高一物理必修2《平抛运动》知识点总结20410
高一物理必修二平抛知识点
高一物理必修二平抛知识点导语:在高中物理学习过程中,平抛运动是一个重要的知识点。
平抛即是指物体在水平方向上做匀速直线运动的同时,在竖直方向上做匀变速直线运动的运动方式。
本文将从平抛的定义、运动规律、相关公式以及实际应用等方面进行论述,帮助读者深入理解和掌握高一物理必修二平抛知识点。
1. 平抛的定义平抛是指物体在水平方向上受到初速度,只受到重力的作用,在竖直方向上做匀变速直线运动。
平抛的特点是物体在竖直方向上以一定的初速度抛出后,其竖直方向上的速度会逐渐减小,直至为0,然后开始下落。
2. 平抛运动的规律(1)平抛的运动轨迹为抛物线。
由于物体在水平方向上做匀速直线运动,而竖直方向上受到重力的作用,所以物体在垂直方向上的运动可以用自由落体运动来描述。
将这两个运动合成起来,就形成了物体的平抛运动轨迹为抛物线的特点。
(2)平抛运动在水平方向上的速度保持不变,而在竖直方向上的速度逐渐减小。
这是因为在平抛过程中,物体受到的只有重力的竖直向下的作用力,没有任何竖直向上指向的力。
(3)平抛到达最高点时,竖直方向的速度为0,称之为抛物线的顶点。
(4)平抛运动的时间是由竖直方向的运动决定的,水平方向的速度决定了平抛的距离。
3. 相关公式(1)平抛运动的位移公式为:y = V₀t + (1/2)gt²,其中y为竖直方向上的位移,V₀为初速度,g为重力加速度,t为时间。
由于平抛运动是在竖直方向上的运动,所以我们可以根据该公式计算物体在竖直方向上的位移。
(2)平抛运动的速度公式为:v = V₀ + gt,其中v为竖直方向上的速度,V₀为初速度,g为重力加速度,t为时间。
该公式可以用来计算平抛运动在竖直方向上的速度。
(3)平抛运动的时间公式为:t = 2V₀/g,其中t为平抛运动的总时间,V₀为初速度,g为重力加速度。
该公式可以用来计算平抛运动所花费的总时间。
4. 实际应用平抛运动在现实生活中有许多实际应用,例如:(1)投掷运动:在投掷项目中,运动员需要准确地控制力的大小和方向,使物体沿着所需轨迹进行平抛运动。
(完整版)平抛运动的知识点总结
(完整版)平抛运动的知识点总结平抛运动是一种常见的物理现象,它涉及到物体在重力作用下沿水平方向以恒定速度运动的情况。
以下是平抛运动的关键知识点总结:1. 基本概念:- 平抛运动是指物体在水平方向上以初速度抛出,同时受到竖直方向重力加速度(g)作用的运动。
- 这种运动可以看作是水平方向的匀速直线运动和竖直方向的自由落体运动的叠加。
2. 运动方程:- 水平方向:$x = v_{0x}t$,其中$v_{0x}$是水平方向的初速度,$t$是时间。
- 竖直方向:$y = v_{0y}t - \frac{1}{2}gt^2$,其中$v_{0y}$是竖直方向的初速度(在纯平抛运动中通常为0),$g$是重力加速度。
3. 速度和位移:- 水平方向的速度保持不变,为$v_{0x}$。
- 竖直方向的速度随时间变化,为$v_{y} = gt$。
- 总速度$v$可以通过速度分量合成得到,使用勾股定理:$v =\sqrt{v_{0x}^2 + v_{y}^2}$。
- 位移分量同样可以通过水平和竖直方向的位移合成得到。
4. 运动时间:- 平抛运动的最大高度由公式$h = \frac{1}{2}gt^2$给出,解出时间$t = \sqrt{\frac{2h}{g}}$。
- 物体落地时间是指从抛出到落地的时间,可以通过竖直位移来计算。
5. 能量分析:- 动能:物体在水平和竖直方向上的动能分别为$K_x =\frac{1}{2}m v_{0x}^2$和$K_y = \frac{1}{2}m v_{y}^2$,总动能为两者之和。
- 势能:由于竖直方向的初速度通常为0,物体在初始时刻的势能为$E_p = mgh$,其中$h$是初始高度。
6. 实验验证:- 平抛运动可以通过实验来验证,例如使用高速摄像机捕捉物体的运动轨迹,或者通过测量不同时间点的位置来计算速度和加速度。
7. 应用场景:- 平抛运动的原理广泛应用于各种领域,如体育运动中的投掷项目、军事中的炮弹发射等。
物理平抛运动知识点
物理平抛运动知识点1. 平抛运动定义平抛运动(Horizontal Projectile Motion)是指物体在水平方向上以一定的初速度抛出,同时受到重力作用,在竖直方向上做自由落体运动的一种运动。
在理想情况下,空气阻力被忽略不计。
2. 初速度和末速度在平抛运动中,物体的初速度(v0)是水平方向的速度,末速度(vf)是物体落地时的速度。
末速度可以通过初速度和竖直方向上的速度(gt)合成得到,其中g是重力加速度,t是物体运动的时间。
3. 速度合成与分解物体在水平方向上的速度保持不变,即v0。
竖直方向上的速度随时间线性增加,即v_y = gt。
