人共同种一批树苗,如果每人种15棵,则剩下4棵树苗未种;如果每人种16棵树苗,则缺4棵树苗,则这批树苗共有_____棵.17.若方程423x m x +=-与方程1(16)62x -=-的解相同,则m 的值为______. 18.观察下列等式:70=1,71=7,72=49,73=343,74=2401,75=16807,…,根据其中的规律可得70+71+72+…+72019的结果的个位数字是_____.19.整理一批数据,甲单独完成需要30小时,乙单独完成需要60小时,现在由甲乙两人合作5小时后,剩余的由乙单独做,还需要_______小时完成.20.正整数按如图的规律排列,请写出第10行,第10列的数字_____.三、解答题21.有一批共享单车需要维修,维修后继续投放骑用,现有甲、乙两人做维修,甲每天维修16辆,乙每天维修的车辆比甲多8辆,甲单独维修完成这批共享单车比乙单独维修完多用20天,公司每天付甲80元维修费,付乙120元维修费.(1)问需要维修的这批共享单车共有多少辆?(2)在维修过程中,公司要派一名人员进行质量监督,公司负担他每天10元补助费,现有三种维修方案:①由甲单独维修;②由乙单独维修;③甲、乙合作同时维修,你认为哪种方案最省钱,为什么?22.小明早晨跑步,他从自己家出发,向东跑了2km到达小彬家,继续向东跑了1.5km到达小红家,然后又向西跑了4.5km到达学校,最后又向东跑回到自己家.(1)以小明家为原点,向东为正方向,用1个单位长度表示1km,在图中的数轴上,分别用点A表示出小彬家,用点B表示出小红家,用点C表示出学校的位置;(2)求小彬家与学校之间的距离;(3)如果小明跑步的速度是250米/分钟,那么小明跑步一共用了多长时间?23.如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.24.先化简再求值:a2﹣(5a2﹣3b)﹣2(2b﹣a2),其中a=﹣1,b=12.25.读句画图:如图所示,A,B,C,D在同一平面内.(1)过点A和点D画直线;(2)画射线CD;(3)连接AB;(4)连接BC,并反向延长BC.(5)已知AB=9,直线AB上有一点F,并且BF=3,则AF=_________【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】先找出绝对值不大于4的整数,再求它们的乘积.【详解】解:绝对值不大于4的整数有,0、1、2、3、4、﹣1、﹣2、﹣3、﹣4,所以它们的乘积为0.故选B.【点睛】绝对值的不大于4的整数,除正数外,还有负数.掌握0与任何数相乘的积都是0.2.B解析:B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-3|=3.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数. 3.C解析:C【解析】根据特殊直角三角形的角度即可解题.【详解】解:由特殊直角三角形可知,∠1=90°-30°=60°, 故选C.【点睛】本题考查了特殊直角三角形的认识,属于简单题,熟悉特殊三角形的角度是解题关键.4.B解析:B【解析】【分析】【详解】解:根据科学记数法的表示—较小的数为10n a ⨯,可知a=9.07,n=-5,即可求解. 故选B【点睛】本题考查科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.5.B解析:B【解析】【分析】根据等式的基本性质对各选项进行逐一分析即可.【详解】A 、不符合等式的基本性质,故本选项错误;B 、不论c 为何值,等式成立,故本选项正确;C 、∵23a b c c= ,∴•623a b c c c = •6c ,即3a=2b ,故本选项错误; D 、当a≠b 时,等式不成立,故本选项错误.故选:B .【点睛】 此题考查等式的性质,熟知等式两边乘同一个数或除以一个不为零的数,结果仍得等式是解题的关键.6.C解析:C【解析】【分析】设乙商品的成本价格为x 元,则根据甲、乙两件商品以同样的价格卖出,列出方程,即可求出答案.解:设乙商品的成本价格为x,则⨯+=•-,x80(120%)(120%)x=;解得:120∴乙商品的成本价是120元.故选:C.【点睛】本题考查了一元一次方程的应用,解题的关键是熟练掌握题意,正确列出一元一次方程进行解题.7.A解析:A【解析】试题分析:根据数轴上的数,左边的地总比右边的小,两个负数相比较,绝对值大的反而小.解:∵最小的负数,∴ C、D不对,->-,∵21绝对值大的反而小,∴-2最小.故选A考点:正数和负数.8.D解析:D【解析】【分析】先根据数轴判断出a和b的取值范围,再逐一进行判断即可得出答案.【详解】由数轴可知:a<-1,0<b<1则a-b<0,故A错误;a+b<0,故B错误,D正确;a-b≠0,故C错误;故答案选择D.【点睛】本题考查的是有理数的加法、减法,根据数轴判断出a、b的取值范围是解决本题的关键. 