2011年高考数学试题分类汇编-立体几何
广东省各地市2011年高考数学最新联考试题分类汇编(7)立体几何
广东省各地市2011年高考数学最新联考试题分类汇编第7部分:立体几何一、选择题: 6、(广东省深圳市2011年3月高三第一次调研理科)一个几何体的三视图如图所示,则该几何体的体积为( )A 、2B 、1C 、23D 、136.C 【解析】有三视图可以判断该几何体是四棱锥,底面是边长为2的正方形,高为1,所以()21221.33V =⨯⨯=2. (广东省珠海一中2011年2月高三第二学期第一次调研理科)在四面体ABCD 中,设AB =1,CD =3,直线AB 与CD 的距离为2,夹角为3π,则四面体ABCD 的体积等于( B ) A .23 B .21 C .31 D .33 6.(广东省珠海一中2011年2月高三第二学期第一次调研文科)如图所示,在棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 分别为棱AA 1、BB 1的中点,G 为棱A 1B 1上的一点,且A 1G=λ(0≤λ≤1)则点G 到平面D 1EF 的距离为( D )A .3B .22 C .23λD .53. (广东省珠海一中2011年2月高三第二学期第一次调研文科)一个几何体的三视图如下图所示,其中正视图是一个边长为2的正三角形,俯视图是一正方形,那么该几何体的侧.视图..的面积为( C )A.1 B.2C.D.4⒌(广东省江门市2011年高考一模文科)某型号儿童蛋糕上半部分是半球,下半部分是圆锥,三视图如图1,则该型号蛋糕的表面积=S( A )A.π115B.π110C.π105D.π100⒌(广东省江门市2011年高考一模理科)一个底部水平放置的几何体,下半部分是圆柱,上半部分是正四棱锥,其三视图如图1所示,则这个几何体的体积=V( D )A.3054+πB.π69C.π66D.2454+π7.(广东省广雅金山佛一中2011年2月高三联考理科)已知某一几何体的正视图与侧视图如图,则下列图形中,可以是该几何体的俯视图的图形有( D )正视图侧视图图2侧视图俯视图正视图4x33x 4A .①②③⑤B .②③④⑤C .①②④⑤D . ①②③④6. (广东省东莞市2011年高三一模理科)一空间几何体的三视图如图2所示, 该几何体的体积为85123π+,则正视图中x 的值为( C ) A. 5 B. 4 C. 3 D. 28.(广东省东莞市2011年高三一模文科)一个几何体的三视图及部分数据如图所示,侧视图为等腰三角形,俯视图为正方形,则这个几何体的体积等于( A ) A .13B .23C .156D .62243.(广东执信中学2011年2月高三考试文科)已知,αβ为不重合的两个平面,直线,m α⊂那么“m β⊥”是“αβ⊥”的( A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件7.(广东执信中学2011年2月高三考试文科)已知某个几何体的三视图如下,根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 ( B )A .383cm B .343cm C .323cm D .313cm二、填空题:2312.(广东省深圳市2011年3月高三第一次调研文科)已知正三棱柱(侧棱与底面垂直,底面是正三角形)的高与底面边长均为2,其直观图和正(主)视图如下,则 它的左(侧)视图的面积是 .12. 2 3.【解析】画出左(侧)视图如图,其面积为2 3.14. (广东省珠海一中2011年2月高三第二学期第一次调研理科)在0120的二面角内,放一个半径为10cm 的球切两半平面于A,B 两点,那么这两切点在球面上的最短距离是___________310π11.(广东省广雅金山佛一中2011年2月高三联考文科)已知空间四边形ABCD 中,AB ⊥BC ,BC ⊥CD , CD ⊥AB ,且AB =2,BC =5,CD =7,则AD = 4 。
2011-2013年新课标高考理科数学真题汇编之立体几何
历年高考理科数学真题——立体几何2011年6. 在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()15. 已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6AB =,BC =O ABCD -的体积为.18. (本小题满分12分)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形, ∠60DAB =︒,2AB AD =,PD ⊥底面ABCD . (I)证明:PA ⊥BD ;(II)若PD AD =,求二面角A PB C --的余弦值.2012年7. 如图,网格纸上小正方形的边长为1,粗线画出的 是某几何体的三视图,则此几何体的体积为 A. 6 B. 9 C. 12 D. 1811. 已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC △是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.62 B.63 C.32 D.22 19. (本小题满分12分)如图,直三棱柱111C B A ABC -中,121AA BC AC ==, D 是棱1AA 的中点,BD DC ⊥1(Ⅰ) 证明:BC DC ⊥1(Ⅱ) 求二面角11C BD A --的大小.(A ) (B ) (C ) (D )ABCDP2013年6、如图,有一个水平放置的透明无盖的正方体容器, 容器高8cm ,将一个球放在容器口,再向容器内注水, 当球面恰好接触水面时测得水深为6cm ,如果不计容器的厚度,则球的体积为 ( )A 、500π3cm 3B 、866π3cm 3C 、1372π3cm 3D 、2048π3cm 38、某几何函数的三视图如图所示,则该几何的体积为( )A 、16+8πB 、8+8πC 、16+16πD 、8+16π18、(本小题满分12分)如图,三棱柱ABC-A 1B 1C 1中,CA=CB ,AB=A A 1,∠BA A 1=60°. (Ⅰ)证明AB ⊥A 1C;(Ⅱ)若平面ABC ⊥平面AA 1B 1B ,AB=CB=2,求直线A 1C 与平面BB 1C 1C 所成角的正弦值。
2005 2011年高考分类汇编 数学立体几何
立体几何(山东卷)右图是一个几何体的三视图,根据图中数据,可得该几何体的1、表面积是πB)10(A)9π((D)12π(C)11π从三视图可以看出该几何体是由一解析】考查三视图与几何体的表面积。
【个球和一个圆柱组合而成的,其表面及为22????.?2?212?1?S?43?1???1D 答案:GHIC△A,B,三边的中点)得到几何体如图、(广东卷)将正三棱柱截去三个角(如图1所示分别是2 )2,则该几何体按图2所示方向的侧视图(或称左视图)为(A A G HBBBBBBCC 侧视IEEED DEE ED.CA.B..F F2 1图图【解析】解题时在图2的右边放扇墙(心中有墙),可得答案A.答案:A67的某几何体的一条棱长为这条棱的投影是长为,3、(海南、宁夏理科卷)在该几何体的正视图中,线段,在该几何体的侧视图与俯视图中,这条棱的投影分别是长为a和b的线段,则a+b的最大值为()2352224 D AC..B ..【解析】结合长方体的对角线在三个面的投影来理解计算。
如图m,n,k,由题意得设长方体的高宽高分别为kn222226??mn?k?k?7m1?n?,m22226?1)??1)?((ab ba1?m1?k??,,所以2222222?16?b2ab?8?b)?ab?2ab?a?8?a∴(?8??b?a,?a?b?4a?b?2时取等。
当且仅当答案:C4、(海南、宁夏理科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面.已知该六棱柱的顶点都在同一9,底面周长为3,则这个球的体积为个球面上,且该六棱柱的体积为.8h22R)?a?(a hR有然显,为高,为长边面底且,的柱棱六,为径半的球令】析解【2.1??93?a244a?h?V?6???3??2??R?V?1??R??8433??h?336a????4答案:35、(海南、宁夏文科卷)一个六棱柱的底面是正六边形,其侧棱垂直底面。
已知该六棱柱的顶点都在同一3,底面周长为3,那么这个球的体积为个球面上,且该六棱柱的高为_________1??22?23?12R?解析】∵正六边形周长为3,得边长为,故其主对角线为1,从而球的直径【24?V?1R?∴球的体积∴34?答案:3?l,直线AB∥l,直线AC∈α,A⊥l,直α6、(海南、宁夏文科卷)已知平面⊥平面β,α∩β= l,点A线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()...A. AB∥m B. AC⊥m C. AB∥β D. AC⊥β?l?AC内,,但AC不一定在平面【解析】容易判断A、B、C三个答案都是正确的,对于D,虽然?相交、平行,故不一定垂直;故它可以与平面答案:DAD?BD,且E,F分别是AB,7、(江苏卷)在四面体ABCD中,CB=CD,BD的中点,EF面AC D;求证(I)直线BD BC面EFC?面。
09年—11年各省高考数学题目分类之立体几何篇.doc
09年—11年各省高考数学题目分类之立体几何篇1、(09北京,文)(本小题共14分)如图,四棱锥P ABCD -的底面是正方形,PD ABCD ⊥底面,点E 在棱PB 上. (Ⅰ)求证:平面AEC PDB ⊥平面;(Ⅱ)当PD =且E 为PB 的中点时,求AE 与平面PDB所成的角的大小.2、(09湖北,文)(本小题满分12分)如图,四棱锥S ABCD -的底面是正方形,SD ⊥平面ABCD ,SD AD a ==,点E 是SD 上的点,且(01)DE a λλ=<≤(Ⅰ)求证:对任意的λ∈(0、1],都有AC BE ⊥; (Ⅱ)若二面角D AE D --的大小为600,求λ的值。
3、(09江西,文)(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,2AB =.以BD 的中点O 为球心、BD 为直径的球面交PD 于点M . (1)求证:平面ABM ⊥平面PCD ; (2)求直线PC 与平面ABM 所成的角; (3)求点O 到平面ABM 的距离.4、(09宁夏,文)(本小题满分10分)选修4—1;几何证明选讲BC如图,已知∆ABC 中的两条角平分线AD 和CE 相交于H ,∠B=60 ,F 在AC 上,且AE AF =。
(1)证明:,,,B D H E 四点共圆;(2)证明:CE 平分∠DEF 。
5、(09全国一,文)(本小题满分12分)如图,四棱锥S ABCD -中,底面ABCD 为矩形,SD ⊥底面ABCD,AD =,2DC SD ==,点M 在侧棱SC 上,60ABM ∠=(Ⅰ)证明:M 是侧棱SC 的中点; (Ⅱ)求二面角S AM B --的大小。
6、(09陕西,文)(本小题满分12分) 如图,直三棱柱111ABC A B C -中, AB=1,1AC AA ==ABC=600.(Ⅰ)证明:1AB A C⊥;(Ⅱ)求二面角A —1A C—B 的大小。
2011-2019年全国卷立体几何真题汇编
