常见递推数列通项公式的求法

合集下载

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法

常见递推数列通项的九种求解方法高考中的递推数列求通项问题,情境新颖别致,有广度,创新度和深度,是高考的热点之一。

是一类考查思维能力的好题。

要求考生进行严格的逻辑推理,找到数列的通项公式,为此介绍几种常见递推数列通项公式的求解方法。

类型一:1()n n a a f n +=+(()f n 可以求和)−−−−→解决方法累加法例1、在数列{}n a 中,已知1a =1,当2n ≥时,有121n n a a n -=+-()2n ≥,求数列的通项公式。

解析:121(2)n n a a n n --=-≥∴213243113521n n a a a a a a a a n --=⎧⎪-=⎪⎪-=⎨⎪⎪-=-⎪⎩ 上述1n -个等式相加可得: ∴211n a a n -=- 2n a n ∴=评注:一般情况下,累加法里只有n-1个等式相加。

【类型一专项练习题】1、已知11a =,1n n a a n -=+(2≥n ),求n a 。

2、已知数列{}n a ,1a =2,1n a +=n a +3n +2,求n a 。

3、已知数列}a {n 满足1a 1n 2a a 1n 1n =++=+,,求数列}a {n 的通项公式。

4、已知}{n a 中,nn n a a a 2,311+==+,求n a 。

5、已知112a =,112nn n a a +⎛⎫=+ ⎪⎝⎭*()n N ∈,求数列{}n a 通项公式.6、 已知数列{}n a 满足11,a =()1132,n n n a a n --=+≥求通项公式n a ?7、若数列的递推公式为1*113,23()n n n a a a n N ++==-⋅∈,则求这个数列的通项公式8、 已知数列}a {n 满足3a 132a a 1n n 1n =+⋅+=+,,求数列}a {n 的通项公式。

9、已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a 。

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法

最全的递推数列求通项公式方法递推数列是指数列中的每一项都由前一项通过其中一种规律得出。

求递推数列的通项公式是数学中的重要问题,可以通过多种方法实现。

下面将介绍最常用的几种方法。

1.等差数列通项公式等差数列是指数列中的每一项与前一项之差都相等的数列。

设等差数列的第一项为a1,公差为d,则第n项为an=a1+(n-1)d。

这是等差数列的通项公式。

2.等比数列通项公式等比数列是指数列中的每一项与前一项之比都相等的数列。

设等比数列的第一项为a1,公比为r,则第n项为an=a1*r^(n-1)。

这是等比数列的通项公式。

3.斐波那契数列通项公式斐波那契数列是指数列中的每一项都是前两项之和。

设斐波那契数列的第一项为a1,第二项为a2,则第n项为an=a(n-1)+a(n-2)。

但通常情况下,我们将斐波那契数列的第一项设为0,第二项设为1,此时的通项公式为an=F(n-1),其中F(n-1)表示第n-1个斐波那契数。

4.龙贝尔数列通项公式龙贝尔数列是指数列中的每一项都是前一项与当前项索引之和。

设龙贝尔数列的第一项为a1,则第n项为an=a(n-1)+n。

这是龙贝尔数列的通项公式。

5.通项公式的递推法有些数列并没有明确的通项公式,但可以通过递推法求得通项公式。

递推法的核心思想是找到数列中的其中一种规律,通过前面的项得出后面的项。

这种方法比较灵活,可以适用于各种类型的数列。

总结起来,以上是求递推数列通项公式的几种常见方法。

在实际中,我们可以观察数列的规律,推测出通项公式,然后通过数学推导证明其正确性。

对于复杂的递推数列,我们可能需要运用更多的数学知识和技巧,如离散数学、线性代数等。

数列递推公式的九种方法

数列递推公式的九种方法

求递推数列的通项公式的九种方法利用递推数列求通项公式,在理论上和实践中均有较高的价值.自从二十世纪八十年代以来,这一直是全国高考和高中数学联赛的热点之一.一、作差求和法例1在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .解:原递推式可化为:1111+-+=+n n a a n n 则,211112-+=a a 312123-+=a a 413134-+=a a ,……,n n a a n n 1111--+=-逐项相加得:n a a n 111-+=.故na n 14-=.二、作商求和法例2设数列{n a }是首项为1的正项数列,且0)1(1221=+-+++n n n n a a na a n (n=1,2,3…),则它的通项公式是n a =▁▁▁(2000年高考15题)解:原递推式可化为:)]()1[(11n n n n a a na a n +-+++=0∵n n a a ++1>0,11+=+n na a n n 则,43,32,21342312===a a a a a a ……,nn a a n n 11-=-逐项相乘得:na a n 11=,即n a =n 1.三、换元法例3已知数列{n a },其中913,3421==a a ,且当n≥3时,)(31211----=-n n n n a a a a ,求通项公式n a (1986年高考文科第八题改编).解:设11---=n n n a a b ,原递推式可化为:}{,3121n n n b b b --=是一个等比数列,9134913121=-=-=a a b ,公比为31.故n n n n b b 31()31(9131(2211==⋅=---.故n n n a a )31(1=--.由逐差法可得:nn a )31(2123-=.例4已知数列{n a },其中2,121==a a ,且当n ≥3时,1221=+---n n n a a a ,求通项公式n a 。

