利用修正单纯形法解线性规划问题精
python修正的单纯形法
单纯形法(Simplex Algorithm)是一种用于求解线性规划问题的算法。
它适用于具有较多约束条件和变量的问题。
单纯形法通过迭代的方法逐步找到最优解。
在Python中实现修正的单纯形法需要遵循以下步骤:1. 导入所需的库2. 定义线性规划问题的参数(目标函数、约束条件、变量范围等)3. 初始化单纯形表4. 进行迭代计算,直到找到最优解或满足停止条件以下是一个简单的Python示例,实现了修正的单纯形法:```pythonimport numpy as npdef simplex(c, A, b, x0):num_vars = len(c)num_constraints = len(b)slack_vars = np.eye(num_constraints)tableau = np.hstack((A, slack_vars, b.reshape(-1,1)))c_with_slacks = np.hstack((c, np.zeros(num_constraints)))while True:pivot_col = np.argmax(np.abs(tableau[-1,:-1]))pivot_row = np.argmax(np.abs(tableau[:-1,pivot_col]))if np.abs(tableau[pivot_row, pivot_col]) < 1e-6:print("No solution or unbounded solution.")breakpivot_element = tableau[pivot_row, pivot_col]for i in range(num_constraints):if i == pivot_row:tableau[i,:] = tableau[i,:] / pivot_elementelse:tableau[i, :] = tableau[i, :] - (tableau[i, pivot_col] * tableau[pivot_row, :]) / pivot_elementfor i in range(num_vars + 1):if i == pivot_col:c_with_slacks[i] = c_with_slacks[i] / pivot_elementelse:c_with_slacks[i] = c_with_slacks[i] - (c_with_slacks[pivot_col] * tableau[i, :]) / pivot_elementx = np.hstack((x0, tableau[:-1,-1]))print("Iteration:", np.linalg.norm(c_with_slacks[:-1]) / np.linalg.norm(c))if np.linalg.norm(c_with_slacks[:-1]) < 1e-6:print("Optimal solution found.")breakreturn xc = np.array([5, 4, 3])A = np.array([[6, 4, 2], [1, 2, 1]])b = np.array([24, 6])x0 = np.zeros(len(c))x = simplex(c, A, b, x0)print("Optimal solution:", x)```注意:这个示例是一个简化版本,没有考虑所有可能的特殊情况。
单纯形法与线性规划问题
单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。
这种问题在工业、商业、农业和社会等领域有着广泛的应用。
在解决线性规划问题时,单纯形法是一种经典和常用的算法。
本文将介绍单纯形法和其在线性规划问题中的应用。
一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。
单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。
单纯形法的步骤如下:1. 构造首行,确定初始基向量。
2. 选择离目标函数最远并且为正的变量,称为入基变量。
3. 选择离约束最近的基变量,称为出基变量。
4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。
5. 重复步骤 2-4 直至无法选择入基变量为止。
6. 找到目标函数的最优解。
二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。
三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。
标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。
使用单纯形法解线性规划问题(参考模板)
1 / 2使用单纯形法解线性规划问题要求:目标函数为:123min 3z x x x =--约束条件为:1231231312321142321,,0x x x x x x x x x x x -+≤⎧⎪-++≥⎪⎨-+=⎪⎪≥⎩ 用单纯形法列表求解,写出计算过程。
解:1) 将线性规划问题标准化如下:目标函数为:123max max()3f z x x x =-=-++s.t.: 123412356137123456721142321,,,,,,0x x x x x x x x x x x x x x x x x x x -++=⎧⎪-++-+=⎪⎨-++=⎪⎪≥⎩2) 找出初始基变量,为x 4、x 6、x 7,做出单纯形表如下:表一:最初的单纯形表3) 换入变量有两种取法,第一种取为x 2,相应的换出变量为x 6,进行第一次迭代。
迭代后新的单纯形表为:表二:第一种换入换出变量取法迭代后的单纯形表由于x1和x5对应的系数不是0就是负数,所以此时用单纯形法得不到最优解。
表一中也可以把换入变量取为x3,相应的换出变量为x7,进行一次迭代后的单纯形表为:表三:第二种换入换出变量取法迭代后的单纯形表4)表三中,取换入变量为x2,换出变量为x6,进行第二次迭代。
之后的单纯形表为:表四:第二次迭代后的单纯形表5)表四中,取换入变量为x7,换出变量为x3,进行第三次迭代。