2011-2019年全国卷立体几何真题汇编2011年全国卷6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的俯视图可以为A. B. C. D.2011年全国卷15.已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6,23AB BC ==,则棱锥O ABCD -的体积为_______.2012年全国卷7.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为A.6B.9C.12D.182012年全国卷11.已知三棱锥ABC S -的所有顶点都在球O 的球面上,ABC ∆是边长为1的正三角形,SC 为球O 的直径,且2=SC ,则此棱锥的体积为A.26B.36C.23D.222013年全国一卷6.如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm ,如果不计的厚度,则球的体积为A.35003cm πB.38663cm πC.313723cm πD.320483cm π2013年全国一卷8.某几何体的三视图如图所示,则该几何体的体积为()A.168π+B .88π+C .1616π+D .816π+2013年全国二卷4.已知,m n 为异面直线,m ^平面a ,n ^平面b ,直线l 满足l m ^,l n ^,l Úa ,l Úb ,则A.//a b 且//l aB.a b ^且l b^C.a 与b 相交,且交线垂直于lD.a 与b 相交,且交线平行于l2013年全国二卷7.一个四面体的顶点在空间直角坐标系O xyz -中的坐标是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx 平面为投影面,则得到的正视图可以为2014年全国一卷12.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为A.62B.42C.6D.42014年全国二卷6.如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为A .1727B .59C.1027D.132014年全国二卷11.直三棱柱111ABC A B C -中,90BCA ∠=,M ,N 分别是11A B ,11AC 的中点,1BC CA CC ==,则BM 与AN 所成的角的余弦值为A.110B .25C.3010D.222015年全国一卷6.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺。
高考数学真题解析分项版08立体几何 文
2011年高考试题解析数学(文科)分项版08 立体几何一、选择题:1.(2011年高考安徽卷文科8)一个空间几何体得三视图如图所示,则该几何体的表面积为(A ) 48 (B)32+817 (C) 48+817 (D) 80 【答案】C【命题意图】本题考查三视图的识别以及空间多面体表面积的求法.【解析】由三视图可知几何体是底面是等腰梯形的直棱柱.底面等腰梯形的上底为2,下底为4,高为4,两底面积和为()12244242⨯+⨯=,四个侧面的面积为()44221724817++=+,所以几何体的表面积为48817+.故选C.【解题指导】:三视图还原很关键,每一个数据都要标注准确。
2.(2011年高考广东卷文科9)如图1-3,某几何体的正视图(主视图),侧视图(左视图)和俯视图分别为等边三角形、等腰三角形和菱形,则该几何体体积为( )A .B .C .D . 2【答案】C【解析】由题得该几何体是如图所示的四棱锥P-ABCD ,,棱锥的高,3232322131331233231222=⨯⨯⨯⨯⨯=∴=-=-==∴=-=V PO h AO 所以选择C.3.(2011年高考湖南卷文科4)设图1是某几何体的三视图,则该几何体的体积为A .942π+ B.3618π+ C.9122π+ D.9182π+ 答案:D解析:有三视图可知该几何体是一个长方体和球构成的组合体,其体积3439+332=18322V ππ=⨯⨯+()。
4.(2011年高考湖北卷文科7)设球的体积为V 1,它的内接正方体的体积为V 2,下列说法中最合适的是A. V 1比V 2大约多一半B. V 1比V 2大约多两倍半C. V 1比V 2大约多一倍D. V 1比V 2大约多一倍半答案:D解析:设球半径为R ,其内接正方体棱长为a 2222a a a R ++=,即23,3a R =由 3 32正视图侧视图俯视图图13331248,339v R v a R π===,比较可得应选D.5.(2011年高考山东卷文科11)下图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如下图;③存在圆柱,其正(主)视图、俯视图如下图.其中真命题的个数是(A)3 (B)2 (C)1 (D)0 【答案】A【解析】对于①,可以是放倒的三棱柱;容易判断②③可以.6.(2011年高考海南卷文科第8题)在一个几何体的三视图中,正视图和俯视图如右图,则相应的侧视图可以为( )解析:D. 由主视图和府视图可知,原几何体是由后面是半个圆锥,前面是三棱锥的组合体,所以,左视图是D 。
2011年数学高考分类汇编解答题(理)03——立体几何
03 立体几何1. (2011天津卷理)17.(本小题满分13分)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B的中心,1AA =1C H ⊥平面11AA B B ,且1C H =(Ⅰ)求异面直线AC 与A 1B 1所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值; (Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B内,且MN ⊥平面11A B C ,求线段BM 的长.【解析】17.本小题主要考查异面直线所成的角、直线与平面垂直、二面角等基础知识,考查用空间向量解决立体几何问题的方法,考查空间想象能力、运算能力和推理论证能力.满分13分.方法一:如图所示,建立空间直角坐标系,点B 为坐标原点. 依题意得(0,0,0),A B C 11(2,0),,22,2,5)A B C (I )解:易得11((AC A B ==-,于是111111cos ,3||||AC A B AC A B AC A B ⋅===⋅所以异面直线AC 与A 1B 1 (II )解:易知111(AA AC ==设平面AA 1C 1的法向量(,,)m x y z =,则11100m AC m AA ⎧⋅=⎪⎨⋅=⎪⎩即0,0.⎧=⎪⎨=⎪⎩ 不妨令x =可得m =,同样地,设平面A 1B 1C 1的法向量(,,)n x y z =,则11110,0.n AC n A B ⎧⋅=⎪⎨⋅=⎪⎩ 即0,0.⎧=⎪⎨-=⎪⎩不妨令y =, 可得n =于是2cos ,,||||7m n m n m n ⋅===⋅从而sin ,7m n =所以二面角A —A 1C 1—B(III )解:由N 为棱B 1C 1的中点,得(222N 设M (a ,b ,0),则(,,222MN a b =--由MN ⊥平面A 1B 1C 1,得11110,0.MN A B MN A C ⎧⋅=⎪⎨⋅=⎪⎩即)(0,2)()(0.a a b ⎧-⋅-=⎪⎪⎨⎪-⋅+-⋅=⎪⎩解得,2a b ⎧=⎪⎪⎨⎪=⎪⎩故M因此(24BM = ,所以线段BM的长为||BM =方法二:(I )解:由于AC//A 1C 1,故111C A B ∠是异面直线AC 与A 1B 1所成的角. 因为1C H ⊥平面AA 1B 1B ,又H 为正方形AA 1B 1B 的中心,11AA C H ==可得1111 3.AC B C ==因此2221111111111111cos 23AC A B B C C A B AC A B +-∠==⋅所以异面直线AC 与A 1B 1所成角的余弦值为3(II )解:连接AC 1,易知AC 1=B 1C 1, 又由于AA 1=B 1A 1,A 1C 1=A 1=C 1,所以11AC A ∆≌11B C A ∆,过点A 作11AR A C ⊥于点R ,连接B 1R ,于是111B R AC ⊥,故1ARB ∠为二面角A —A 1C 1—B 1的平面角.在11Rt A RB ∆中,11111sin 3B R A B RA B =⋅∠== 连接AB 1,在1ARB ∆中,2221111114,,cos 2AR B R AB AB AR B R ARB AR B R +-==∠=⋅27=-,从而1sin ARB ∠=所以二面角A —A 1C 1—B 1的正弦值为7(III )解:因为MN ⊥平面A 1B 1C 1,所以11.MN A B ⊥ 取HB 1中点D ,连接ND ,由于N 是棱B 1C 1中点, 所以ND//C 1H且112ND C H ==又1C H ⊥平面AA 1B 1B ,所以ND ⊥平面AA 1B 1B ,故11.ND A B ⊥ 又,MN ND N =所以11A B ⊥平面MND ,连接MD 并延长交A 1B 1于点E , 则111,//.ME A B ME AA ⊥故 由1111111,4B E B D DE AA B A B A ===得1DE B E ==EM 交AB 于点F ,可得12BF B E ==连接NE. 在Rt ENM ∆中,2,.ND ME ND DE DM ⊥=⋅故所以24ND DM DE ==可得4FM =连接BM ,在Rt BFM ∆中,4BM ==2. (2011北京理)16.(本小题共14分) 如图,在四棱锥P ABCD -中,PA ⊥平面A B C D ,底面A B C D 是菱形,2,60AB BAD =∠= .(Ⅰ)求证:BD ⊥平面;PAC (Ⅱ)若,PA AB =求PB 与AC 所成角的余弦值;(Ⅲ)当平面PBC 与平面PDC 垂直时,求PA 的长.【解析】(16)(共14分) 证明:(Ⅰ)因为四边形ABCD 是菱形,所以AC ⊥BD.又因为PA ⊥平面ABCD. 所以PA ⊥BD.所以BD ⊥平面PAC. (Ⅱ)设AC∩BD=O. 因为∠BAD=60°,PA=PB=2,所以BO=1,AO=CO=3.如图,以O 为坐标原点,建立空间直角坐标系O —xyz ,则P (0,—3,2),A (0,—3,0),B (1,0,0),C (0,3,0). 所以).0,32,0(),2,3,1(=-= 设PB 与AC 所成角为θ,则4632226cos =⨯=. (Ⅲ)由(Ⅱ)知).0,3,1(-= 设P (0,-3,t )(t>0), 则),3,1(t BP --=设平面PBC 的法向量),,(z y x m =, 则0,0=⋅=⋅m m所以⎪⎩⎪⎨⎧-+--=+-03,03tz y x y x 令,3=y 则.6,3t z x ==所以)6,3,3(tm =同理,平面PDC 的法向量)6,3,3(tn -=因为平面PCB ⊥平面PDC, 所以n m ⋅=0,即03662=+-t解得6=t 所以PA=6 3. (2011辽宁卷理)18.(本小题满分12分)如图,四边形ABCD 为正方形,PD ⊥平面ABCD ,PD ∥QA ,QA =AB =12P D .(I )证明:平面PQC ⊥平面DCQ ; (II )求二面角Q —BP —C 的余弦值.【解析】18.解:如图,以D 为坐标原点,线段DA 的长为单位长,射线DA 为x 轴的正半轴建立空间直角坐标系D —xyz. (I )依题意有Q (1,1,0),C (0,0,1),P (0,2,0).则(1,1,0),(0,0,1),(1,1,0).DQ DC PQ ===-所以0,0.PQ DQ PQ DC ⋅=⋅=即PQ ⊥DQ ,PQ ⊥DC. 故PQ ⊥平面DCQ.又PQ ⊂平面PQC ,所以平面PQC ⊥平面DCQ. …………6分(II )依题意有B (1,0,1),(1,0),(12,1).CB B P ==--设(,,)n x y z =是平面PBC 的法向量,则0,0,20.0,n CB x x y z n BP ⎧⋅==⎧⎪⎨⎨-+-=⋅=⎩⎪⎩即 因此可取(0,1,2).n =--设m 是平面PBQ 的法向量,则0,0.m BP m PQ ⎧⋅=⎪⎨⋅=⎪⎩可取(1,1,1).cos ,5m m n =<>=-所以 故二面角Q —BP —C的余弦值为 ………………12分 4. (全国大纲卷理)19.(本小题满分12分)(注意:在试题卷上作答无效.........) 如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====.(Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.【解析】19.解法一:(I )取AB 中点E ,连结DE ,则四边形BCDE 为矩形,DE=CB=2, 连结SE,则,SE AB SE ⊥= 又SD=1,故222ED SE SD =+, 所以DSE ∠为直角。