物体的末速度可以通过以下公式计算:vf = √(v0² + v_y²) = √(v0² + (gt)²)4. 运动时间物体的运动时间由高度决定,可以通过公式t = √(2h/g)计算,其中h是物体的初始高度。
5. 水平位移物体在水平方向上的位移(x)可以通过公式x = v0 * t计算。
6. 竖直位移物体在竖直方向上的位移(y)可以通过公式y = 1/2 * g * t²计算。
7. 能量守恒在平抛运动中,物体的机械能(动能和势能之和)是守恒的。
初始时,物体只有势能(mgh),运动过程中转化为动能(1/2 * mv²)。
8. 角速度和周期如果物体在平抛运动中绕某点做圆周运动,其角速度(ω)可以通过公式ω = v/r计算,其中r是物体到旋转中心的距离。
周期(T)可以通过公式T = 2π/ω计算。
9. 抛体运动的实验验证通过实验可以验证平抛运动的相关公式和理论。
实验可以使用小型物体从一定高度水平抛出,通过测量水平位移和竖直位移,以及计算运动时间来验证上述公式。
10. 应用场景平抛运动的原理广泛应用于各种领域,如体育运动(篮球投篮、足球射门)、军事(炮弹发射)、航空航天(卫星轨道设计)等。
以上是关于物理平抛运动的知识点概述。
高一必修物理平抛运动知识点梳理
高一必修物理平抛运动知识点梳理物理作为自然科学的一个分支,研究的是物质的运动和相互作用规律。
而平抛运动作为物理学中最基础的知识之一,不仅帮助我们理解物体在空中的运动轨迹,还能更好地理解各种运动。
一、平抛运动的基本概念和特点平抛运动指的是物体在水平方向上以一定初速度抛出后,在竖直方向上受重力作用下运动的过程。
其特点主要包括以下几个方面:1. 运动轨迹为抛物线:在忽略空气阻力的情况下,物体的运动轨迹呈抛物线状。
这是因为物体在水平方向上的速度恒定,而在竖直方向上受到重力的作用导致速度逐渐增大,进而使轨迹呈现出拱形。
2. 飞行时间与水平距离无关:不考虑空气阻力的情况下,物体的飞行时间只与初速度和重力加速度有关,与水平距离无关。
这意味着无论水平投掷距离远近,物体的飞行时间是始终相等的。
3. 最大高度的确定:在平抛运动中,物体抛出后会上升到一个最大高度,然后再下落。
最大高度的确定与重力加速度、初速度和抛体的重量有关。
二、平抛运动的计算公式为了更好地描述和计算平抛运动的相关参数,我们引入以下几个重要的计算公式:1. 平抛运动的位移公式:在不考虑空气阻力的情况下,水平方向上的位移公式为:S = Vx * t其中,S表示位移,Vx表示水平方向上的初速度,t表示时间。
2. 平抛运动的竖直方向速度公式:在考虑重力加速度的情况下,物体在竖直方向上的速度可用以下公式表示:Vy = gt其中,Vy表示竖直方向上的速度,g表示重力加速度,t表示时间。
3. 平抛运动的竖直高度公式:在考虑重力加速度的情况下,物体的竖直高度可用以下公式表示:H = (Vy^2)/(2g)其中,H表示竖直高度,Vy表示竖直方向上的速度,g表示重力加速度。
4. 平抛运动的飞行时间公式:在考虑重力加速度的情况下,物体的飞行时间可用以下公式表示:T = 2Vy/g其中,T表示飞行时间,Vy表示竖直方向上的速度,g表示重力加速度。
通过以上的计算公式,我们可以更好地理解和计算物体在平抛运动中的相关参数,进一步掌握平抛运动的知识。
平抛运动知识点
平抛运动知识点平抛运动是物理学中的基础概念之一,也是我们日常生活中常见的一种运动方式。
在平抛运动中,物体从一定高度斜向上抛,经过一段时间后以一定的速度水平方向运动,最终落地。
本文将介绍平抛运动的基本概念、公式和相关知识点。
一、平抛运动的基本概念1. 初始速度:指物体从抛出位置具有的速度大小和方向。
在平抛运动中,初始速度通常由物体斜向上抛的速度决定。
2. 初始角度:指物体从抛出位置与水平方向的夹角。
初始角度直接决定了物体在运动过程中的轨迹,不同角度会产生不同的运动结果。
3. 运动时间:指物体从抛出位置到落地所经过的时间。
运动时间取决于抛出的初速度和重力加速度。
4. 落地位置:指物体在平抛运动中最终落地的位置。
物体的落地位置与初始速度、初始角度和运动时间都有关系。
二、平抛运动的公式平抛运动可以用一些基本公式来描述和计算,这些公式能帮助我们分析和理解物体在运动过程中的行为。
1. 抛出位置的坐标分解公式:在物体从抛出位置斜向上抛时,可以将物体的初始速度分解为水平方向和竖直方向的两个分量。
水平方向的速度不会改变,而竖直方向的速度会随着时间的推移而发生变化。
2. 水平方向的运动公式:物体在水平方向上的运动是匀速直线运动,可以使用以下公式计算物体在运动过程中的位移、速度和时间的关系:位移 = 初始速度×时间速度 = 初始速度时间 = 位移 / 初始速度3. 竖直方向的运动公式:物体在竖直方向上的运动是自由落体运动,可以使用以下公式计算物体在运动过程中的位移、速度和时间的关系:位移 = 初始速度×时间 + 1/2 ×重力加速度×时间²速度 = 初始速度 + 重力加速度×时间时间 = (速度 - 初始速度) / 重力加速度其中,重力加速度是一个常数,通常取9.8 m/s²。