之后的单纯形表为:表五:第三次迭代后的单纯形表可以看出,此时x1,x5对应的系数全部非零即负,故迭代结束,没有最优解。
结论:综上所述,本线性规划问题,使用单纯形法得不到最优解。
(注:文档可能无法思考全面,请浏览后下载,供参考。
可复制、编制,期待你的好评与关注)。
单纯形法解线性规划问题
一、用单纯形第Ⅰ阶段和第Ⅱ阶段解下列问题s.t.解:1)、将该线性问题转为标准线性问题一、第一阶段求解初始可行点2)、引入人工变量修改约束集合取人工变量为状态变量,问题变量和松弛变量为决策变量,得到如下单纯形表,并是所有决策变量的值为零,得到人工变量的非负值。
2 -2 -1 1 21 1 -1 -1 12 -1 -2 1 25 -2 -4 1 -1 1 50 0 0 0 03)、对上述单纯形表进行计算,是目标函数进一步减小,选为要改变的决策变量,计算改变的限值。
2 -2 -1 1 2 11 1 -1 -1 1 02 -1 -2 1 2 05 -2 -4 1 -1 1 5 10 0 0 0 00 1 0 0 04)、由于,为人工变量,当其到达零值时,将其从问题中拿掉保证其值不会再变。
同时将以改变的决策变量转换为状态变量。
增加的值使目标函数值更小。
1 -3 1 1 1 01 1 -1 11 -3 1 1 1 00 0 0 00 0 05)使所有人工变量为零的问题变量的值记为所求目标函数的初始可行点,本例为,二、第二阶段用单纯形法求解最优解-2 2 1 01 1 -1 0-2 1 2 15 1 3要使目标函数继续减小,需要减小或的值,由以上计算,已经有两个松弛变量为零,因此或不能再减小了,故该初始可行点即为最优解。
2、求解问题s.t.如果目标函数变成,确定使原解仍保持最优的c值范围,并把目标函数最大值变达成c的函数。
解:先采用单纯形法求解最优解,再对保持最优解时C值的范围进行讨论。
1)将问题华为标准线性问题s.t.2)用单纯形表表示约束条件,同时在不引入人工变量的前提下,取松弛变量得初始值为零值,求解初始解和最优解10 -1 -1 -1 10-20 1 5 1 -20-2 -1 -1 00 0 0要使目标函数继续减小,可以增大,增大的限值是10。
10 -1 -1 -1 10 0-20 1 5 1 -20 -10-2 -1 -1 0 -200 0 010 0 03)转轴。
用单纯形法求解目标规划
P3 -56 -8 -10 0 0 0 0 0 1 0
Cj
0
0
0 P1 P2 P2 P3 0 0
CB XB b x1
x2
d
1
d
1
d
2
d
2
d
3
d
3
x3
0
d
1
5 3/2 0
1 -1 1/2 -1/2 0
0 0 0 -2/5 2/5 1
0 1 0 -3/10 3/10 0
00 01 0 0
00 00 0 0
00 00 0 0
P2 P3 0
d
2
d
3
d
3
000
000
-1 0 0
0 1 -1
0 0 0单
1 0 0纯 0 0 1形 0 -1 1 表 0 1/10 -1/101
-1 -3/5 3/5
0 1/20 -1/20
cj
CB XB b
0 x3 60
0 x1 0
0
d
2
36
P3
d
3
48
P1 j c j z j P2
P3
0 x3 12
0 x1 24/5
0
d
2
36/5
0 x2
j cj zj
12/5
P1 P2 P
单纯形表1
00 x1 x2
0 P1 x3 d1
00
d1
d
2Байду номын сангаас
0 20 1 -5 5 0
1 -2 0 1 -1 0
线性规划与单纯形法
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
单纯形法解线性规划问题——提高棒材利用率的最佳途径
+ M ( 1 0 0 一 X l 一 3 x 3 — 2 x 4 )= 3 O 0 M+ ( 1 — 3 M x l +( 】 一 3 M) x 2 +
单纯 形法解 线性规 划 问题—— 提 高棒材 利用率 的最佳 途径
李 永平 王 新征 马 春雷 河北 中农博远农业装备有限公司 0 5 2 1 6 0
摘 要: 长期 以来, 各企业一直都在设法改善传统下料作 业 中自然切割 方法利 用率低的 问题 , 以达到合理 利用材料 ( 即套裁 ) 、 提 高 材料利用率 、 增加企 业经济效益 的 目的。 本文探讨 了实际生产 中下料的优化 问题 , 建立 了线性整数规划的数 学模 型 , 获得 了优化模 型的 解。本方法适用于大批量型材、 棒材 的下料 问题 , 可以提 高材 料的利用率。 关键词 : 下料 问题 ; 优化 ; 经济效益 ; 利用率
( 1 —8 ) ; ( 1 — ) 。
2 1 0 0 m m、 1 5 0 0 m m的传动轴各 1 根, 且材质 、 规格相 同, 而当时能够满足这样长度要求 的圆钢只有 7 4 0 0 m m一 种, 问生 产 1 0 0辆 战 车至少 需要 多少 根 7 4 0 0 mm长 的 圆
例: 二战期间 , 盟军司令部下达命令 , 让某军工厂生
产 1 0 0辆 战 车 。 此 种 战 车 每 辆 需 要 长 度 近 2 9 0 0 a r m、
2 x 2 + 2 x 4 + x 6 = 1 o 0
( 1 —_ 7 ) ;
X l + 3 X 3 + 2 ) 【 4 + x 7 = 1 0 0 x j >O (  ̄ j = l , 2 , …, 7 )
单纯形法求解线性规划问题例题
单纯形法求解线性规划问题例题线性规划问题(LinearProgrammingProblem,LPP)是指由一系列约束条件和优化目标函数组成的数学最优化模型,它可以用于解决各种单位时间内最高效率的分配问题。
在求解LPP的过程中,单纯形法(Simplex Method)是最主要的优化算法之一。
单纯形法的原理是采用一组基本变量的拿破仑表示法,一步步构造出线性规划问题的最优解。
下面我们来看一个例子:有公司向农户出售两种农药,甲和乙,每瓶甲农药售价3元,每瓶乙农药售价2元,公司每天有200瓶甲农药和150瓶乙农药,问该公司售出多少瓶甲农药和乙农药,能每天获得最大收益?该问题可表示为下述线性规划模型:最大化 $3x_1+2x_2$约束条件:$x_1+x_2le 200$$2x_1+x_2le 150$$x_1,x_2ge 0$由上述模型可知,有两个未知量$x_1$和$x_2$,它们分别代表出售的甲农药和乙农药的瓶数。