2011高考数学立体几何大题汇总
2011高考数学立体几何大题汇总D因此可取n=(3,1,3)设平面PBC 的法向量为m ,则 00m PB m BC ⋅=⋅=可取m=(0,-1,3-)27cos ,727m n ==-故二面角A-PB-C 的余弦值为277-2如图,四棱锥S ABCD -中, AB CD ⊥,BC CD ⊥,侧面SAB 为等边三角形,2,1AB BC CD SD ====. (Ⅰ)证明:SD SAB ⊥平面;(Ⅱ)求AB 与平面SBC 所成角的大小.解法一: (I )取AB 中点E ,连结DE ,则四边形BCDE为矩形,DE=CB=2, 连结SE ,则, 3.SE AB SE ⊥= 又SD=1,故222ED SE SD =+,所以DSE ∠为直角。
…………3分 由,,AB DE AB SE DE SE E ⊥⊥=,得AB ⊥平面SDE ,所以AB SD ⊥。
SD 与两条相交直线AB 、SE 都垂直。
所以SD ⊥平面SAB 。
…………6分(II )由AB ⊥平面SDE 知, 平面ABCD ⊥平面SED 。
作,SF DE ⊥垂足为F ,则SF ⊥平面ABCD ,3SD SE SF DE⨯== 作FG BC ⊥,垂足为G ,则FG=DC=1。
连结SG ,则SG BC ⊥, 又,BC FG SG FG G ⊥=,故BC ⊥平面SFG ,平面SBC ⊥平面SFG 。
…………9分作FH SG ⊥,H 为垂足,则FH ⊥平面SBC 。
37SF FG FH SG ⨯==,即F 到平面SBC 的距离为217 由于ED//BC ,所以ED//平面SBC ,E 到平面SBC 的距离d 也有217 设AB 与平面SBC 所成的角为α,则2121sin arcsin 77d EBαα=== …………12分解法二:以C 为坐标原点,射线CD 为x 轴正半轴,建立如图所示的空间直角坐标系C —xyz 。
设D (1,0,0),则A (2,2,0)、B (0,2,0)。
2011届高考数学复习资料汇编第7单元立体几何(真题解析+最新模拟)
2011年最新高考+最新模拟——立体几何1.【2010·浙江理数】设,是两条不同的直线,是一个平面,则下列命题正确的是()A.若,,则B.若,,则C.若,,则D.若,,则【答案】B【解析】可对选项进行逐个检查.本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题.2.【2010·全国卷2理数】与正方体的三条棱、、所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M,N,Q,连PM,PN,PQ,由三垂线定理可得,PN⊥PM⊥;PQ⊥AB,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ,即P到三条棱AB、CC1、A1D1.所在直线的距离相等所以有无穷多点满足条件,故选D.3.【2010·全国卷2理数】已知正四棱锥中,,那么当该棱锥的体积最大时,它的高为()A.1B.C.2D.3【答案】C【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a,则高所以体积,设,则,当y取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是()A.2B.1C.D.【答案】B【解析】本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其体积为.5.【2010·辽宁文数】已知是球表面上的点,,,,,则球的表面积等于()A.4B.3C.2D.【答案】A【解析】由已知,球的直径为,表面积为6.【2010·辽宁理数】有四根长都为2的直铁条,若再选两根长都为a的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a的取值范围是()A.(0,)B.(1,)C.(,)D.(0,)【答案】A【解析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.根据条件,四根长为2的直铁条与两根长为a的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a,a,如图,此时a可以取最大值,可知AD=,SD=,则有<2+,即,即有a<(2)构成三棱锥的两条对角线长为a,其他各边长为2,如图所示,此时a>0;综上分析可知a∈(0,)7.【2010·全国卷2文数】与正方体ABCD—A1B1C1D1的三条棱AB、CC1、A1D1所在直线的距离相等的点()A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个【答案】D【解析】本题考查了空间想象能力.∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点.8.【2010·全国卷2文数】已知三棱锥中,底面为边长等于2的等边三角形,垂直于底面,=3,那么直线与平面所成角的正弦值为()A. B. C.D.【答案】D【解析】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.过A作AE垂直于BC交BC于E,连结SE,过A作AF垂直于SE交SE于F,连BF,∵正三角形ABC,∴ E为BC中点,∵ BC⊥AE,SA⊥BC,∴ BC⊥面SAE,∴ BC⊥AF,AF⊥SE,∴ AF⊥面SBC,∵∠ABF为直线AB与面SBC所成角,由正三角形边长3,∴,AS=3,∴ SE=,AF=,∴.9.【2010·江西理数】过正方体的顶点A作直线L,使L与棱,,所成的角都相等,这样的直线L可以作()A.1条B.2条C.3条D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转第二类:化的能力.第一类:通过点A位于三条棱之间的直线有一条体对角线AC1,在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条.10.【2010·安徽文数】一个几何体的三视图如图,该几何体的表面积是()A.372B.360C.292D.280【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和. 把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和..11.【2010·重庆文数】到两互相垂直的异面直线的距离相等的点()A.只有1个B.恰有3个C.恰有4个D.有无穷多个【答案】D【解析】放在正方体中研究,显然,线段、EF、FG、GH、HE的中点到两垂直异面直线AB、CD的距离都相等,所以排除A、B、C,选D.亦可在四条侧棱上找到四个点到两垂直异面直线AB、CD的距离相等.12.【2010·浙江文数】若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是()A.cm3B.cm3C.cm3D.cm3【答案】B【解析】本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.13.【2010·山东文数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D14.【2010·北京文数】如图,正方体的棱长为2,动点E、F 在棱上.点Q是CD的中点,动点P在棱AD上,若EF=1,DP=x,E=y(x,y 大于零),则三棱锥P-EFQ的体积()A.与x,y都有关;B.与x,y都无关;C.与x有关,与y无关;D.与y有关,与x无关;【答案】C15.【2010·北京文数】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:()【答案】C16.【2010·北京理数】如图,正方体ABCD-的棱长为2,动点E、F在棱上,动点P,Q分别在棱AD,CD上,若EF=1,E=x,DQ=y,DP=z(x,y,z大于零),则四面体PEFQ的体积()A.与x,y,z都有关B.与x有关,与y,z无关C.与y有关,与x,z无关D.与z有关,与x,y无关【答案】D17.【2010·四川理数】半径为的球的直径垂直于平面,垂足为,是平面内边长为的正三角形,线段、分别与球面交于点M,N,那么M、N两点间的球面距离是()A. B.C. D.【答案】A【解析】由已知,AB=2R,BC=R,故tan∠BAC=,cos∠BAC=,连结OM,则△OAM为等腰三角形,AM=2AOcos∠BAC=,同理AN=,且MN∥CD ,而AC=R,CD=R,故MN:CD=AN:AC MN=,连结OM、ON,有OM=ON=R,于是cos∠MON=,所以M、N两点间的球面距离是 .18.【2010·广东理数】如图1,△ ABC为三角形,////,⊥平面ABC 且3== =AB,则多面体△ABC -的正视图(也称主视图)是【答案】D19.【2010·广东文数】20.【2010·福建文数】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积等于 ( )A. B.2C. D.6【答案】D【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,选D.21.【2010·全国卷1文数】已知在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为()A. B. C. D.【答案】B【解析】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.过CD作平面PCD,使AB⊥平面PCD,交AB与P,设点P到CD的距离为,则有,当直径通过AB与CD的中点时,,故.22.【2010·全国卷1文数】正方体-中,与平面所成角的余弦值为()A. B. C. D.【答案】D【解析】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D到平面AC的距离是解决本题的关键所在,这也是转化思想的具体体现.方法一:因为BB1//DD1,所以B与平面AC所成角和DD1与平面AC所成角相等,设DO⊥平面AC,由等体积法得,即.设DD1=a,则,.所以,记DD与平面AC所成角为,则1,所以.方法二:设上下底面的中心分别为;与平面AC所成角就是B与平面AC所成角,.23.【2010·全国卷1文数】直三棱柱中,若,,则异面直线与所成的角等于()A.30°B.45°C.60°D.90°【答案】C【解析】本小题主要考查直三棱柱的性质、异面直线所成的角、异面直线所成的角的求法.延长CA到D,使得,则为平行四边形,就是异面直线与所成的角,又三角形为等边三角形,.24.【2010·湖北文数】用、、表示三条不同的直线,表示平面,给出下列命题:①若∥,∥,则∥;②若⊥,⊥,则⊥;③若∥,∥,则∥;④若⊥,⊥,则∥.A. ①②B. ②③C. ①④ D.③④25.【2010·山东理数】在空间,下列命题正确的是()A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案.26.【2010·福建理数】所以∥,故∥∥,所以选项A、C正确;因为平面,∥,所以平面,又平面,故,所以选项B也正确,故选D.