三、平抛运动的相关知识点1. 最大射程:在平抛运动中,如果忽略空气阻力的影响,当初始角度为45°时,物体的最大射程可以达到最远。
平抛运动笔记知识点
平抛运动一.平抛运动性质(1)定义:以一定初速度水平抛出且只在重力作用下的运动叫平抛运动。
(2)理解:①物体只受重力,重力认为是恒力,方向竖直向下;②初速度不为零③抛体运动是一理想化模型,因为它忽略了实际运动中空气的阻力。
(3)方法:运动合成分解——正交分解以解决问题方便为原则,建立合适的坐标系,将曲线运动分解为两个方向的匀变速直线运动或者分解为一个方向的匀速直线运动和另一个方向的自由落体运动加以解决。
这也是匀变速曲线运动的处理方法,主要注意的是加速度是a 还是g二.平抛运动的规律1、运动性质水平:匀速直线运动竖直:自由落体运动2、平抛运动的规律(1)位移○1水平方向: x v t v v x ==00, ○2竖直方向: y gt v gt y ==122, ○3合位移:X 22y x S +=○4X 与水平方向夹角为02gt tan v θ= (2)速度○1水平方向:v t v v x ==00, ○2竖直方向:gt v gt y ==122, ○3合速度: 22y x v v v +=即v v gt =+022(),○4V 与水平方向夹角为0gt tan a v=(3)规律提炼 ○1θαtan tan 2= ,任意时刻速度偏转角的正切值是此时位移偏转角正切值的二倍。
○2任意时刻速度反向延长线过水平位移的中点,即过的OA 中点。
○3平抛运动在空中的飞行时间:由221gt y =可以得到时间gy t 2=,只与高度有关。
○4相等时间内速度变化量的大小方向相同。
三.斜抛运动1.性质水平方向:匀速直线运动竖直方向:先竖直上抛运动,再自由落体运动2.规律(1)位移水平:v t v x x αcos 0==竖直:2021gt t v y y -= (2)速度水平:αcos 0v v x =竖直:gt v v y y -=02、轨迹方程 :22202g y tan x x v cos αα=⋅-(3)时间与射程○1斜抛物体的飞行时间: 当物体落地时αsin 00v v v y y -=-=,由 gt v v y y -=0 知,飞行时间g v t αsin 20=○2斜抛物体的射程: 由轨迹方程22202g y tan x x v cos αα=⋅- 令y=0得落回抛出高度时的水平射程是gv x α2sin 20= ○3斜上抛运动的射高: 斜上抛的物体达到最大高度时00y y v v gt v sin gt α=-=-=0,此时0gv sin t α=代入2021gt t v y y -=即得g v y 2sin 220m ax α= 可以看出,当090=α时,射高最大g v H 220= (4)两条结论①当抛射角045=α时射程最远,20max v x g= ②初速度相同时,两个互余的抛射角具有相同的射程,例如300和600的两个抛射角在相同初速度的情况下射程是相等的。
平抛运动知识点总结
平抛运动知识点总结平抛运动是物理学中一个重要的运动类型,它涉及到物体在重力作用下沿水平方向抛出的运动规律。
以下是平抛运动的知识点总结:1. 平抛运动的定义:平抛运动是指物体在水平方向上以一定初速度抛出,仅受重力作用的运动。
2. 运动特点:平抛运动可以分解为水平方向上的匀速直线运动和竖直方向上的自由落体运动。
3. 运动分解:水平方向上的速度保持不变,竖直方向上的速度随时间线性增加。
4. 运动方程:水平方向上的位移公式为 \( x = v_0 \cdot t \),竖直方向上的位移公式为 \( y = \frac{1}{2} g \cdot t^2 \),其中\( v_0 \) 是初速度,\( g \) 是重力加速度,\( t \) 是时间。
5. 速度变化:水平方向上的速度不变,竖直方向上的速度随时间增加,总速度 \( v = \sqrt{v_0^2 + (gt)^2} \)。
6. 运动时间:平抛运动的时间由竖直高度决定,公式为 \( t =\sqrt{\frac{2h}{g}} \),其中 \( h \) 是抛出点到落地点的竖直高度。
7. 落地速度:落地时的速度方向可以通过速度向量的合成来确定,速度大小为 \( v = \sqrt{v_0^2 + (2gh)} \)。
8. 落地角度:落地时速度与水平方向的夹角 \( \theta \) 可以通过\( \tan \theta = \frac{gt}{v_0} \) 计算得出。
9. 运动轨迹:平抛运动的轨迹是一个抛物线,其形状由初速度和重力加速度共同决定。
10. 应用实例:平抛运动在日常生活中有广泛应用,如投掷物体、抛物线运动等。
通过以上知识点的总结,可以更好地理解和掌握平抛运动的规律和特点。
总结平抛知识点
总结平抛知识点一、平抛的基本概念1. 平抛的定义平抛是指物体在一定速度的情况下,在重力的作用下做抛体运动。