单纯形法的基本思想是采用一组基本变量表示未知量,将未知量$x_1$和$x_2$表示为由两个基本变量$y_1$和$y_2$组成的拉格朗日变换系数矩阵形式,即:$x_1+x_2=y_1+y_2$$2x_1+x_2=m(y_1+y_2)$其中,m是一个系数,根据上面的约束条件,m取200/150=4/3,则:$x_1=y_1+frac{1}{3}y_2$$x_2=y_2-frac{1}{3}y_2$由此可以得到该问题的新的线性规划模型:最大化 $3y_1+2(frac{4}{3})y_2$约束条件:$y_1+y_2le 200$$y_2le 150$$y_1,y_2ge 0$可以看出,该问题所构建出来的新的线性规划模型比原来的模型更加容易求解。
我们将建立单纯形表,以便求出最优解。
首先列出单纯形表:$begin{array}{|c|c|c|c|c|c|c|}hline& y_1 & y_2 & S_1 & S_2 & f & b hline1 & 1 & 1 & 1 & 0 & 3 & 200 hline2 & 0 & 1 & 0 & 1 & 4/3 & 150 hlineend{array}$其中,$y_1$和$y_2$是基本变量,$S_1$和$S_2$是可行解系数,$f$是目标函数系数,$b$是右端项。
线性规划中的单纯形法分析
线性规划中的单纯形法分析在数学和运筹学领域中,线性规划是一种优化问题的数学建模方法,通过最小化或最大化线性目标函数,同时满足一系列线性等式和不等式约束条件。
而单纯形法则是一种广泛应用于线性规划问题求解的算法,它通过迭代计算来找到最优解。
本文将对线性规划中的单纯形法进行详细分析。
一、线性规划基本概念在介绍单纯形法之前,我们需要先了解线性规划的基本概念。
线性规划包括目标函数、决策变量和约束条件三个主要部分。
目标函数是线性规划问题中待优化的目标,可以是最大化或最小化某个线性表达式。
决策变量是这个问题中需要确定的变量,它们的取值将影响到目标函数的结果。
约束条件则是对决策变量的限制条件,可以是等式或不等式。
二、单纯形法的基本原理单纯形法是由美国数学家Dantzig于1947年提出的一种求解线性规划问题的有效算法。
该算法基于以下基本原理:在每一次迭代中,通过选择合适的决策变量进行优化,使目标函数的值不断逼近最优解。
具体而言,单纯形法通过构造一个初始可行解,然后通过迭代计算找到一个更优的解。
三、单纯形法的步骤1. 构造初始可行解:根据约束条件,求解一组可行解,并将其用于下一步的迭代计算。
2. 检验最优性:计算当前解的目标函数值,判断是否满足最优性要求。
3. 选择进入变量:根据规则选择一个进入变量,即使得目标函数值增加最大的变量。
4. 选择离开变量:根据规则选择一个离开变量,即使目标函数值达到最大的变量离开。
5. 更新解的值:根据进入变量和离开变量,更新当前解的值。
6. 返回步骤2,直至达到最优解或无界。
四、单纯形法的优缺点1. 优点:a) 单纯形法适用于大多数线性规划问题,并且可以找到全局最优解。
b) 算法相对简单直观,易于理解和实现。
c) 在实践中,单纯形法已被证明是一种高效的求解方法。
2. 缺点:a) 即使是对于中等规模的问题,单纯形法的计算复杂度也很高,需要大量的迭代计算。
b) 在某些特殊情况下,单纯形法可能会陷入循环,并无法找到最优解。
管理运筹学,用单纯形法求解以下线性规划问题
管理运筹学,用单纯形法求解以下线性规划问题管理运筹学是处理决策问题的重要科学,不仅根据不同目标和条件制定策略,而且可以更有效地识别和解决问题。
有些决策问题往往是非线性复杂性,涉及多个因素和变量之间的复杂关系,因此,以线性规划模型的形式来处理这些问题被认为是最有效的方法之一。
但是,线性规划模型的求解可能会非常困难,尤其是规模较大的问题。
而单纯形法作为其中一种有效的求解方法,其有效性和灵活性,使其在管理运筹学的研究中具有重要的意义。
单纯形法是指将原始线性规划问题转换为单纯形问题,然后利用相应的单纯形算法求解该问题,以求解线性规划问题。
单纯形法最早由威廉伯恩斯特(William B.Von Neumann)提出,它是利用单纯形理论把原始线性规划问题转化为单纯形问题,然后求解单纯形问题,得到原始线性规划问题的最优解。
单纯形算法的基本步骤包括:首先,根据原始线性规划问题的约束条件,构造单纯形方程组;其次,可以以此单纯形方程组为基础,进行单纯形法的迭代;最后,根据迭代的结果来求解原始的线性规划问题。
单纯形法在管理运筹学中的应用非常广泛,它不仅可以用来求解比较复杂的线性规划问题,而且可以用来解决某些约束条件下的非线性规划问题,从而解决管理运筹学中的相关问题。
另外,单纯形法还可以在企业资源规划(ERP)等管理运筹学领域的应用中发挥重要作用。
在实际应用中,单纯形法有其优缺点。
优点主要有以下几点:首先,它是一种有效的求解线性规划问题的方法,可以用来解决比较复杂的问题;其次,求解步骤简单,可以在较短的时间里求得最优解;最后,它适用性强,也可以用来解决某些约束条件下的非线性规划问题。
然而,单纯形法也有一些缺点,比如具有结构性特征,可能不能求解一些复杂的问题;另外,在求解比较大的问题时,运算负荷较大,效率较低。
总之,单纯形法是一种求解线性规划问题的有效方法,在管理运筹学中,它具有重要的意义和应用价值,它可以有效地解决复杂的线性规划问题,也能够解决某些特定条件下的非线性规划问题。
求解线性规划的单纯形法(1)
◦ 确定移动的方向 ◦ 确定在何处停下 ◦ 确定新的基本可行解
求解线性规划的单纯形法
例:用单纯形法求解以下线性规划问题
求解线性规划的单纯形法 首先将模型转化成标准形式
求解线性规划的单纯形法
Q1:确定初始的基本可行解
• 选择原点:
– 令决策变量 x1= x2 = 0得:X0 = ( 0,0,3,4)T
xx33 = 1 -x2 ≥=0 → x2 ≤ 1/1
x4 = 2 -x2 ≥ 0 → x2 ≤ 2/1
离基(最小比值规则) :
x2 ≤ min {1/1,2/1 } = 1 x2 = min {1/1,2/1 } = 1
x3为离基变量
X1 = ( 0, 1, 0, 1)T
求解线性规划的单纯形法
3
x1 + 2x2
+ x4 =4
初等数学 变换
新的BF解 x1 =0,x4 =0 x3 =?1 ,x2 =2
新方程
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
x1/2 + 2x2 + x4 /2 =2
非最优解!
