统计信号分析与处理报告
信号分析与处理实验报告
实验一1、基本信号的表示及可视化(1)单位冲激信号 (t)程序:t=-1:0.001:1; %定义时间向量for i=1:3; %采用循环语句观察i取不同值时的图形dt=1/(i^4);X=(1/dt)*((t>=(-1/2*dt))-(t>=(1/2*dt)));%计算函数值subplot(1,3,i);%将图像分成三部分同时观察stairs(t,X);title('单位冲激信号δ(t)');end(2)单位阶跃信号程序:t=-0.5:0.001:1;%定义时间变量,间隔为0.001S=stepfun(t,0);%定义单位阶跃信号S1=stepfun(t,0.5);%定义单位阶跃延迟信号figure(1);plot(t,S);axis([-0.5 1 -0.2 1.2]);title('单位阶跃信号')%画出图形figure(2);plot(t,S1);axis([-0.5 1 -0.2 1.2]);title('单位阶跃延迟信号')(3)抽样信号f=sin(t)./t;程序:t=-10:0.6:10; %向量t时间范围t=t1:p:t2,p为时间间隔f=sin(t)./t;plot(t,f,'o'); %显示该信号的时域波形title('f(t)=Sa(t)(时间间隔为0.6s)'); %标题xlabel('t') %横坐标标题axis([-10,10,-0.4,1.1]) %横坐标和纵坐标范围(4)单位样值序列和单位阶跃序列A.单位序列δ(k)B.单位阶跃序列ε(k)程序:n1=-10;n2=10;%输入序列的起始点n=n1:n2;k=length(n);x1=zeros(1,k);x1(1,-n1+1)=1;%产生单位样值序列subplot(2,1,1);%绘图stem(n,x1,'filled');x2=ones(1,k);x2(1,1:-n1)=0;subplot(2,1,2);stem(n,x2,'filled');2、信号的频域分析已知周期方波信号0||2()0||22E t f t T t ττ⎧<⎪⎪=⎨⎪<<⎪⎩,当02T τ=, 04T τ=,08T τ=时,画出其幅度谱和相位谱,观察不同周期下,()f t 的频谱图有何区别。
信号出联规律统计与分析
信号出联规律统计与分析
信号的联规律是指不同信号之间的关联规律和相互依赖的程度。
要进行信号的联规律统计与分析,需要先对信号数据进行处理,提取出需要研究的特征,如信号强度、频率、时延等信息。
在进行统计与分析时,常用的方法有:
1. 相关性分析:通过计算信号之间的相关性系数,可以得出信号是否存在相关性或者相关性强度。
2. 协方差分析:通过计算信号之间的协方差,可以得出信号之间是否存在线性相关性或者线性相关性强度。
3. 聚类分析:将信号划分为不同的组别,通过比较不同组别之间的关联程度,可以得出信号之间的联规律。
4. 时频分析:将信号转换为时频域,通过分析信号在时频域上的分布规律,可以得出信号之间的关联性。
5. 时间序列分析:将信号处理为时间序列,通过时间序列分析方法,可以得出信号之间的时间相关性和周期性。
以上是一些常用的方法,需要根据具体问题和数据情况选择合适的方法。
信号分析与处理实验报告
《信号分析与处理》实验报告华北电力大学前言1.实验总体目标通过实验,巩固掌握课程的讲授内容,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解,使学生在分析问题与解决问题的能力及实践技能方面有所提高。
2.适用专业自动化专业本科生3.先修课程信号分析与处理4.实验课时分配5需要配置微机及MATLAB工具软件。
6.实验总体要求1、掌握信号分解的基本思想及信号在时域、频域和变换域进行分解的基本理论及描述方法,用MATLAB编程语言实现基本信号的表示及可视化,计算和分析信号的频谱;2、掌握在时域、频域和变换域分析LTI系统的方法,及系统在时域、频域和变换域的描述方法,用MATLAB编程语言实现LTI系统的时域分析及频率分析。
3、掌握信号的调制与解调,用MATLAB编程语言仿真分析信号的调制与解调。
⒎ 本实验的重点、难点及教学方法建议实验通过MATLAB编程语言来实现基本信号的表示及可视化,计算分析信号的频谱,实现LTI系统的时域分析及频率分析,并仿真分析信号的调制与解调,使学生对信号分析与线性系统分析的基本理论及分析方法有一个感性认识和更好地理解。
实验的重点及难点是:掌握基本信号的数学表示,信号的频谱特点,计算LTI系统的典型响应,掌握信号的调制与解调。
在这样的理论基础上,学会用MATLAB编程语言来实现对信号与系统响应的可视化及对数字滤波器进行设计。
教学建议:打好理论基础,熟练编程语言。
目录实验一信号的时域与频域分析 3实验二信号的时域与频域处理 4实验三数字滤波器的设计 5实验一一、实验目的1、熟悉MATLAB 平台,高效的数值计算及符号计算功能;2、实现基本信号的表示及可视化计算;3、分析信号的频谱。
二、 实验类型验证型 三、 实验仪器微机,MATLAB 工具软件。
四、 实验原理MATLAB 是功能强大的数学软件,它提供了计算周期连续函数和周期离散序列的频谱的一系列函数。
信号分析与处理实验报告
华北电力大学实验报告||实验名称FFT的软件实现实验(Matlab)IIR数字滤波器的设计课程名称信号分析与处理||专业班级:电气化1308 学生姓名:袁拉麻加学号: 2 成绩:指导教师:杨光实验日期: 2015-12-17快速傅里叶变换实验一、实验目的及要求通过编写程序,深入理解快速傅里叶变换算法(FFT)的含义,完成FFT和IFFT算法的软件实现。
二、实验内容利用时间抽取算法,编写基2点的快速傅立叶变换(FFT)程序;并在FFT程序基础上编写快速傅里叶反变换(IFFT)的程序。
三:实验要求1、FFT和IFFT子程序相对独立、具有一般性,并加详细注释;2、验证例6-4,并能得到正确结果。
3、理解应用离散傅里叶变换(DFT)分析连续时间信号频谱的数学物理基础。
四、实验原理:a.算法原理1、程序输入序列的元素数目必须为2的整数次幂,即N=2M,整个运算需要M 级蝶形运算;2、输入序列应该按二进制的码位倒置排列,输出序列按自然序列排列;3、每个蝶形运算的输出数据军官占用其他输入数据的存储单元,实现“即位运算”;4、每一级包括N/2个基本蝶形运算,共有M*N/2个基本蝶形运算;5、第L级中有N/2L个群,群与群的间隔为2L。