在平抛运动中,物体在水平方向做匀速直线运动,在竖直方向上受重力作用而做加速直线运动。
2. 平抛的特点平抛运动具有以下特点:(1)水平速度恒定:物体在水平方向上的速度是恒定的,即物体做匀速直线运动。
(2)竖直加速度恒定:物体在竖直方向上受到重力的影响,因此有竖直方向上的加速度,且加速度大小是恒定的,即重力加速度。
(3)运动轨迹为抛物线:考虑到水平速度恒定、竖直加速度恒定的特点,平抛物体的运动轨迹为抛物线。
二、平抛的运动规律1. 平抛的运动方程在平抛运动中,物体的水平运动与竖直运动是相互独立的,因此可以分别考虑。
设物体水平方向上的速度为v0,竖直方向上的初速度为v0y,竖直方向上的加速度为-g(g为重力加速度),水平方向上的位移为x,竖直方向上的位移为y,则有以下运动方程:(1)水平方向运动方程:x = v0*t(2)竖直方向运动方程:y = v0y*t - 0.5*g*t^22. 平抛的运动参数在平抛运动中,有一些重要的运动参数需要了解:(1)飞行时间:物体在竖直方向上的运动时间,记为T。
当物体抛出后再次回到初始高度时,飞行时间为T。
(2)最大高度:物体在竖直方向上所达到的最大高度,记为H。
最大高度可以通过竖直方向的运动方程求得。
(3)飞行距离:物体在水平方向上的飞行距离,记为D。
飞行距离可以通过水平方向的运动方程求得。
三、平抛的受力分析1. 平抛物体的受力在平抛运动中,物体受到的受力主要包括重力和空气阻力。
(1)重力:重力是所有物体都会受到的作用力,它的大小与物体的质量成正比,与重力加速度g成正比。
(2)空气阻力:当物体在空气中运动时,会受到空气的阻力作用。
空气阻力的大小与物体的速度成正比,与物体的表面积和空气密度成正比。
2. 平抛物体的受力分析考虑到物体的水平运动与竖直运动是相互独立的,在受力分析中可以单独考虑水平方向和竖直方向的受力情况。
平抛 的知识点总结
平抛的知识点总结1. 平抛运动的基本概念平抛运动是指物体在水平方向上以一定的初速度向上抛出,在重力的作用下做抛体运动,并在一定高度抛出时以初速度做匀速直线运动,具有水平速度和竖直速度。
在这个过程中,物体的运动轨迹是一个抛物线,在水平方向上的位移正比于时间,竖直方向上的位移则在不考虑空气阻力的情况下正比于时间的平方。
2. 平抛运动的基本方程对于平抛运动,我们可以利用运动学的基本方程来描述它的运动规律。
在水平方向上,物体的位移可以由以下公式来描述:\[x = v_xt\]其中,x为水平方向上的位移,\(v_x\)为水平方向上的初速度,t为时间。
在竖直方向上,位移可以由以下公式来描述:\[y = v_yt - \frac{1}{2}gt^2\]其中,y为竖直方向上的位移,\(v_y\)为竖直方向上的初速度,g为重力加速度,t为时间。
由此可得出我们常见的抛体运动的轨迹方程为:\[y = v_yt - \frac{1}{2}gt^2\]\[x = v_xt\]3. 平抛运动的最大高度和飞行时间在平抛运动中,我们可以利用运动的基本方程来求出它的最大高度和飞行时间。
最大高度可以通过以下公式来计算:\[y_{max} = \frac{v_y^2}{2g}\]飞行时间则可以通过水平位移和水平初速度来计算:\[t = \frac{x}{v_x}\]4. 平抛运动的水平和竖直速度在平抛运动中,物体的水平速度是恒定的,而竖直速度随着时间的增长而减小。
竖直速度可以由以下公式来计算:\[v_y = v_{0y} - gt\]5. 平抛运动的落地点在平抛运动中,物体最终会落地。
我们可以利用基本的位移和速度方程来计算物体的落地点:\[y = 0\]6. 平抛运动的应用平抛运动在现实生活和工程科学中有着广泛的应用。
例如,它可以用来描述抛出的物体的运动轨迹、计算球的抛出和接球的时间、计算棒球的轨迹、计算火箭的发射轨迹等等。
总之,平抛运动是力学中的一个重要概念,它对理解和应用物体运动具有重要的意义。
平抛的知识点
平抛的知识点一、知识概述《平抛运动》①基本定义:平抛就是水平方向扔出去一个东西,这东西只受重力的影响,就这么直直地往前面飞呀飞,在空中划出一道弧线,这就是平抛运动啦。
比如说你水平扔出一个小石子(当然要确保安全,别砸到人和东西哦),这个小石子的运动就是平抛运动。
②重要程度:在物理学里这可是很重要的呢,它是运动学里的一个很典型的例子。
很多复杂的运动都可以通过对平抛运动的研究来找到思路,就好比它是一座桥梁,能帮我们连接到更多关于运动、力等知识概念。
③前置知识:你得先知道什么是运动,比如匀速直线运动啦,还有重力是怎么回事。
要是这些不懂的话,平抛运动可就不好理解了。
就像盖房子,你地基没打好,楼肯定盖不稳。
④应用价值:在现实生活中平抛可以用来测量一些距离。
比如说测量一条河的宽度,我们如果知道一块石头平抛出去的初速度和在空中运动的时间,就可以算出石头飞出去的水平距离,可能就等于河的宽度呢。
二、知识体系①知识图谱:在运动学这个大板块里,平抛运动算是比较关键和基础的一个。