• 寻找新的基本可行解:
– 初等数学变换
非基变量 x1的系数 X*=(0, 2, 1, 0) 是正数!
x1 2
x1 2
-
x1 4
初等行变换
x3
0
确定x3为离基变量
Z*=7,X*=(2,1,0,0)
非基变量系 数>0,最优!
Z x1/2
+ 3x4 /2 =6
x1/2 + x3 - x4 / 2 1
单纯形法求解线性规划的步骤
单纯形法求解线性规划的步骤1>初始化将给定的线性规划问题化成标准形式,并建立一个初始表格,它最右边的单元格都是非负的(否则无解),接下来的m列组成一个m*m的单元矩阵(目标行的单元格则不必满足这一条件),这m列确定了初始的基本可行解的基本变量,而表格中行用基本变量来表示2>最优化测试如果目标行的所有单元格都是非负的(除了最右列中代表目标函数值的那个单元格),就可以停止了,该表格代表了一个最优解,它的基本变量的值在最右列中,而剩下的非基本变量都为03>确定输入变量从目标行的前n个单元格中选择一个负的单元格(选择绝对值最大的那个)该单元格所在的列确定的输入变量及主元列4>确定分离变量对于主元列的每个正单元格,求出θ比率(如果主元格的单元格为负或为0,说明该问题是无解的,算法终止),找出θ比率最小的列,改行确定了分离变量和主元行5>建立下一张表格将主元行的所有单元格除以主元得到新的主元行,包括主元行在内的每一行,要减去改行主元列单元格和新主元行的成绩(除主元行为1外,这一步将主元列的所有单元格变成0).把主元列的变量名进行代换,得到新的单纯形表,返回第一步为求简单在本程序中,需要自己建立标准矩阵(比如加入松弛变量等工作需要用户自己完成),程序的输入有两种方式:1:指定行和列,由用户自行输入每一个元素SimpleMatrix(introw=0,int col=0);2:直接在主程序中初始化一个二维数组,然后利用构造函数SimpleMatrix(introw,int col,double **M) 来初始化和处理(本程序所用的实例用的是这种方法)程序中主要的函数以及说明~SimpleMatrix();销毁动态分配的数组.用于很难预先估计矩阵的行和列,所以在程序中才了动态的内存分配.需要重载析构函数bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑这个函数用来判断是否已经存在最优解bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零这个函数用来判断线性规划是否是无解的bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)用来判断线性规划是否存在最优解,因为如果最后一列如果有负数的化,就无解了,算法终止int InColumn(); //确定输入变量用来判断主元所在的列int DepartRow(int col); //确定分离变量(寻找主元)用来确定主元所在的行void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,intcol);//将矩阵的其他行做处理,矩阵的两行相减这个函数是在主元行已经做处理以后调用,目的是是矩阵的其他行主元列的元素变成0.其中row2为主元所在的行,col为主元所在的列,row1为要处理的行void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素源代码//SimpleMatrix.h#ifndef SIMPLEMATRIX_H_#define SIMPLEMATRIX_H_class SimpleMatrix{public:SimpleMatrix(int row=0,int col=0);SimpleMatrix(int row,int col,double **M);~SimpleMatrix();bool Is_objectLine_All_Positive(); //判断目标行是否全部为非负数,最后一列不作考虑 bool Is_MainCol_All_Negative(int col);//判断主元列是否全部为负数或零bool Is_column_all_Positive(int col); //判断col列中是否全部为正(不包括目标行)int InColumn(); //确定输入变量int DepartRow(int col); //确定分离变量(寻找主元)void MainItem_To_1(int row,int col); //将主元所在的行做处理,使主元变为1void SubMatrixLine(int row1,int row2,int col);//将矩阵的其他行做处理,矩阵的两行相减 void PrintAnswer(); //输出矩阵的最优解int GetRows(); //返回矩阵的行数int GetCols(); //返回矩阵的列数double GetItem(int row,int col); //返回矩阵第row行,第col列的元素private:int rowLen; //标准矩阵的行数int colLen; //标准矩阵的列数double **data; //一个二维数组,指向标准矩阵的数据成员void init(int rows,int cols); //动态分配一个rows行,cols列的二维数组};#end if//SimpleMatrix.cpp#include <iostream>#include <cmath>#include "SimpleMatrix.h"using namespace std;void SimpleMatrix::init(int rows,int cols){if(rows>0&&cols>0){rowLen=rows;colLen=cols;data = new double *[rows];for (int i=0;i<rows;i++){data[i]=new double[cols];}}elsecout<<"矩阵的行.列数不合法"<<endl;}SimpleMatrix::SimpleMatrix(int row,int col){init(row,col);for(int i=0;i<rowLen;i++){cout<<"请输入矩阵中第"<<i+1<<"行的系数"<<endl;for(int j=0;j<colLen;j++)cin>>data[i][j];}}SimpleMatrix::SimpleMatrix(int row,int col,double **M) {rowLen=row;colLen=col;init(row,col);for (int i=0;i<row;i++)for(int j=0;j<col;j++){data[i][j]=*((double*)M+col*i+j); ;}}SimpleMatrix::~SimpleMatrix(){if(colLen*rowLen != 0 ){for(int i=rowLen-1;i>=0;i--){if (data[i]!=NULL)delete[] data[i];}if (data!