常见递推数列通项公式的求法ppt课件

常见递推数列通项公式的求法ppt课件

1S 2
1 23
2 24
n2 2n
n 1 2 n+1

由①-②得
1S 2
1 22
1 23
1 2n
n 1 2n+1
1 2
n 1 2 n 1
S 1 n1 2n
an 2n
1
an 2n
2
n 1 2n
an 2n1 n 1
变式训练:答案an 6 4n1 (n 1) 2n
数列 满足 an
an1 3 4 5 6
n 1
an a1
1 2 n(n 1)
a1
1 an
2 n(n 1)
累乘
例 2:已知数列an 中,a1
1且满足 an1 an
n ,求数 n2
列an 的通项公式。
其他解法探究:
a n 1 an
n n2
(n 2)an1
nan
(n 1)(n 2)an1 n(n 1)an
则可构造n(n 1)an 是常数数列
故an n2 n 2(n 1,2,3,)
方法归纳:累加
可求和
变式训练:
1.已知数列an中, a1 2 满足 an1 an 2n n ,求数列an 的通 项公式. 2.已知数列an 中, a1 2 满足 an1 an n 2n n ,求数列an 的 通项公式.
类型二:形如 an1 f (n)
an1 2an n 2n1 2n1 2n1
an1 an n 2n1 2n 2n1
累加
a2 22
a1 2
1 ,a3 22 23
a2 22
2 23
,,
an 2n
an1 2n1
n 2n
1
,

求数列的通项公式的八种方法(强烈推荐)

求数列的通项公式的八种方法(强烈推荐)

怎样由递推关系式求通项公式一、基本型:(1)a n =pa n-1+q (其中pq ≠0 ,p ≠1,p 、q 为常数)型:——运用代数方法变形,转化为基本数列求解.利用待定系数法,可在两边同时加上同一个数x ,即a 1+n + x = pa n + q + x ⇒a 1+n + x = p(a n +p x q +), 令x =px q + ∴x =1-p q时,有a 1+n + x = p(a n + x ),从而转化为等比数列 {a n +1-p q} 求解. 例1. 已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.-1练1.已知数列{a n }中,a 1=1,a n =21a 1-n + 1,n ∈ N +,求通项a n .a n = 2 -2n-1 ,n ∈N + 练2.已知数列{}n a 中, 11a =,121(2)n n a a n -=+≥,求{}n a 的通项公式.21nn a ∴=- 二、可化为基本型的数列通项求法: (一)指数型:a n=ca n-1+f(n)型 1、a 1=2,a n =4a n-1+2n (n ≥2),求a n .2、a 1=-1,a n =2a n-1+4〃3n-1(n ≥2),求a n .3、已知数列{}n a 中,1a =92,113232+-+=n n n a a (n ≥2),求n a .∴ n a =13)21(2+--n n(二)指数(倒数)型 1、a 1=1,2a n -3a n-1=(n ≥2),求a n .2、a 1=,a n+1=a n +()n+1,求a n . (三)可取倒数型:将递推数列1nn n ca a a d+=+(0,0)c d ≠≠,1、(2008陕西卷理22)(本小题满分14分)已知数列{a n }的首项135a =,1321n n n a a a +=+,12n = ,,. (Ⅰ)求{a n }的通项公式; 332nn n a ∴=+2、已知数列{}n a *()n N ∈中, 11a =,121nn n a a a +=+,求数列{}n a 的通项公式.∴121n a n =-. 3、若数列{a n }中,a 1=1,a 1+n =22+n na a n ∈N +,求通项a n . a n =4、 若数列{n a }中,1a =1,n S 是数列{n a }的前n 项之和,且nnn S S S 431+=+(n 1≥),求数列{n a }的通项公式是n a . 131-=n n S ⎪⎩⎪⎨⎧+⋅-⋅-=123833212n n n n a )2()1(≥=n n 三、叠加法:a n=a n-1+f(n)型:1.已知数列{a n }中, 11a =,1n-13n n a a -=+(2)n ≥。