【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力.27.【2010·湖北省武汉市四月调研】若a、b是异面直线,、是两个不同平面,,则()A.l与a、b分别相交 B.l与a、b都不相交C.l至多与a、b中一条相交 D.l至少与a、b中的一条相交【答案】B【解析】假设l与a、b均不相交,则l∥a,l∥b,从而a∥b与a、b是异面直线矛盾.故l至少与a、b中的一条相交选D.28.【2010·北京西城一模】如图,平面平面,=直线,是内不同的两点,是内不同的两点,且直线,分别是线段的中点.下列判断正确的是()A.当时,两点不可能重合B.两点可能重合,但此时直线与不可能相交C.当与相交,直线平行于时,直线可以与相交D.当是异面直线时,直线可能与平行【答案】B【解析】若两点重合,由知,从而平面,故有,故B正确.29.【2010·宁波市二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.30.【2010·上海市浦东新区4月二模】“直线与平面没有公共点”是“直线与平面平行”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件【答案】C【解析】由直线与平面平行的定义知,选C.31.【2010··北京崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】B【解析】A中可以是任意关系;B正确;C中平行于同一平面,其位置关系可以为任意.D中平行于同一直线的平面可以相交或者平行.32.【2010·甘肃省部分普通高中第二次联合考试】已知直线,平面,且,给出下列命题:①若∥,则m⊥;②若⊥,则m∥;③若m⊥,则∥;④若m∥,则⊥其中正确命题的个数是()A.1 B.2 C.3D.4【答案】B①正确;对【解析】对于①∵,若∥,∴m⊥β,所以m⊥,于②,若⊥,则m∥β或m在β内,m与l可以平行可以异面还可以相交,所以②错;对于③∵,若m⊥,则与β可以相交,③错;对于④若m ∥,则l⊥,∴⊥,④正确,选择B.33.【2010·湖北六市四月联考】给出互不相同的直线、、和平面、,下列四个命题:①若,,,则与不共面;②若、是异面直线,,,且,,则;③若,,,,,则;④若,,,则其中真命题有()A.4个B.3个C.2个 D.1个【答案】B【解析】由异面直线的判定定理,易知①是真命题;由线面平行的性质,存在直线,,使得,,∵、是异面直线,∴与是相交直线,又,,∴,,故,②是真命题;由线面平行的性质和判定,知③是真命题;满足条件,,的直线、或相交或平行或异面,故④是假命题,于是选B.34.【2010•河南省郑州市第二次质检】已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γβ⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有()A.0个 B.1个 C.2个 D.3个【答案】C【解析】依题意,α与β换成直线后是真命题,γ与β换成直线后是真命题,γ与α换成直线后是假命题,选择C.35.【2010•宁波二模】已知表示两个互相垂直的平面,表示一对异面直线,则的一个充分条件是()A. B. C. D.【答案】D选择【解析】依题意,a⊥α ,则a平行β或在β内,由于b⊥β,则,D.36.【2010•绵阳三诊】已知,表示两个不同的平面,是一条直线且,则:“”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若,因是一条直线且,由面面垂直的判定定理,知,反之,若是一条直线且,当时,与平面的位置关系可以为:相交或平行或,故“”是“”的必要不充分条件,选B.37.【2010·吉林市下学期期末质量检测】已知a,b表示两条不同的直线,α、β表示两个不同的平面,则下列命题中正确的是()A.若B.若所成角等于b与β所成角,则a//b.C.若D.若【答案】D【解析】对于选项A:直线a,b可能平行或异面;对于选项B:只有当平面α与β平行时,才有a//b,故B不对;对于选项C,有可能直线b在平面β内,故C错;故选D.38.【2010·山东德州五月质检】在空间中,给出下面四个命题:(1)过一点有且只有一个平面与已知直线垂直;(2)若平面外两点到平面的距离相等,则过两点的直线必平行于该平面;(3)两条相交直线在同一平面的射影必为相交直线;(4)两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线.其中正确的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4)【答案】D【解析】对于(2)可能该直线与平面相交;对于(3)可能两相交直线的射影为一条直线或一点与过该点的一条直线,故选D.39.【2010·江西省重点中学第二次联考】已知一个确定的二面角,和是空间的两条异面直线,在下面给出的四个条件中,能使和所成的角也确定的是()A.∥且∥ B.∥且C.且 D.且【答案】D【解析】因为二面角的大小是确定的,所以当且时,和所成的角与二面角的大小相等或互补,故而和所成的角也确定,选D.40.【2010·崇文一模】已知是两条不同直线,是三个不同平面,下列命题中正确的为 ( )A.若则 B.若则C.若,则 D.若则【答案】D【解析】A中,垂直于同一平面的平面可能平行或者相交;B中,平行于同一直线的平面可能平行或者相交;C中,平行于同一平面的直线可能是任意关系;D中,垂直于同一平面的直线平行,正确.41.【2010·上海市长宁区二次模】已知α,β表示两个不同的平面,m为平面α内的一条直线,则“”是“”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据是平面与平面垂直的判定定理知:由m⊥βα⊥β,反之不成立.故选B.42.【2010·河北省衡水中学一模】正四棱锥P—ABCD的底面积为3,体积为E为侧棱PC的中点,则PA与BE所成的角为( )A.B. C.D.【答案】B【解析】由V==×3×h,所以h=,从而侧棱长PA=,取AC中点O,连OE,则OE∥PA,且OE=,于是∠OEB为异面直线PA与BE所成的角或其补角.在直角三角形BOE中,BO=,所以tan∠OEB=,所以∠OEB=.43.【2010·湖北省襄樊五中5月调研测试】如图,正三棱锥A-BCD中,E在棱AB上,F在棱CD上.并且==λ(0<λ<+∞),设α为异面直线EF与AC所成的角,β为异面直线EF与BD所成的角,则α+β的值是()A. B. C.D.与λ的值有关【答案】C【解析】利用特殊化思想,当λ=1,即E、F分别为AB、CD中点时,取BC中点M,则EM∥AC,FM∥BD,又AC⊥BD,所以三角形EMF为直角三角形,所以α+β=.44.【2010·甘肃省兰州市五月实战模拟】二面角,A,B是棱l 上的两点,AC,BD分别在平面内,AC⊥l,BD⊥l,且AC=AB=1,BD=2,则CD 的长等于()A.2 B.C. D.【答案】A【解析】过B作BE∥AC,且BE=1,则∠DBE=60°,从而DE==,在三角形CDE 中,CD==2.45.【2010·泸州二诊】如图,在正三棱柱中,.若二面角的大小为,则点到平面的距离为()A. B. C. D.【答案】A【解析】取中点,连结,,则是二面角的平面角. ∵,∴,∴在中,,,设点到平面的距离为,则由得,,解得,选A.46.【2010·湖北省年普通高等学校招生全国统一考试模拟训练(二)】如图,在直三棱柱ABC-A1B1C1中,AB=1,AC=2,BC=,D,E分别是AC1和BB1的中点,则直线DE与平面BB1C1C所成的角为()A. B. C. D.【答案】A【解析】取AC中点F,连DF,BF,则易知BF∥DE,过F作FH⊥BC于H,则FH⊥平面BCC1B1,则角∠FBH为所求,在直角三角形FHB中,FH=,BF=AC=1,所以∠FBH=30°.47.【2010·湖南师大附中第二次月考试卷】如图,在正三棱柱ABC-A1B 1 C1中,点M为侧棱AA1上一动点,已知△BCM面积的最大值是,二面角M―BC―A 的最大值是,则该三棱柱的体积等于()A. B. C.D.【答案】A【解析】当点M与点A1重合时,△BCM的面积为最大值,此时二面角M―BC―A也为最大.由已知可得,,所以底面正三角形ABC 的边长为2,高为,从而正三棱柱的高AA1=.所以正三棱柱的体积,故选A.48.【2010·曲靖一中高考冲刺卷数学(八)】如图,正方体中,M,N分别为AB,DC中点,则直线MC与所成角的余弦值为()A. B. C. D.【答案】B【解析】连NA,D1A,则∠D1NA为所求,在三角形D1NA中由余弦定理可求得cos∠D1NA=.49.【2010·曲靖一中高考冲刺卷数学(四)】一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是那么这个三棱柱的体积是()A. B. C. D.【答案】D【解析】因为球的体积为π,柱体的高为2r=4,又正三棱柱的底面三角形内=×(4)2×4=.切圆半径与球半径相等,r=2,所以底面边长a=4,所以V柱50.【2010·内蒙古赤峰市四月统一考试】已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于()A. B. C. D .【答案】A【解析】设底面边长AB=1,则侧棱长SA=2,过顶点S作底面的垂线,垂足O 为底面中心,连结AO,则∠SAO为所求,因为AO=,所以cos∠SAO==.51.【2010·上海市奉贤区4月调研】已知一球半径为2,球面上A、B两点的球面距离为,则线段AB的长度为()A.1B.C.2D. 2【答案】C【解析】由l=αR=α×2=得,α=,从而知∠AOB=,即△AOB为正三角形,所以AB=OA=R=2.52.【2010·石家庄市教学质量检测(二)】如图,在正三棱锥A-BCD中,E、F分别是AB、BC的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD的体积是()A. B. C. D.【答案】B【解析】EF∥AC,所以AC⊥DE,又AC⊥BD,所以AC⊥平面ABD,所以侧面三角形为等腰直角三角形,AB=AC=AD=,V=×()3=.53.【2010·甘肃省部分普通高中高三第二次联合考试】如图,在半径为3的球面上有三点,,球心到平面的距离是,则两点的球面距离是()A.B.C. D.【答案】B【解析】取AC中点H,连OH,则OH垂直于平面ABC,又OA=3,所以AC=2AH=CH=2×=3,又,BC=3,从而三角形OBC为正三角形,∠BOC=60°,所以球面距离为l=×3=.54.【2010·成都石室中学高三“三诊”模拟考试】如图所示,在正三棱锥S—ABC中,M、N分别是SC、BC的中点,且,若侧棱则正三棱锥S—ABC外接球的表面积是()A.12π B.32π C.36π D.48π【答案】C【解析】因为MN⊥AM,所以SB⊥AM,又SB⊥AC,所以侧面三角形为等腰直角三角形,所以SA=SB=SC=2,所以2R=×(2)=6,所以S=π(2R)2=36π.55.【河南省郑州市2010年高中毕业班第二次质量预测】过球的一条半径的中点作垂直于这条半径的球的截面,则此截面面积是球表面积的()A. B. C.D.【答案】B【解析】易求得截面圆半径为球半径的倍,所以==.56.【2010·唐山三模】一个与球心距离为1的平面截球所得的圆面面积为4π,则球的表面积为( )A.5πB.17πC.20π D.68π【答案】C【解析】截面圆的半径为2,所以球半径R==,所以S=20π.57.【2010·成都市第37中学五月考前模拟】如图,在多面体ABCDEF中,已知ABCD是边长为1的正方形,且均为正三角形,EF∥AB,EF=2,则该多面体的体积为()A. B. C. D.