高中数学柯西不等式与排序不等式

合集下载

排序不等式与柯西不等式

排序不等式与柯西不等式

2
n维形式:
推论:
(a a a )(b b b ) (a1b1 a2b2 anbn )
2
(a1 a2 an )(b1 b2 b3 ) ( a1b1 a2b2 anbn )
2
an a1 a2 当且仅当 时等号成立 b1 b2 bn
排序不等式:
设a1≤a2≤a3≤…≤an, b1≤b2≤b3≤…≤bn
c1,c2,c3,…,cn是b1,b2,…,bn的任意一个 排列,那么 a1bn+a2bn-2+…+anb1 (反序和) ≤a1c1+a2c2+…+ancn (乱序和) ≤a1b1+a2b2+…+anbn (顺序和)
当且仅当a1=a2=…=an或b1=b2=…=bn时, 数y 2 1 x 2 x 1的最大值为___ 3 .
25 1 2 1 2 4.若a b 1, 则(a ) (b ) 的最小值是______ 2 a b
柯西不等式的应用: (a a )(b b ) (a1b1 a2b2 )
2 1 2 2 2 1 2 2
2
6 3 1.函数y=5 x 1 10 2x 的最大值是___.
9 1 1 2.若a,b>0,则 (a )( 2b ) 的最小值是__. 2 b 2a
3.若实数m,n,x,y满足m2+n2=a,x2+y2=b, 其中a,b为常数,且a≠b,则mx+ny的最 大值是_____. ab 4.若a2+b2=1,则 acos bsin的最大值 是_____, -1 1 最小值是_____.

3.1 柯西不等式与排序不等式

3.1 柯西不等式与排序不等式

3.1 柯西不等式与排序不等式重点:柯西不等式与排序不等式的简单应用一.柯西不等式1.柯西不等式的向量形式设有向量α,β ,根据向量数量积的定义,我们有:|||cos |||||||||βαθβαβα⋅=⋅⋅≥⋅.即有: ||||||βαβα⋅≥⋅,等号当且仅当βα ,同向或反向时成立(βα,共线时成立).因此我们有如下的定理:(柯西不等式的向量形式)定理1.设βα,为平面上的两个向量,则:||||||βαβα ⋅≥⋅,等号当且仅当βα,共线时成立.2.柯西不等式的代数形式(柯西不等式)设有向量),(b a =α ,),(d c =β ,将坐标代入:||||||βαβα⋅≥⋅, 即有:||2222bd ac dc b a +≥+⋅+.即有:22222)()()(bd ac d c b a +≥++. 等号当且仅当(βα,共线时)db c a =时成立.因此,我们有下面的定理:(二维柯西不等式) 定理2. 设d c b a ,,,均为实数,则: 22222)()()(bd ac d c b a +≥++,等号当且仅当时dbc a =成立.如果向量),,(111c b a =α,),,(222c b a =β,代入:||||||βαβα⋅≥⋅, 即有:||212121222222212121c c b b a a c b a c b a ++≥++⋅++.即有:2222222)()()(c c b b a a c b a c b a ++≥++++.等号当且仅当(βα,共线时)212121c cb b a a ==时成立.因此,我们又有下面的定理:(三维柯西不等式)定理3. 设222111,,,,,c b a c b a 均为实数,则:2212121222222212121)()()(c c b b a a c b a c b a ++≥++++ 等号当且仅当212121c cb b a a ==时成立.这里定理1称为柯西不等式的向量形式,定理2、定理3则称为二维、三维柯西不等式的代数形式。

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计

人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。

二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。

三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。

3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。

四、教学过程设计
教学环节教学内容教学目标与要

教师活动与学生活动
1。

一般形式的柯西不等式及排序不等式

一般形式的柯西不等式及排序不等式

巩固练习一、
[ 例 1] 1 1 设 x1,x2,„,xn 都是正数,求证: + +„ x1 x2
1 n2 +x ≥ . n x1+x2+„+xn
已知 a,b,c,d 为不全相等的正数,求证: 1 1 1 1 1 1 1 1 + + + > + + + . a2 b2 c2 d2 ab bc cd da
[例 2]
π aA+bB+cC 在△ABC 中,试证: ≤ 3 a+b+c
[证明]
1 1 ∵a≥b>0,于是a≤b,
1 1 又 c>0,从而 ≥ , bc ca 1 1 1 1 1 同理ca≥ab,从而bc≥ca≥ab. 又由于顺序和不小于乱序和,故可得 a5 b5 c5 b5 c5 a5 + + ≥ + + b3c3 c3a3 a3b3 b3c3 c3a3 a3b3 b2 c2 a2 1 1 1 = 3+ 3+ 3(∵a2≥b2≥c2, 3≥ 3≥ 3) c a b c b a c2 a2 b2 1 1 1 ≥ 3+ 3+ 3= + + c a b c a b 1 1 1 = + + . a b c 所以原不等式成立.
和 S4=a1b2+a2b3+a3b1=195
备注 乱序和
S5=a1b3+a2b1+a3b2=185 S6=a1b3+a2b2+a3b1=180 (最小值)
乱序和
反序和
答案:220 180
知识总结点拨
1.对排序不等式的证明的理解 对排序不等式的证明中,用到了“探究——猜想——检验—— 证明”的思维方法,这是探索新知识、新问题常用到的基本方 法,对于数组涉及的“排序”及“乘积”的问题,又使用了 “一一搭配”这样的描述,这实质上也是使用最接近生活常识

第三讲柯西不等式的基本方法与排序不等式(柯西不等式的一般形式)

第三讲柯西不等式的基本方法与排序不等式(柯西不等式的一般形式)

作业:P41
2、 4、 5、 6
问题:已知A、B都是锐角, 且cosA+cosB-cos(A+B)=
2 3
,
求A、B的值
当且仅当bi=0(i=1 ,2 ,3 , …,n)或
bi≠0(i=1 ,2 ,3 , … ,n)时,
等号成立.
a1 a 2 = = b1 b2
an = bb

问题:已知a1 ,a 2 , a n ∈ R +,求证 n 1 1 + + a1 a 2 a1 + a 2 + ≤ 1 n + an + an
使得ai=kbi(i=1 ,2 ,3 , … ,n)时,等号成立.
注:简记;积和方不大于方和积
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
定理:设a1,a2 ,a3 , … ,an ,b1 ,b2 ,b3 , …,bn 是实数,则
2 2 2 2 2 3 2 2 (a1 +a2 +a + +a )(b + b + b + + b ) (a b +a b + +a b ) 2 3 n 1 2 3 n 1 1 2 2 n n
当且仅当bi=0(i=1 ,2 ,3 , …,n)或存在一个数k
+a