6、处于同一级的各个群的系数W分布相同,第L级的群中有2L-1个系数;7、处于第L级的群的系数是(p=1,2,3,…….,2L-1)而对于第L级的蝶形运算,两个输入数据的间隔为2L-1。
b.码位倒置程序流程图开始检测A序列长度nk=0j=1x1(j)=bitget(k,j);j=j+1Yj<m?Nx1=num2str(x1);y(k+1)=bin2dec(x1);clear x1k=k+1c.蝶形运算程序流程图五、程序代码与实验结果a.FFT程序:%%clear all;close all;clc;%输入数据%A=input('输入x(n)序列','s');A=str2num(A);% A=[1,2,-1,4]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE% Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB %输出X(k)%%%验证结果:例6-4b.IFFT程序:%%clear all;close all;clc;%输入数据%A=input('输入X(k)序列','s');A=str2num(A);% A=[6,2+2i,-6,2-2i]; %测试数据%%%%校验序列,%n=length(A);m=log2(n);if (fix(m)~=m)disp('输入序列长度错误,请重新输入!');A=input('输入x(n)序列','s');A=str2num(A);elsedisp('输入正确,请运行下一步')end%%%码位倒置%for k=0:n-1for j=1:m %取M位的二进制数%x1(j)=bitget(k,j); %倒取出二进制数%endx1=num2str(x1); %将数字序列转化为字符串%y(k+1)=bin2dec(x1); %二进制序列转化为十进制数%clear x1endfor k=1:nB(k)=A(y(k)+1); %时间抽取序列%endclear A%%%计算%for L=1:m %分解为M级进行运算%LE=2^L; %第L级群间隔为2^L%LE1=2^(L-1); %第L级中共有2^(L-1)个Wn乘数,进行运算蝶运算的两数序号相隔LE1%W=1;W1=exp(-1i*pi/LE1);for R=1:LE1 %针对第R个Wn系数进行一轮蝶运算,共进行LE1次%for P=R:LE:n %每个蝶的大小为LE%Q=P+LE1;T=B(Q)*W;B(Q)=B(P)-T;B(P)=B(P)+T;endW=W*W1;endendB=conj(B); %取共轭%B=B/n %输出x(n)%验证结果:六、实验心得与结论本次实验借助于Matlab软件,我避开了用C平台进行复杂的复数运算,在一定程度上简化了程序,并添加了简单的检错代码,码位倒置我通过查阅资料,使用了一些函数,涉及到十-二进制转换,数字-文本转换,二-文本转换,相对较复杂,蝶运算我参考了书上了流程图,做些许改动就能直接实现。
信号资源分析实验报告(3篇)
第1篇一、实验目的1. 理解信号资源的基本概念和分类。
2. 掌握信号采集、处理和分析的方法。
3. 分析不同信号资源的特点和适用场景。
4. 提高信号处理和分析的实际应用能力。
二、实验背景信号资源在通信、遥感、生物医学等领域具有广泛的应用。
本实验通过对不同类型信号资源的采集、处理和分析,使学生了解信号资源的基本特性,掌握信号处理和分析的方法。
三、实验内容1. 信号采集(1)实验设备:信号发生器、示波器、数据采集卡、计算机等。
(2)实验步骤:1)使用信号发生器产生正弦波、方波、三角波等基本信号。
2)将信号通过数据采集卡输入计算机,进行数字化处理。
3)观察示波器上的波形,确保采集到的信号准确无误。
2. 信号处理(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)利用MATLAB软件对采集到的信号进行时域分析,包括信号的时域波形、平均值、方差、自相关函数等。
2)对信号进行频域分析,包括信号的频谱、功率谱、自功率谱等。
3)对信号进行滤波处理,包括低通、高通、带通、带阻滤波等。
4)对信号进行时频分析,包括短时傅里叶变换(STFT)和小波变换等。
3. 信号分析(1)实验设备:MATLAB软件、计算机等。
(2)实验步骤:1)分析不同类型信号的特点,如正弦波、方波、三角波等。
2)分析信号在不同场景下的应用,如通信、遥感、生物医学等。
3)根据实验结果,总结信号资源的特点和适用场景。
四、实验结果与分析1. 时域分析(1)正弦波信号:具有稳定的频率和幅度,适用于通信、测量等领域。
(2)方波信号:具有周期性的脉冲特性,适用于数字信号处理、数字通信等领域。
(3)三角波信号:具有平滑的过渡特性,适用于模拟信号处理、音频信号处理等领域。
2. 频域分析(1)正弦波信号:频谱只有一个频率成分,适用于通信、测量等领域。
(2)方波信号:频谱包含多个频率成分,适用于数字信号处理、数字通信等领域。
(3)三角波信号:频谱包含多个频率成分,适用于模拟信号处理、音频信号处理等领域。
信号分析与处理
信号分析与处理第一章绪论:测试信号分析与处理的主要内容、应用;信号的分类,信号分析与信号处理、测试信号的描述,信号与系统.测试技术的目的是信息获取、处理和利用。
测试过程是针对被测对象的特点,利用相应传感器,将被测物理量转变为电信号,然后,按一定的目的对信号进行分析和处理,从而探明被测对象内在规律的过程。
信号分析与处理是测试技术的重要研究内容.信号分析与处理技术可以分成模拟信号分析与处理和数字信号分析与处理技术。
一切物体运动和状态的变化,都是一种信号,传递不同的信息.信号常常表示为时间的函数,函数表示和图形表示信号。
信号是信息的载体,但信号不是信息,只有对信号进行分析和处理后,才能从信号中提取信息。
信号可以分为确定信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号;能量信号与功率信号;奇异信号;周期信号无穷的含义,连续信号、模拟信号、量化信号,抽样信号、数字信号在频域里进行信号的频谱分析是信号分析中一种最基本的方法:将频率作为信号的自变量,在频域里进行信号的频谱分析;信号分析是研究信号本身的特征,信号处理是对信号进行某种运算。
信号处理包括时域处理和频域处理。
时域处理中最典型的是波形分析,滤波是信号分析中的重要研究内容;测试信号是指被测对象的运动或状态信息,表示测试信号可以用数学表达式、图形、图表等进行描述。