=NULL)delete[] data;}}bool SimpleMatrix::Is_objectLine_All_Positive() {for(int i=0;i<colLen-1;i++)if(data[rowLen-1][i]<0)return false;return true;}bool SimpleMatrix::Is_MainCol_All_Negative(int col) {for(int i=0;i<rowLen;i++)if(data[i][col]>0)return false;return true;}bool SimpleMatrix::Is_column_all_Positive(int col) {for(int i=0;i<rowLen-1;i++){if(data[i][col-1]<0)return false;}return true;}int SimpleMatrix::InColumn(){int count=0;for(int i=0;i<colLen-1;i++){int temp=GetItem(rowLen-1,i);if(temp>=0){count++;}elsebreak;}double maxItem=fabs(GetItem(rowLen-1,count));int index_col;for(i=0;i<colLen-1;i++){double temp=GetItem(rowLen-1,i);if(temp<0){if(maxItem<=fabs(temp)){maxItem=fabs(temp);index_col=i;}}}return index_col;}int SimpleMatrix::DepartRow(int col){int index_row;int count=0;for(int i=0;i<rowLen;i++){if(data[i][col]<0)count++;elsebreak;}double minItem=data[count][colLen-1]/data[count][col]; index_row=count;double temp;for(i=0;i<rowLen-1;i++){temp=data[i][col];if(temp>0){temp=data[i][colLen-1]/temp;if(temp<minItem){minItem=temp;index_row=i;}}}return index_row;}void SimpleMatrix::MainItem_To_1(int row,int col){double temp=GetItem(row,col);//double temp=data[row-1][col-1];for (int i=0;i<colLen;i++){data[row][i]/=temp;}}void SimpleMatrix::SubMatrixLine(int row1,int row2,int col) {double temp=GetItem(row1,col);//double temp=data[row1-1][col-1];double*tempLine=new double[colLen];for(int i=0;i<colLen;i++){tempLine[i]=data[row2][i];}for(i=0;i<colLen;i++){data[row1][i]=data[row1][i]-temp*tempLine[i];}delete[]tempLine;}int SimpleMatrix::GetRows(){return rowLen;}int SimpleMatrix::GetCols(){return colLen;}double SimpleMatrix::GetItem(int row,int col){return data[row][col];}void SimpleMatrix::PrintAnswer(){//先确定单位矩阵中1的位置for (int i=0;i<GetRows();i++)for (int j=0;j<GetRows();j++){if(1==data[i][j]){int index_col=j;cout<<"x"<<index_col+1<<"="<<data[i][colLen-1]<<" ";}}cout<<endl;cout<<"取得最优解,并且最优值为"<<data[rowLen-1][colLen-1];}//单纯形法.cpp#include <iostream>#include "SimpleMatrix.h"using namespace std;int main(){double M[4][7]={{5,3,1,1,0,0,9},{-5,6,15,0,1,0,15},{2,-1,1,0,0,-1,5},{-10,-15,-12,0,0,0,}};SimpleMatrix Matrix(4,7,(double **)M);if(Matrix.Is_column_all_Positive(5)) //判断是否存在最优解{bool p=Matrix.Is_objectLine_All_Positive(); //判断主元列是否全部为正,确定是否已经取得最优解while(!p){int col=Matrix.InColumn(); //确定主元所在的行if(Matrix.Is_MainCol_All_Negative(col)) //确定线性规划的解是否为无解的{cout<<"线性规划问题是无界的,没有最优解"<<endl;exit(EXIT_FAILURE);}else{int mainRow=Matrix.DepartRow(col); //确定主元所在的行Matrix.MainItem_To_1(mainRow,col); //将主元所在的行做变换,使主元变成1 int i=0;while(i<Matrix.GetRows()){if(i!=mainRow){Matrix.SubMatrixLine(i,mainRow,col); //处理矩阵中其他的行,使主元列的元素为0 i++;}else{i++;}}}for(int i=0;i<Matrix.GetRows();i++) //输出变换以后的矩阵,判断是否正确处理{for (int j=0;j<Matrix.GetCols();j++){cout<<Matrix.GetItem(i,j)<<" ";}cout<<endl;}p=Matrix.Is_objectLine_All_Positive();}Matrix.PrintAnswer();}elsecout<<"线性规划无解"<<endl;return0;}。
单纯形法大M法求解线性规划问题
两阶段法
两阶段法引入人工变量的目的和原则与大M法相同,所不同的是
处理人工变量的方法。 两阶段法的步骤: 求解一个辅助线性规划。目标函数取所有人工变量之和,并取极小 化;约束条件为原问题中引入人工变量后包含一个单位矩阵的标准型 的约束条件。 如果辅助线性规划存在一个基本可行解,使目标函数的最小值等于 零,则所有人工变量都已经“离基”。表明原问题已经得了一个初始 的基本可行解,可转入第二阶段继续计算;否则说明原问题没有可行 解,可停止计算。 求原问题的最优解。在第一阶段已求得原问题的一个初始基本可行 解的基础上,继续用单纯形法求原问题的最优解
大M法首先将线性规划问题化为标准型。如果约束方程组中包含 有一个单位矩阵 I ,那么已经得到了一个初始可行基。否则在约束方 程组的左边加上若干个非负的人工变量,使人工变量对应的系数列向 量与其它变量的系数列向量共同构成一个单位矩阵。以单位矩阵为初 始基,即可求得一个初始的基本可行解。 为了求得原问题的初始基本可行解,必须尽快通过迭代过程把人 工变量从基变量中替换出来成为非基变量。为此可以在目标函数中赋 予人工变量一个绝对值很大的负系数-M。这样只要基变量中还存在 人工变量,目标函数就不可能实现极大化。 以后的计算与单纯形表解法相同,M只需认定是一个很大的正数即 可。假如在单纯形最优表的基变量中还包含人工变量,则说明原问题 无可行解。否则最优解中剔除人工变量的剩余部分即为原问题的初始 基本可行解。
12