它和自由落体运动、斜抛运动都有联系,可以说是运动学家族里的一个重要成员。
②关联知识:和力的知识尤其是重力联系紧密,毕竟是在重力作用下产生这种运动的。
还有和速度、位移这些运动学概念也分不开,它们就像小伙伴一样,手拉手构成了平抛运动。
③重难点分析:重点就是理解平抛运动水平和竖直方向的运动特点。
难点的话,说实话我觉得对于初学者来讲,把水平方向的匀速直线运动和竖直方向的自由落体运动结合起来理解挺难的。
这就像是要同时协调两只手做不同的动作,有点费脑筋。
④考点分析:在考试里经常出现哦。
一般会直接考查平抛运动的概念、速度或者位移的计算。
考查方式可能是给你一些已知条件,像初速度、下落高度之类的,然后让你算出水平位移或者落地时间。
也可能会和其他知识联合起来出题,像让你在电场或者磁场里分析一个类似平抛运动的带电粒子的运动。
三、详细讲解【理论概念类】①概念辨析:平抛运动就是有一个初始速度沿着水平方向,然后忽略空气阻力的情况下,只在重力的作用下所做的曲线运动。
平抛运动知识点总结总结
平抛运动知识点总结总结一、定义平抛运动是指一个物体在水平方向上以一定初速度抛出后,在竖直方向上只受重力的作用,不受空气阻力的运动。
在这种运动中,物体的水平速度保持不变,而竖直方向的速度受到重力加速度的影响而不断变化。
二、特点1. 水平速度恒定:在平抛运动中,物体的水平速度是恒定的,不会因为重力的作用而改变。
2. 竖直速度变化:物体在竖直方向上受到重力的影响,其竖直速度会随着时间的推移而改变。
3. 运动轨迹是抛物线:由于水平速度恒定,竖直速度发生变化,物体的轨迹呈现出一个抛物线的形状。
三、运动规律1. 距离和时间关系:在平抛运动中,物体的水平速度恒定,所以它在同样时间内所运动的距离是相等的。
在一定时间内,水平速度乘以时间即为水平方向上的位移。
2. 竖直方向运动:由于物体在竖直方向上受重力的作用,其竖直速度会随着时间的推移而改变。
根据运动学知识,我们可以得到物体在竖直方向上的运动规律为:s = ut + 1/2gt^2,其中s为竖直方向上的位移,u为初速度,g为重力加速度,t为时间。
3. 飞行时间:在平抛运动中,物体的水平速度是恒定的,所以物体飞行的时间只与竖直方向上的运动有关。
根据竖直方向上的运动规律,我们可以得到物体飞行的时间为t = 2u/g。
其中u为初速度,g为重力加速度。
4. 飞行距离:由于物体的水平速度是恒定的,则物体的飞行距离与其水平速度和飞行时间有关。
物体的水平速度乘以飞行时间即为飞行距离。
四、实例分析假设一个物体以初速度 u 被抛出,求其飞行时间、飞行距离和最大高度。
解:根据平抛运动的运动规律,我们可以得到物体的飞行时间为 t = 2u/g,飞行距离为 d = ut,最大高度为 h = 1/2 u^2/g。
五、应用1. 运动装置设计:在工程领域中,平抛运动的知识被广泛应用于设计各种物体的投放装置,比如我们需要将物体投放到某一指定位置,就可以利用平抛运动的知识来设计相应的装置。
2. 运动轨迹研究:在科学研究中,平抛运动的知识可以帮助我们研究物体在空中的运动轨迹,从而帮助我们理解相关现象和定律。
物理必修二平抛知识点总结
物理必修二平抛知识点总结1. 平抛运动简介平抛运动是指物体在水平方向上做匀速直线运动的过程。
在平抛运动中,物体沿着水平方向运动,同时在竖直方向上受到重力的影响,导致物体做抛物线运动。
平抛运动是物理学中的一个基础课题,其运动规律和性质在现实生活和科学研究中有着广泛的应用。
2. 平抛运动的基本参数在进行平抛运动的分析时,需要了解以下几个基本参数:(1)初速度(vi):平抛运动开始时物体沿着水平方向的速度。
(2)水平速度(Vx):物体在整个平抛运动过程中,其水平方向上的速度保持不变。
(3)竖直速度(Vy):受重力的影响,物体在竖直方向上的速度会发生变化,最终竖直速度为零。
(4)加速度(a):由于受到重力的作用,物体在竖直方向上有一个恒定的加速度,即重力加速度 g。
(5)高度(h):物体在平抛运动过程中到达的最大高度。
(6)时间(t):物体从平抛运动开始到达最大高度所经历的时间。
(7)飞行时间(T):物体在平抛运动过程中在空中停留的总时间。
3. 平抛运动的基本公式(1)水平速度:物体在平抛运动中的水平速度始终保持不变。
Vx = vi(2)竖直速度:物体在平抛运动中的竖直速度随时间变化。
Vy = vi - gt当物体达到最高点时,竖直速度为零。
0 = vi - gt_max(3)高度:物体的最大高度取决于初速度和重力加速度。
h = (vi^2 * sin^2θ )/ (2g), h_max = (vi^2 * sin^^2θ)/(2g)(4)时间:物体达到最大高度所需的时间是竖直速度达到零时的时间。
t = (vi * sinθ)/g(5)飞行时间:物体从抛出到落地总共经历的时间。
飞行时间是竖直速度变为零的两倍。