常用基本信号(函数)复指数信号、抽样函数、单位阶跃函数单位、冲激函数(抽样特性和偶函数)离散序列用图形、数列表示,常见序列单位抽样序列、单位阶跃序列、斜变序列、正弦序列、复指数序列.系统是指由一些相互联系、相互制约的事物组成的具有某种功能的整体。
被测系统和测试系统统称为系统.输入信号和输出信号统称为测试信号.系统分为连续时间系统和离散时间系统。
系统的主要性质包括线性和非线性,记忆性和无记忆性,因果系统和非因果系统,时不变系统和时变系统,稳定系统和非稳定系统。
第二章 连续时间信号分析:周期信号分析(傅立叶级数展开)非周期信号的傅立叶变换、周期信号的傅立叶变换、采样信号分析(从连续开始引入到离散)。
数字信号处理综合报告--数字音频信号的分析与处理
数字信号处理综合报告--数字音频信号的分析与处理数字信号处理实验题目数字音频信号的分析与处理班级姓名学号日期 2013.06.10-2013.06.24一、实验目的1.复习巩固数字信号处理的基本理论;2.利用所学知识研究并设计工程应用方案。
二、实验原理数字信号处理技术在音频信号处理中的应用日益增多,其灵活方便的优点得到体现。
分频器即为其中一种音频工程中常用的设备。
人耳能听到的声音频率范围为20Hz~20000Hz,但由于技术所限,扬声器难以做到在此频率范围内都有很好的特性,因此一般采用两个以上的扬声器来组成一个系统,不同的扬声器播放不同频带的声音,将声音分成不同频带的设备就是分频器。
下图是一个二分频的示例。
图8.1 二分频示意图高通滤波器和低通滤波器可以是FIR或IIR 类型,其中FIR易做到线性相位,但阶数太高, 不仅需要耗费较多资源,且会带来较长的延时;IIR阶数低,但易出现相位失真及稳定性问题。
对分频器的特性,考虑最多的还是两个滤波器合成的幅度特性,希望其是平坦的,如图8.2所示:图8.2 分频器幅度特性由于IIR的延时短,因此目前工程中大量应用的还是Butterworth、Bessel、Linkwitz-Riley 三种IIR滤波器。
其幅频特性如图8.3所示:图8.3 三种常用IIR 分频器的幅度特性巴特沃斯、切比雪夫、椭圆等类型的数字滤波器系数可通过调用MATLAB 函数很方便的计算得到,但Bessel 、Linkwitz-Riley 数字滤波器均无现成的Matlab 函数。
并联系统的系统函数为l h h l l h()()()()()()()()()()()()()()()B=conv(B ,A )+conv(B ,A )A=conv(A ,A )l h l h l h l h h l l h B z B z H z H z H z A z A z B z A z B z A z B z A z A z A z =+=++==⎧⇒⎨⎩级联系统的系统函数为宁可瑞滤波器(Linkwitz-Riley ),由两个巴特沃斯滤波器级联而成。
信号分析与处理实验报告(基于MATLAB)
武汉工程大学电气信息学院三、实验数据与结果分析1、2、四、思考:2. 3.四、思考:1、代数运算符号*和.*的区别是?*是矩阵相乘,是矩阵A行元素与B的列元素相乘的和.*是数组相乘,表示数组A和数组B中的对应元素相乘实验内容实验三连续时间信号的卷积一、实验内容1、已知两连续时间信号如下图所示,绘制信号f1(t)、f2(t)及卷积结果f(t)的波形;设时间变化步长dt分别取为0.5、0.1、0.01,当dt取多少时,程序的计算结果就是连续时间卷积的较好近似?2、、计算信号()()()11==-a t u e t f at 和()()t tu t f sin 2=的卷积f(t),f 1(t)、f 2(t)的时间范围取为0~10,步长值取为0.1。
绘制三个信号的波形。
二、实验方法与步骤1、绘制信号f 1(t)、f 2(t)及卷积结果f(t)的波形,当dt 取0.01时程序的计算结果就是连续时间卷积的较好近似程序代码如下:clear allclose allclcdt=0.01t1=0:dt:2;t2=-1:dt:1;f1=0.5*t1;f2=0.5*(t2+1);y=dt*conv(f1,f2); %计算卷积t0=t1(1)+t2(1); %计算卷积结果的非零样值的起点位置2.实验内容三、实验数据与结果分析1.2.实验内容实验五连续时间信号的频域分析一、实验内容1、如图5.4所示的奇谐周期方波信号,周期为T1=1,幅度为A=1,将该方波信号展开成三角形式Fourier级数并分别采用频域矩形窗和Hanning窗加权,绘制两种窗函数加权后的方波合成图像。
时间范围取为-2~2,步长值取为0.01。
2、将图5.5中的锯齿波展开为三角形式Fourier级数,按(2)式求出Fourier级数的系数,并在频域分别采用矩形窗、Hanning窗和三角窗加权,观察其Gibbs效应及其消除情况。
时间范围取为-2~2,步长值取为0.01。
信号分析与处理实验报告
信号分析与处理实验报告一、实验目的1.了解信号分析与处理的基本概念和方法;2.掌握信号分析与处理的基本实验操作;3.熟悉使用MATLAB进行信号分析与处理。
二、实验原理信号分析与处理是指利用数学和计算机技术对信号进行分析和处理的过程。
信号分析的目的是了解信号的特性和规律,通过对信号的频域、时域和幅频特性等进行分析,获取信号的频率、幅度、相位等信息。
信号处理的目的是对信号进行数据处理,提取信号的有效信息,优化信号的质量。
信号分析和处理的基本方法包括时域分析、频域分析和滤波处理。
时域分析主要是对信号的时变过程进行分析,常用的方法有波形分析和自相关分析。
频域分析是将信号转换到频率域进行分析,常用的方法有傅里叶级数和离散傅里叶变换。
滤波处理是根据信号的特性选择适当的滤波器对信号进行滤波,常用的滤波器有低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
三、实验内容1.信号的时域分析将给定的信号进行波形分析,绘制信号的时域波形图;进行自相关分析,计算信号的自相关函数。
2.信号的频域分析使用傅里叶级数将信号转换到频域,绘制信号的频域图谱;使用离散傅里叶变换将信号转换到频域,绘制信号的频域图谱。
3.滤波处理选择合适的滤波器对信号进行滤波处理,观察滤波前后的信号波形和频谱。
四、实验步骤与数据1.时域分析选择一个信号进行时域分析,记录信号的波形和自相关函数。
2.频域分析选择一个信号进行傅里叶级数分析,记录信号的频谱;选择一个信号进行离散傅里叶变换分析,记录信号的频谱。
3.滤波处理选择一个信号,设计适当的滤波器对信号进行滤波处理,记录滤波前后的信号波形和频谱。