【答案】A【解析】过A、B两点分别作AM、BN垂直于EF,垂足分别为M、N,连结DM、CN,可证得DM⊥EF、CN⊥EF,多面体ABCDEF分为三部分,多面体的体积V为,∵,,∴,作NH垂直于点H,则H为BC的中点,则,∴,∴,, ,∴,故选A .58.【2010·内蒙古赤峰市一模】四面体ABCD 的外接球球心在CD 上,且CD=2,.在外接球球面上A 、B 两点间的球面距离是( )A .B .C .D .【答案】C【解析】由题意知半径R=1,所以∠AOB=,从而球面距离为l=×1=.59.【2010·江西赣州十一县(市)第二学期期中联考】棱长为1的正方体的8个顶点都在球O 的表面上,E 、F 分别是棱AB 、的中点,则经过E 、F 的球截面的面积最小值是( ) A . B . C . D .【答案】C【解析】当截面圆的圆心在直线EF上时,其面积最小.因为EF=,可求得球心O到直线EF的距离为,所以截面圆的半径r===,所以S=.60.【2010·上海文数】已知四棱椎的底面是边长为6 的正方形,侧棱底面,且,则该四棱椎的体积是.【答案】96【解析】考查棱锥体积公式.61.【2010·湖南文数】图2中的三个直角三角形是一个体积为20cm2的几何体的三视图,则h= cm.【答案】462.【2010·浙江理数】若某几何体的三视图(单位:cm)如上图(右)所示,则此几何体的体积是___________.【答案】144【解析】图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题.63.【2010·辽宁理数】如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为___ ___.【答案】【解析】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2的侧棱垂直于底面的四棱锥,所以最长棱长为.64.【2010·江西理数】如图,在三棱锥中,三条棱,,两两垂直,且>>,分别经过三条棱,,作一个截面平分三棱锥的体积,截面面积依次为,,,则,,的大小关系为 .【答案】【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得.65.【2010·北京文数】如图放置的边长为1的正方形PABC沿x轴滚动.设顶点p(x,y)的纵坐标与横坐标的函数关系是,则的最小正周期为;在其两个相邻零点间的图像与x轴所围区域的面积为 .【答案】4【解析】“正方形PABC沿x轴滚动”包含沿x轴正方向和沿x轴负方向滚动.沿x轴正方向滚动是指以顶点A为中心顺时针旋转,当顶点B落在x轴上时,再以顶点B为中心顺时针旋转,如此继续,类似地,正方形PABC可以沿着x轴负方向滚动.66.【2010`四川理数】如图,二面角的大小是60°,线段.,与所成的角为30°.则与平面所成的角的正弦值是 .【答案】【解析】过点A作平面β的垂线,垂足为C,在β内过C作l的垂线.垂足为D,连结AD,由三垂线定理可知AD⊥l,故∠ADC为二面角的平面角,为60°,又由已知,∠ABD=30°,连结CB,则∠ABC为与平面所成的角,设AD=2,则AC=,CD=1,AB==4,∴sin∠ABC=.67.【2010·天津文数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】3【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题. 正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半.由俯视图可知该几何体的底面为直角梯形,则正视图和俯视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为.68.【2010·天津理数】一个几何体的三视图如图所示,则这个几何体的体积为 .【答案】【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题.利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉哦.由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为,所以该几何体的体积V=2+= .69.【2010·湖北文数】圆柱形容器内盛有高度为3cm的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__ __cm.【答案】4【解析】设球半径为r,则由可得,解得r=4.70.【2010·湖南理数】图3中的三个直角三角形是一个体积为20的几何体的三视图,则.71.【2010·福建理数】若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于.【答案】【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为,侧面积为,所以其表面积为.72.【2010·甘肃省兰州市五月实战模拟】已知S—ABC是正四面体,M为AB 之中点,则SM与BC所成的角为 .【答案】arccos【解析】设正四面体边长为1,取AC中点N,则MN∥BC,∠SMN为异面直线SM与BC所成的角或其补角,且MN=,SM=SN=,由余弦定理可得cos∠SMN=.73.【2010·石家庄市质量检测(二)】如图,在底面边长为2的正三棱柱ABC-A1B1C1中,若二面角C1-AB-C的大小为60,则点C到平面ABC1的距离为.【答案】【解析】过点C作CD⊥AB交AB于D,连结C1D,则由三垂线定理知∠CDC1为二面角的平面角,则∠CDC1=60°.过点C作CH⊥C1D,交C1D于H,则CH⊥平面ABC1,故CH为所求,在三角形CC1D中,CD=,从而CC1=3,从而CH=.74.【2010·云南曲靖一中高考冲刺卷六】正四面体外接球的体积为,则点A到平面BCD的距离为__________________.【答案】【解析】V=,所以R=,过A作AH⊥平面BCD,则垂足为底面中心,则AH为所求.又由正四面体与外接球的关系知,AH=R=.75.【2010·上海市长宁区二模】棱长为a的正方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E、F分别是棱AA1、DD1的中点,则直线EF被球O截得的线段长是_________.【答案】a【解析】由题意知球心为正方体对角线的中点,球半径为a,球心到直线EF 的距离为,所以直线EF被球O截得的线段长l=2=a.76.【2010·邯郸市二模】三棱锥A—BCD,AB=a,CD=b,∠ABD=∠BDC,M,N 分别为AD,BC的中点,P为BD上一点,则MP+NP 的最小值是 .。
2011—2020年十年新课标全国卷高考数学分类汇编——9.立体几何
2011年—2020年十年新课标全国卷数学分类汇编(含全国Ⅰ卷、Ⅱ卷、Ⅲ卷、新高考Ⅰ卷、新高考Ⅱ卷,共8套全国卷)(附详细答案)编写说明:研究发现,新课标全国卷的试卷结构和题型具有一定的稳定性和连续性.每个题型考查的知识点、考查方法、考查角度、思维方法等有一定套路.掌握了全国卷的各种题型,就把握住了全国卷命题的灵魂.本资料是根据全国卷的特点精心编写,百度文库首发,共包含14个专题,分别是: 1.集合 2.复数 3.逻辑、数学文化、新定义 4.平面向量 5.不等式 6.函数与导数7.三角函数与解三角形 8.数列 9.立体几何 10.解析几何 11.概率与统计 12.程序框图 13.坐标系与参数方程14.不等式选讲2011年—2020年新课标全国卷数学试题分类汇编9.立体几何一、选择题(2020·新高考Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°(2020·全国卷Ⅰ,文理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .514-B .512-C .514+D .512+ (2020·全国卷Ⅰ,理10文12)已知,,A B C 为球O球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π(2020·全国卷Ⅱ,理7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H(2020·全国卷Ⅱ,理10文11)已知△ABC 是面积为934的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A .3B .32C .1D .32(2020·全国卷Ⅲ,理8文9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+42C .6+23D .4+23(2019·全国卷Ⅰ,理12)已知三棱锥P −ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是P A ,AB 的中点,∠CEF =90°,则球O 的体积为( )A .68πB .64πC .62πD .6π(2019·全国卷Ⅱ,文理7)设α,β为两个平面,则α∥β的充要条件是( )A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面(2019·全国卷Ⅲ,文理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM = EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM = EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 (2018·新课标Ⅰ,理7文9) 某圆柱的高为2,底面周长为16,其三视图如右图所示,圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为( )A .217B .25C .3D .2(2018·新课标Ⅰ,理12)已知正方体的棱长为1,每条棱所在直线与平面α所成的角都相等,则α截此正方体所得截面面积的最大值为( )A .334B .233C .324D .32(2018·新课标Ⅰ,文5)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为( )A .122πB .12πC .82πD .10πMNB C A E(2018·新课标Ⅰ,文10)在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为( )A .8B .62C .82D .83(2018·新课标Ⅱ,理9)在长方体1111ABCD A B C D -中,1AB BC ==,13AA =,则异面直线1AD 与1DB 所成角的余弦值为( )A .15B .5C .5D .2 (2018·新课标Ⅱ,文9)在正方体1111ABCD A B C D -中,E 为棱1CC 的中点,则异面直线AE 与CD 所成角的正切值为 ( )A .2B .3C .5D .7 (2018·新课标Ⅲ,文理3)中国古建筑借助榫卯将木构件连接起来,构件的凸出部分叫棒头,凹进部分叫卯眼,图中木构件右边的小长方体是棒头.