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教

高中数学 第三讲 柯西不等式与排序不等式 3.1 二维形式的柯西不等式 3.2 一般形式的柯西不等式素材1 新人教

二 一般形式的柯西不等式庖丁巧解牛知识·巧学一、二维形式的柯西不等式定理1 (二维形式的柯西不等式)已知a 1,a 2,b 1,b 2∈R ,则(a 1b 1+a 2b 2)2≤(a 12+a 22)2(b 12+b 22)2,当且仅当a 1b 2-a 2b 1=0时取等号.由二维形式的柯西不等式推导出两个非常有用的不等式: 对于任何实数a 1,a 2,b 1,b 2,以下不等式成立:22212221b b a a +•+≥|a 1b 1+a 2b 2|; 22212221b b a a +•+≥|a 1b 1|+|a 2b 2|.联想发散不等式中等号成立⇔a 1b 2-a 2b 1=0.这时我们称(a 1,a 2),(b 1,b 2)成比例,如果b 1≠0,b 2≠0,那么a 1b 2-a 2b 1=0⇔2211b a b a =.若b 1·b 2=0,我们分情况说明:①b 1=b 2=0,则原不等式两边都是0,自然成立;②b 1=0,b 2≠0,原不等式化为(a 12+a 22)b 22≥a 22b 22,也是自然成立的;③b 1≠0,b 2=0,原不等式和②的道理一样,自然成立.正是因为b 1·b 2=0时,不等式恒成立,因此我们研究柯西不等式时,总是假定b 1b 2≠0,等号成立的条件可以写成2211b a b a =,这种写法在表示一般形式(n 维)的柯西不等式等号成立的条件时更是方便、简洁的.定理2 (柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k ,使α=k β时,等号成立. 学法一得定理2 中等号成立的充分必要条件是向量α和β平行(如α,β为非零向量,则定理2中等号成立的充分必要条件为向量α与β的夹角为0或π,即α与β对应的坐标分量成比例),从而可以推知定理1中等号成立的充分必要条件为2211b a b a =(b i 为零时,a i 为零,i=1,2).定理 3 (二维形式的三角不等式)设x 1,x 2,y 1,y 2∈R ,那么22122122222121)()(y y x x y x y x -+-≥+++.二维形式的三角不等式的变式:用x 1-x 3代替x 1,用y 1-y 3代替y 1,用x 2-x 3代替x 2,用y 2-y 3代替y 2,代入定理3,得232231231231)()()()(y y x x y y x x -+-+-+-221221)()(y y x x -+-≥二、一般形式的柯西不等式 定理 设a i ,b i ∈R (i=1,2, …,n),则(∑∑∑===≤ni ini ini ii ba b a 121212)(.当数组a 1,a 2,…,a n ,b 1,b 2,…,b n 不全为0时,等号成立当且仅当b i =λa i (1≤i≤n).即(a 1b 1+a 2b 2+…+a n b n )2≤(a 12+a 22+…+a n 2)2(b 12+b 22+…+b n 2)2(a i ,b i ∈R ,i=1,2,…,n )中等号成立的条件是2211b a b a ==…=nn b a. 记忆要诀这个式子在竞赛中极为常用,只需简记为“积和方小于和方积”.等号成立的条件比较特殊,要牢记.此外应注意在这个式子里不要求各项均是正数,因此应用范围较广. 一般形式的柯西不等式有两个很好的变式:变式 1 设a i ∈R ,bc>0(i=1,2, …,n),则∑∑∑≥=ii ni i ib a b a 212)(,等号成立当且仅当b i =λa i (1≤i≤n).变式2 设a i ,b i 同号且不为0(i=1,2,…,n ),则∑∑∑≥=i i i ni iib a a b a 212)(,等号成立当且仅当b 1=b 2=…=b n .深化升华要求a i ,b i 均为正数.当然,这两个式子虽常用,但是记不记住并不太重要,只要将柯西不等式原始的式子记得很熟,这两个式子其实是一眼就能看出来的,这就要求我们对柯西不等式要做到活学活用.柯西不等式经常用到的几个特例(下面出现的a 1, …,a n ;b 1, …,b n 都表示实数)是:(1)a 12+a 22+…+a n 2=1,b 12+b 22+…+b n 2=1,则|a 1b 1+a 2b 2+…+a n b n |≤1;(2)a 1a 2+a 2a 3+a 3a 1≤a 12+a 22+a 32;(3)(a 1+a 2+…+a n )2≤n(a 12+a 22+…+a n 2);(4)(a+b)(a 1+b1)≥4=(1+1)2,其中a 、b∈R +; (5)(a+b+c)(a 1+b 1+c1)≥9=(1+1+1)2,其中a 、b 、c∈R +.柯西不等式是一个重要的不等式,有许多应用和推广,与柯西不等式有关的竞赛题也频频出现,这充分显示了它的独特地位. 典题·热题知识点一: 用柯西不等式证明不等式 例1 设a 1>a 2>…>a n >a n+1,求证:11132211111a a a a a a a a n n n -+-++-=-++Λ>0.思路分析:这道题初看起来似乎无法使用柯西不等式,但改变其结构就可以使用了,我们不妨改为证: (a 1-a n+1)·[13221111+-++-+-n n a a a a a a Λ]>1.证明:为了运用柯西不等式,我们将a 1-a n+1写成a 1-a n+1=(a 1-a 2)+(a 2-a 3)+ …+(a n -a n+1),于是[(a 1-a 2)+(a 2-a 3)+…+(a n -a n+1)]·(13221111+-++-+-n n a a a a a a Λ)≥n 2>1.即(a 1-a n+1)·(13221111+-++-+-n n a a a a a a Λ)>1,∴11132211111++->-++-+-n n n a a a a a a a a Λ,故11132211111a a a a a a a a n n n -+-++-+-++Λ>0.方法归纳我们进一步观察柯西不等式,可以发现其特点是:不等式左边是两个因式之和,其中每一个因式都是项平方和,右边是左边中对立的两两乘积之和的平方,证题时,只要能将原题凑成此种形式,就可以引用柯西不等式来证明. 知识点二: 用柯西不等式证明条件不等式 例2 (经典回放)设x 1,x 2, …,x n ∈R +,求证:123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 思路分析:在不等式的左端嵌乘以因式(x 2+x 3+…+x n +x 1),也即嵌以因式(x 1+x 2+…+x n ),由柯西不等式即可得证.证明:(123221x x x x x x x x nn ++++Λ)·(x 2+x 3+…+x n +x 1) =[(21x x )2+(22x x )2+…+(nn x x 1-)2+(1x x n )2] [(2x )2+(3x )2+…+(n x )2+(1x )2]≥(21x x ·2x +22x x ·3x +…+nn x x 1-·n x +1x x n ·1x ) =(x 1+x 2+…+x n )2,于是123221x x x x x x x x nn ++++Λ≥x 1+x 2+…+x n . 巧解提示柯西不等式中有三个因式∑∑∑===ni ii ni ini iba b a 11212,,,而一般题目中只有一个或两个因式,为了运用柯西不等式,我们需要设法嵌入一个因式(嵌入的因式之和往往是定值),这也是利用柯西不等式的技巧之一.知识点三: 用柯西不等式求函数的极值例3 已知实数a,b,c,d 满足a+b+c+d=3,a 2+2b 2+3c 2+6d 2=5,试求a 的最值. 思路分析:本题求极值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解. 解:由柯西不等式得,有 (2b 2+3c 2+6d 2)(613121++)≥(b+c+d)2, 即2b 2+3c 2+6d 2≥(b+c+d)2.由条件可得,5-a 2≥(3-a)2. 解得,1≤a≤2,当且仅当6/163/132/12dc b ==时等号成立. 代入b=1,c=31,d=61时,a max =2; b=1,c=32,d=31时,a min =1.巧妙变式为了给运用柯西不等式创造条件,经常引进一些待定的参数,其值的确定由题设或者由等号成立的充要条件共同确定,也有一些三角极值问题我们可以反复运用柯西不等式进行解决.而有些极值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.这多次反复运用柯西不等式的方法也是常用技巧之一. 如:已知a,b 为正常数,且0<x<2π,求y=x b x a cos sin +的最小值. 解:利用柯西不等式,得)(32323232b a b a +=+(sin 2x+cos 2x)≥(3a sinx+3b cosx)2.当且仅当33cos sin bxax=时等号成立.于是33232a b a ≥+sinx+3b cosx.再由柯西不等式,得3232b a +(xb x a cos sin +) ≥(3a sinx+3b cosx)(xb x a cos sin +) ≥(x b x b x a x a cos cos sin sin 66+)2=(a 32+b 32)2. 当且仅当33cos sin bxax=时等号成立.从而y=x bx a cos sin +≥(a 32+b 32)32. 于是y=xbx a cos sin +的最小值是(a 32+b 32)32. 问题·探究 思想方法探究问题 试探究用柯西不等式导出重要公式.如n 个实数平方平均数不小于这n 个数的算术平均数,即若a 1,a 2,…,a n ∈R ,则na a a n a a a nn2222121+++≤+++ΛΛ.探究过程:由柯西不等式可知(a 1+a 2+…+a n )2≤(a 1·1+a 2·1+…+a n ·1)2≤(a 12+a 22+…+a n 2)·(12+12+…+12)=(a 12+a 22+…+a n 2)·n,所以na a a n 221)(+++Λ≤a 12+a 22+…+a n 2,故na a a n a a a nn2222121+++≤+++ΛΛ.不等式na a a na a a nn2222121+++≤+++ΛΛ,把中学教材中仅有关于两个正数的“算术平均”,“几何平均”问题拓广到了“二次幂平均”问题,即nn a a a Λ21≤na a a n a a a nn2222121+++≤+++ΛΛ,这不仅拓宽了中学生的眼界,而且为解决许多不等式的问题开辟了一条新路.探究结论:柯西不等式不仅在高等数学中是一个十分重要的不等式,而且它对初等数学也有很好的指导作用,利用它能方便地解决一些中学数学中的有关问题. 交流讨论探究问题 柯西不等式在求某些函数最值中和证明某些不等式时是经常使用的理论根据,试交流讨论使用柯西不等式的技巧,试举例归纳.探究过程:人物甲:构造符合柯西不等式的形式及条件可以巧拆常数,如:设a 、b 、c 为正数且各不相等.求证cb a ac c b b a ++>+++++9222.我们可以如此分析:∵a、b 、c 均为正,∴为证结论正确只需证2(a+b+c)[ac c b b a +++++111]>9.而2(a+b+d)=(a+b)+(b+c)+(c+a),又9=(1+1+1)2.人物乙:构造符合柯西不等式的形式及条件可以重新安排某些项的次序,如:a 、b 为非负数,a+b=1,x 1,x 2∈R +,求证(ax 1+bx 2)(bx 1+ax 2)≥x 1x 2.我们可以如此分析:不等号左边为两个二项式积,a,b∈R -,x 1,x 2∈R +,直接用柯西不等式做得不到预想结论,当把第二个小括号的两项前后调换一下位置,就能证明结论了.人物丙:构造符合柯西不等式的形式及条件可以改变结构,从而能够使用柯西不等式,如:若a>b>c ,求证c b b a -+-11≥ca -4.我们可以如此分析:初式并不能使用柯西不等式,改造结构后便可使用柯西不等式了.∵a -c=(a-b)+(b-c),a>c,∴a -c>0,∴结论改为(a-c)(cb b a -+-11)≥4. 人物丁:构造符合柯西不等式的形式及条件可以添项,如:若a,b,c∈R +,求证b ac a c b c b a +++++≥23.我们可以如此分析:左端变形c b a ++1+ac b++1+b a c ++1=(a+b+c)(b a a c c b +++++111),∴只需证此式≥29即可. 探究结论:使用柯西不等式的技巧主要就是使用一些方法(巧拆常数、重新安排某些项的次序、添项等)构造符合柯西不等式的形式及条件.。

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》

人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
2 2 2 2
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n