13
9
例3、求解下述线性规划问题:
m a x Z = 3 x 1 -8 0 x 2 + 2 x 3 -2 4 x 4 x 1 -3 2 x 2 -4 x 3 3 6 x 4 0 x -2 4 x - x 6 x 0 1 2 3 4 x3 1 x j 0 ,j 1 ,2 ,3 ,4
修正单纯形法例题详解
修正单纯形法例题详解今天咱们聊聊修正单纯形法,这个听起来有点高大上的东西,其实没那么复杂,咱们可以把它想象成一道数学小菜。
你要知道,数学就像做饭,有时候得加点调料,才能让菜更好吃。
单纯形法就是这样的一道大菜,而修正单纯形法则是它的调味剂。
让我们慢慢捋一捋,看看这个数学的“厨艺”到底是怎么一回事。
单纯形法的基本理念就是通过逐步改进,找到最优解。
想象一下你在超市买东西,目标是花最少的钱买到最多的商品。
这时候你可能会拿个购物清单,逐一检查,逐步调整,直到找到最合适的组合。
修正单纯形法正是这种逐步改进的过程,不过它在做这些事的时候,用的是数学的方式。
这种方法特别适合解决线性规划问题,哎,别被这名字吓到,实际上就是帮助我们在一定条件下优化资源的分配。
假设你是一位小老板,想要最大化你的利润。
你手里有一堆原材料,能做出不同的产品,顾客也特别挑剔。
这个时候你就得用修正单纯形法来帮你,设定目标函数,限制条件,一个个地捋清楚,然后一步步调整,直到找到最完美的方案。
就像你在市场上挑水果,想要挑到最甜的那个,得一个个尝,才知道哪个更好。
再说到修正这个词,它的意思是调整,优化。
生活中,我们都需要修正,比如你开车的时候发现偏离了方向,得及时调整过来。
修正单纯形法就像是给你指路的导航,告诉你该往哪个方向走,才能顺利到达目的地。
在这条修正的路上,我们要不断地评估现有的方案,看看是不是有更好的选择。
这个过程就像给你的决策加了个放大镜,仔细审视每一个可能性。
说到这里,咱们得用个例子来说明。
假设你要生产两种产品,A和B。
每种产品的利润不同,A的利润高,B的利润低。
你得考虑原材料、工时、市场需求等等因素。
通过修正单纯形法,你能计算出在这些条件下,生产多少A和B才能使总利润最大化。
这个时候,你就能把每个因素考虑进去,像个精打细算的家庭主妇,绝不能浪费每一分钱。
这个方法的好处在于它的灵活性。
我们可以根据实际情况,随时调整我们的方案。
就像你出门时,如果发现天气变了,突然下雨了,你肯定得赶紧找个地方躲躲,或者换条路走。
用单纯形法解决线性规划问题
盐城师范学院运筹学期末论文题目: 用单纯形法解决线性规划问题**: **二级学院: 数学科学学院专业: 数学与应用数学班级: 111 班学号: ********成绩评定:前言线性规划问题是数学以及日常生活中最基本的问题之一,如何快速有效的解决线性规划问题是数学家也在努力研究的科目之一。
以前中学时我们解决线性规划问题一般采用的是图解法,即画出所给条件的可行域,找出目标函数的最优解。
这种方法的优点是直观性强,计算方便,但缺点是只适用于问题中有两个变量的情况。
下面我们介绍另外一种方法—单纯形法,来解决图解法不能解决的问题。
1 单纯形法1.1 单纯形法的基本思路利用求线性规划问题基本可行解的方法求解较大规模的问题是不可行的。
有选择地取基本可行解,即从可行域的一个极点出发,沿着可行域的边界移动到另一个相邻的极点,要求新极点的目标函数值不比原目标函数值差。
在线性规划的可行域中先找出一个可行解,检验它是否为最优解,如果是最优解,计算停止;如果不是最优解,那么可以判断线性规划无有限最优解,或者根据一定步骤得出使目标函数值接近最优值的另一个基本可行解。
由于基本可行解的个数有限,所以总可以通过有限次迭代,得到线性规划的最优基本可行解或判定线性规划无有限最优解。
1.2 单纯形法的基本步骤第1步求初始基可行解,列出初始单纯形表。
对非标准型的线性规划问题首先要化成标准形式。
由于总可以设法使约束方程的系数矩阵中包含一个单位矩阵(P1,P2,…,Pm),以此作为基求出问题的一个初始基可行解。
为检验一个基可行解是否最优,需要将其目标函数值与相邻基可行解的目标函数值进行比较。
为了书写规范和便于计算,对单纯形法的计算设计了一种专门表格,称为单纯形表(见表1—1)。
迭代计算中每找出一个新的基可行解时,就重画一张单纯形表。
含初始基可行解的单纯形表称初始单纯形表,含最优解的单纯形表称最终单纯形表。
第2步:最优性检验如表中所有检验数c j−z j≤0,且基变量中不含有人工变量时,表中的基可行解即为最优解,计算结束。
实验2 单纯形法求解线性规划
实验2 单纯形法求解线性规划一、实验目的1. 理解线性规划的概念和基本形式。
2. 熟悉单纯形法的步骤和实现过程。
3. 学会使用Matlab编程求解线性规划问题。
二、实验原理线性规划是一种优化问题,其目标是在一组约束条件下,使目标函数(通常是一个线性函数)最大或最小化。
线性规划具有以下一般形式:$$\begin{aligned}&\underset{x_{1},x_{2},\cdots,x_{n}}{\max }\quadc_{1}x_{1}+c_{2}x_{2}+\cdots+c_{n}x_{n}\\&\text{s.t.}\quad a_{11}x_{1}+a_{12}x_{2}+\cdots+a_{1n}x_{n}\leq b_{1}\\&\quad \quad \quad \,\,\,\quada_{21}x_{1}+a_{22}x_{2}+\cdots+a_{2n}x_{n}\leq b_{2}\\&\quad \quad \quad\quad \quad \quad \vdots \\&\quad \quad \quad \,\,\,\quada_{m1}x_{1}+a_{m2}x_{2}+\cdots+a_{mn}x_{n}\leq b_{m}\\&\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad x_{1},x_{2},\cdots,x_{n}\geq 0\end{aligned}$$其中,$x_{1},x_{2},\cdots,x_{n}$表示决策变量;$c_{1},c_{2},\cdots,c_{n}$是目标函数的系数;$a_{i1},a_{i2},\cdots,a_{in}$($i$=1,2,...,m)是限制条件的系数,$b_{1},b_{2},\cdots,b_{m}$是限制条件右侧的常数。
线性规划中的单纯形法求解问题
线性规划中的单纯形法求解问题线性规划是运筹学中的一个重要分支,它的应用范围非常广泛,包括经济、工程、网络、交通等领域。
在实际问题中,我们通常会需要求解一个线性规划问题,而单纯形法是解决线性规划问题的一种常用方法。
1. 线性规划线性规划是一类优化问题,通常在最小化或最大化某个线性函数的同时,满足一组线性约束条件。
一个线性规划问题可以表示为:$$\begin{array}{lll}\textrm{min/max} & c^Tx & \\ \textrm{s.t.} & Ax &\leq b \\ & x &\geq 0\end{array}$$其中,$c$ 是一个 $n$ 维列向量,$A$ 是一个 $m\times n$ 的矩阵,$b$ 是一个 $m$ 维列向量,$x$ 是一个 $n$ 维列向量,代表问题的决策变量。
我们称 $Ax\leq b$ 是问题的约束条件,称 $x\geq0$ 是问题的非负性条件。
线性规划问题的求解可以分为两种基本方法,分别为单纯形法和内点法。
其中,单纯形法是一种经典的方法,应用广泛,是大多数线性规划软件的基础算法之一。
2. 单纯形法基本思想单纯形法的基本思想是通过对问题中的决策变量进行调整,使得目标函数值不断减小(最小化问题)或增大(最大化问题),并且在满足约束条件的前提下,最终找到最优解。