若如图摆放的木构件与某一带卯眼的木构件咬合成长方体,则咬合时带卯眼的木构件的俯视图可以是( )(2018·新课标Ⅲ,理10文12)设A B C D ,,,是同一个半径为4的球的球面上四点,ABC ∆为等边三角形且其面积为93,则三棱锥D ABC -体积的最大值为( )A .123B .183C .243D .543(2017·新课标Ⅰ,理7)某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中有若干个是梯形,这些梯形的面积之和为( )A .10B .12C .14D .16(2017•新课标Ⅰ,文6)如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是( )(2017·新课标Ⅱ,理4文6)如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分所得,则该几何体的体积为( )A .90πB .63πC .42πD .36π(2017·新课标Ⅰ,理7) (2017·新课标Ⅱ,理4) (2016·新课标Ⅰ,理6)(2017·新课标Ⅱ,10)已知直三棱柱111C C AB -A B 中,C 120∠AB =,2AB =,1C CC 1B ==,则异面直线1AB 与1C B 所成角的余弦值为( )A B C D (2017·新课标Ⅲ,理8文9)已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上,则该圆柱的体积为( )A .πB .3π4C .π2D .π4(2017·新课标Ⅲ,文10)在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( )A .11A E DC ⊥B .1A E BD ⊥C .11A E BC ⊥D .1AE AC ⊥(2016·新课标Ⅰ,理6文7)如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是283π,则它的表面积是( ) (A )π17 (B )π18 (C )π20 (D )π28(2016•新课标Ⅰ,文7) (2016·新课标Ⅱ,理6) (2016·新课标Ⅲ,文10) (2016·新课标Ⅰ,文理11)平面α过正方体1111D C B A ABCD -的顶点A ,//α平面11D CB ,α平面ABCD m =, α平面n A ABB =11,则n m ,所成角的正弦值为( )(A (B (C (D )13(2016·新课标Ⅱ,理6文7)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π(2016·新课标Ⅱ,文4)体积为8的正方体的顶点都在同一球面上,则该球面的表面积为( )A . B. C . D . (2016·新课标Ⅲ,理9文10)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为( )A. 18365+B. 54185+C. 90D. 81(2016·新课标Ⅲ,理10文11))在封闭的直三棱柱ABC -A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( )A. 4πB. 9π2C. 6πD. 32π3 (2015·新课标Ⅰ,文理6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺.问:积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛(2015•新课标Ⅰ,文理11)圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r =( )A .1B .2C .4D .8(2015•新课标Ⅰ,文11) (2015·新课标Ⅱ,文理6)(2015·新课标Ⅱ,文理6)一个正方体被一个平面截去一部分后,剩余部分的三视图如图,则截去部分体积与剩余部分体积的比值为( )A .81B .71C .61D .51 (2015·新课标Ⅱ,理9文10)已知A ,B 是球O 的球面上两点,∠AOB =90º,C 为该球面上的动点,若三棱锥O -ABC 体积的最大值为36,则球O 的表面积为( )A .36πB .64πC .144πD .256π(2014·新课标Ⅰ,12)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的个条棱中,最长的棱的长度为( )A .62B .42C .6D .412π323π8π4π(2014·新课标Ⅰ,理12) (2014•新课标Ⅰ,文8)(2014•新课标Ⅰ,文8)如图,网格纸的各小格都是正方形,粗实线画出的一个几何体的三视图,则这个几何体是( )A .三棱锥B .三棱柱C .四棱锥D .四棱柱(2014·新课标Ⅱ,文理6)如图,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为( )A .1727B .59C .1027D .13(2014·新课标,理6) (2013·新课标Ⅰ,理6) (2013·新课标Ⅰ,理8)(2014·新课标Ⅱ,理11)直三棱柱ABC -A 1B 1C 1中,∠BCA =90º,M ,N 分别是A 1B 1,A 1C 1的中点,BC =CA =CC 1,则BM 与AN 所成的角的余弦值为( )A .110B .25C D(2014·新课标Ⅱ,文7)正三棱柱ABC -A 1B 1C 1的底面边长为2D 为BC 中点,则三棱锥A -B 1DC 1的体积为( )(2013·新课标Ⅰ,理6)如图,有一个水平放置的透明无盖的正方体容器,容器高8 cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm ,如果不计容器的厚度,则球的体积为( ).A .500π3cm 3B .866π3cm 3C .1372π3cm 3D .2048π3cm 3 (2013·新课标Ⅰ,理8文11)某几何体的三视图如图所示,则该几何体的体积为( ).A .16+8πB .8+8πC .16+16πD .8+16π(2013·新课标Ⅱ,理4)已知,m n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l m ⊥,l n ⊥,l α⊄,l β⊄,则( )A.α // β且l // αB.αβ⊥且l β⊥C.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l(2013·新课标Ⅱ,理7文9)一个四面体的顶点在空间直角坐标系O xyz-中的坐标分别是(1,0,1),(1,1,0),(0,1,1),(0,0,0),画该四面体三视图中的正视图时,以zOx平面为投影面,则得到正视图可以为()(2012·新课标Ⅰ,文理7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.6 B.9 C.12 D.15(2012·新课标Ⅰ,11)已知三棱锥S-ABC的所有顶点都在球O的球面上,△ABC是边长为1的正三角形,SC为球O的直径,且SC=2,则此棱锥的体积为()A.6B.6C.3D.2(2013•新课标Ⅰ,理8文11) (2012•新课标Ⅰ,理7) (2011•新课标Ⅰ,理6文8) (2012•新课标Ⅰ,文8)平面α截球O的球面所得圆的半径为1,球心O到平面α体积为()A B.C.D.(2011·新课标Ⅰ,理6文8)在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为()二、填空题(2020·新高考Ⅰ,16)已知直四棱柱ABCD–A1B1C1D1的棱长均为2,∠BAD=60°.以1D的球面与侧面BCC1B1的交线长为________.(2020·全国卷Ⅱ,文16)设有下列四个命题:p1:两两相交且不过同一点的三条直线必在同一平面内.B. C. D.p 2:过空间中任意三点有且仅有一个平面.p 3:若空间两条直线不相交,则这两条直线平行.p 4:若直线l ⊂平面α,直线m ⊥平面α,则m ⊥l .则下述命题中所有真命题的序号是__________.①14p p ∧②12p p ∧③23p p ⌝∨④34p p ⌝∨⌝(2020·全国卷Ⅲ,文16)已知圆锥底面半径为1,母线长为3,则该圆锥内半径最大的球的体积为_________. (2019·全国卷Ⅰ,文16)已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC 的距,那么P 到平面ABC 的距离为___________.((2019·全国卷Ⅱ,文理16)中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)(2019·全国卷Ⅱ,理16) (2019·全国卷Ⅲ,理16)2019·全国卷Ⅲ,文理16)学生到工厂劳动实践,利用3D 打印技术制作模型,如图,该模型为长方体ABCD -A 1B 1C 1D 1挖去四棱锥O -EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,AB =BC =6cm ,AA 1=4cm .3D 打印所用的材料密度为0.9g /cm 3,不考虑打印损耗,制作该模型所需原料的质量为__________g .(2018·新课标Ⅱ,理16)已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45︒.若SAB △的面积为,则该圆锥的侧面积为_________.(2018·新课标Ⅱ,文16)已知圆锥的顶点为S ,母线SA ,SB 互相垂直,SA 与圆锥底面所成角为30︒,若SAB △的面积为8,则该圆锥的体积为__________.(2017·新课标Ⅰ,理16)如图,圆形纸片的圆心为O ,半径为5 cm ,该纸片上的等边三角形ABC 的中心为O .D 、E 、F 为圆O 上的点,△DBC ,△ECA ,△F AB 分别是以BC ,CA ,AB 为底边的等腰三角形.沿虚线剪开后,分别以BC , CA ,AB 为折痕折起△DBC ,△ECA ,△F AB ,使得D ,E ,F 重合,得到三棱锥.当△ABC 的边长变化时,所得三棱锥体积(单位:cm 3)的最大值为_______. 的H E G O D 11B 1D A(2017•新课标Ⅰ,文16)已知三棱锥的所有顶点都在球的球面上,是球的直径.若平面,,,三棱锥的体积为9,则球的表面积为_______.(2017·新课标Ⅱ,文15)长方体的长、宽、高分别为3,2,1,其顶点都在球O 的球面上,则球O 的表面积为__________.(2017·新课标Ⅲ,16)a ,b 为空间中两条互相垂直的直线,等腰直角三角形ABC 的直角边AC 所在直线与a ,b 都垂直,斜边AB 以直线AC 为旋转轴旋转,有下列结论:①当直线AB 与a 成60角时,AB 与b 成30角;②当直线AB 与a 成60角时,AB 与b 成60角; ③直线AB 与a 所称角的最小值为45;④直线AB 与a 所称角的最小值为60;其中正确的是________.(填写所有正确结论的编号)(2016·新课标Ⅱ,14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β.(2)如果m ⊥α,n ∥α,那么m ⊥n .(3)如果α∥β,m ⊂α,那么m ∥β.(4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有 . (填写所有正确命题的编号.)(2013•新课标Ⅰ,文15)已知H 是球O 的直径AB 上一点,AH ∶HB =1∶2,AB ⊥平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为______.(2013·新课标Ⅱ,文15)已知正四棱锥O-ABCDO 为球心,OA 为半径的球的表面积为________.(2011·新课标Ⅰ,15)已知矩形ABCD 的顶点都在半径为4的球O的球面上,且6,AB BC ==则棱锥O ABCD -的体积为 .(2011•新课标Ⅰ,文16)已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的316,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .三、解答题(2020·新高考Ⅰ,20)如图,四棱锥P -ABCD 的底面为正方形,PD ⊥底面ABCD .