十类递推数列的通项公式的求法

十类递推数列的通项公式的求法
十类递推数列的通项公式的求法
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%&
文!黄爱民
一、an+1= an+ f(n)型 这类递推数列可通过累加法求得其通项公式.当 f(n)
为常数时,通过累加法可求得等差数列的通项公式;当
f(n)为等差数列形式时,an+1= an+ f(n)为二阶等差数列, 它的通项公式的形式为 an=an2+bn+c.同时要注意它与等 差数列求和公式的一般形式的区别,后者是 Sn=an2+bn, 它的常数项一定为 0.
对数,得 lgan=lg2an4- 1 ,则有 lgan=4lgan-1+lg2.
∴lgan+
1 3
lg2=4(lgan-
1+
1 3
lg2).从而知{lgan+
1 3
lg2}是
首项为 1 lg2,公比为 4 的等比数列. 3
∴lgan=
(4n-1- 1)lg2 3
=(4n-1- 1)lg#3 2
,即
高中生·高考指导 13
×(3 2
)n- 1=(3 2
)n,即
an=
2n 3n- 2n

九、a n+1=
Aan+B Can+D
(A,B,C,D 为非零常数)型
这类递推数列的通项公式是利用函数的不动点来
求的.尽管这个知识点高考不作要求,但考题往往就从
这些地方出,只需增加一些铺垫.
例 9 若 f(x0)=x0,则称 x0 为 f(x)的不动点.已知函 数 f(x)= 2x+3 .
+1 2
.令
bn=
an 2n
,则有
bn+1=
3 2
bn+

常见递推数列求通项公式的七种方法

常见递推数列求通项公式的七种方法
o型 , 】 两边 取 倒 数 , 造 新 数 列求 解 . 构
解A争 1_. l 1 边 - 得 一 :—-= , : q 两 加2 :l =L 2. } I . ‘+ 在 ,
例 5已知数列 ‘ l a 2 = . 中,t , =
)C k十 l
。 求数列 { ) 的
类 型 二 : 知 口: 口 ) 。, ・ 型 . 用 累 乘 法 求 已 I ≠o , = ( | 可
‘ ・
例. 数 {J,} =,数 {) 4知 列 中8 , 列 的 已 - + 求 = -
通项公式.
由 口- 叶
。 可知 :
u l
1 )

, , …
t t. t ̄ 1

1 ) ・
解法一 : 已知 + 两边 同除 以 2 J 给 a 肿, }一 得
把上面各项两边分别相乘 , 得
’ 1 ,b 参- + 冷6 则 . } 1 ,

= l ) 2… ・ 一 ) 口・ 【) 1 ≥2 1 . )


例 2设 I l 首 项 为 1的 正 项 数 列 , (+ ) . 是 且 ,1 l
至多 有 1 是 二 等 品 ” 件 的概 率 P A)O9 . ( = .6
解 法 二 : I 2 两 边 同除 以 ( 1 , ( 1“ 广 对 + = l I 一 ) 得 一 )


}^ ‘‘=. ・ }争争} ・
E . Ⅳ) .
} 等 比数 列. 为
(1 = (2^ _ ) 一- ) . 令 6 - ) , 6 l(1 ‰ l (1 则 =_ ,
常见递推数列 求通项公 式的七种方法

寒假专题——常见递推数列通项公式的求法

寒假专题——常见递推数列通项公式的求法

寒假专题——常见递推数列通项公式的求法在数学中,递推数列是一种由前一项或多项推出后一项的数列。

在寒假期间,我们将专注于常见递推数列通项公式的求法。

掌握这些公式可以帮助我们更快速地解决数学问题。

一、斐波那契数列斐波那契数列是一个非常经典的递推数列。

它的通项公式求法如下所示:设斐波那契数列的第n项为Fn,那么有以下公式成立:Fn = Fn-1 + Fn-2其中,F1 = 1,F2 = 1。

二、等差数列等差数列是一种每一项与前一项之差相等的数列。

对于等差数列,我们可以使用通项公式来求解。

设等差数列的第n项为an,首项为a1,公差为d,则有以下公式成立:an = a1 + (n-1)d三、等比数列等比数列是一种每一项与前一项之比相等的数列。

对于等比数列,我们可以使用通项公式来求解。

设等比数列的第n项为an,首项为a1,公比为r,则有以下公式成立:an = a1 * r^(n-1)四、斐波那契数列的推广斐波那契数列可以推广到更复杂的形式。

例如,当第一项为F1 = a,第二项为F2 = b时,我们可以得到如下通项公式:Fn = F(n-1) + F(n-2)五、等差数列的推广等差数列也可以进行推广。