T = (2vi * sinθ)/g4. 平抛运动与斜抛运动的区别平抛运动和斜抛运动都是抛体运动的特殊情况,它们有着一些共性,也有着明显的不同之处。
(1)共性:平抛运动和斜抛运动都是在水平方向上做匀速直线运动,在竖直方向上受到重力的作用从而做抛物线运动。
高中物理必修2第一章第三节《平抛运动》
高一物理必修2第一章第三节《平抛运动》一、相关知识点(一)平抛运动:1. 定义:水平抛出的物体只在 作用下的运动。
2. 运动性质:加速度为g 的匀变速曲线运动。
3. 处理方法:可分解为水平方向的 运动和竖直方向的 运动。
4. 平抛运动的规律设平抛运动的初速度为v 0,建立坐标系如图所示。
(1)速度:⎪⎩⎪⎨⎧==y x v v合速度大小v= 方向t v g tan 0==θ (2)位移:⎪⎩⎪⎨⎧==y x合位移大小s=方向tan θ= =t v 2g 0(3)时间:由2gt 21y =得t= (t 由下落高度y 决定)。
(4)水平射程:g y 2v x 0=,取决于竖直下落的高度和初速度。
(5)轨迹方程:202v 2gx y =(在未知时间情况下应用方便)。
由方程知平抛运动轨迹为抛物线。
(二)平抛运动的几个重要推论:推论1:从抛出点开始,任意时刻速度的反向延长线与对应时刻的水平位移的交点为此水平位移的中点。
推论2:从抛出点开始,任意时刻速度偏向角的正切值等于位移偏向正切值的两倍。
推论3:以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,落向斜面前的瞬时速度与斜面之间的夹角与初速度大小无关,是一个恒定的值。
二、练习题:1.下列关于平抛运动的说法正确的是( )A. 平抛运动是非匀变速运动B. 平抛运动是匀速运动C. 平抛运动是匀变速曲线运动D. 平抛运动的物体落地时的速度一定是竖直向下的2.物体在平抛运动过程中,在相等的时间内,下列哪个量是相等的( )A.位移B.加速度C.平均速度D.速度的增量3.对平抛运动的物体,若g 已知,下列条件中,可确定其初速度大小的有( )A .水平位移B .下落高度C .落地时速度大小和方向D .落地位移大小和方向4.将甲、乙、丙三个小球同时水平抛出后落在同一水平面上,已知甲和乙抛射点的高度相同,乙和丙抛射速度相同。
下列判断中正确的是( )A. 甲和乙一定同时落地B. 乙和丙一定同时落地C. 甲和乙水平射程一定相同D. 乙和丙水平射程一定相同 5.一个物体从某一高度以v0的初速度水平抛出,已知它落地时的速度为vt,那么它的运动时间是( )A .g v v t 0-B .g v v t 20-C .g v v t 2202-D .g v v t 202- 6. 把甲物体从2h 高处以速度V 水平抛出,落地点的水平距离为L,把乙物体从h 高处以速度2V 水平抛出,落地点的水平距离为S,比较L 与S,可知( ) A.L=S/2 ; B. L=2S; C.L S =12 ; D.L S =2 . 7.以速度v 0水平抛出一小球,如果从抛出到某时刻小球的竖直分位移与水平分位移大小相等,以下判断正确的是( )A .此时小球的竖直分速度大小等于水平分速度大小B .此时小球的速度大小为2 v 0C .小球运动的时间为2 v 0/gD .此时小球速度的方向与位移的方向相同8.如图所示,为物体做平抛运动的x-y图象.此曲线上任意一点P (x ,y )的 速度方向的反向延长线交于x 轴上的A 点,则A 点的横坐标为( )A.0.6xB.0.5xC.0.3xD.无法确定9.把物体以一定速度水平抛出。
(完整)必修2平抛运动知识点总结及经典练习题,推荐文档.docx
第二讲平抛运动一、基础知识及重难点【知识点 1】抛体运动1.定义:以一定的速度将物体抛出,如果物体的作用,这时的运动叫抛体运动。
2.平抛运动:初速度沿方向的抛体运动。
3.平抛运动的特点:( 1)初速度沿方向;( 2)只受作用【知识点 2】平抛运动的理解1.条件:①初速度v0②只受2.运动的性质:加速度为重力加速度g 的曲线运动,它的轨迹是一条.3.特点:①水平方向:不受力,→运动②竖直方向:只受重力,且v0 0 →运动4.研究方法:采用“化曲为直”方法——运动的分解v ≠ 0,水平方向0匀速直线运化曲为直不受力平抛运动是曲线运运动分解v0 =0,竖直方向自由落体运只受重力【知识点3】平抛运动的规律1、平抛运动的速度(1)水平方向: v x=(2)竖直方向: v y=大小:v( 3)合速度:v y方向: tan2、平抛运动的位移v x x x( 1)水平方向: x =( 2)竖直方向: y =y v大小: l ( 3)合位移:θy方向: tan v vxy ★ 注意:合位移方向与合速度方向不一致。
y消去 t轨迹方程y3、几个结论:(1)平抛物体任意时刻瞬时速度v 与平抛初速度 v0夹角θ的正切值为位移 s 与水平位移 x 夹角 a 的正切值的两倍,即 tan θ=2tan α(2)平抛物体任意时刻瞬时速度v 的反向延长线一定通过物体水平位移的中点。