设平面P AD 与平面PBC 的交线为l .(1)证明:l ⊥平面PDC ;(2)已知PD =AD =1,Q 为l 上的点,求PB 与平面QCD 所成角的正弦值的最大值.S ABC -O SC O SCA SCB ⊥平面SA AC =SB BC =S ABC -O(2020·全国卷Ⅰ,理18)如图,D为圆锥的顶点,O是圆锥底面的圆心,AE为底面直径,AE AD=.ABC是底面的内接正三角形,P为DO上一点,6PO DO=.(1)证明:PA⊥平面PBC;(2)求二面角B PC E--的余弦值.(2020·全国卷Ⅰ,文19)如图,D为圆锥的顶点,O是圆锥底面的圆心,ABC是底面的内接正三角形,P为DO上一点,∠APC=90°.(1)证明:平面P AB⊥平面P AC;(2)设DO=2,圆锥的侧面积为3π,求三棱锥P−ABC的体积.(2020·全国卷Ⅱ,理20)如图,已知三棱柱ABC-A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点,过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1∥MN,且平面A1AMN⊥EB1C1F;(2)设O为△A1B1C1的中心,若AO∥平面EB1C1F,且AO=AB,求直线B 1E与平面A1AMN所成角的正弦值.(2020·全国卷Ⅱ,文20)如图,已知三棱柱ABC–A1B1C1的底面是正三角形,侧面BB1C1C是矩形,M,N分别为BC,B1C1的中点,P为AM上一点.过B1C1和P的平面交AB于E,交AC于F.(1)证明:AA1//MN,且平面A1AMN⊥平面EB1C1F;(2)设O为△A1B1C1的中心,若AO=AB=6,AO//平面EB1C1F,且∠MPN=π3,求四棱锥B–EB1C1F的体积.(2020·全国卷Ⅲ,理19)如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.(2020·全国卷Ⅲ,文19)如图,在长方体1111ABCD A B C D -中,点E ,F 分别在棱1DD ,1BB 上,且12DE ED =,12BF FB =.证明:(1)当AB BC =时,EF AC ⊥; (2)点1C 在平面AEF 内.(2019·全国卷Ⅰ,理18)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.(2019·全国卷Ⅰ,文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.(2019·全国卷Ⅱ,理17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.(2019·全国卷Ⅱ,文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C 的体积.(2019·全国卷Ⅲ,理19)图1是由矩形ABED,Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合.连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的二面角B-CG-A的大小.图1 图2(2019·全国卷Ⅲ,文19)图1是由矩形ADEB、Rt△ABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,∠FBC=60°.将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明图2中的A,C,G,D四点共面,且平面ABC⊥平面BCGE;(2)求图2中的四边形ACGD的面积.GF CA DE BDGE(F)B CA(2018·新课标I ,理18)如图,四边形ABCD 为正方形,E ,F 分别为AD ,BC 的中点,以DF 为折痕把DFC △折起,使点C 到达点P 的位置,且PF BF ⊥.(1)证明:平面PEF ⊥平面ABFD ; (2)求DP 与平面ABFD 所成角的正弦值.(2018·新课标Ⅰ,文18)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥. (1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.(2018·新课标Ⅱ,20)如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且二面角M PA C --为30︒,求PC 与平面PAM 所成角的正弦值.(2018·新课标Ⅱ,文19) 如图,在三棱锥P ABC -中,AB BC ==4PA PB PC AC ====,O 为AC 的中点. (1)证明:PO ⊥平面ABC ; (2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.(2018·新课标Ⅲ,理19)如图,边长为2的正方形ABCD所在平面与半圆弧CD所在平面垂直,M是CD 上异于C,D的点.⑴证明:平面AMD⊥平面BMC;⑵当三棱锥M ABC体积最大时,求面MAB与面MCD所成二面角的正弦值.(2018·新课标Ⅲ,文19)如图,矩形ABCD所在平面与半圆弧CD所在平面垂直,M是CD上异于C,D的点.⑴证明:平面AMD⊥平面BMC;⑵在线段AM上是否存在点P,使得MC∥平面PBD?说明理由.(2017·新课标Ⅰ,18)如图,在四棱锥P-ABCD 中,AB//CD ,且90BAP CDP ∠=∠= (1)证明:平面P AB ⊥平面P AD ;(2)若P A =PD =AB =DC ,90APD ∠=,求二面角A -PB -C 的余弦值.(2017•新课标Ⅰ,文18)如图,在四棱锥中,∥,且.(1)证明:平面平面;(2)若,,且四棱锥的体积为,求该四棱锥的侧面积.P ABCD -AB CD 90BAP CDP ∠=∠=︒PAB ⊥PAD PA PD AB DC ===90APD ∠=︒P ABCD -83(2017·新课标Ⅱ,19)如图,四棱锥P -ABCD 中,侧面P AD 为等比三角形且垂直于底面ABCD ,12AB BC AD ==,o 90BAD ABC ∠=∠=, E 是PD 的中点. (1)证明:直线//CE 平面P AB ;(2)点M 在棱PC 上,且直线BM 与底面ABCD 所成锐角为o 45 ,求二面角M -AB -D 的余弦值(2017·新课标Ⅱ,文18)如图,四棱锥P-ABCD 中,侧面PAD 为等边三角形且垂直于底面ABCD ,12AB =BC =AD ,∠BAD =∠ABC =90°. (1)证明:直线BC ∥平面PAD ;(2)若△PCD面积为P-ABCD 的体积.DPABC(2017·新课标Ⅲ,理19)如图所示,四面体ABCD 中,ABC △是正三角形,ACD △是直角三角形,ABD CBD ∠=∠,AB BD =.(1)证明:平面ACD ⊥平面ABC ;(2)过AC 的平面交BD 于点E ,若平面AEC 把四面体ABCD 分成体积相等的两部分,求二面角––D AE C 的余弦值.(2017·新课标Ⅲ,文19)如图所示,四面体ABCD 中,ABC △是正三角形,AD CD =.(1)证明:AC BD ⊥;(2)已知ACD △是直角三角形,AB BD =.若E 为棱BD 上与D 不重合的点,且AE EC ⊥,求四面体ABCE 与四面体ACDE 的体积比.(2016·新课标Ⅰ,18)如图,在以F E D C B A ,,,,,为顶点的五面体中,面ABEF 为正方形,︒=∠=90,2AFD FD AF ,且二面角E AF D --与二面角F BE C --都是︒60.(Ⅰ)证明:平面⊥ABEF 平面EFDC ; (Ⅱ)求二面角A BC E --的余弦值.(2016•新课标Ⅰ,文18)如图所示,已知正三棱锥P ABC -的侧面是直角三角形,6PA =,顶点P 在平面ABC 内的正投影为点D ,D 在平面PAB 内的正投影为点E .连结PE 并延长交AB 于点G . (1)求证:G 是AB 的中点;(2)在题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.PABD CGEABCDE F(2016·新课标Ⅱ,19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,AB =5,AC =6,点E ,F 分别在AD ,CD 上,AE =CF =54,EF 交BD 于点H . 将△DEF 沿EF 折到△D ´EF的位置,OD '=(Ⅰ)证明:D H '⊥平面ABCD ;(Ⅱ)求二面角B D A C '--的正弦值.(2016·新课标Ⅱ,文19)如图,菱形ABCD 的对角线AC 与BD 交于点O ,点E 、F 分别在AD ,CD 上,AE =CF ,EF 交BD 于点H ,将△DEF 沿EF 折到△D´EF 的位置.(Ⅰ)证明:; (Ⅱ)若D´—ABCEF 体积.'AC HD ⊥55,6,,'4AB AC AE OD ====OBACFDHED 'OBAFDHE D '(2016·新课标Ⅲ,19)如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,AD ∥BC ,AB =AD =AC =3,P A =BC =4,M 为线段AD 上一点,AM =2MD ,N 为PC 的中点.(1)证明MN ∥平面P AB ;(2)求直线AN 与平面PMN 所成角的正弦值.(2016·新课标Ⅲ,文19)如图,四棱锥P ABCD -中,PA ABCD ⊥底面,//AD BC ,3AB AD AC ===,4PA BC ==,M 为线段AD 上一点,2AM MD =,N 为PC 的中点.(1)证明//MN PAB 平面;(2)求四面体N BCM -的体积.PN MDCBA(2015·新课标Ⅰ,18)如图,四边形ABCD 为菱形,120ABC ∠=,,E F 是平面ABCD 同一侧的两点,BE ⊥平面ABCD ,DF ⊥平面ABCD ,2BE DF =,AE EC ⊥.(I )证明:平面AEC ⊥平面AFC ; (II )求直线AE 与直线CF 所成角的余弦值.(2015•新课标Ⅰ,文18)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ⊥平面ABCD ,(Ⅰ)证明:平面AEC ⊥平面BED ;(Ⅱ)若∠ABC =120°,AE ⊥EC , 三棱锥E - ACD 的体积为6,求该三棱锥的侧面积.(2015·新课标Ⅱ,19)如图,长方体ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说出画法和理由);(Ⅱ)求直线AF与平面α所成角的正弦值.(2015·新课标Ⅱ,文19)如图,长方体ABCD-A1B1C1D1中AB=16,BC=10,AA1=8,点E,F分别在A1B1,D 1C1上,A1E=D1F=4,过点E,F的平面α与此长方体的面相交,交线围成一个正方形.(Ⅰ)在图中画出这个正方形(不必说明画法和理由);(Ⅱ)求平面α把该长方体分成的两部分体积的比值.(2014·新课标Ⅰ,19)如图三棱柱111ABC A B C -中,侧面11BB C C 为菱形,1AB B C ⊥.(Ⅰ) 证明:1AC AB =;(Ⅱ)若1AC AB ⊥,o160CBB ∠=,AB=BC 求二面角111A A B C --的余弦值.(2014•新课标Ⅰ,文19)如图,三棱柱111C B A ABC -中,侧面C C BB 11为菱形,C B 1的中点为O ,且⊥AO 平面C C BB 11.(1)证明:;1AB C B ⊥(2)若1AB AC ⊥,,1,601==∠BC CBB 求三棱柱111C B A ABC -的高.(2014·新课标Ⅱ,18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB // 平面AEC;(Ⅱ)设二面角D-AE-C为60º,AP=1,AD=3,求三棱锥E -ACD的体积.