高中数学 第三讲 柯西不等式与排序不等式 3.3 排序不

高中数学 第三讲 柯西不等式与排序不等式 3.3 排序不

三 排序不等式知识梳理1.基本概念设a 1<a 2<a 3<…<a n ,b 1<b 2<b 3<…<b n 是两组实数,c 1,c 2,c 3, …,c n 是数组b 1,b 2, …,b n 的任何一个排列,则S 1=a 1b n +a 2b n-1+…+a n b n 叫做数组(a 1,a 2, …,a n )和(b 1,b 2, …b n )的和_______;S 2=a 1b 1+a 2b 2+…+a n b n 叫做数组(a 1,a 2, …a n )和(b 1,b 2, …,b n )的_______和;S=a 1c 1+a 2c 2+…+a n c n 叫做数组(a 1,a 2, …,a n )和(b 1,b 2, …,b n )的_______和.2.排序原理设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2, …,c n 是b 1,b 2, …,b n 的任一排列,那么,_______≤_______≤_______.当且仅当_______或_______时,反序和等于顺序和.知识导学排序原理是对不同的两个数组来研究不同的乘积和的问题,能构造的和按数组中的某种“搭配”的顺序被分为三种形式:顺序和、反序和、乱序和,对这三种不同的搭配形式只需注重是怎样的“次序”,两种较为简单是“顺与反”,而乱序和也就不按“常理”的顺序了,对于排序定理的记忆,我们只需记住用特殊例子的方法来说大小关系,比如教材上的例子. 对于排序不等式取等号的条件不难理解a 1=a 2=…=a n 或b 1=b 2=…=b n ,但对于我们解决某些问题则非常关键,它是命题成立的一种条件,所以要牢记.疑难突破1.对排序不等式的证明的理解对排序不等式的证明中,用到了“探究——猜想——检验——证明”的思维方法,这是探索新知识、新问题常用到的基本方法,对于数组涉及到的“排序”及“乘积”的问题,又使用了“一一搭配”这样的描述,这实质上也是使用最接近生活常识的处理问题的方法,所以可以结合像平时班级排队等一些常识的事例来理解.对于出现的“逐步调整比较法”,则要引起注意,研究数组这种带“顺序”的乘积的和的问题时,这种方法对理解相关问题时是比较简单易懂的.2.排序原理的思想在解答数学问题时,常常涉及到一些可以比较大小的量,它们之间并没有预先规定大小顺序,那么在解答问题时,我们可以利用排序原理的思想方法,将它们按一定顺序排列起来,继而利用不等关系来解题.因此,对于排序原理,我们要记住的是处理问题的这种思想及方法,同时要学会善于利用这种比较经典的结论来处理实际问题.典题精讲【例1】 设a,b,c 都是正数,求证:cab b ca a bc ++≥a+b+c. 思路分析:不等式的左侧,可以分为两种数组ab,ac,bc;c 1,b 1,a 1,排出顺序后,可利用排序原理证之.证明:由题意不妨设a≥b≥c>0,由不等式的单调性,知ab≥ac≥bc,c 1≥b 1≥a1. 由排序原理,知ab×c 1+ac×b 1+bc×a 1≥ab×b 1+ac×a 1+bc×c1, 即所证不等式成立.绿色通道:要利用排序原理解答相关问题,必须构造出相应的数组,并且要排列出大小顺序,因此比较出数组中的数间的大小关系是解答题的关键和基础.【变式训练】 设a,b 都是正数,求证:(b a )2+(a b )2≥b a +ab . 思路分析:观察不等式找出数组,并比较大小,用排序原理证明.证明:由题意不妨设a≥b>0.由不等式的单调性,知a 2≥b 2,b 1≥a1. 所以ab b a 22≥. 根据排序原理,知ba b a b a a a b b b a 11112222⨯+⨯≥⨯+⨯. 即(b a )2+(a b )2≥b a +ab . 【例2】 设a 1,a 2,…,a n 是1,2,…,n 的一个排列,求证:21+32+…+nn a a a a a a n n 132211-+++≤-Λ. 思路分析:构造出数组,利用排序原理证明.证明:设b 1,b 2, …,b n-1是a 1,a 2, …,a n-1的一个排列,且b 1<b 2<…<b n-1;c 1,c 2, …,c n-1是a 2,a 3, …,a n 的一个排列,且c 1<c 2<…<c n-1, 则121111->>>n c c c Λ且b 1≥1,b 2≥2, …,b n-1≥n -1,c 1≤2,c 2≤3, …,c n-1≤n. 利用排序不等式,有nn c b c b c b a a a a a a n n n n 1322111221113221-+++≥+++≥+++---ΛΛΛ. ∴原不等式成立.绿色通道:构造数组时,自己可根据题目的要求与需要,来限定数组间的一些联系,对于一些大小顺序,在不影响一般性的前提下,也可以设定.【变式训练】 设a 1,a 2, …,a n 都是正数,b 1,b 2, …,b n 是a 1,a 2, …,a n 的任一排列,求证:a 12b 1-1+a 22b 2-1+…+a n 2b n -1≥a 1+a 2+…+a n .思路分析:设定a 1,a 2,…,a n 的大小,找到两个数组,利用排序原理可证得.证明:设a 1≥a 2≥…≥a n >0,可知a 12≥a 22≥…≥a n 2,a n -1≥a n -1-1≥…≥a 1-1.由排序原理,得a12b1-1+a22b2-1+…+a n2b n-1≥a12a1-1+a22a2-1+a n2a n-1即a12b1-1+a22b2-1+…+a n2b n-1≥a1+a2+…+a n.问题探究问题:有十人各拿一只水桶去打水,如果水龙头灌满第i个人的水桶需要t i分钟,且这些t i(i=1,2, …,10)各不相等,试问:若有两个相同的水龙头供水时,应如何安排这十个人的次序,使他们花费的总时间最少?这个最少的总时间是多少?导思:考虑两个水龙头,要注意数组的搭配与数组中的大小顺序,可以联系教材上一个水龙头供水时的设定方法去求解.探究:如果有两个水龙头,设总时间最少时有m个人在第一个水龙头打水,设依次所需时间为p1,p2, …,p m;有10-m个人在第二个水龙头打水,依次所需时间设为q1,q2, …,q10-m.显然必有一个水龙头的打水人数不少于5人,不妨设为第一个水龙头,也不可能有一个水龙头没人去打水,则5≤m<10.设p1<p2<…<p m,q1<q2<…<q10-m.总花费的时间为:T=mp1+(m-1)p2+…+p m+(10-m)q1+(9-m)q2+…+q10-m.其中{p1,p2, …,p m,q1,q2, …,q10-m}={t1,t2, …,t10},t1<t2<…<t10.首先我们来证明m=5.若不然,我们让在第一个水龙头打水的第一人到第二个水龙头的第一位去,则总花费的时间变为:T′=(m-1)p2+…+p m+(11-m)p1+(10-m)q1+…+q10-m.T-T′=(2m-11)p1>0.即当m>5时,我们让第一水龙头的第一人到第二水龙头去后,总时间减少.故在m=5时,总时间可能取得最小值.由于m=5,故两个水龙头人一样多,总用时:T=(5p1+4p2+3p3+2p4+p5)+(5q1+4q2+3q3+2q4+q5).由于p1<p2<…<p5,q1<q2<…<q5.不妨设p1=t1.下证q1<p2.否则我们交换用时为q1,p2的两人的位置后,总用时变为T″=(5p1+4q1+3p3+2p4+p5)+(5p2+4q2+3q3+2q4+q5),T-T″=q1-p2>0.即经交换后总时间变少.故q1<p2.也即q1=t2.类似地我们可以证明:p i<q i<p i+1(i=1,2,3,4),p5<q5.从而最省时的打水顺序为:水龙头一:t1,t3,t5,t7,t9;水龙头二:t2,t4,t6,t8,t10.其中:t1<t2<…<t10.。

高中数学 第三讲 柯西不等式与排序不等式 二 一般形式

高中数学 第三讲 柯西不等式与排序不等式 二 一般形式
解答
(2)求14a2+19b2+c2 的最小值. 解 由(1)知a+b+c=4, 由柯西不等式得 14a2+19b2+c2(4+9+1) ≥a2×2+3b×3+c×12 =(a+b+c)2=16, 即14a2+19b2+c2≥87,
11 当且仅当22a=33b=1c, 即 a=87,b=178,c=27时等号成立,
跟踪训练3 已知a>0,b>0,c>0,函数f(x)=|x+a|+|x-b|+c的最小 值为4. (1)求a+b+c的值;
解 因为f(x)=|x+a|+|x-b|+c≥|(x+a)-(x-b)|+c=|a+b|+c, 当且仅当-a≤x≤b时,等号成立. 又a>0,b>0, 所以|a+b|=a+b, 所以f(x)的最小值为a+b+c, 又已知f(x)的最小值为4,所以a+b+c=4.
当且仅当bi=0(i=1,2,…,n)或存在一个数k,使得 ai=kbi (i=1,2,…,n)
时等号成立.
题型探究
类型一 利用柯西不等式证明不等式 命题角度1 三维形式的柯西不等式的应用 例1 设a,b,c为正数,且不全相等. 求证:a+2 b+b+2 c+c+2 a>a+9b+c.
证明
反思与感悟 有些问题一般不具备直接应用柯西不等式的条件,可以通过: (1)构造符合柯西不等式的形式及条件,可以巧拆常数. (2)构造符合柯西不等式的形式及条件,可以重新安排各项的次序. (3)构造符合柯西不等式的形式及条件,可以改变式子的结构,从而达到使 用柯西不等式的目的. (4)构造符合柯西不等式的形式及条件,可以添项.
a2b2+a3b3)2 ,当且仅当 b1=b2=b3=0或存在一个数 k,使得 ai=kbi
(i=1,2,3)时等号成立.
知识点二 一般形式的柯西不等式

