(完整)八年级下册勾股定理知识点归纳,推荐文档
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m2 n2 ,2mn, m2 n2 ( m n, m , n 为正整数)
7.勾股定理的应用 勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问题.在使用勾 股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾股定理 进行计算,应设法添加辅助线(通常作垂线),构造直角三角形,以便正确使用勾股定理进行求解. 8.勾股定理逆定理的应用 勾股定理的逆定理能帮助我们通过三角形三边之间的数量关系判断一个三角形是否是直角三角形,在具体推算 过程中,应用两短边的平方和与最长边的平方进行比较,切不可不加思考的用两边的平方和与第三边的平方比 较而得到错误的结论. 9.勾股定理及其逆定理的应用 勾股定理及其逆定理在解决一些实际问题或具体的几何问题中,是密不可分的一个整体.通常既要通过逆定理 判定一个三角形是直角三角形,又要用勾股定理求出边的长度,二者相辅相成,完成对问题的解决.常见图形:
根据勾股定理 AC2+BC2=AB2, 即 AC2+92=152,所以 AC2=144,所以 AC=12. 例题 2 如图(8),水池中离岸边 D 点 1.5 米的 C 处,直立长着一根芦苇,出水部分 BC 的长是 0.5 米,把芦苇 拉到岸边,它的顶端 B 恰好落到 D 点,并求水池的深度 AC.
1、基础知识点:
八年级下册勾股定理知识点和典型例习题
D
C
H
1.勾股定理
内容:直角三角形两直角边的平方和等于斜边的平方; 表示方法:如果直角三角形的两直角边分别为 a , b ,斜边为c ,那么 a2 b2 c2 2.勾股定理的证明 勾股定理的证明方法很多,常见的是拼图的方法
E
G
F
b
a
A
c
B
b a
x2+1.52=( x+0.5)2 解之得 x=2.
故水深为 2 米.
题型三:勾股定理和逆定理并用
例题 3 如图 3,正方形 ABCD 中,E 是 BC 边上的中点,F 是 AB 上一点,且 FB 1 AB 那么△DEF 是直角三角形 4
②记住常见的勾股数可以提高解题速度,如3, 4,5 ; 6,8,10 ; 5,12,13 ; 7, 24, 25 ,8,15,17 等
③用含字母的代数式表示 n 组勾股数:
-1-
n2 1, 2n, n2 1 ( n 2, n 为正整数); 2n 1, 2n2 2n, 2n2 2n 1 ( n 为正整数);
AaD b
c
方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积.四个直角三角形
的面积与小正方形面积的和为 S 4 1 ab c2 2ab c2
wenku.baidu.com
大正方形面积为
B
2
c
E
a
bC
S (a b)2 a2 2ab b2
所以 a2 b2 c2
方法三:
S梯形
1 (a b) (a 2
b) , S 梯形
2SADE
SABE
2 1 ab 1 c2 ,化简得证 22
3.勾股定理的适用范围 勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适用于直角三角形,对于锐角三角形和钝
角三角形的三边就不具有这一特征,因而在应用勾股定理时,必须明了所考察的对象是直角三角形
4.勾股定理的应用①已知直角三角形的任意两边长,求第三边在 ABC 中, C 90 ,则 c a2 b2 ,
解析:同例题 1 一样,先将实物模型转化为数学模型,如图 2. 由题意可知△ACD 中,∠ACD=90°,在 Rt△AC
D 中,只知道 CD=1.5,这是典型的利用勾股定理“知二求
一”的类型。
标准解题步骤如下(仅供参考):
-2-
解:如图 2,根据勾股定理,AC2+CD2=AD2 设水深 AC= x 米,那么 AD=AB=AC+CB=x+0.5
C
C
C
C
30° A
B
A
D
B
B
B
D
A
A D
二、经典例题精讲 题型一:直接考查勾股定理 例1.在ABC 中, C 90 .
⑴已知 AC 6 , BC 8 .求 AB 的长
⑵已知 AB 17 , AC 15 ,求 BC 的长分析:直接应用勾股定理 a2 b2 c2
解:⑴ AB AC2 BC2 10
b c2 a2 , a c2 b2 ②知道直角三角形一边,可得另外两边之间的数量关系③可运用勾股定理解决一些
实际问题 5.勾股定理的逆定理
如果三角形三边长 a , b , c 满足 a2 b2 c2 ,那么这个三角形是直角三角形,其中c 为斜边 ①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角 形的可能形状,在运用这一定理时,可用两小边的平方和 a2 b2 与较长边的平方c2 作比较,若它们相等时,以 a , b , c 为三边的三角形是直角三角形;否则,就不是直角三角形。 ②定理中 a , b , c 及 a2 b2 c2 只是一种表现形式,不可认为是唯一的,如若三角形三边长 a , b , c 满足 a2 c2 b2 ,那么以 a , b , c 为三边的三角形是直角三角形,但是b 为斜边 ③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是 直角三角形 6.勾股数 ①能够构成直角三角形的三边长的三个正整数称为勾股数,即 a2 b2 c2 中, a , b , c 为正整数时,称 a , b , c 为一组勾股数
c
a cb
用拼图的方法验证勾股定理的思路是 ①图形通过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ②根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理
c b
a
c a
b
常见方法如下:
方法一: 4S S
S
正方形EF方GH形ABCD
, 4 1 ab (b a)2 c2 ,化简可证. 2
⑵ BC AB2 AC2 8
题型二:利用勾股定理测量长度 例题 1 如果梯子的底端离建筑物 9 米,那么 15 米长的梯子可以到达建筑物的高度是多少米?
解析:这是一道大家熟知的典型的“知二求一”的题。把实物模型转化为数学模型后,.已知斜边长和一条 直角边长,求另外一条直角边的长度,可以直接利用勾股定理!