五、实验结果分析根据实验数据绘制的图像进行分析,对比不同信号在时域和频域上的特点。
观察滤波前后信号波形和频谱的变化,分析滤波效果的好坏。
分析不同滤波器对信号的影响,总结滤波处理的原理和方法。
六、实验总结通过本次实验,我们了解了信号分析与处理的基本概念和方法,掌握了信号分析与处理的基本实验操作,熟悉了使用MATLAB进行信号分析与处理。
信号分析与处理实验报告
实验一图像信号频谱分析及滤波一:实验原理FFT不是一种新的变化,而是DFT的快速算法。
快速傅里叶变换能减少运算量的根本原因在于它不断地把长序列的离散傅里叶变换变为短序列的离散傅里叶变换,在利用的对称性和周期性使DFT运算中的有些项加以合并,达到减少运算工作量的效果。
为了消除或减弱噪声,提取有用信号,必须进行滤波,能实现滤波功能的系统成为滤波器。
按信号可分为模拟滤波器和数字滤波器两大类。
数字滤波器的关键是如何根据给定的技术指标来得到可以实现的系统函数。
从模拟到数字的转换方法很多,常用的有双线性变换法和冲击响应不变法,本实验主要采用双线性变换法。
双线性变换法是一种由s平面到z平面的映射过程,其变换式定义为:数字域频率与模拟频率之间的关系是非线性关系。
双线性变换的频率标度的非线性失真是可以通过预畸变的方法去补偿的。
变换公式有Ωp=2/T*tan(wp/2)Ωs=2/T*tan(ws/2)二:实验内容1.图像信号的采集和显示选择一副不同彩色图片,利用Windows下的画图工具,设置成200*200像素格式。
然后在Matlab软件平台下,利用相关函数读取数据和显示图像。
要求显示出原始灰度图像、加入噪声信号后的灰度图像、滤波后的灰度图像。
2.图像信号的频谱分析要求分析和画出原始灰度图像、加入噪声信号后灰度图像、滤波后灰度图像信号的频谱特性。
3.数字滤波器设计给出数字低通滤波器性能指标:通带截止频率fp=10000 Hz,阻带截止频率fs=15000 Hz,阻带最小衰减Rs=50 dB,通带最大衰减Rp=3 dB,采样频率40000Hz。
三:实验程序clear allx=imread('D:\lan.jpg');%原始彩色图像的数据读取x1=rgb2gray(x);%彩色图像值转化为灰度图像值[M,N]=size(x1);%数据x1的长度,用来求矩阵的大小x2=im2double(x1);%unit8转化为double型x3=numel(x2);%计算x2长度figure(1);subplot(1,3,1);imshow(x2);title('原始灰度图')z1=reshape(x2,1,x3);%将二维数据转化成一维数据g=fft(z1);%对图像进行二维傅里叶变换mag=fftshift(abs(g));%fftshift是针对频域的,将FFT的DC分量移到频谱中心K=40000;Fs=40000;dt=1/Fs;n=0:K-1;f1=18000;z=0.1*sin(2*pi*f1*n*dt);x4=z1+z;%加入正弦噪声f=n*Fs/K;y=fft(x4,K);z2=reshape(x4,M,N);%将一维图转换为二维图subplot(1,3,2);imshow(z2);title('加入噪声后')g1=fft(x4);mag1=fftshift(abs(g1));%设计滤波器ws=0.75*pi;wp=0.5*pi;fs=10000;wp1=2*fs*tan(wp/2);ws1=2*fs*tan(ws/2);rs=50;rp=3;% [n,wn]=buttord(wp/pi,ws/pi,rp,rs);% [bz,az]=butter(n,wn);[n,wn]=buttord(wp1,ws1,rp,rs,'s');[z,p,k]=buttap(n);[b,a]=zp2tf(z,p,k);[B,A]=lp2lp(b,a,wn);[bz,az]=bilinear(B,A,fs);[h,w]=freqz(bz,az,128,fs);L=numel(z2);z3=reshape(z2,1,L);x6=filter(bz,az,double(z3));x7=reshape(x6,M,N);subplot(1,3,3);imshow(x7);g2=fft(x6);mag2=fftshift(abs(g2));title('滤波后')%建立频谱图figure(2);subplot(1,3,1);plot(mag);title('原始Magnitude')subplot(1,3,2);plot(mag1);title('加噪声Magnitude')subplot(1,3,3);plot(mag2);title('滤波后Magnitude')figure(3);subplot(1,2,1)plot(w,abs(h));xlabel('f');ylabel('h');title('滤波器幅谱');subplot(1,2,2);plot(w,angle(h));title('滤波器相谱');四:实验结果与分析图一图二分析:由图二可以知道加入噪声后的幅值谱和原始图的幅值谱明显多了两条幅值线,而这两条幅值线就是我们对原始灰度图加入的正弦噪声,而相应的图一中的加噪声后的图与原始图相比,出现了明显的变化。
数字信号处理实验报告_完整版
实验1 利用DFT 分析信号频谱一、实验目的1.加深对DFT 原理的理解。
2.应用DFT 分析信号的频谱。
3.深刻理解利用DFT 分析信号频谱的原理,分析实现过程中出现的现象及解决方法。
二、实验设备与环境 计算机、MATLAB 软件环境 三、实验基础理论1.DFT 与DTFT 的关系有限长序列 的离散时间傅里叶变换 在频率区间 的N 个等间隔分布的点 上的N 个取样值可以由下式表示:212/0()|()()01N jkn j Nk N k X e x n eX k k N πωωπ--====≤≤-∑由上式可知,序列 的N 点DFT ,实际上就是 序列的DTFT 在N 个等间隔频率点 上样本 。
2.利用DFT 求DTFT方法1:由恢复出的方法如下:由图2.1所示流程可知:101()()()N j j nkn j nN n n k X e x n eX k W e N ωωω∞∞----=-∞=-∞=⎡⎤==⎢⎥⎣⎦∑∑∑ 由上式可以得到:IDFTDTFT( )12()()()Nj k kX e X k Nωπφω==-∑ 其中为内插函数12sin(/2)()sin(/2)N j N x eN ωωφω--= 方法2:实际在MATLAB 计算中,上述插值运算不见得是最好的办法。