柯西不等式与排序不等式

柯西不等式与排序不等式

柯西不等式与排序不等式一、基本概念:(一)定理1:二维形式的柯西不等式若,,,a b c d 都是实数,则22222()()()a b c d ac bd ++≥+,当且仅当ad bc =时,等号成立. 证明:(一)代数证明:2222222222222a c b c b d a d a c b d abcd ⇐+++≥++222220b c abcd a d ⇐-+≥2()0bc ad ⇐-≥当且仅当ad bc =时,等号成立.(二)向量证明:构造向量(,),(,)a b c d αβ== ,则有cos αβαβθ⋅=⋅αβαβ⋅≤⋅其坐标形式即为ac bd +≤ 当且仅当,αβ 共线或0β=时等号成立,即当且仅当ad bc =时,等号成立.推论1ac bd ≥+(来源于向量证明中)推论2ac bd +(将原式中,,,a b c d 都变为,,,a b c d ) 定理2:柯西不等式的向量形式设α,β是两个向量,则⋅≤αβαβ当且仅当β是零向量,或存在实数k ,使α=kβ时,等号成立.证明:上述向量证明已经说明完毕 定理3:二维形式的三角不等式设1122,,,x y x y R ∈≥证明:22222112222221112122222221112122222121222()()()x y x y x y x x y y x y x y x x y y x y x x y y =+++≥+++++≥+-+++=-+-≥(二)一般形式的柯西不等式设123123,,,,,,,,,n n a a a a b b b b 是实数,则222222212121122()()()n n n n a a a b b b a b a b a b ++++++≥+++当且仅当0(1,2,,)i b i n == 或存在一个数k ,使得(1,2,,)i i a kb i n == 时,等号成立. 简记作:平方和的乘积大于等于乘积和的平方分析:我们可以利用空间向量很容易证明出三维形式的柯西不等式2222222123123112233()()()a a a b b b a b a b a b ++++≥++,但维数再高时就没有几何模型可以构造证明了,那么如何证明这一重要的不等式呢?证明:(一)构造二次函数:222()20i i i i i f x a x a b x b =++≥,222()()()2()0iii iiF x f x a x ab x b ==++≥∑∑∑∑(二)归纳法和平均值不等式:(1)当2n =时,有22222222222222222112211112222111221221212()2()()a b a b a b a ba b a b a b a b a b a b a a b b +=++≤+++=++即命题成立(2)假设当n k =时命题成立,当1n k =+时,由于2222112211112211221111()()2()k k k k k k k k k k k k a b a b a b a b a b a b a b a b a b a b a b a b ++++++++++=++++++++由平均值不等式,得222222221122111121122()()()k k k k k k k k a b a b a b a b a b b b b a a a +++++++≤+++++++由归纳假设得2222112211112211221111222222222221122112112112222222121211()()2()()()()()()(k k k k k k k k k k k k k k k k k k k k kkk a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b a b b b b a a a a b a a a b b b a b +++++++++++++++=++++++++≤++++++++++++≤+++++++ 22222222221121122222222121121)()()()kk kk k k k k k b b b a a a a ba a a ab b b b +++++++++++++=++++++++由(1)(2)得原命题成立(三)构造单调数列:构造数列{}n S ,其中222222*********()()()n n n n n S ab a b a b a a a b b b =+++-++++++则22211111()()0S ab a b =-=22222221112211121121222222211221212[()()()][()()()]n n n n n n n n nnS S a b a b a b a a a b b b a b a b a b a a a b b b +++++-=+++-++++++-+++-++++++22222222222211221111121112112()()()n n n n n n n n n n n n ab a b a b a b a b a a a b a b b b a b ++++++++=++++-+++-+++-2221111212111[()()()]0n n n n n n n n a b ba a b b a a b b a ++++++=--+-++-≤即1n n S S +≤,所以{}n S 单调减少,从而对一切1n ≥,有10n S S ≤=,故命题成立.(四)归纳法证明更强的结论:1ni ii a b=≤∑ (1)当2n =时,22222222222222222112211112222111221221212()2()()a b a b a b a ba b a b a b a b a b a b a a b b +=++≤+++=++(2)假设当n k =时命题成立,当1n k =+时,由归纳假设11111kk i i k k i ii i a b a b a b +++===≥≥+=∑∑由(1)(2)得原命题成立(三)柯西不等式的变形形式变形1:已知123,,,,n a a a a 都是实数,求证:222212121()()n n a a a a a a n+++≤+++说明:此变形为1(1,2,,)i b i n == 的特殊形式,经过整理,在都为正数的条件下可变为均值不等式12n a a a n +++≤变形2:已知123,,,,n a a a a 都是实数,0(1,2,,)i b i n >= 则:222212121212()n n n na a a a a ab b b b b b ++++++≥+++变形3:已知123123,,,,,,,,,n n a a a a b b b b 同号且不为0,则:21212121122()n n n n na a a a a ab b b a b a b a b ++++++≥+++上述各种形式如果灵活运用会给解决问题带来便利.(四)排序不等式设1212,n n a a a b b b ≤≤≤≤≤≤ 为两组实数,12,,,n c c c 是123,,,,n b b b b 的任一排列,则121111221122n n n n n n n a b a b a b a c a c a c a b a b a b -+++≤+++≤+++ ,当且仅当123n a a a a ==== 或123n b b b b ==== 时,反序和等于顺序和简记作:反序和≤乱序和≤顺序和证明:设1212,n n a a a b b b ≤≤≤≤≤≤ 为两组实数,12,,,n c c c 是12,,,n b b b 的任一排列,因为12,,,n b b b 得全排列有!n 个,所以1122n n S a c a c a c =+++ (1)的不同值也只有有限个(个数!n ≤),其中必有最大值和最小值,考虑(1)式,若11c b ≠,则有某11(1),k k c b k c c =>> ,将(1)中1,k c c 对换,得11k k n n S a c a c a c '=+++ (2)111111()()0k k k k k k S S a c a c a c a c a a c c '-=+--=--≥这说明将(1)中的第一项调换为11a b 后,和式不减小.若11,c b =则转而考察2c ,并进行类似讨论.类似的,可以证明,将(1)中的第一项换为11a b ,第二项换为22a b 后,和式不减小,如此继续下去,经有限步调整,可知一切和数中,最大和数所对应的情况只能是{}i c 由小到大排序的情况,最大和数是顺序和,即顺序和≥乱序和 同样可证,最小和数是反序和,即乱序和≥逆序和二、习题精练:【柯西不等式应用】 (一)求最值例1:设,0a b >,求证:11()()4a b a b++≥.例2:设,,0a b c >,求证:9)111)((≥++++c b a c b a 例3:设,,0a b c >,求证:29)111)((≥+++++++a c c b b a c b a 例4:21x y +=,求22x y +的最小值________15例5:22236x y +≤,求2x y +的最大值 1. 1,a b +=22a b +的最小值为_________122.,a b R +∈,111,a b a b+=+最小值为_________4 3. 1111,,,,a b c a b c R a b c+++=∈++最小值为__________94.已知0,0x y >>且21x y +=,则11u x y=+的最小值为___________3+5.已知,,,1,a b c R a b c +∈++=则149x y z++的最小值为_______366.,,,a b c R a b c +∈++=_________7. ,a b R +∈,a b +=8. 求函数y =的最大值__________________5解:22222(34)25≤++=9. 若,,a b c R +∈,且1a b c ++=,则c b a ++的最大值是10. 若,,a b c R +∈,且2313a b c ++=的最大值是11. 若实数,,,m n x y 满足2222,(),m n a x y b a b +=+=≠则mx ny +的最大值是12.若2222(0,),0,()2cos sin a b a b f πθθθθ∈>>=+的最小值为_________2()a b + 13.设*11,,na b c n N a b b c a c>>∈+≥---且恒成立,则n 的最大值是_________4 14. (06陕西)已知不等式1()()9ax y x y++≥对任意正实数,x y 恒成立,则正实数a 的最小值为 (C )(A)8 (B)6 (C )4 (D )215.(08浙江5)0,0a b ≥≥,且2a b +=,则 ( C ) (A )12ab ≤(B )12ab ≥ (C )222a b +≥ (D )223a b +≤ 16.设a 、b 为正数,且a + b ≤4,则下列各式中正确的一个是( B )A .111<+ba B .111≥+ba C .211<+ba D .211≥+ba 17.设实数,,,,abcde 满足8a b c d e ++++=,2222216a b c d e ++++=,求e 的最大值解:8a b c d e +++=-,2222216a b c d e +++=-,根据柯西不等式有22(8)4(16)e e -≤-,解得1605e ≤≤,当65a b c d ====时,e 有最大值165e = (二)证明例:,,a b c R +∈求证:222a b c a b c b c a++≥++ 1. 已知1a b c ++=,求证:22213a b c ++≥2.已知12,,,n x x x R +∈ ,且121n x x x +++= ,求证:222121211111n n x x x x x x n +++≥---- 3.,,a b c 为三角形三边,求证:1119a cb bc a a c b a b c++≥+-+-+-++4. 已知,,,a b c R +∈,236,a b c ++=求证:222236a b c ++≥5.设,,a b c R +∈,求证:2221()2a b c a b c b c a c a b ++≥+++++ 6. 若,a b R +∈,求证:2211()()422a b b a+++≥ 7. ,,a b c R +∈且1a b c ++=,求证:222111100()()()3a b c a b c +++++≥证明:222222222222211111111111()()()(111)(()()())()33111111111100(1())(1()())(19)3333a b c a b c a b c a b c a b c a b ca b c a b c a b c +++++=+++++++≥+++++=+++=+++++≥+=8.i a R +∈且11ni i a ==∑,求证:22211(1)()ni i i n a a n =++≥∑证明:同上9.在ABC ∆中,设其各边长为,,a b c ,外接圆半径为 R , 求证:2222222111()()36sin sin sin a b c R A B B++++≥ 10.设12,,,n x x x为任意实数,求证:1222222211212111n nx x x x x x x x x +++<+++++++ 证明:由柯西不等式得222212122222222222221121211212()[()()()]111111n n n nx x x x x x n x x x x x x x x x x x x +++≤+++⋅++++++++++++++ 对2k ≥,有2222222222222222121212121()1(1)(1)(1)k k k k k k k x x x x x x x x x x x x x x x -=≤++++++++++++++++ 222222121121111k kx x x x x x -=-++++++++ 对1k =,有22211122222111111()11(1)(1)1(1)1x x x x x x x x =≤=-+++++,故有 2221222222222222222221121211121211211111[()()()]111111111n n k kx x x x x x x x x x x x x x x x x x x -+++≤-+-++-+++++++++++++++++++ 222121111kx x x =-<++++则有222212122222222222221121211212()[()()()]111111n n n nx x x x x x n n x x x x x x x x x x x x +++≤+++⋅<++++++++++++++ 原命题得证【排序不等式应用】例1:已知,,a b c 为正数,求证:222a b c ab bc ac ++≥++例2:已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++(利用同向可加性) 1.(08江西)若121212120,01a a b b a a b b <<<<+=+=,且,则下列代数式中值最大的是(A ) A .1122a b a b + B .1212a a bb + C .1221a b a b + D .122.b a ab ba Rb a +≥+∈+,求证:已知,3.,,a b c R +∈,求证:2221()2a b c a b c b c c a a b ++≥+++++ 证明:由对称性不妨设a b c ≤≤,则222a b c ≤≤,111b c c a a b≤≤+++,则 222a b c b c c a a b +++++为顺序和,则有222222a b c b c a b c c a a b b c c a a b ++≥++++++++ 同理222222a b c c a b b c c a a b b c c a a b ++≥++++++++ 同向相加,有2222222222()a b c b c a c b a b c c a a b b c c a a b+++++≥++++++++ 因为2222()()b c b c +≥+,所以222b c b c b c ++≥+,同理222a c a c c a ++≥+,222b a a ba b ++≥+ 原式得证4.设123,,,,,k a a a a 为两两各不相同的正整数,求证:对任何正整数n ,均有2111nnk k k a k k==≥∑∑(IMO20-5)证明:设123,,,,n b b b b 是123,,,,n a a a a 的从小到大的有序排列,即123n b b b b ≤≤≤≤ 因为i b 是互不相同的正整数,则1231,2,3,,nb b b b n ≥≥≥≥ ,又因为222111123n>>>> ,所以由排序不等式可得 32122223n a a a a n ++++ (乱序)32122223n b b b b n ≥++++ (倒序)111123n≥++++ 原命题成立,此题即为课后练习题5.设123,,,,n a a a a 为正数,求证:2222231121232341n n n n a a a a a a a a a a a a a a -+++++≥++++(可用排序和柯西两种不等式证明)6.在ABC ∆中,求证:32aA bB cC a b c ππ++≤<++证明:不妨设a b c ≤≤,于是A B C ≤≤由排序不等式得aA bB cC aA bB cC ++=++,aA bB cC bA cB aC ++≥++,aA bB cC cA aB bC ++≥++同向相加可得3()()()()aA bB cC a b c A B C a b c π++≥++++=++,从而3aA bB cCa b cπ++≤++又由0,0,0b c a a b c a c b <+-<+-<+-,有0()()()A b c a Ca b c Ba c b <+-++-++-()()()()2()a B C A b A C B c A B C a b c aA bB cC π=+-++-++-=++-++从而2aA bB cC a b c π++<++由此原命题得证。