( 3)运动时间:y 1 at2t 2 y(时间取决于下落高度y)2g2 y( 5)落地速度:v v02v y2v022gy (取决于初速度v0和下落高度y)【知点 4】平抛运的特点1、理想化特点 :物理上提出的平抛运是一种理想化模型,即把物体看出点,抛出后只考重力作用,忽略空气阻力。
2、匀速特点:平抛运的加速度恒定,始重力加速度 g 所以平抛运是一种运。
3、速度化特点:平抛运中,任意一段内速度的化量v=g t,方向恒直向下(与 g 同向),即任意两个相等的隔内速度的化相同,如右所示。
平抛运动总结
高一物理必修2《平抛运动》知识点总结平抛运动1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。
2、条件:a 、只受重力:b 、初速度与重力垂直.3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。
g a =4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.5、平抛运动的规律①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:22y x v v v +=物体的合速度v 与x 轴之间的夹角为:tan v gt v v xy ==α ②水平位移:t v x 0=,竖直位移221gt y =合位移(实际位移)的大小:22y x s +=物体的总位移s 与x 轴之间的夹角为:2tan v gt x y ==θ 可见,平抛运动的速度方向与位移方向不相同。
而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和221gt y =消去t 得到:222x v g y =。
可见平抛运动的轨迹为抛物线。
6、平抛运动的几个结论①落地时间由竖直方向分运动决定: 由221gt h =得:gh t 2=②水平飞行射程由高度和水平初速度共同决定:gh v t v x 200== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θ的正切值为位移s 与水平位移x 夹角θ正切值的两倍,即:xsv v x y2tan 2tan ===θθ。
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:221tan 20x s s gt v gt =⇒==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt ,方向恒为竖直向下(与g 同向)。
平抛运动知识点总结及解题方法归类总结
三、平抛运动及其推论一、 知识点巩固:1.定义:①物体以一定的初速度沿水平方向抛出,②物体仅在重力作用下、加速度为重力加速度g ,这样的运动叫做平抛运动。
2.特点:①受力特点:只受到重力作用。
②运动特点:初速度沿水平方向,加速度方向竖直向下,大小为g ,轨迹为抛物线。
③运动性质:是加速度为g 的匀变速曲线运动。
3.平抛运动的规律:①速度公式:0x v v = y v gt ="合速度:()22220t x y v v v v gt =+=+②位移公式:20,2gt x v t y ==合位移:222222012s x y v t gt ⎛⎫=+=+ ⎪⎝⎭、tan 2y gtx v α==③轨迹方程:2202gx y v =,顶点在原点(0、0),开口向下的抛物线方程。
注:(1)平抛运动是一个同时经历水平方向的匀速直线运动和竖直方向的自由落体运动的合运动。
(2)平抛运动的轨迹是一条抛物线,其一般表达式为。
*(3)平抛运动在竖直方向上是自由落体运动,加速度恒定,所以竖直方向上在相等的时间内相邻的位移的高度之比为… 竖直方向上在相等的时间内相邻的位移之差是一个恒量(T 表示相等的时间间隔)。
Vy x S O x x 2/V y V 0V x =V 0P ()x y ,θα0tan y xv gt v v θ==ɑ(4)在同一时刻,平抛运动的速度(与水平方向之间的夹角为ɑ)方向和位移方向(与水平方向之间的夹角是)是不相同的,其关系式(即任意一点的速度延长线必交于此时物体位移的水平分量的中点)。
!描绘平抛运动的物理量有、、、、、、、θ、,已知这八个物理量中的任意两个,可以求出其它六个。
运动分类加速度 速度 位移: 轨迹 分运动方向 0:直线 方向直线?合运动大小抛物线、与方向的夹角4.$①运行时间:2ht g=h,g 决定,与0v 无关。
②水平射程:2hx v g=h,g, 0v 共同决定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一物理必修2《平抛运动》知识点总结
平抛运动
1、定义:平抛运动是指物体只在重力作用下,从水平初速度开始的运动。
2、条件:
a 、只受重力;
b 、初速度与重力垂直.