由于DFT 是DTFT 的取样值,其相邻两个频率样本点的间距为2π/N ,所以如果我们增加数据的长度N ,使得到的DFT 谱线就更加精细,其包络就越接近DTFT 的结果,这样就可以利用DFT 计算DTFT 。
如果没有更多的数据,可以通过补零来增加数据长度。
3.利用DFT 分析连续信号的频谱采用计算机分析连续时间信号的频谱,第一步就是把连续信号离散化,这里需要进行两个操作:一是采样,二是截断。
对于连续时间非周期信号,按采样间隔T 进行采样,阶段长度M ,那么:1()()()M j tj nT a a a n X j x t edt T x nT e ∞--Ω-Ω=-∞Ω==∑⎰对进行N 点频域采样,得到2120()|()()M jkn Na a M kn NTX j T x nT eTX k ππ--Ω==Ω==∑因此,可以将利用DFT 分析连续非周期信号频谱的步骤归纳如下: (1)确定时域采样间隔T ,得到离散序列(2)确定截取长度M ,得到M 点离散序列,这里为窗函数。
信号分析与处理
信号分析与处理1.什么是信息?什么是信号?二者之间的区别与联系是什么?信号是如何分类的? 信息:反映了一个物理系统的状态或特性,是自然界、人类社会和人类思维活动中普遍存在的物质和事物的属性。
信号:是传载信息的物理量,是信息的表现形式。
区别与联系 信号的分类1.按照信号随自变量时间的取值特点,信号可分为连续时间信号和离散时间信号;2.按照信号取值随时间变化的特点,信号可以分为确定性信号和随机信号; 2.非平稳信号处理方法(列出方法就行) 1.短时傅里叶变换(Short Time Fourier Transform) 2.小波变换(Wavelet Transform)3.小波包分析(Wavelet Package Analysis)4.第二代小波变换5.循环平稳信号分析(Cyclostationary Signal Analysis)6.经验模式分解(Empirical Mode Decomposition)和希尔伯特-黄变换(Hilbert-Huang Transform) 3.信号处理内积的意义,基函数的定义与物理意义。
内积的定义:(1)实数序列:),...,,(21n x x x X =,nn R y y y Y ∈=),...,,(21它们的内积定义是:j nj jy xY X ∑=>=<1,(2)复数jy x z +=它的共轭jy x z -=*,复序列),...,,(21n z z z Z =,nn C w w w W ∈=),...,,(21,它们的内积定义为*=∑>=<j nj j w z W Z 1,在平方可积空间2L 中的函数)(),(t y t x 它们的内积定义为:dt t y t x t y t x ⎰∞∞-*>=<)()()(),( 2)(),(L t y t x ∈以)(),(t y t x 的互相关函数)(τxy R ,)(t x 的自相关函数)(τxx R 如下:>-=<-=⎰∞∞-*)(),()()()(τττt x t x dt t x t x R xx>-=<-=⎰∞∞-*)(),()()()(τττt y t x dt t y t x R xy我们把)(τ-t x 以及)(τ-t y 视为基函数,则内积可以理解为信号)(t x 与“基函数”关系紧密度或相似性的一种度量。
《测试信号分析报告与处理》实验报告材料
《测试信号分析与处理》实验一差分方程、卷积、z变换一、实验目的通过该实验熟悉 matlab软件的基本操作指令,掌握matlab软件的使用方法,掌握数字信号处理中的基本原理、方法以及matlab函数的调用。
二、实验设备1、微型计算机1台;2、matlab软件1套三、实验原理Matlab 软件是由mathworks公司于1984年推出的一套科学计算软件,分为总包和若干个工具箱,其中包含用于信号分析与处理的sptool工具箱和用于滤波器设计的fdatool工具箱。
它具有强大的矩阵计算和数据可视化能力,是广泛应用于信号分析与处理中的功能强大且使用简单方便的成熟软件。
Matlab软件中已有大量的关于数字信号处理的运算函数可供调用,本实验主要是针对数字信号处理中的差分方程、卷积、z变换等基本运算的matlab函数的熟悉和应用。
差分方程(difference equation)可用来描述线性时不变、因果数字滤波器。
用x表示滤波器的输入,用y表示滤波器的输出。
a0y[n]+a1y[n-1]+…+a N y[n-N]=b0x[n]+b1x[n-1]+…+b M x[n-M] (1)ak,bk 为权系数,称为滤波器系数。
N为所需过去输出的个数,M 为所需输入的个数卷积是滤波器另一种实现方法。
y[n]= ∑x[k] h[n-k] = x[n]*h[n] (2) 等式定义了数字卷积,*是卷积运算符。
输出y[n] 取决于输入x[n] 和系统的脉冲响应h[n]。
传输函数H(z)是滤波器的第三种实现方法。
H(z)=输出/输入= Y(z)/X(z) (3)即分别对滤波器的输入和输出信号求z变换,二者的比值就是数字滤波器的传输函数。
序列x[n]的z变换定义为X (z)=∑x[n]z-n (4) 把序列x[n] 的z 变换记为Z{x[n]} = X(z)。
由X(z) 计算x[n] 进行z 的逆变换x[n] = Z-1{X(z)}。
信号分析报告与处理答案详解第二版
第二章习题参考解答2.1 求下列系统的阶跃响应和冲激响应。
(1)解当激励为时,响应为,即:由于方程简单,可利用迭代法求解:,,…,由此可归纳出的表达式:利用阶跃响应和冲激响应的关系,可以求得阶跃响应:(2)解 (a)求冲激响应,当时,。
特征方程,解得特征根为。
所以:…(2.1.2.1)通过原方程迭代知,,,代入式(2.1.2.1)中得:解得,代入式(2.1.2.1):…(2.1.2.2)可验证满足式(2.1.2.2),所以:(b)求阶跃响应通解为特解形式为,,代入原方程有,即完全解为通过原方程迭代之,,由此可得解得,。
所以阶跃响应为:(3)解(4)解当t>0时,原方程变为:。
…(2.1.3.1)…(2.1.3.2) 将(2.1.3.1)、(2.1.3.2)式代入原方程,比较两边的系数得:阶跃响应:2.2 求下列离散序列的卷积和。
(1)解用表格法求解(2)解用表格法求解(3)和如题图2.2.3所示解用表格法求解(4)解(5)解(6)解参见右图。