柯西不等式和排序不等式

柯西不等式和排序不等式

柯西不等式设1a ,2a …n a 及1b ,2b …n b 为任意实数,则有不等式222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑成立,其中当且仅当1b =2b …=n b =0或i i a kb =(1,2,,i n = )等号成立。

这就是著名的柯西(Cauchy )不等式。

柯西不等式的证明利用二次函数证明柯西不等式 构造二次函数()()()2222211)(n n b x a b x a b x a x f ++++++==()()()22222121122122nnn n n na a a x ab a b a b x b b b +++++++++++22120nn a a a +++≥ 且()0f x ≥恒成立()()()2222211221212440nnn n nn a b a b a b a a a bb b ∴∆=+++-++++++≤即()()()2222211221212nnn n nna b a b a b a a a bb b +++≤++++++其中当且仅当()01,2i i a b k i n -== 即 1212=n na a a kb b b ===时等号成立。

利用不等式的基本性质证明柯西不等式根据高中所学习的基本不等式,实数0,0a b a b a b a b <⇔-<->⇔>所以,要证明 222111nn n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑,只需证 22210n n n i i i i i i i i a b a b ==⎛⎫⎛⎫⎛⎫-≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑证明: 2221n n n i i i i i i i ia b a b ==⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑ =221111n n n ni j i i j j i j i j a b a b a b ====⎛⎫⎛⎫⎛⎫⎛⎫- ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑ =221111nnnniji ijji j i j ab a b ab ====-∑∑∑∑=2222111111122n n n nnni ji i j j j i i j i j i j a b a b a b a b ======⎛⎫-+ ⎪⎝⎭∑∑∑∑∑∑=()222211122nnij i i j j j ii j a b a b a b a b ==-+∑∑=()21112n nijj i i j a ba b ==-≥∑∑故 222111n n n i i i i i i i a b a b ===⎛⎫⎛⎫⎛⎫≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭∑∑∑ 当且仅当0i j j i a b a b -=(1,2,,)i j n = 、i ia kb ⇔=(k 为常数,1,2,,i n = )时,上式等号成立。

柯西不等式与排序不等式

柯西不等式与排序不等式

柯西不等式与排序不等式知识要点:1、柯西不等式(1)柯西不等式:设a 1,a 2,…a n 和b 1,b 2…b n 是两组实数,则(a 1b 1+…+a n b n )2≤ (a 12+a 22+…+a n 2)(b 12+b 22+…+b n 2)等号成立当且仅当存在实数k ,使得对所有的1,2,i n = 有i i a kb =或对所有的1,2,i n = 有i i b ka =.(2)柯西不等式的向量形式:||||||m n m n ≤⋅,其中等号成立当且仅当//m n .(3)柯西不等式的几个推论:①1122||n n a b a b a b +++≤特殊地有:≤1212x x y y +≤②若b k >0(k=1,2,…,n),则2221111()n n n na a a ab b b b ++++≥++ . 特殊地有:若y 1,y 2都是正数,则22212121212()x x x x y y y y ++≥+,等号成立当且仅当1212x x y y =.③|≤ (a 1+a 2+…+a n )(b 1+b 2+…+b n )④12n x x x n +++≤特殊地:2a b +≤证明:1122a b a b +⋅+⋅=≤≤⑤a 2+b 2+c 2 ≥ ab+bc+ca , (a +b+c)2 ≥3(ab+bc+ca ),证明:ab+bc+ca222a b c =++(a +b+c)2 = a 2+b 2+c + ab+bc+ca ≥ 3(ab+bc+ca ), 2、排序不等式(1)对于两个有序数组1212,n n a a a b b b ≤≤≤≤≤≤ 及则112211221211n n i i n in n n n a b a b a b a b a b a b a b a b a b -+++≥+++≥+++ (同序)(乱序)(反序) 其中12,,,n i i i 是1,2, n 的任意一个排列,当且仅当12n a a a === 或12nb b b === 时式中等号成立.(2) 设120n a a a <≤≤≤ ,12,n b b b <≤≤≤ 0而12,,,n i i i 是1,2,,n 的一个排列,则112121121212i i i nn n n bb b b b b b b b nn n a a a a a a a a a -≥≥当且仅当12n a a a === 或12n b b b === 时式中等号成立.(3)设有n 组非负数,每组n 个数,它们满足: 120k k kn a a a ≤≤≤≤ (1,2,,)k m = ,那么,从每一组中各取出一个数作积,再从剩下的每一组中各取一个作积,直到n 次取完为止,然后将这些“积”相加,则所得的诸和中,以112111222212m m n n mn I a a a a a a a a a =+++ 为最大.(4) 切比雪不等式:对于两个有序数组1212,n n a a a b b b ≤≤≤≤≤≤ 及,则112212121211n n n n n n n a b a b a b a a a b b b a b a b a b n n n n-++++++++++++≥⋅≥证明:由排序不等式有:a 1b 1+a 2b 2+…+a n b n = a 1b 1+a 2b 2+…+a n b n a 1b 1+a 2b 2+…+a n b n ≥ a 1b 2+a 2b 3+…+a n b 1 a 1b 1+a 2b 2+…+a n b n ≥ a 1b 3+a 2b 4+…+a n b 2 ………………………………………… a 1b 1+a 2b 2+…+a n b n ≥ a 1b n +a 2b 1+…+a n b n -1 将以上式子相加得:n (a 1b 1+a 2b 2+…+a n b n ) ≥ a 1(b 1+b 2+…+b n )+ a 2(b 1+b 2+…+b n )+…+ a n (b 1+b 2+…+b n )∴11221212n n n na b a b a b a a a b b b n n n+++++++++≥⋅同理可证:12121211n n n n n a a a b b b a b a b a b n n n-+++++++++⋅≥问题举例:柯西不等式1、利用柯西不等式 证明(1) 若a 、b 、c 、d ∈R + , 则(ab+cd ) (ac+bd )≥4abcd ;(2) 若a 、b 、c ∈R +,则(b c a a b c ++)()9a b cb c a++≥(3) 若a 、b 、c ∈R+,且ab+bc+ca =1,则a b c ++≥(4) 12,)n n N >≥∈ 证明(1)∵(ab+cd )(ac+bd )222()4bc a d bc abcd ≥=+≥==a=d 即b=c ,a=d 时成立. (2)=(1+1+1)2=9当且仅当a=b=c 时,等式成立. (3)注意到(a 2+b 2+c 2)2=(a 2+b 2+c 2)·(b 2+c 2+a 2)≥(ab+bc+ca )2=1 , ∵(a+b+c )2=a 2+b 2+c 2+2(ab+bc+ca )≥1+2=3 ,又由a+b+c >0,故a+b+c ≥当且仅当a b c ===时,等式成立. (4)注意到2、 求函数2221()sin cos f x x x =+, 02(,)x π∈最小值. 方法一:(应用均值不等式求解)222222222123x x f x x x x x xcos sin ()()(sin cos )sin cos sin cos =++=++≥ 3+ (以下略)方法一:(应用柯西不等式求解)2221()sin cos f x x x =+221x cos ≥222(13sin cos x x+=++3、已知点P(x, y)在椭圆22123x y +=上运动,求2x +3y 的取值范围. 方法一:(应用三角代换求解)由已知可设,x y αα∴2x+3y =)αααφ++∈[方法二:(应用柯西不等式求解)|2x+3y| =|+|≤=∴2x+3y ∈[4、 已知a +b+c = 1, 求131313+++++c b a 的最大值.方法一(应用均值不等式求解)131313+++++c b a≤= 等号成立当且仅当3a +1=3b +1=3c +1=2,即a=b=c =13方法二(应用柯西不等式求解)131313+++++c b a ≤=5、若a ,b,c,x,y,z 都是实数,且a 2+b 2+c 2=25, x 2+y 2+z 2=36,a x+by+cz=30,求a b cx y z++++的值.解 (a x+by+cz)2≤( a 2+b 2+c 2)( x 2+y 2+z 2) 由已知此不等式等号成立,不妨设a ≠0,则存在实数k ,使得x=k a ,y=kb,z=kc,代入ax +by +cz =30得 k(a 2+b 2+c 2)=30⇔k =65∴a b c x y z ++++=156k =【注】本题主要学习柯西不等式等号成立条件。