单纯形法的具体步骤如下:步骤1:初始化。
我们从一组基本解开始,即 $m$ 个基本变量和 $n-m$ 个非基本变量构成的向量 $x$。
在最初的阶段,我们需要选择一组基变量,并计算出它们的取值。
这个基变量集合构成了问题的起始基。
步骤2:检查最优性。
首先,我们需要对当前解进行检验,判断它是否为最优解。
如果是最优解,则停止算法;否则,进行下一步。
步骤3:选择进入变量。
我们需要选择一个非基变量,使得将它加入到基变量集合后,目标函数值有最大的增长量。
如果这个增长量为负数,则问题无界。
线性规划单纯形法
线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。
线性规划的主要特点是目标函数和约束条件都是线性的。
单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。
单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。
单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。
2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。
一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。
3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。
如果是最优解,则终止算法;如果不是最优解,则进入下一步。
4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。
5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。
6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。
7. 重复以上步骤,直到找到最优解为止。
单纯形法的优势在于它可以在有限的迭代次数内找到最优解。
然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。
总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。
通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。
虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用修正单纯形法解线性规划问题一软件示意:二代码说明:Dim A(1 To 3, 1 To 6) As Double '矩阵ADim a1(1 To 3) As Double '矩阵A的第一列向量Dim a2(1 To 3) As Double '矩阵A的第二列向量Dim a3(1 To 3) As Double '矩阵A的第三列向量Dim a4(1 To 3) As Double '矩阵A的第四列向量Dim a5(1 To 3) As Double '矩阵A的第五列向量Dim a6(1 To 3) As Double '矩阵A的第六列向量Dim B_(1 To 3, 1 To 3) As Double '基矩阵B的逆矩阵Dim XB(1 To 3) As Double '基本可行解Dim b(1 To 3) As Double '右端向量bDim C(1 To 6) As Double '检验数Dim CB(1 To 3) As Double '基本可行解对应的检验数Dim π(1 To 3) As Double '单纯形乘子矢量Dim r(1 To 6) As Double '检验矢量rDim r_min As Double '检验矢量最小值Dim k_sign As Integer '检验矢量最小值对应的位置Dim Y(1 To 3, 0 To 6) As Double '矩阵yDim just_vector(1 To 3) As DoubleDim liji_min As Double '用于判断离基变量所用值Dim r_sign As Integer '用于记录离基变量对应的位置Dim main_yuan As Double '用于存放主元Dim Erk(1 To 3, 1 To 3) As DoubleDim Exchange_B(1 To 3, 1 To 3) '在矩阵Erk与矩阵B_进行乘法运算时,作为矩阵B_的替换矩阵Dim Exchange_XB(1 To 3) '在矩阵Erk与XB_进行乘法运算时,作为XB_的替换矩阵Dim iterative_time As Integer '定义迭代的次数Dim XB_optimization(1 To 6) As Double '最优解Private Sub Command1_Click()'窗口1For iterative_time = 1 To 1000 '开始了迭代循环Select Case k_signCase 1If (r_sign - 3) = 3 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(3)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = XB(2)XB_optimization(4) = 0XB_optimization(5) = 0XB_optimization(6) = XB(3)End IfCase 2If (r_sign - 3) = 1 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(5)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = 0XB_optimization(4) = 0XB_optimization(5) = XB(2)XB_optimization(6) = XB(3)End IfCase 3If (r_sign - 3) = 2 ThenCB(1) = C(2) '付值给基本可行解对应的检验数CB(2) = C(3)CB(3) = C(6)XB_optimization(1) = 0XB_optimization(2) = XB(1)XB_optimization(3) = XB(2)XB_optimization(4) = 0XB_optimization(5) = 0XB_optimization(6) = XB(3)End IfEnd SelectFor i = 1 To 3 '计算单纯形乘子矢量π(i) = CB(1) * B_(1, i) + CB(2) * B_(2, i) + CB(3) * B_(3, i) Next iFor j = 1 To 6 '计算检验矢量rr(j) = C(j) - (π(1) * A(1, j) + π(2) * A(2, j) + π(3) * A(3, j))Next jr_min = r(1) '预先给定一个值k_sign = 1For i = 1 To 6 '找出最小检验值If (r(i) < r_min) Thenr_min = r(i) '最小检验值k_sign = i '最小检验值所在位置,对应进基矢量位置End IfNext iIf r_min < 0 ThenFor i = 1 To 3 '对应进基矢量所得的y值Y(i, k_sign) = B_(i, 1) * A(1, k_sign) + B_(i, 