当时:当时:当时:当时:当时:(7) ,解参见右图:当时:当时:当时:当时:当时:(8) ,解参见右图当时:当时:当时:当时:(9),解(10) ,解或写作:2.3 求下列连续信号的卷积。
(1) ,解参见右图:当时:当时:当时:当时:当时:当时:(2) 和如图2.3.2所示解当时:当时:当时:当时:当时:(3) ,解(4) ,解(5) ,解参见右图。
当时:当时:当时:当时:(6) ,解(7) ,解(8) ,解(9) ,解2.4 试求题图2.4示系统的总冲激响应表达式。
解2.5 已知系统的微分方程及初始状态如下,试求系统的零输入响应。
(1) ;解,,(2) ;,解,,,,可定出(3) ;,解,,,可定出2.6 某一阶电路如题图2.6所示,电路达到稳定状态后,开关S于时闭合,试求输出响应。
解由于电容器二端的电压在t=0时不会发生突变,所以。
根据电路可以立出t>0时的微分方程:,整理得齐次解:非齐次特解:设代入原方程可定出B=2则:,2.7 积分电路如题图2.7所示,已知激励信号为,试求零状态响应。
信号分析实验报告总结
一、实验目的本次信号分析实验旨在通过MATLAB软件,对连续信号进行采样、重建、频谱分析等操作,加深对信号处理基本理论和方法的理解,掌握信号的时域、频域分析技巧,并学会使用MATLAB进行信号处理实验。
二、实验内容1. 连续信号采样与重建(1)实验内容:以正弦信号为例,验证采样定理,分析采样频率与信号恢复质量的关系。
(2)实验步骤:a. 定义连续信号y(t) = sin(2π×24t) + sin(2π×20t),包含12Hz和20Hz 两个等幅度分量。
b. 分别以1/4、1/2、1/3Nyquist频率对信号进行采样,其中Nyquist频率为最高信号频率的两倍。
c. 利用MATLAB的插值函数对采样信号进行重建,比较不同采样频率下的信号恢复质量。
(3)实验结果与分析:a. 当采样频率低于Nyquist频率时,重建信号出现失真,频率混叠现象明显。
b. 当采样频率等于Nyquist频率时,重建信号基本恢复原信号,失真较小。
c. 当采样频率高于Nyquist频率时,重建信号质量进一步提高,失真更小。
2. 离散信号频谱分析(1)实验内容:分析不同加窗长度对信号频谱的影响,理解频率分辨率的概念。
(2)实验步骤:a. 定义离散信号x[n],计算其频谱。
b. 分别采用16、60、120点窗口进行信号截取,计算其频谱。
c. 比较不同窗口长度对频谱的影响。
(3)实验结果与分析:a. 随着窗口长度的增加,频谱分辨率降低,频率混叠现象减弱。
b. 频率分辨率与窗口长度成反比,窗口长度越长,频率分辨率越高。
3. 调频信号分析(1)实验内容:搭建调频通信系统,分析调频信号,验证调频解调原理。
(2)实验步骤:a. 搭建调频通信系统,包括信号源、调制器、解调器等模块。
b. 产生调频信号,并对其进行解调。
c. 分析调频信号的频谱,验证调频解调原理。
(3)实验结果与分析:a. 调频信号具有线性调频特性,其频谱为连续谱。
信号分析与处理实验报告(基于matlab)
fr=real(f);%描述函数实部
fi=imag(f);%描述函数虚部
fa=abs(f);%描述函数幅度
fg=angle(f);%描述函数相位
subplot(2,2,1)%将当前窗口分成2行2列个子窗口,并在第1个子窗口绘图
plot(t,fr)
title('实部')
ty=t0:dt:(t0+(t3-1)*dt);%确定卷积结果的非零样值的时间向量
subplot(3,1,1)
plot(t1,f1)%绘制信号f1(t)的时域波形
title('f1')
xlabel('t1')
axis([-0.2,10.2,-0.2,1])
gridon
subplot(3,1,2)
plot(t2,f2)%绘制信号f2(t)的时域波形
1、将方波信号展开成三角形式Fourier级数并分别采用频域矩形窗和Hanning窗加权
方波展开的三角式傅立叶级数为:
采用频域矩形窗加权,则展开式变为:
采用Hanning窗加权,则展开式变为:
程序代码如下:
clearall
closeall
clc
t1=-2:0.01:2;
t2=-2:0.01:2;
K=30
xlabel('t')
axis([-0.5,20.5,-0.8,1.2])
gridon
subplot(2,2,2)%将当前窗口分成2行2列个子窗口,并在第2个子窗口绘图
plot(t,fi)
title('虚部')
xlabel('t')
信号分析与处理实验报告
信号分析与处理实验报告
班级_________________________
学生姓名_________________________
学号_________________________
所在专业_________________________
成绩_________________________
上海大学
二0 0 年月日
图1-2 芯片参数设置界面
4. 利用数字公式编程生成正弦波、噪声或三角波等数字信号,可以选择其中一种信号,
图3-1 滤波器的种类
下图是用带通滤波器消除信号钢管无损探伤信号中由于传感器晃动带来的低频干扰,以及由于电磁噪声等带来的高频干扰的例子。
用滤波器消除信号中的干扰
图3-3 滤波器的作用实验
下面是该实验的装配图和信号流图,图中线上的数字为连接软件芯片的软件总线数
图3-4 滤波器的作用实验装配图。
信号分析评价报告
信号分析评价报告引言信号分析是一种重要的技术,用于评估和理解各种信号的特征和性能。
信号可以是来自不同领域的数据,如音频、视频、生物医学图像或通信信号。
信号分析评价报告旨在通过使用适当的分析工具和技术来评估信号的质量和特征。
本文将介绍信号分析的步骤和方法,以及如何根据分析结果来评价信号的有效性。
步骤一:信号采集信号分析的第一步是采集需要分析的信号。
信号可以通过各种设备和传感器来采集,例如麦克风、摄像机、心电图仪器或无线通信设备。
采集到的信号将作为后续分析的输入。
步骤二:预处理信号采集到的信号通常包含噪声、干扰和其他无效信息。
预处理信号是为了去除这些干扰,以使信号更加准确和可靠。
常见的预处理技术包括滤波、去噪和放大等。
通过预处理,我们可以提高信号的质量和可分辨性。
步骤三:特征提取特征提取是信号分析的关键步骤之一。
通过提取信号的关键特征,我们可以更好地理解信号的本质和含义。
特征可以是信号的频率、幅度、相位或其他统计特征。
常见的特征提取方法包括频谱分析、小波变换和时频分析等。
步骤四:信号分类和识别信号分类和识别是信号分析的重要应用之一。