人教版高中数学选修第三讲.柯西不等式与排序不等式ppt课件

人教版高中数学选修第三讲.柯西不等式与排序不等式ppt课件

x P2(x2,y2)
根据两点间距离公式以及三角形的边长关系:
x y x y ( x1 x2 ) ( y1 y2 )
2 1 2 1 2 2 2 2 2
2
定理3(二维形式的三角不等式) 设
x1,
2 1
y
2 1
1
,
x 2,
2 2
,那么 y2 R
x y x y ( x1 x2 ) ( y1 y2 )
练习:
1.已知2x 3 y 6,
2 2
求证x 2 y
2 2
11
2. 已知a b 1, 求证|a cos b sin | 1
作业
第37页,第1,5,6题
二.一般形式的柯西不等 式
二维形式的柯西不等式): (a2+b2)(c2+d2)≥(ac+bd)2
三维形式的柯西不等式:
(a b) (c d ) ( ac bd ) 2 (a, b, c, d为非负实数)。
向量形式:
m ( a, b), n (c, d ) m n | m | | n | cos m n ac bd | m | a | | n | | cos || m | | n | | m n || m | | n |
2 2 2
2
例题
例1.已知a,b为实数,证明:
(a4+b4) (a2+b2)≥ (a3+b3)2
例2.求函数y 5 x 1 10 2 x的最大值.
例3.设a,b∈R+,a+b=1,求证
1 1 4 a b
注意应用公式: 1 1 ( a b) ( ) 4 a b

第三讲柯西不等式的基本方法与排序不等式(排序不等式)

第三讲柯西不等式的基本方法与排序不等式(排序不等式)
数组( L 数组(b1,b2,b3, ,bn)的乱序和 将 S1 = a1bn + a 2 bn-1 + a 3 bn-2 + L + a n b1称为反序和 将 S2 = a1b1 + a 2 b2 + a3 b3 + L + a n bn称为顺序和
探 究
S = a1c1 + a 2c2 + a 3c3 + L + a nc n 乱序和 S1 = a1bn + a 2 bn-1 + a 3 bn-2 + L + a n b1 反序和 S2 = a1b1 + a 2 b2 + a 3 b3 + L + a n b n 顺序和 之间的大小关系
设 0 < a1 < a 2 < a 3 < L < a n 0 < b1 < b2 < b3 < L < bn
反序排序原理) 定理:(排序不等式,又称排序原理) :(排序不等式
设a1 ≤ a 2 ≤ a 3 ≤ L ≤ a n,b1 ≤ b2 ≤ b ≤ L ≤ bn 为两组实数, L 为两组实数,c1,c2,c3, ,cn 是b1 , b2 , b,L, bn 的任一排列,那么 的任一排列, S1 ≤ S ≤ S2 S = a1c1 + a 2c2 + a 3c3 + L + a ncn 乱序和) (乱序和) S1 = a1bn + a 2 bn-1 + a3 bn-2 + L + a n b1 反序和) (反序和) S2 = a1b1 + a 2 b2 + a3 b3 + L + a n bn 顺序和) (顺序和) 当且仅当a 当且仅当a1 = a 2 = a3 = L = a n 或b1 = b2 = b = L = bn 时,反序和等于顺序和

高中竞赛常用的不等式

高中竞赛常用的不等式

高中竞赛常用的不等式1.柯西不等式))(()(2n 22212n 22212n 2211b b b a a a b a b a b a n ++++++≤+++ ,其中等号成立条件为nn b a b a b a ==2211。

附:给出大家可能没见过的证明:对于一元二次方程0)()(2)(2n 2221n 221122n 2221=+++++++-+++b b b x b a b a b a x a a a n 等价于0)()()(2222211=-++-+-n n b x a b x a b x a ,该方程最多只有一个解,判别式小于等于0,即0))((4)(42n 22212n 22212n 2211≤++++++-+++b b b a a a b a b a b a n , 得证,且等号成立条件,nn b a b a b a ==2211。

2.四个平均的关系: 平方平均na a a Q n 2n 2221+++= ,算术平均n a a a A n n +++= 21,几何平均n n n a a a G 21=,调和平均nn a a a H 111121+++= 。

满足关系:n n n n H G A Q ≥≥≥,其中等号成立条件为n a a a === 21。

调和平均不常用。

3.排序不等式(排序原理):设有两个有序数组:n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,则有 112121221121b a b a b a b a b a b a b a b a b a n n n j n j j n n n +++≥+++≥+++- (同序和) (乱序和) (逆序和) 。

其中n j j j ,,,21 是1,2,…,n 的一个排列。

4.切比雪夫不等式:若n a a a ≤≤≤ 21,n b b b ≤≤≤ 21,则有 nb b b n a a a n b a b a b a n n n n +++⋅+++≥+++ 21212211。

高中数学第三讲柯西不等式与排序不等式排序不等式素材2

高中数学第三讲柯西不等式与排序不等式排序不等式素材2

3。

3 排序不等式庖丁巧解牛知识·巧学排序不等式Sequence Inequality(又称排序原理) (1)排序原理的内容:设有数组A:a 1≤a 2≤…≤a n ,及数组B:b 1≤b 2≤…≤b n .称a 1b 1+a 2b 2+…+a n b n 为顺序和,a 1b n +a 2b n-1+a 3b n —2+…+a n b 1为倒序和,a 1c 1+a 2c 2+…+a n c n 为乱序和(其中c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的一个排列)。

则有: 顺序和≥乱序和≥倒序和,其中等号当且仅当a 1=a 2=…=a n 或b 1=b 2=…=b n 时成立。

记忆要诀以S=∑=ni i i b a 1表示顺序和,以∑=+-=ni i n i ba S 11表示倒序和,以S 1=∑=ni i i c a 1表示乱序和(其中,c 1,c 2,…,c n 是b 1≤b 2≤…≤b n 的任一排列),则有S ≤S 1≤S 。

(2)排序原理的本质含义:两实数序列同方向单调(同时增或同时减)时所得两两乘积之和最大,反方向单调(一增一减)时所得两两乘积之和最小,注意等号成立条件是其中一序列为常数序列。

学法一得由排序原理,我们可以得到这样一个推论:对于实数,a 1,a 2,…,a n ,设a i1,a i2,…,a in 为其任一个排列,则有 a 1a i1+a 2a i2+…+a n a in ≤a 12+a 22+…+a n 2。