例如,若等差数列的初始项不是a1,而是a2,则通项公式变为:an = a2 + (n-2)d其中,n表示所求项的位置。

六、等比数列的推广等比数列也可以有进一步的推广形式。

当等比数列的首项为a1,比率为r,公式可以改写成以下形式:an = a1 * r^(n-k)其中,k表示所求项的位置。

七、其他数列的通项公式除了斐波那契数列、等差数列和等比数列之外,还存在许多其他常见的数列,它们也都有各自的通项公式。

在寒假期间,我们可以研究这些数列的特性和求解方法,从而增加数学的深度和广度。

八、总结递推数列通项公式的求法是数学中的重要内容之一。

通过掌握常见数列的通项公式,我们可以在解决数学问题时更加高效和便捷。

希望在寒假期间,大家能够钻研这些通项公式,并在实践中掌握它们的应用方法。

已知数列的递推公式求通项公式的方法总结归纳

已知数列的递推公式求通项公式的方法总结归纳

已知数列的递推公式求通项公式的方法
1.累加法:递推关系式为1()n n a a f n +-=采用累加法。

“累加法”实为等差数列通项公式的推导方法。

2.累乘法:递推关系式为
1()n n
a f n a +=采用累乘法。

“累乘法”实为等比数列通项公式的推导方法 3.构造法:递推关系式为(1)1n n a pa q +=+,(2)1n
n n a pa q +=+,
都可以通过恒等变形,构造出等差或等
比数列,利用等差或等比数列的定义进行解题,其中的构造方法可通过待定系数法来进行。

4. 和化项法:递推关系式为()n S f n =或()n n S f a =一般利用11,
1
,2
n n n S n a S S n -=⎧
=⎨-≥⎩进行转化。

例1.已知12a = , 1n a +=2132n n a -+⋅
求数列{}n a 的通项公式.
例2.已知11,a = 11
n n n a a n +=⋅
+,
求数列{}n a 的通项公式
例3.已知11,a =123n n a a +=+,
求数列{}n a 的通项公式
例5.已知43n n S a =+,
求数列{}n a 的通项公式.
例4.已知11,a =123n n n a a +=+,
求数列{}n a 的通项公式
例6.已知113
n n a S +=
,11a =,
求数列{}n a 的通项公式。

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法

六类递推数列通项公式的求解方法一、an-1=an+f(n)型利用叠加法.a2=a1+f(1),a3=a2+f(2),…,an=an-1+f(n-1),an=a1+∑n-1k=1f(k).【例1】数列{an}满足a1=1,an=an-1+1n2-n(n≥2) ,求数列{an}的通项公式.解:由an+1=an+1(n+1)2-(n+1) 得an=a1+∑n-1k=11(k+1)2-(k+1) =1+∑n-1k=1(1k-1k+1)=1+1-1n =2-1n.二、an+1=anf(n)型利用叠代法.a2=a1f(1),a3=a2f(2),…,an=an-1f(n-1).an=a1∏n-1k=1f(k).【例2】数列{an}中a1=2,且an=(1-1n2)an-1 ,求数列{an}的通项.解:因为an+1=[1-1(n+1)2 ]an,所以an=a1∏n-1k=1f(k)=2∏n-1k=1[1-1(k+1)2 ]=2∏n-1k=1[kk+1 ×k+2k+1 ]=n+1n .三、an+1=pan+q,其中p,q为常数,且p≠1,q≠0当出现an+1=pan+q(n∈n*)型时可利用叠代法求通项公式,即由an+1=pan+q得an=pan-1+q=p(pan-2+q)+q=…=pn-1a1+(pn-2+pn-3+…+p2+p+1)q=a1pn-1+q(pn-1-1)p-1 (p≠1).或者利用待定系数法,构造一个公比为p的等比数列,令an+1+λ=p(an+λ),则(p-1)λ=q,即λ=qp-1 ,从而{an+qp+1 }是一个公比为p的等比数列.【例3】设数列{an}的首项a1=12 ,an=3-an-12 ,n=2,3,4,…,求数列{an}的通项公式.解:令an+k=-12(an-1+k) ,又∵an=3-an-12=-12an-1+32 ,n=2,3,4,…,∴k=-1,∴an-1=-12(an-1-1) ,又a1=12,∴{an-1} 是首项为-12,公比为-12 的等比数列,即an-1=(a1-1)(-12)n-1 ,即an=(-12)n+1 .四、an+1=pan+qan-1(n≥2),p,q为常数可用下面的定理求解:令α,β为相应的二次方程x2-px-q=0的两根(此方程又称为特征方程),则当α≠β时,an=aαn+bβn;当α=β时,an=(a+bn)αn-1,其中a、b分别由初始条件a1、a2所得的方程组aα+bβ=a1,aα2+bβ2=a2和 a+b=a1,(a+2b)α=a2唯一确定.【例4】数列{an},{bn}满足:an+1=-an-2bn①,bn+1=6an+6bn ②,且a1=2,b1=4,求an,bn.解:由②得an=16bn+1-bn,∴an+1=16bn+2-bn+1 ,代入①到式中,有bn+2=5bn+1-6bn,由特征方程可得bn=-12×2n+283×3n ,代入②式中,可得an=8×2n-143×3n .五、an+1=pan+f(n)型,这里p为常数,且p≠1【例5】在数列{an}中,a1=2,an+1=λan+λn+1+(2-λ)2n(n ∈n*),其中λ>0,求数列{an}的通项公式.解:由 a1=2,an+1=λan+λn+1+(2-λ)2n(n∈n*),λ>0,可得,an+1λn+1-(2λ )n+1=anλn -(2λ )n+1,所以{anλn-(2λ)n}为等差数列,其公差为1,首项为0.故anλn-(2λ )n=n-1,所以数列{an}的通项公式为an=(n-1)λn+2n.六、an+1=makn(m>0,k∈q,k≠0,k≠1)一般地,若正项数列{an}中,a1=a,an+1=makn(m>0,k∈q,k≠0,k≠1),则有lgan+1=klgan+lgm,令lgan+1+a=k(lgan+a)(a为常数),则有a=1k-1lgm.数列{lgan+1k-1lgm }为等比数列,于是lgan+1k-1lgm=(lga+1k-1lgm)kn-1 ,从而可得an=akn-1?mkn-1-1k-1 .【例6】已知各项都是正数的数列{an}满足a1=32,an+1=12an(4-an) ,求数列{an}的通项公式.解:由已知得an+1=-12(an-2)2,令2-an=bn,则有b1=12,bn+1=12b2n .∵an>0,∴0<an+1<2,又0<a1<2,∴0<an<2,从而bn>0.取对数得lgbn+1=2lgbn-lg2,即lgbn+1-lg2=2(lgbn-lg2).∴{lgbn-lg2}是首项为-2lg2,公比为2的等比数列,∴lgbn-lg2=-2nlg2,∴bn=21-2n,∴an=2-21-2n.(责任编辑金铃)。