通过将信号与已知模式或模型进行比较,我们可以将信号分为不同的类别或识别其含义。
例如,在语音信号分析中,我们可以通过比较信号的频谱特征和已知的语音模型来进行说话人识别。
步骤五:信号评价信号评价是根据信号分析结果来评估信号的质量和性能。
评价的准则可以根据具体的应用而定。
例如,在音频信号分析中,我们可以通过比较信号的频谱特征和人耳感知的声音特性来评估音频的质量。
在无线通信中,我们可以根据信号的误码率和信噪比来评估通信质量。
结论信号分析评价报告旨在通过使用适当的工具和技术来评估信号的质量和特征。
通过信号采集、预处理、特征提取、信号分类和识别以及信号评价等步骤,我们可以更好地理解和利用信号,从而为各个领域的应用提供支持。
信号分析的应用非常广泛,涵盖了音频、视频、无线通信、生物医学等多个领域。
上海大学《信号分析与处理》实验指导书
《信号分析与处理》实验指导书(修订版)上海大学精密机械工程系2009年4月目录DRVI可重构虚拟仪器实验平台简介 (2)实验一常用数字信号生成实验 (8)实验二典型信号波形的合成与分解实验 (11)实验三滤波器原理与应用实验 (13)附录一151DRVI可重构虚拟仪器实验平台简介1、概述DRVI的主体为一个带软件控制线和数据线的软主板,其上可插接软仪表盘、软信号发生器、软信号处理电路、软波形显示芯片等软件芯片组,并能与A/D卡、I/O卡等信号采集硬件进行组合与连接。
直接在以软件总线为基础的面板上通过简单的可视化插/拔软件芯片和连线,就可以完成对仪器功能的裁减、重组和定制,快速搭建一个按应用需求定制的虚拟仪器测量系统。
图2、虚拟仪器软件总线结构图2、软件运行双击WINDOWS桌面上的图标,或在程序组中的DRVI,就可以启动DRVI 软件。
DRVI启动后点击红色箭头所示按钮从DRVI采集卡、运动控制卡,或网络在线进行注册登记,获取软件使用权限,然后就可以使用了。
图3、DRVI 软件运行界面3、插接软件芯片DRVI 通过在前面板上可视化插接虚拟仪器软件芯片来搭构虚拟仪器或测量实验。
插接软件芯片的过程很简单,从软件芯片表中点击需要的软件芯片,将其添加到DRVI 前面板上,然后在新插入的软件芯片上压下鼠标不放,将其拖动到合适位置。
重复上述步骤,插入其它软件芯片。
插接在DRVI 前面板上的虚拟仪器软件芯片的屏幕位置是可以移动和调整的,点击快捷工具条中的“移动软件芯片位置”图标,然后在待移动的软件芯片上压下鼠标不放,就可以将其拖动到新位置,从而实现屏幕布局的调整。
4、DRVI 软件总线的概念和软件芯片的连线图4 用DRVI 设计虚拟仪器为实现虚拟仪器软件芯片间的数据交换,DRVI中设置了一组软件总线,包括256条Double型单变量数据线和32条Double型数组型数据线,可传输有效值等单变量数据,也可传输波形、频谱等数组数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XCXDFSEWRV中国地质大学(武汉)统计信号分析处理报告小组成员: 魏彦斌马全林陈飞班号: 075132 _院系:__机电学院专业:_通信工程指导教师:_侯强老师一实验内容实验一、地震时间间隔的密度估计;实验二、地震震级与频度回归分析;实验三、地震空间分布聚类分析;实验四、地震优势深度聚类分析;二.实验要求及结果。
实验一、地震时间间隔的密度估计;读入数据后,把时间列(第一二列)转换成数据格式,然后分:3级以下,3到4级,4到5级,5到6级,6级以上等6个部分分别计算地震之间的时间差t,这个t就是地震时间间隔,而且是一个随机变量,对t这个随机变量进行密度估计。
代码:%%clear all;close all; clc;filename = '中国地震台网(CSN)地震目录(1970-01-01至2015-09-31).xls'; sheet = 1;xRange = 'A5:A8462';% xRange = 'A3:A8462';x2Range = 'B5:B8462';% x2Range = 'B3:B8462';yRange = 'H3:H8462';% [~,x]= xlsread(filename, sheet, xRange);% [~,x2] = xlsread(filename, sheet, x2Range);[~,x]= xlsread(filename, sheet, xRange);[ttt,x2] = xlsread(filename, sheet, x2Range);ml= xlsread(filename, sheet, yRange); %读取数据%%X = x(~isnan(ml));X2 = x2(~isnan(ml));n = length(X2); %去掉无数据的日期和时间for i = 1:n %将日期时间转化为数值形式Xyy(i) = str2double(X{i}(1:4)); %年Xmm(i) = str2double(X{i}(6:7)); %月Xdd(i) = str2double(X{i}(9:10)); %日XHH(i) = str2double(X2{i}(1:2)); %时XMM(i) = str2double(X2{i}(4:5)); %分XSS(i) = str2double(X2{i}(7:8)); %秒endxx = datenum(Xyy,Xmm,Xdd,XHH,XMM,XSS); %将时间转化为数值形式ML = ml(~isnan(ml) ); %去掉无数据项a=1; b=1;c=1;d=1; e=1;for i=1:nif ML(i)<=3.0t_3(a)=xx(i);a=a+1;elseif ML(i)>3.0&&ML(i)<=4.0t_34(b)=xx(i);b=b+1;elseif ML(i)>4.0&&ML(i)<=5.0t_45(c)=xx(i);c=c+1;elseif ML(i)>5.0&&ML(i)<=6.0t_56(d)=xx(i);d=d+1;elset_6(e)=xx(i);e=e+1;end;end;%求个部分时间差for i=1:(length(t_3)-1)tt_3(i)=t_3(i)-t_3(i+1);endfor i=1:(length(t_34)-1)tt_34(i)=t_34(i)-t_34(i+1);endfor i=1:(length(t_45)-1)tt_45(i)=t_45(i)-t_45(i+1);endfor