证明:不妨设满足a 1≤a 2≤…≤a n ,取b k =a k (k=1,2,…,n ),因此b 1≤b 2≤…≤b n ,且a 1,a 2,…,a n 是b 1,b 2,…,b n 的一个排列,由排序原理知, a 11i a +a 22i a +…+a n ni a ≤a 1b 1+a 2b 2+…+a n b n =a 12+a 22+…+a n 2.(3)排序原理的意义:在解各种涉及到若干个可以比较大小的对象(如实数、线段、角度等)a 1,a 2,…,a n 的数学问题时,如果根据对称性,假定它们按一定的顺序排列起来,往往能使问题迎刃而解。

柯西不等式与排序不等式

柯西不等式与排序不等式

柯西不等式与排序不等式1.二维形式的柯西不等式(1)定理1(二维形式的柯西不等式)若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad =bc时,等号成立.(2)(二维变式)a2+b2·c2+d2≥|ac+bd|,a2+b2·c2+d2≥|ac|+|bd|.(3)定理2(柯西不等式的向量形式)设α,β是两个向量,则|α·β|≤|α||β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.(4)定理3(二维形式的三角不等式)设x1,y1,x2,y2∈R,那么x21+y21+x22+y22≥(5)(三角变式)设x1,y1,x2,y2,x3,y3∈R,则(x1-x3)2+(y1-y3)2+(x2-x3)2+(y2-y3)22.柯西不等式的一般形式设a1,a2,a3,…,a n,b1,b2,b3,…,b n是实数,则(a21+a22+…+a2n)(b21+b22+…+b2n)≥(a1b1+a2b2+…+a n b n)2,当且仅当b i=0(i=1,2,…,n)或存在一个数k,使得a i=kb i(i=1,2,…,n)时,等号成立.3.排序不等式设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n为b1,b2,…,b n的任一排列,则有:a1b n+a2b n-1+…+a n b1≤a1c1+a2c2+…+a n c n≤a1b1+a2b2+…+a n b n,当且仅当a1=a2=…=a n或b1=b2=…=b n 时,反序和等于顺序和.排序原理可简记作:反序和≤乱序和≤顺序和.若x +2y +3z =6,求x 2+y 2+z 2的最小值.解:因为6=x +2y +3z ≤x 2+y 2+z 2·1+4+9,所以x 2+y 2+z 2≥187,当且仅当x =y 2=z 3即x =37,y =67,z =97时,x 2+y 2+z 2有最小值187. 设a1,a 2,b 1,b 2为实数,求证:a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2. 证明:(a 21+a 22+b 21+b 22)2=a 21+a 22+2a 21+a 22b 21+b 22+b 21+b 22≥a 21+a 22+2|a 1b 1+a 2b 2|+b 21+b 22 ≥a 21+a 22-2(a 1b 1+a 2b 2)+b 21+b 22 =(a 21-2a 1b 1+b 21)+(a 22-2a 2b 2+b 22)=(a 1-b 1)2+(a 2-b 2)2, 所以a 21+a 22+b 21+b 22≥(a 1-b 1)2+(a 2-b 2)2.已知a ,b ,c ∈R ,a 2+b 2+c 2=1.若不等式|x -1|+|x +1|≥(a -b +c )2对一切实数a ,b ,c 恒成立,求实数x 的取值范围. 解:由柯西不等式得(a -b +c )2≤[12+(-1)2+12](a 2+b 2+c 2)=3. 若不等式|x -1|+|x +1|≥(a -b +c )2对一切实数a ,b ,c 恒成立,则|x -1|+|x +1|≥3.即实数x 的取值范围为⎝ ⎛⎦⎥⎤-∞,-32∪⎣⎢⎡⎭⎪⎫32,+∞.已知a ,b 为正数,求证:1a +4b ≥9a +b .证明:因为a >0,b >0, 所以由柯西不等式,得(a +b )⎝ ⎛⎭⎪⎫1a +4b=[(a )2+(b )2]·⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫1a 2+⎝ ⎛⎭⎪⎫4b 2 ≥⎝⎛⎭⎪⎫a ·1a +b ·4b 2=9,当且仅当a =12b 时取等号,所以1a +4b ≥9a +b.柯西不等式的证明[典例引领]若a ,b ,c ,d 都是实数,求证:(a 2+b 2)(c 2+d 2)≥(ac +bd )2,当且仅当ad =bc 时,等号成立.【证明】 因为(a 2+b 2)(c 2+d 2)-(ac +bd )2 =a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2acbd =a 2d 2+b 2c 2-2adbc =(ad -bc )2≥0, 当且仅当ad =bc 时,等号成立.即(a2+b2)(c2+d2)-(ac+bd)2≥0,所以(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.设α,β是两个向量,求证|α·β|≤|α||β|,当且仅当β为零向量或存在实数k,使α=kβ时等号成立.证明:如图,设在平面直角坐标系xOy中有向量α=(a,b),β=(c,d),α与β之间的夹角为θ,0≤θ≤π.根据向量数量积(内积)的定义,有α·β=|α||β|cos θ,所以|α·β|=|α||β||cos θ|.因为|cos θ|≤1,所以|α·β|≤|α||β|.如果向量α和β中有零向量,则ad-bc=0,不等式取等号.如果向量α和β都不是零向量,则当且仅当|cos θ|=1,即向量α和β共线时,不等式取等号.柯西不等式的证明可利用已学过的比较法,也可利用向量法,柯西三角不等式还可利用几何法证明.如下:设x1,y1,x2,y2,x3,y3∈R,则(x 1-x 2)2+(y 1-y 2)2.证明:设A (x 1,y 1),B (x 2,y 2),C (x 3,y 3). 由|CA |+|CB |≥|BA |与两点间的距离公式得(x 1-x 3)2+(y 1-y 3)2+(x 2-x 3)2+(y 2-y 3)2≥(x 1-x 2)2+(y 1-y 2)2.当且仅当点C 位于线段BA 上时取等号.若a ,b ,c ∈R +,且1a +12b +13c =1,求证:a +2b +3c ≥9.证明:因1a +12b +13c =1, 又a ,b ,c ∈R +,故由柯西不等式得a +2b +3c =(a +2b +3c )·⎝⎛⎭⎪⎫1a +12b +13c≥⎝⎛⎭⎪⎫a ·1a +2b ·12b +3c ·13c 2=9.利用柯西不等式求最值[典例引领]已知正实数u ,v ,w 满足u 2+v 2+w 2=8,求u49+v 416+w 425的最小值.【解】 因为u 2+v 2+w 2=8.所以82=(u 2+v 2+w 2)2=⎝ ⎛⎭⎪⎫u 23·3+v 24·4+w 25·52≤⎝ ⎛⎭⎪⎫u 49+v 416+w 425(9+16+25), 所以u 49+v 416+w 425≥6450=3225.当且仅当u 23÷3=v 24÷4=w 25÷5,即u =65,v =85,w =2时取到“=”,所以当u =65,v =85,w =2时u 49+v 416+w 425的最小值为3225.利用柯西不等式求最值的一般结构为:(a 21+a 22+…+a 2n )⎝ ⎛⎭⎪⎫1a 21+1a 22+…+1a 2n ≥(1+1+…+1)2=n 2.在使用柯西不等式时,要注意右边为常数且应注意等号成立的条件.[通关练习]1.设x ,y ,z ∈R ,2x -y -2z =6,试求x 2+y 2+z 2的最小值. 解:考虑以下两组向量u =(2,-1,-2),v =(x ,y ,z ), 根据柯西不等式(u ·v )2≤|u |2·|v |2,得[2x +(-1)y +(-2)z ]2≤[22+(-1)2+(-2)2](x 2+y 2+z 2), 即(2x -y -2z )2≤9(x 2+y 2+z 2),将2x -y -2z =6代入其中,得36≤9(x 2+y 2+z 2), 即x 2+y 2+z 2≥4, 故x 2+y 2+z 2的最小值为4.2.设x ,y ,z ∈R ,x +y +z =25,试求x -2y +2z 的最大值与最小值.解:根据柯西不等式,有(1·x -2·y +2·z )2≤[12+(-2)2+22](x 2+y 2+z 2), 即(x -2y +2z )2≤9×25, 所以-15≤x -2y +2z ≤15,故x -2y +2z 的最大值为15,最小值为-15.函数与柯西不等式的综合问题[典例引领](优质试题·贵州省适应性考试)已知函数f (x )=|x -1|+|x -5|,g (x )=1+x 2.(1)求f (x )的最小值;(2)记f (x )的最小值为m ,已知实数a ,b 满足a 2+b 2=6,求证:g (a )+g (b )≤m .【解】 (1)因为f (x )=|x -1|+|x -5|, 所以f (x )=|x -1|+|x -5|=⎩⎪⎨⎪⎧2x -6(x ≥5)4(1<x <5),6-2x (x ≤1)所以f (x )min =4.(2)证明:由(1)知m =4.由柯西不等式得 [1×g (a )+1×g (b )]2≤(12+12)[g 2(a )+g 2(b )], 即[g (a )+g (b )]2≤2(a 2+b 2+2),所以g(a)+g(b)≤4(当且仅当a=b=3时取等号).即g(a)+g(b)≤m.求解函数与柯西不等式综合问题的步骤(1)利用求函数最值的方法求出其最值M(或m).(2)根据M(或m)构造的条件,将要求的不等式转化成柯西不等式的特点,利用柯西不等式求其解.(优质试题·湖南省湘中名校高三联考)已知关于x的不等式|x+a|<b的解集为{x|2<x<4}.(1)求实数a,b的值;(2)求at+12+3bt的最大值.解:(1)由|x+a|<b,可得-b-a<x<b-a,所以-b-a=2且b-a=4.解得a=-3,b=1.(2)利用柯西不等式,可得-3t+12+3t=3(4-t+t)≤3(1+1)(4-t+t)=64-t+t=26,当且仅当t=4-t,即t=2时等号成立.利用柯西不等式解决问题的关键是构造柯西不等式的结构形式.二维形式的柯西不等式(a2+b2)(c2+d2)≥(ac+bd)2反映4个实数之间的特定关系.利用其求最值时,注意构造常量a +b 2(或c 2+d 2).用柯西不等式求最值或证明不等式时,注意等号成立的条件.1.设a ,b ∈R +且a +b =1, 求证:⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.证明:因为(12+12)[⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2]≥⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +1a +⎝ ⎛⎭⎪⎫b +1b 2 =⎣⎢⎡⎦⎥⎤1+⎝ ⎛⎭⎪⎫1a +1b 2 =⎝ ⎛⎭⎪⎫1+1ab 2≥25⎝ ⎛⎭⎪⎫因为ab ≤14. 所以⎝ ⎛⎭⎪⎫a +1a 2+⎝ ⎛⎭⎪⎫b +1b 2≥252.2.设a 、b 、c 是正实数,且a +b +c =9,求2a +2b +2c 的最小值.解:因为(a +b +c )⎝ ⎛⎭⎪⎫2a +2b +2c=[(a )2+(b )2+(c )2]·⎣⎢⎡⎝⎛⎭⎪⎫2a 2+⎝ ⎛⎭⎪⎫2b 2+⎦⎥⎤⎝⎛⎭⎪⎫2c 2 ≥⎝⎛⎭⎪⎫a ·2a +b ·2b +c ·2c 2=18. 所以2a +2b +2c ≥2.当且仅当a =b =c 时取等号, 所以2a +2b +2c 的最小值为2.3.已知x ,y ,z 均为实数.若x +y +z =1,求证:3x +1+3y +2+3z +3≤3 3. 证明:因为(3x +1+3y +2+3z +3)2≤(12+12+12)(3x +1+3y +2+3z +3)=27. 所以3x +1+3y +2+3z +3≤3 3.当且仅当x =23,y =13,z =0时取等号. 4.已知函数f (x )=2|x +1|+|x -2|. (1)求f (x )的最小值m ;(2)若a ,b ,c 均为正实数,且满足a +b +c =m ,求证:b 2a +c 2b +a 2c ≥3.解:(1)当x <-1时,f (x )=-2(x +1)-(x -2)=-3x ∈(3,+∞);当-1≤x <2时,f (x )=2(x +1)-(x -2)=x +4∈[3,6); 当x ≥2时,f (x )=2(x +1)+(x -2)=3x ∈[6,+∞). 综上,f (x )的最小值m =3.(2)证明:a ,b ,c 均为正实数,且满足a +b +c =3, 因为b 2a +c 2b +a 2c +(a +b +c )。