由数列递推公式求通项公式的常用方法

由数列递推公式求通项公式的常用方法

21世纪,信息技术在各行各业都在运用,它已和人们的学习生活息息相关,掌握不好信息知识和信息技能,就难以高效地工作和生活。

初中信息技术的开设,引导着我们每个教学者探究如何采取适当的教学方法激发学生主动学习,提高信息技术的教学质量、提升学生素质。

一、编好导学案,培养学生独立探究的品质什么样的导学案才叫好的导学案?一要能激发学习动机,在学案中创设特定的情境和启发性的问题,引导学生积极思考和主动探索,能和实践紧密结合。

二要针对不同类型的信息课,设计不同的形式的导学案,新授课的导学案要着重关注学生的最近发展区,问题设计情境化,有启发性和探究性。

习题课的导学案应着重帮助学生总结解答典型问题的基本方法和基本思路,复习课导学应帮助学生梳理知识体系。

设计导学时要充分考虑学生在学习过程中可能会遇到的问题和困难,考虑怎样去帮助学生克服困难,导学思考题,要求将学习目标问题化、情境化。

能力训练题,每个知识点学完后,要给予适当的题目进行训练,但题目应少而精,要有利于学生巩固基础知识,突出易混淆的和需注意的知识点;能力提高题,主要是针对掌握程度好的学生设计的,这部分题目的设置可以多链接学生的疑点。