2) * A(2, k_sign) + B_(i, 3) * A(3, k_sign)Next iFor i = 1 To 3 '确定离基变量If Y(i, k_sign) <> 0 Thenjust_vector(i) = Y(i, 0) / Y(i, k_sign)End IfNext iFor i = 1 To 3If (just_vector(i)) > 0 Thenliji_min = just_vector(i) '预先给定一个值Exit ForEnd IfNext ir_sign = 4For i = 1 To 3 '找出最小检验值If ((just_vector(i) <= liji_min) And (just_vector(i) > 0)) Thenliji_min = just_vector(i) '最小检验值r_sign = i + 3 '最小检验值所在位置,对应进基矢量位置 End IfNext imain_yuan = Y(r_sign - 3, k_sign)If main_yuan <> 0 ThenSelect Case (r_sign - 3) '计算矩阵ErkCase 1Erk(1, 1) = 1 / main_yuanErk(2, 1) = -Y(2, k_sign) / main_yuanErk(3, 1) = -Y(3, k_sign) / main_yuanFor i = 2 To 3For j = 1 To 3Erk(j, i) = A(j, i + 3)Next jNext iCase 2Erk(1, 2) = -Y(1, k_sign) / main_yuanErk(2, 2) = 1 / main_yuanErk(3, 2) = -Y(3, k_sign) / main_yuanFor j = 1 To 3Erk(j, 1) = A(j, 4)Next jFor j = 1 To 3Erk(j, 3) = A(j, 6)Next jCase 3Erk(1, 3) = -Y(1, k_sign) / main_yuanErk(2, 3) = -Y(2, k_sign) / main_yuanErk(3, 3) = 1 / main_yuanFor i = 1 To 2For j = 1 To 3Erk(j, i) = A(j, i + 4)Next jNext iEnd SelectEnd IfFor i = 1 To 3 '给矩阵Exchange_B(i, j)付值For j = 1 To 3Exchange_B(i, j) = B_(i, j)Next jNext iFor i = 1 To 3 '计算B的新可逆矩阵B_For j = 1 To 3B_(i, j) = Erk(i, 1) * Exchange_B(1, j) + Erk(i, 2) * Exchange_B(2, j) + Erk(i, 3) * Exchange_B(3, j)Next jNext iFor i = 1 To 3 '给Exchange_XB(i)付值Exchange_XB(i) = XB(i)Next iFor i = 1 To 3 '计算基本可行解XB(i) = Erk(i, 1) * Exchange_XB(1) + Erk(i, 2) * Exchange_XB(2) + Erk(i, 3) * Exchange_XB(3)Y(i, 0) = XB(i)Next iElseMsgBox ("优化完毕!")Exit ForEnd IfNext iterative_timeCommand2.Enabled = True '使能按钮Command3.Enabled = True '使能按钮Form1.Text1(1).Text = XB_optimization(1) '显示最优解x1Form1.Text1(2).Text = XB_optimization(2) '显示最优解x2Form1.Text1(3).Text = XB_optimization(3) '显示最优解x3Form1.Text1(4).Text = XB_optimization(4) '显示最优解x4Form1.Text1(5).Text = XB_optimization(5) '显示最优解x5Form1.Text1(6).Text = XB_optimization(6) '显示最优解x6Form1.Text1(0).Text = C(1) * XB_optimization(1) + C(2) * XB_optimization(2) + C(3) * XB_optimization(3) + C(4) * XB_optimization(4) + C(5) * XB_optimization(5) + C(6) * XB_optimization(6) '显示最优值ZForm1.Text1(7) = iterative_time - 1 '显示迭代次数End SubPrivate Sub Command2_Click()End '结束程序End SubPrivate Sub Command3_Click()Form1.Show '调用优化结果显示窗口End SubPrivate Sub Form_Load()Dim i, j As IntegerFor i = 1 To 3 '付值给系数矩阵AFor j = 1 To 6A(i, j) = Quotiety_A(j + 6 * (i - 1)).Text '付值给系数矩阵A Next jNext iFor i = 1 To 6 '将矩阵A列分块(a1,a2,a3,a4,a5,a6)For j = 1 To 3Select Case iCase 1a1(j) = A(j, i)Case 2a2(j) = A(j, i)Case 3a3(j) = A(j, i)Case 4a4(j) = A(j, i)Case 5a5(j) = A(j, i)Case 6a6(j) = A(j, i)End SelectNext jNext iFor i = 1 To 3 '付值给基矩阵B的逆矩阵B_For j = 1 To 3Select Case iCase 1B_(j, i) = a4(j)Case 2B_(j, i) = a5(j)Case 3B_(j, i) = a6(j)End SelectNext jNext iFor i = 1 To 6 '付值给检验数Select Case iCase 1C(1) = C_quotiety(0).TextCase 2C(2) = C_quotiety(1).TextCase 3C(3) = C_quotiety(2).TextCase 4C(4) = C_quotiety(3).TextCase 5C(5) = C_quotiety(4).TextCase 6C(6) = C_quotiety(5).TextEnd SelectNext ib(1) = b_quotiety(0).Text '付值给右端向量bb(2) = b_quotiety(1).Textb(3) = b_quotiety(2).TextFor i = 1 To 3 '计算初始基本可行解XB(i) = B_(i, 1) * b(1) + B_(i, 2) * b(2) + B_(i, 3) * b(3) Y(i, 0) = XB(i)Next iCB(1) = C(4) '付值给初始基本可行解对应的检验数CB(2) = C(5)CB(3) = C(6)End SubPrivate Sub Command1_Click()'窗口2Unload Form1 '关闭优化结果显示窗口End Sub。