高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式

高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式3.2一般形式的柯西不等式

故( -3t+12+ t)max=4.(10分)
归纳升华 根据题设条件的结构特点,恰当选择柯西不等式的 某个形式,获得某个最值,再结合其他数学知识,解决 参数的范围、不等式恒成立等综合问题.
[类题尝试] 把一根长为12 m的细绳截成三段,各

围成三个正方形.问:怎样截法,才能使围成的三个正
方形面积之和S最小,并求此最小值.
小,最小面积为3 m2.
1.理解并记忆三种形式取“=”的条件. (1)代数形式中当且仅当ad=bc时取等号. (2)向量形式中当α=kβ或β=0时取等号. (3)三角形式中当P1(x1,y1),P2(x2,y2),O(0,0)三 点共线且P1,P2在原点O两旁时取等号.
2.二维形式的柯西不等式的变式. (1) a2+b2· c2+d2≥|ac+bd|. (2) a2+b2· c2+d2≥|ac|+|bd|. (3) a2+b2· c2+d2≥ac+bd. 3.对柯西不等式一般形式的说明. 一般形式的柯西不等式是二维形式、三维形式的柯西 不等式的归纳与推广,其特点可类比二维形式的柯西不等 式来总结,左边是平方和的积,右边是积的和的平方.运 用时的关键是构造出符合柯西不等式的结构形式.
即x=
37 6
,y=
28 9
,z=
22 15
时等号成立,此时umax=
2 30.
归纳升华 1.先变形凑成柯西不等式的结构特征,是利用柯 西不等式求解的先决条件; 2.常用的配凑的技巧有:①巧拆常数;②重新安 排某些项的次序;③适当添项;④适当改变结构,从而 达到运用柯西不等式求最值的目的. 3.有些最值问题的解决需要反复利用柯西不等式才 能达到目的,但在运用过程中,每运用一次前后等号成立 的条件必须一致,不能自相矛盾,否则就会出现错误.多 次反复运用柯西不等式的方法也是常用技巧之一.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.13.2柯西不等式
1.二元均值不等式有哪几种形式?
答案:(0,0)2
a b a b +≥
>>及几种变式.
2.已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+
证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 定理:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+.
||ac bd +
||||ac bd ≥+
ac bd ≥+.
定理:设1212,,,,,,,n n a a a b b b R ∈L L ,则 (当且仅当12
1
2
n n
a a a
b b b ===
L 时取等号,假设0i b ≠)
变式:222212121
()n n a a a a a a n
++≥++⋅⋅⋅+L
.
定理:设,αβu r u r 是两个向量,则||||||αβαβ≤u r u r u r u r
g .
等号成立?(βu r 是零向量,或者,αβu r u r
共线)
练习:已知a 、b 、c 、d
. 证法:(分析法)平方→应用柯西不等式→讨论:其几何意义?(构造三角形)
三角不等式: ① 定理:设1122,,,x y x y R ∈
变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式?
例1
:求函数y = 分析:如何变形?→构造柯西不等式的形式
变式:y =
,,,,,)y a b c d e f R +=∈ 例2:若,x y R +∈,2x y +=,求证:112x
y
+≥.
分析:如何变形后利用柯西不等式?(注意对比→构造)
要点:
2222111111()()]22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)
练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111()(32)(32)131313
x y x y x y +=
++≥+=. 讨论:其它方法(数形结合法)
练习:已知a 、b R +∈,求证:11()()4a b a
b
++≥.
例1:已知321x y z ++=,求222x y z ++的最小值. 练习:若,,x y z R +∈,且1111x
y
z
++=,求23
y z x ++的最小值.
变式:若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值.
变式:若
,,x y z R +∈,且1x y z ++=的最大值. 例2:若a >b >c ,求证:c
a c
b b a -≥
-+-4
11. 要点:21111()(
)[()()]()(11)4a c a b b c a b b c a b b c
-+=-+-+≥+=---- 例3已知正数,,a b c 满足1a b c ++=证明222
3
3
3
3
a b c a b c ++++≥
证明:利用柯西不等式()
2
313131
2
222222222a b c
a a
b b
c c ⎛⎫++=++ ⎪⎝⎭
又因为222a b c ab bc ca ++≥++在此不等式两边同乘以2,再加上
222a b c ++得:()()2223a b c a b c ++≤++
()
()()2
2
2
23
3
3
2
2
2
3a b c
a b c a b c ++≤++•++Q 故222
3
3
3
3
a b c a b c ++++≥
例4设p 是ABC V 内的一点,,,x y z 是p 到三边,,a b c 的距离,R 是ABC V 外
≤ 证明:由柯西不等式得,
记S 为ABC V 的面积,则2242abc abc
ax by cz S R R
++===g 故不等式成立。

练习:已知实数,,a b c ,d 满足3a b c d +++=,22222365a b c d +++=试求a 的最值
解:由柯西不等式得,有()()2
222111
236236
b c d b c d ⎛⎫++++≥++ ⎪⎝⎭
即()2222236b c d b c d ++≥++由条件可得,()2
253a a -≥-
解得,12a ≤≤
==
时等号成立, 代入1
11,,3
6
b c d ===时,max 2a =2
11,,3
3
b c d ===时min 1a =
3.3排序不等式
排序不等式(即排序原理):设有两个有序实数
组:12a a ≤≤···n a ≤;12b b ≤≤···n b ≤.12,,c c ···n c 是12,b b ,···,n b 的任一排列,则有
1122a b a b ++···+n n a b (同序和)
1122a c a c ≥++···+n n a c (乱序和) 121n n a b a b -≥++···+1n a b (反序和)
当且仅当12a a ==···=n a 或12b b ==···=n b 时,反序和等于同序和. 排序不等式的应用:
例1:设12,,,n a a a ⋅⋅⋅是n 个互不相同的正整数,求证:
321222
111
12323n a a a a n n +
++⋅⋅⋅+≤+++⋅⋅⋅+.
证明过程:
设12,,,n b b b ⋅⋅⋅是12,,,n a a a ⋅⋅⋅的一个排列,且12n b b b <<⋅⋅⋅<,则121,2,,n b b b n ≥≥⋅⋅⋅≥. 又222
111
123n >
>>⋅⋅⋅>
,由排序不等式,得 33
2211222222
2323n n a a b b a b a b n n
+++⋅⋅⋅+≥+++⋅⋅⋅+≥… 小结:分析目标,构造有序排列.
练习:已知,,a b c 为正数,求证:3332222()()()()a b c a b c b a c c a b ++≥+++++. 解答要点:由对称性,假设a b c ≤≤,则222a b c ≤≤,
于是222222a a b b c c a c b a c b ++≥++,222222a a b b c c a b b c c a ++≥++,
两式相加即得.。

相关文档
最新文档