学生对每一项应该完成的任务都必须掌握和理解,才开始学习新的任务,这样才能保证收到效果。

比如,初中“网络课件构件设计”导学案设计。

①学习对象设计包括中哪五个环节?(内容结构设计、内容呈现设计、SCOS 设计、内容编序设计和元数据设计)。

②每个设计的方案是什么?(如:内容呈现设计,在画面中应该尽量删除无用的背景和多余的细节。

元数据设计,SCORM 中的元数据包括Assets 元数据、SCOS 元数据、学习活动元数据、内容组织元数据和内容聚合元数据。

元数据设计时可参照SCORM。

定义的九大类元数据元素及其应用情况,其中“M”为必选项,“O”为可选项,“NP”为不选项。

)导学案为提高课堂效益架设了一座快捷的桥梁,导学让学生在课前有一定的时间构思,在课堂上学生参与、学生创新潜质更易发挥。

根据递推关系求数列通项公式的几种方法

根据递推关系求数列通项公式的几种方法
根据递推关系数列通项公式的几种求法
一、定义法 例 1、已知数列an 的递推公式,求an
1)a1 3, an1 an 2
1 2)a1 2, an 1 an 3
等差数列
等比数列
二、累加相消法(累加法)
形如:a1 a, an1 an f n
当所给数列每依次相邻两项之间的差 组成等差或等比数列时,就可用累加 法进行消元。
p 1 , 求a n ?
构造等比数列an , 使an 1 p(an ),
an 2 1
n
则q (p 1 ) ,
q 即 p1
4)a1 2, an1 2an 3
an 2
n1
an1 3 2(an 3)
2 an 5 4n
例6、已知数列an 的递推关系为: an 1 a ,a1 3,求an
2 n
两边同取常用对数
an 3
2 n1
当一个数列每依次相邻两项之商构成 一个等比数列或其它数列时,就可用 累乘法进行消元。
例3、已知数列an 的递推公式,求an
1)a1 2, an1 3 an
n
an 2 3
n n 1 2
n 2)a1 1, an 1 an n 1
1 an n
四、换元法
通过“换元”,构造一个等差或等比的 新数列,利用等差或等比的知识解决 问题。
3
1 5)a1 1, an 1 an 6 2
1 an 1 4 (an 4) 2
1 an 5 2
n 1
4
例5、已知数列an 的递推关系为: an 1 an 2an 1an,a1 2,an 0, 求an

递推数列通项公式的求法

递推数列通项公式的求法

递推数列通项公式的求法递推数列是指通过前一项或前几项推导出后一项的数列。

通项公式是指通过数列中的任意一项可以直接计算出该项的数值的公式。

在求递推数列的通项公式时,可以使用多种方法,包括直接法、联立方程法、差分法、母函数法等。

下面将详细介绍这些方法。

一、直接法二、联立方程法联立方程法适用于一些复杂的递推数列,通过联立多个方程来求出通项公式。

该方法需要已知的一些数列值,然后根据这些值建立方程组,通过解方程组来求得通项公式。

例如,对于数列1,3,7,13,21,...,我们可以通过观察得到an = a(n-1) + 2n-1、然后,我们可以通过已知项确定初始值,如a1 = 1、通过逐一代入这些值,可以得到如下的方程组:a2 = a1 + 2(2) - 1,a3 = a2 + 2(3) - 1,...,以此类推。

然后我们可以通过求解这个方程组来得到数列的通项公式。

三、差分法差分法是通过求解数列项之间的差分来求得通项公式。

该方法常用于递推数列的高阶通项公式的求解。

对于数列an,我们可以通过计算an+1- an的值,然后继续计算相邻项之间的差分,直到得到一个关于n的表达式。

例如,对于数列1,3,6,10,15,...,我们可以计算出相邻项之间的差分:2,3,4,5,...。

我们发现这个差分数列是一个等差数列,其通项公式为an = n(n+1)/2、通过这个通项公式,我们可以进一步求得原数列的通项公式。

四、母函数法母函数法是一种重要的数学工具,适用于一些复杂的递推数列。

该方法通过构造一个函数来表示数列的各项,然后通过求解函数的表达式来得到数列的通项公式。

例如,对于数列1,1,2,3,5,...,我们可以构造一个函数F(x)=1+x+x^2+x^3+x^4+...。

我们可以通过求解这个函数关于x的表达式来得到数列的通项公式。

这个函数有一个特点,即F(x)=xF(x)+1,通过求解这个方程我们可以得到F(x)=1/(1-x)。

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法

求递推数列的通项公式的十一种方法
递推数列是一种数学数列,其中每一项都是由前一项推算出来的。


项公式则是通过已知的数列项之间的关系,找出数列的整体规律,从而可
以直接计算任意一项的值。

下面将介绍11种方法来推导递推数列的通项公式。

1.递归定义法
递归定义法是通过规定数列的首项以及前面项与后面项之间的关系,
来表达出数列的通项公式。

2.直接求和法
直接求和法是通过将数列的前n项求和,并将结果化简得出通项公式。

3.递推关系法
递推关系法是通过规定数列前两项之间的关系,并将该关系推广到前
n项之间的关系,从而求出通项公式。

4.变量代换法
变量代换法是通过引入新的变量,将原数列表示成一个新的数列,从
而得到新数列的通项公式。

5.假设公式法
假设公式法是通过猜测数列的通项公式,并验证猜测的公式是否符合
已知项的规律。

6.拆项法
拆项法是通过拆解数列的项,将数列表示成两个或多个部分,再求和得出通项公式。

7.枚举法
枚举法是通过穷举数列的前几项,找出数列项之间的规律,推算出通项公式。

8.差分法
差分法是通过计算数列项之间的差值,找出数列项之间的规律,从而得到通项公式。

9.生成函数法
生成函数法是通过将数列视为多项式的系数,构造一个生成函数,再通过求导、积分等运算得到通项公式。

10.求和公式法
求和公式法是通过利用已知的数列求和公式,计算数列的前n项和,并化简得出通项公式。

11.对称性法
对称性法是通过观察数列的对称性,推断出数列的通项公式。

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法

递推式求数列通项公式常见类型及解法递推数列通项公式问题,通常可通过对递推式的变形转化成等差数列或等比数列给 予解决,由于递推数列的多变性,这里介绍总结一些常见类型及解法。