9.D解析:D【解析】设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=16时,3x+21=69;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是72.故选D.“点睛“此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.10.A解析:A【解析】把代入方程得:,解得:,故选A.11.D解析:D【解析】试题解析:找规律发现(a+b)3的第三项系数为3=1+2;(a+b)4的第三项系数为6=1+2+3;(a+b)5的第三项系数为10=1+2+3+4;不难发现(a+b)n的第三项系数为1+2+3+…+(n﹣2)+(n﹣1),∴(a+b)20第三项系数为1+2+3+…+20=190,故选 D.考点:完全平方公式.12.D解析:D【解析】解:设上个月卖出x双,根据题意得:(1+10%)x=330.故选D.二、填空题13.2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x -9=0解此方程即可求得答案【详解】由题意可得:5x-5+2x-9=0移项得7x =14系数化为1得x=2【点睛】本题考查了解析:2【解析】【分析】由5x-5的值与2x-9的值互为相反数可知:5x-5+2x-9=0,解此方程即可求得答案.【详解】由题意可得:5x-5+2x-9=0,移项,得7x=14,系数化为1,得x=2.【点睛】本题考查了相反数的性质以及一元一次方程的解法.14.1838【解析】分析:类比于现在我们的十进制满十进一可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数即1×64+2×63+3×62+0×6+2解析:1838【解析】分析:类比于现在我们的十进制“满十进一”,可以表示满六进一的数为:万位上的数×64+千位上的数×63+百位上的数×62+十位上的数×6+个位上的数,即1×64+2×63+3×62+0×6+2=1838.详解:2+0×6+3×6×6+2×6×6×6+1×6×6×6×6=1838,故答案为:1838.点睛:本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.15.2a+c【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a∴a-b>0c+b<0则原式=a+a-b+c+b=2a+c故答案为:2a+c【点睛】本题考查整式的加减;数轴;绝对值解析:2a+c.【解析】【分析】【详解】解:根据数轴上点的位置得:c<b<0<a,∴a-b>0,c+b<0,则原式=a+a-b+c+b=2a+c故答案为:2a+c.【点睛】本题考查整式的加减;数轴;绝对值.16.124【解析】【分析】由题意设这批树苗共有x棵根据题意利用种树人数相等建立方程并解出方程即可【详解】解:由题意设这批树苗共有x棵根据题意列出方程:解得故答案为:124【点睛】本题考查一元一次方程的应解析:124【解析】【分析】由题意设这批树苗共有x棵,根据题意利用种树人数相等建立方程并解出方程即可.【详解】解:由题意设这批树苗共有x棵,根据题意列出方程:441516x x-+=,解得124x=.故答案为:124.【点睛】本题考查一元一次方程的应用,读懂并理解题意以及根据题意等量关系列方程求解是解题的关键.17.【解析】【分析】首先求出方程的解然后进一步将解代入方程由此即可求出答案【详解】由可得:∴根据题意将代入方程可得:∴故答案为:【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用熟练掌握相 解析:6-【解析】【分析】 首先求出方程1(16)62x -=-的解,然后进一步将解代入方程423x m x +=-,由此即可求出答案.【详解】 由1(16)62x -=-可得:1612x -=-, ∴4x =, 根据题意,将4x =代入方程423x m x +=-可得:203m +=, ∴6m =-,故答案为:6-.【点睛】本题主要考查了一元一次方程的解与解一元一次方程的综合运用,熟练掌握相关概念是解题关键. 18.0【解析】【分析】由70=171=772=4973=34374=240175=16807…得出规律个位数4个数一循环由1+7+9+3=20(2019+1)÷4=505即可得出结果【详解】解:∵70=解析:0【解析】【分析】由70=1,71=7,72=49,73=343,74=2401,75=16807,…,得出规律个位数4个数一循环,由1+7+9+3=20,(2019+1)÷4=505,即可得出结果. 