i=1:(length(t_56)-1)tt_56(i)=t_56(i)-t_56(i+1);endfor i=1:(length(t_6)-1)tt_6(i)=t_6(i)-t_6(i+1);endx=linspace(min(tt_3)-1,max(tt_3),1200);p=Parzen(tt_3,x,15,[]);plot(x,p);grid on;figure(2);x=linspace(min(tt_34),max(tt_34),50);p=Parzen(tt_34,x,3,[]);plot(x,p);grid on;figure(3);x=linspace(min(tt_45),max(tt_45),100);p=Parzen(tt_45,x,3,[]);plot(x,p);grid on;figure(4);x=linspace(min(tt_56),max(tt_56),700);p=Parzen(tt_56,x,15,[]);plot(x,p);grid on;figure(5);x=linspace(min(tt_6),max(tt_6),1600);p=Parzen(tt_6,x,25,[]);plot(x,p);grid on;实验二、地震震级与频度回归分析;读入数据后,对震级ML列进行分级统计,也是分为3级以下,3到4级,4到5级,5到6级,6级以上等6个部分,每个部分统计一下个数,然后进行线性回归拟合。
拟合的公式是:LnN=a-bM式中N表示相应震级部分的个数,比如3到4级的地震个数,M表示相关震级,比如3到4级就是4级。
代码:clear all;close all; clc;[graph,time]=xlsread('中国地震台网(CSN)地震目录(1970-01-01至2015-09-31).xls');%weidu=graph(:,2);%shendu=graph(:,3);%jingdu=graph(:,1);ML=graph(:,6);%time_day=time(:,1);%time_hour=time(:,2);n = length(ML);%figure(1);less_3=0;less_3_4=0; less_4_5=0;less_5_6=0;less_6=0;for i=1:niif ML(i)<=3.0less_3=less_3+1;elseif ML(i)>3.0&&ML(i)<=4.0less_3_4=less_3_4+1;elseif ML(i)>4.0&&ML(i)<=5.0less_4_5=less_4_5+1;elseif ML(i)>5.0&&ML(i)<=6.0less_5_6=less_5_6+1;elseless_6=less_6+1;end;end;N=[log(less_3),log(less_3_4),log(less_4_5),log(less_5_6),log(less_6)];M=[3,4,5,6,7];plot(M,N,'mo');lsline;xlabel('M');ylabel('LogN');实验三、地震空间分布聚类分析读入数据后,对经度列、纬度列和ML列分别取出来,不分震级大小,画出以经度纬度为横纵坐标,以震级为点的散点图,然后可以用我们学过的k-means进行聚类啦,通常k=6.代码:clear all;close all; clc;[graph,time]=xlsread('中国地震台网(CSN)地震目录(1970-01-01至2015-09-31).xls'); weidu=graph(:,2);%shendu=graph(:,3);jingdu=graph(:,1);ML=graph(:,6);%time_day=time(:,1);%time_hour=time(:,2);%n = length(ML);figure(1);plot3(jingdu,weidu,ML,'.');grid on;xlabel('纬度');ylabel('经度');zlabel('震级');data=[jingdu,weidu,ML];[Idx,C,sumD,D]=kmeans(data,6);figure(2);plot3(data(Idx==1,1),data(Idx==1,2),data(Idx==1,3),'b.','MarkerSize',5)hold onplot3(data(Idx==2,1),data(Idx==2,2),data(Idx==2,3),'r*','MarkerSize',5)hold onplot3(data(Idx==3,1),data(Idx==3,2),data(Idx==3,3),'gx','MarkerSize',5)hold onplot3(data(Idx==4,1),data(Idx==4,2),data(Idx==4,3),'mo','MarkerSize',5)hold onplot3(data(Idx==5,1),data(Idx==5,2),data(Idx==5,3),'kp','MarkerSize',5)hold onplot3(data(Idx==6,1),data(Idx==6,2),data(Idx==6,3),'y+','MarkerSize',5)hold on实验四、地震优势深度聚类分析;读入数据后,对深度列和ML列分别取出来,不分震级大小,画出深度-震级的散点图,然后可以用我们学过的k-means进行聚类啦,通常k=3.代码:clear all;close all; clc;[graph,time]=xlsread('中国地震台网(CSN)地震目录(1970-01-01至2015-09-31).xls');%weidu=graph(:,2);shendu=graph(:,3);%jingdu=graph(:,1);ML=graph(:,6);%time_day=time(:,1);%time_hour=time(:,2);%n = length(ML);figure(1);scatter(ML,shendu,3,'r');xlabel('震级');ylabel('深度');X=[ML,shendu];K=3;[Idx,C,sumD,D]=kmeans(X,K);%X N*P的数据矩阵%K 表示将X划分为几类,为整数%Idx N*1的向量,存储的是每个点的聚类标号%C K*P的矩阵,存储的是K个聚类质心位置%sumD 1*K的和向量,存储的是类间所有点与该类质心点距离之和%D N*K的矩阵,存储的是每个点与所有质心的距离%画出聚类为1的点。