一、公式法(涉及前n 项的和) 已知)(n f s n =⎩⎨⎧≥----=-----=⇒-)2()1(11n S S n S a n n n 注意:已知数列的前n 项和,求通项公式时常常会出现忘记讨论1=n 的情形而致错。

例1.已知数列}a {n 前n 项和1322-+=n n S n ,求数列}a {n 的通项公式。

解:当n=1时,411==s a ,当2≥n 时,14]1)1(3)1(2[)132(221+=--+---+=-=-n n n n n s s a n n n ,15114a ≠=+⨯⎩⎨⎧≥+==∴)2(,14)1(,4n n n a n练习:已知数列}a {n 前n 项和12+=n n S ,求数列}a {n 的通项公式。

答案:⎩⎨⎧≥==-)2(,2)1(,31n n a n n 二、作商法(涉及前n 项的积)已知)(......321n f a a a a n =⨯⨯⨯⎪⎩⎪⎨⎧≥----=----=⇒)2()1()()1().1(n n f n f n f a n例2.已知数列}a {n 中的值试求时53232,2,11a a n a a a n a n +=⋅⋅⋅⋅⋅⋅⋅≥=。

解:当2≥n 时,由2321n a a a a n =⋅⋅⋅⋅⋅⋅⋅⋅,可得21321)1(-=⋅⋅⋅⋅⋅⋅⋅⋅-n a a a a n则22)1(-=n na n16614523222253=+=+∴a a三、累加法(涉及相邻两项的差)已知)(1n f a a n n =-+112211)......()()(a a a a a a a a n n n n n +-+-+-=⇒--- 例3.已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列复习课(3)———常见递推数列通项公式的求法主备人:刘莉苹 组长:李英 时间:2013-9-16教学目标:1.通过求出数列前几项,了解递推公式是给出数列的一种方法,并能根据特殊的递推公式求出数列的通项公式.2.掌握把一些简单的数列变形转化为等差数列、等比数列的方法,体验解决数列问题的基本方法及理解运用的过程.教学重点:处理递推关系的基本方法.教学难点:通过变形转化成等差、等比数列的有关问题. 研讨互助 问题生成引入新课: 由递推公式求数列的通项公式的类型:(1) (2) (3) (4)()n f pa a n n +=+1型数列(p 为常数)(5)n n n qa pa a +=++12(其中p ,q 均为常数)。

(6)递推公式为n S 与n a 的关系式()n n S f a = 即n a 与n s 的关系11(1)(2)n nn s n a s s n -=⎧=⎨-≥⎩ (7)rn n pa a =+1)0,0(>>n a p(8))()()(1n h a n g a n f a n nn +=+(9)周期型思考:各类型通项公式的求法?合作探究 问题解决 类型1 )(1n f a a n n +=+解法:把原递推公式转化为)(1n f a a n n =-+,利用累加法(逐差相加法)求解。

例1. 在数列{}n a 中,112,21,.n n n a a a n a +==+-求1()n n a a f n +=+1()n n a a f n +=⋅1(0,1)n n a pa q p p +=+≠≠变式:1. 已知数列{}n a 满足211=a ,112n n a a +=+,求n a . 2.若数列{}n b 满足11b =,112nn n b b +⎛⎫-= ⎪⎝⎭(1)n ≥,求数列{}n b 的通项公式. 3.已知数列{}n a 满足211=a ,nn a a n n ++=+211,求n a类型2 n n a n f a )(1=+ 解法:把原递推公式转化为)(1n f a a nn =+,利用累乘法(逐商相乘法)求解。

例2:已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a 。

变式:1. 已知31=a ,132n n a a +=,求n a 。

2.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a 。

3.在数列{}n a 中, n a >0,221112,(1)n n n n a na n a a a ++==++,求n a .类型3 q pa a n n +=+1(其中p ,q 均为常数,)0)1((≠-p pq )。