【详解】解:∵70=1,71=7,72=49,73=343,74=2401,75=16807,…,∴个位数4个数一循环,4个数一循环的个位数的和:1+7+9+3=20,∵(2019+1)÷4=505, ∴70+71+72+…+72019的结果的个位数字是0,故答案为:0【点睛】本题考查了尾数特征,仔细观察数据的个位数字,得到每4个个位数字为一个循环组依次循环是解题的关键.19.45【解析】【分析】由已知先得到甲乙的工作效率再根据合作的工作总量为1得到方程求解即可【详解】由题意得:甲一小时完成乙一小时完成设乙还需x 小时完成解得x=45故答案为:45【点睛】此题考查一元一次方解析:45【解析】【分析】由已知先得到甲、乙的工作效率,再根据合作的工作总量为1得到方程求解即可.【详解】 由题意得:甲一小时完成130,乙一小时完成160, 设乙还需x 小时完成, 115()1306060x ⨯++=, 解得x=45,故答案为:45.【点睛】 此题考查一元一次方程的实际应用,正确理解题意是解题的关键.20.91【解析】【分析】观察如图的正整数排列可得到第一列的数分别是1491625…可得出一个规律:第一列每行的数都等于行数的2次方且每行的数个数与对应列的数的个数相等【详解】解:由第一列数1491625解析:91【解析】【分析】观察如图的正整数排列可得到,第一列的数分别是1,4,9,16,25,…可得出一个规律:第一列每行的数都等于行数的2次方.且每行的数个数与对应列的数的个数相等.【详解】解:由第一列数1,4,9,16,25,…得到:1=124=229=3216=4225=52…所以第10行第1列的数为:102=100.又每行的数个数与对应列的数的个数相等.所以第10行第9列的数为100﹣9=91.故答案为:91.【点睛】此题考查规律型:数字的变化类的知识,解题关键是找出两个规律,即第一列每行的数都等于行数的2次方和每行的数个数与对应列的数的个数相等.三、解答题21.(1)960辆;(2)方案三最省钱,理由见详解.【解析】【分析】(1)通过理解题意可知本题的等量关系,即甲乙单独修完共享单车的数量相同,列方程求解即可;(2)分别计算,通过比较选择最省钱的方案.【详解】解:(1)设乙单独做需要x天完成,则甲单独做需要(x+20)天,由题意可得:16(x+20)=(16+8)x,解得:x=40,总数:(16+8)×40=960(辆),∴这批共享单车一共有960辆;(2)方案一:甲单独完成:60×80+60×10=5400(元),方案二:乙单独完成:40×120+40×10=5200(元),方案三:甲、乙合作完成:960÷(16+24)=24(天),则一共需要:24×(120+80)+24×10=5040(元),>>,∵540052005040∴方案三最省钱.【点睛】此题主要考查了一元一次方程的应用,正确得出等量关系是解题关键.22.(1)画图见解析;(2)小彬家与学校之间的距离是3km;(3)小明跑步共用了36分钟.【解析】试题分析:(1)根据题意画出即可;(2)计算 2﹣(﹣1)即可求出答案;(3)求出每个数的绝对值,相加可求小明一共跑了的路程,再根据时间=÷速度即可求出答案.试题解析:(1)如图所示:(2)小彬家与学校的距离是:2﹣(﹣1)=3(km).故小彬家与学校之间的距离是 3km;(3)小明一共跑了(2+1.5+1)×2=9(km),小明跑步一共用的时间是:9000÷250=36答:小明跑步一共用了 36 分钟长时间.23.(1)35°;(2)36°.【解析】【分析】(1)根据角平分线定义得到∠AOC=12∠EOC=12×70°=35°,然后根据对顶角相等得到∠BOD=∠AOC=35°;(2)先设∠EOC=2x,∠EOD=3x,根据平角的定义得2x+3x=180°,解得x=36°,则∠EOC=2x=72°,然后与(1)的计算方法一样.【详解】解:(1)∵OA平分∠EOC,∴∠AOC=12∠EOC=12×70°=35°,∴∠BOD=∠AOC=35°;(2)设∠EOC=2x,∠EOD=3x,根据题意得2x+3x=180°,解得x=36°,∴∠EOC=2x=72°,∴∠AOC=12∠EOC=12×72°=36°,∴∠BOD=∠AOC=36°.考点:角的计算.24.﹣2a2﹣b,原式=﹣2.5.【解析】【分析】先将多项式化简,再将a、b的值代入计算.【详解】原式=a2﹣5a2+3b﹣4b+2a2=﹣2a2﹣b,当a=﹣1,b=12时,原式=﹣2﹣12=﹣2.5.【点睛】此题考查多项式的化简求值,正确化简多项式是代入计算的关键. 25.(1)见解析;(2)见解析;(3)见解析;(4)见解析;(5)6或9【解析】【分析】(1)根据直线向两方无限延伸得出即可;(2)根据射线向一方无限延伸画出图形;(3)根据线段有两个端点画出图形;(4)利用反向延长线段的作法得出即可;(5)利用得出即可.(1)如图所示,直线AD为所求;(2)如图所示,射线CD为所求;(3)如图所示,线段AB为所求;(4)如图所示,射线CB为所求;(5)①若点F在线段AB上,则AF=AB-BF=9-3=6;②若点F在线段AB的延长线上,则AF=AB+BF=9+3=12,故答案为:6或9.【点睛】本题考查的是直线、射线、线段的定义及性质等知识,解答此题的关键是熟知以下知识,即直线向两方无限延伸;射线向一方无限延伸;线段有两个端点画出图形即可.。