3、运动性质:尽管其速度大小和方向时刻在改变,但其运动的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。
g a =
4、研究平抛运动的方法:通常,可以把平抛运动看作为两个分运动的合动动:一个是水平方向(垂直于恒力方向)的匀速直线运动,一个是竖直方向(沿着恒力方向)的匀加速直线运动。
水平方向和竖直方向的两个分运动既具有独立性,又具有等时性.
5、平抛运动的规律
①水平速度:v x =v 0,竖直速度:v y =gt 合速度(实际速度)的大小:2
2y x v v v +=
物体的合速度v 与x 轴之间的夹角为:
tan v gt
v v x
y =
=
α ②水平位移:t v x 0=,竖直位移22
1gt y = 合位移(实际位移)的大小:22y x s +=
物体的总位移s 与x 轴之间的夹角为:
2tan v gt x y ==
θ 可见,平抛运动的速度方向与位移方向不相同。
而且θαtan 2tan =而θα2≠ 轨迹方程:由t v x 0=和2
21gt y =
消去t 得到:22
2x v g y =。
可见平抛运动的轨迹为抛
物线。
6、平抛运动的几个结论
①落地时间由竖直方向分运动决定: 由221gt h =
得:g
h
t 2=
②水平飞行射程由高度和水平初速度共同决定:
g
h
v t v x 20
0== ③平抛物体任意时刻瞬时速度v 与平抛初速度v 0夹角θa 的正切值为位移s 与水平位移x 夹角θ正切值的两倍。
④平抛物体任意时刻瞬时速度方向的反向延长线与初速度延长线的交点到抛出点的距离都等于水平位移的一半。
证明:2
21tan 20x s s gt v gt =⇒==α ⑤平抛运动中,任意一段时间内速度的变化量Δv =gΔt ,方向恒为竖直向下(与g 同向)。
任意相同时间内的Δv 都相同(包括大小、方向),如右图。
V
V
V
⑥以不同的初速度,从倾角为θ的斜面上沿水平方向抛出的物体,再次落到斜面上时速度与斜面的夹角a 相同,与初速度无关。
(飞行的时间与速度有关,速度越大时间越长。
)
如右图:所以θtan 20g
v t =
)tan(v gt
v v a x
y =
=
+θ 所以θθtan 2)tan(=+a ,θ为定值故a 也是定值与速度无关。
⑦速度v 的方向始终与重力方向成一夹角,故其始终为曲线运动,随着时间的增加,θtan 变大,↑θ,速度v 与重力 的方向越来越靠近,但永远不能到达。
⑧从动力学的角度看:由于做平抛运动的物体只受到重力,因此物体在整个运动过程中
机械能守恒。
7、平抛运动的实验探究
①如图所示,用小锤打击弹性金属片,金属片把A球沿水平方向抛出,同时B球松开,自由下落,A、B两球同时开始运动。
观察到两球同时落地,多次改变小球距地面的高度和打击力度,重复实验,观察到两球落地,这说明了小球A在竖直方向上的运动为自由落体运动。
②如图,将两个质量相等的小钢球从斜面的同一高度处由静止同时释放,滑道2与光滑水平板吻接,则将观察到的现象是A、B两个小球在水平面上相遇,改变释放点的高度和上面滑道对地的高度,重复实验,A、B两球仍会在水平面上相遇,这说明平抛运动在水平方向上的分运动是匀速直线运动。
8、类平抛运动
(1)有时物体的运动与平抛运动很相似,也是在某方向物体做匀速直线运动,另一垂直方向做初速度为零的匀加速直线运动。
对这种运动,像平抛又不是平抛,通常称作类平抛运动。
2、类平抛运动的受力特点:
物体所受合力为恒力,且与初速度的方向垂直。
3、类平抛运动的处理方法:
在初速度
v方向做匀速直线运动,在合外力方向做初速度为零的匀加速直线运动,加速
度
F
a
m
合。
处理时和平抛运动类似,但要分析清楚其加速度的大小和方向如何,分别运用
两个分运动的直线规律来处理。