解法(待定系数法):把原递推公式转化为:)(1t a p t a n n -=-+,其中pqt -=1,再利用换元法转化为等比数列求解。

例3.已知数列{}n a 中,11a =-,123n n a a +=-+,求n a .变式:在数列{}n a 中,若111,23(1)n n a a a n +==+≥,则该数列的通项n a =_______________类型4 ()n f pa a n n +=+1型数列(p 为常数)若()f n 为n 的一次函数,则n a 加上关于n 的一次函数构成一个等比数列; 若()f n 为n 的二次函数, 则n a 加上关于n 的二次函数构成一个等比数列.这时我们用待定系数法来求解.若()f n 为n 的指数幂形式,此类数列可变形为()111++++=n n n n n p n f p a p a ,则⎭⎬⎫⎩⎨⎧n n p a 可用累加法求出,由此求得n a .例4 (1)已知数列{}n a 满足1111,2,21,.2n n n a n a a n a -=≥=+-当时求(2)已知数列{}n a 满足1111,22n n n a a a ++==+,求n a .变式:1.已知数列{}n a 中,651=a ,11)21(31+++=n n n a a ,求n a 。

2.已知数列{}n a ,n S 表示其前n 项和,若满足231n n S a n n +=+-,求数列{}n a 的通项公式。

类型5 递推公式为n n n qa pa a +=++12(其中p ,q 均为常数)。

解法(待定系数法):先把原递推公式转化为)(112n n n n sa a t sa a -=-+++ 其中s ,t 满足⎩⎨⎧-==+q st pt s例5.已知数列{}n a 满足*12211,3,32().n n n a a a a a n N ++===-∈(I )证明:数列{}1n n a a +-是等比数列;(II )求数列{}n a 的通项公式;变式: 已知数列{}n a 中,11=a ,22=a ,n n n a a a 313212+=++,求n a 。

类型6 递推公式为n S 与n a 的关系式。

(或()n n S f a =)解法:这种类型一般利用⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-)2()1(11n S S n S a n nn 与)()(11---=-=n n n n n a f a f S S a 消去n S)2(≥n 或与)(1--=n n n S S f S )2(≥n 消去n a 进行求解。

例6.已知数列{}n a 前n 项和2214---=n n n a S .(1)求1+n a 与n a 的关系;(2)求通项公式n a .变式:1. {}n a 的前n 项和221n s n =-,求通项n a .2.(2006,陕西,理,20)已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等比数列,求数列{a n }的通项a n类型7 rn n pa a =+1)0,0(>>n a p解法:这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。

例7.已知数列{n a }中,2111,1n n a aa a ⋅==+)0(>a ,求数列{}.的通项公式n a类型8 )()()(1n h a n g a n f a n nn +=+解法:这种类型一般是等式两边取倒数后换元转化为q pa a n n +=+1。

例8.已知数列{a n }满足:1,13111=+⋅=--a a a a n n n ,求数列{a n }的通项公式。

变式:数列{}n a 中,11113,33n nn n na a a a +++⋅==+,求{}n a 的通项。

类型9 周期型 解法:由递推式计算出前几项,寻找周期。

例9.若数列{}n a 满足⎪⎪⎩⎪⎪⎨⎧<≤-≤≤=+)121(,12)210(,21n n n n n a a a a a ,若761=a ,则20a 的值为___________。

变式。

已知数列}{n a 满足)(133,0*11N n a a a a n n n ∈+-==+,则20a =( )A .0B .3-C .3D .23拓展训练 巩固提高1.已知数列{}n a 中, 11a =, 12n n a a +=+ ().n N *∈求数列{}n a 的通项公式.2.已知数列{}n a 中, 11,2a =113n n n a a +=+*(),n N ∈求数列{}n a 的通项公式.3.已知数列{}n a 中,11,2a =121n n a a n n+=++, *(),n N ∈求数列{}n a 的通项公式.4.已知数列{}n a 中13,a =13n n a a +=*().n N ∈求数列{}n a 的通项公式.5.已知数列{}n a 满足11,a =12n n n a a +=*(),n N ∈求数列{}n a 的通项公式.6.已知数列{}n a 中,13,2a =*133(),n n a a n N +=+∈求数列{}n a 的通项公式. 7. 已知数列{}n a 中,11,a =*133(),n n n a a n N +=+∈求数列{}n a 的通项公式.8.已知数列{}n a 中,12a =,1431n n a a n +=-+,*(),n N ∈求数列{}n a 的通项公式.9. 数列{}n a 中,,3,221==a a 且()2,211≥∈+=++-n N n a a a n n n ,求n a 10.已知数列{}n a 满足1122,2nn n a a a a +==+,求n a . 11.数列{}n a 中,11112,22n nn n na a a a +++⋅==+,求{}n a 的通项。

12.已知下列两数列{}n a 的前n 项和n s 的公式,求{}n a 的通项公式。

(1)21n s n =- (2)223n s n n =-。

相关文档
最新文档