(2014·新课标Ⅱ,文18)如图,四棱锥P-ABCD中,底面ABCD为矩形,P A⊥平面ABCD,E为PD的点.(Ⅰ)证明:PB // 平面AEC;(Ⅱ)设AP=1,AD=,三棱锥P-ABD的体积V=,求A点到平面PBC的距离.343(2013·新课标Ⅰ,18)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.(2013•新课标Ⅰ,文19)如图,三棱柱ABC-A1B1C1中,CA=CB,AB=AA1,∠BAA1=60°.(1)证明:AB⊥A1C;(2)若AB=CB=2,A1C,求三棱柱ABC-A1B1C1的体积.(2013·新课标Ⅱ,文18)如图,直三棱柱111ABC A B C -中,D ,E 分别是AB ,1BB 的中点.(Ⅰ)证明:1//BC 平面1ACD ; (Ⅱ)设12AA AC CB ===,AB =1C A DE -的体积.1AD1B1CACEB1(2012·新课标Ⅰ、Ⅱ,19)如图,直三棱柱ABC -A 1B 1C 1中,AC=BC=21AA 1,D 是棱AA 1的中点, DC 1⊥BD .(1)证明:DC 1⊥BC ;(2)求二面角A 1-BD -C 1的大小.(2012•新课标Ⅰ,文19)如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,90ACB ∠=︒,AC=BC=21AA 1,D 是棱AA 1的中点.(1)证明:平面BDC 1⊥平面BDC ;(2)平面BDC 1分此棱柱为两部分,求这两部分体积的比.A 1A 1(2011·新课标Ⅰ、Ⅱ,18)如图,四棱锥P-ABCD 中,底面ABCD 为平行四边形,∠DAB=60°,AB=2AD ,PD ⊥底面ABCD .(Ⅰ)证明:P A ⊥BD ;(Ⅱ)若PD =AD ,求二面角A-PB-C 的余弦值.(2011•新课标Ⅰ,文18)如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (1)证明:PA BD ⊥;(2)若1PD AD ==,求棱锥D PBC -的高.ACDP2011年—2020年新课标全国卷数学试题分类汇编9.立体几何(解析版)一、选择题(2020·新高考Ⅰ,4)日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O ),地球上一点A 的纬度是指OA 与地球赤道所在平面所成角,点A 处的水平面是指过点A 且与OA 垂直的平面.在点A 处放置一个日晷,若晷面与赤道所在平面平行,点A 处的纬度为北纬40°,则晷针与点A 处的水平面所成角为( )A .20°B .40°C .50°D .90°【答案】B 【解析】画出截面图如下图所示,其中CD 是赤道所在平面的截线;l 是点A 处的水平面的截线,依题意可知OA l ⊥;AB 是晷针所在直线.m 是晷面的截线,依题意可知//m CD 、AB m ⊥. 由于40,//AOC m CD ∠=︒,所以40OAG AOC ∠=∠=︒, 由于90OAG GAE BAE GAE ∠+∠=∠+∠=︒,所以40BAE OAG ∠=∠=︒,也即晷针与点A 处的水平面所成角为40BAE ∠=︒.(2020·全国卷Ⅰ,文理3)埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为( )A .51- B .51- C .51+ D .51+ 【答案】D 【解析】如图,设,CD a PE b ==,则22224a PO PE OEb =-=-,由题意212PO ab =,即22142a b ab -=,化简得24()210b b a a -⋅-=,解得15b a +=(负值舍去).故选:C .(2020·全国卷Ⅰ,理10文12)已知,,A B C 为球O 球面上的三个点,⊙1O 为ABC 的外接圆,若⊙1O 的面积为4π,1AB BC AC OO ===,则球O 的表面积为( )A .64πB .48πC .36πD .32π【答案】A 【解析】设圆1O 半径为r ,球的半径为R ,依题意,得24,2r r ππ=∴=,由正弦定理可得2sin 6023AB r =︒=,123OO AB ∴==,根据圆截面性质1OO ⊥平面ABC ,222211111,4OO O A R OA OO O A OO r ∴⊥==+=+=, ∴球O 的表面积2464S R ππ==.故选:A(2020·全国卷Ⅱ,理7)如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M ,在俯视图中对应的点为N ,则该端点在侧视图中对应的点为( )A .EB .FC .GD .H【答案】A【解析】根据三视图,画出多面体立体图形,图中标出了根据三视图M 点所在位置,可知在侧视图中所对应的点为E ,故选:A (2020·全国卷Ⅱ,理10文11))已知△ABC 是面积为93的等边三角形,且其顶点都在球O 的球面上.若球O 的表面积为16π,则O 到平面ABC 的距离为( )A .3B .32C .1D .32【答案】C 【解析】设球O 的半径为R ,则2416R ππ=,解得:2R =. 设ABC 外接圆半径为r ,边长为a ,ABC 是面积为93的等边三角形,213932a ∴⨯=,解得:3a =,22229933434a r a ∴=⨯-=⨯-=,∴球心O 到平面ABC 的距离22431d R r =-=-=.故选:C .(2020·全国卷Ⅲ,理8文9)下图为某几何体的三视图,则该几何体的表面积是( )A .6+42B .4+42C .6+23D .4+23【答案】C【解析】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABC ADC CDB S S S ===⨯⨯=△△△,根据勾股定理可得:22AB AD DB ===, ∴ADB △是边长为22的等边三角形,根据三角形面积公式可得:2113sin 60(22)2322ADB S AB AD =⋅⋅︒=⋅=△,∴该几何体的表面积是:2362332=⨯++.(2019·全国卷Ⅰ,理12)已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,△ABC 是边长为2的正三角形,E ,F 分别是PA ,AB 的中点,∠CEF =90°,则球O 的体积为( ) A .68πB .64πC .62πD .6π【答案】D 解析:设PA x =,则2222222-42cos =22PA PC AC x x x APC PA PC x x x ++--∠==⋅⋅⋅ ∴2222cos CE PE PC PE PC APC =+-⋅⋅∠22222222424x x x x x x x -=+-⋅⋅⋅=+∵90CEF ∠=︒,1,322xEF PB CF === ∴222CE EF CF +=,即222344x x ++=,解得2x =,∴2PA PB PC ===,又2AB BC AC ===,易知,,PA PB PC 两两相互垂直,故三棱锥P ABC -的外接球的半径为6,∴三棱锥P ABC -的外接球的体积为3432π⎛⋅= ⎝⎭,故选D. 解法2:如图,由PA =PB =PC ,△ABC 是边长为2的正三角形,可知三棱锥P ﹣ABC 为正三棱锥, 则顶点P 在底面的射影O 为底面三角形的中心,连接BO 并延长,交AC 于G , 则AC ⊥BG ,又PO ⊥AC ,PO ∩BG =O ,可得AC ⊥平面PBG ,则PB ⊥AC , ∵E ,F 分别是PA ,AB 的中点,∴EF ∥PB ,又∠CEF =90°,即EF ⊥CE ,∴PB ⊥CE ,得PB ⊥平面PAC , ∴正三棱锥P ﹣ABC 的三条侧棱两两互相垂直,把三棱锥补形为正方体,则正方体外接球即为三棱锥的外接球, 其直径为D =√PA 2+PB 2+PC 2=√6. 半径为√62,则球O 的体积为43π×(√62)3=√6π.(2019·全国卷Ⅱ,文理7)设α,β为两个平面,则α∥β的充要条件是( ) A .α内有无数条直线与β平行 B .α内有两条相交直线与β平行 C .α,β平行于同一条直线D .α,β垂直于同一平面【答案】B 解析:对于A ,α内有无数条直线与β平行,α∩β或α∥β; 对于B ,α内有两条相交直线与β平行,α∥β; 对于C ,α,β平行于同一条直线,α∩β或α∥β; 对于D ,α,β垂直于同一平面,α∩β或α∥β. 故选:B .(2019·全国卷Ⅲ,文理8)如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则( )A .BM = EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM = EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 【答案】B 解析:∵点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,。
2011-2019高考文科数学全国卷真题分类汇编(含详细答案)专题:第12章 立体几何
C 1CB第12章 立体几何1.(2014新课标Ⅱ文7)正三棱柱的底面边长为,为中点,则三棱锥的体积为( ) A. B.C. D.2.(2015全国I 文6)《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图所示,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为立方尺,圆周率约为3,估算出堆放的米约有( ). A. 斛B. 斛C. 斛D. 斛3.(2011全国文18)如图所示,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD .(1)证明:PA BD ⊥;(2)若1P D A D ==,求棱锥D PBC -的高.4.(2012全国文19)如图,三棱柱111ABC A B C -中,侧棱垂直底面,090ACB ∠=,112AC BC AA ==,D 是棱1AA 的中点.(1)证明:1BDC BDC ⊥平面平面(2)平面1BDC 分此棱柱为两部分,求这两部分体积的比.5.(2013全国I 文19)如图,三棱柱中,.(1)证明:;(2)若,求三棱柱的体积. 111ABC A B C -2D BC 11A B DC -332121.6214223666111-ABC A B C 1160CA CB AB AA BAA ==∠=,,1AB A C ⊥12AB CB AC ===,111-ABC A B C1ACA6.(2013全国II文18)如图,直三棱柱中,,分别是,的中点.(1)证明:平面;(2)设,,求三棱锥的体积.7.(2014新课标Ⅰ文19)(本题满分12分)如图所示,三棱柱中,侧面为菱形,的中点为,且平面.(1)求证:;(2)若,,,求三棱柱的高.8.(2014新课标Ⅱ文18)(本小题满分12分)如图所示,四棱锥中,底面为矩形,平面,为的中点.(1)求证:平面;(2)设,三棱锥的体积,求到平面的距离.9. (2015全国I文18)如图所示,四边形为菱形,G为与的交点,平面.(1)求证:平面平面;(2)若,,三棱锥的体积为.111ABC A B C-D EAB1BB1//BC11A CD12AA AC CB===AB=1C A DE-111ABC A B C-11BB C C 1B C O AO⊥11BB C C1B C AB⊥1AC AB⊥160CBB∠=︒1BC=111ABC A B C-P ABCD-ABCD PA⊥ABCD E PD PB∥AEC1AP=AD=P ABD-4V=A PBCABCDAC BD BE⊥ABCDAEC⊥BED120ABC∠=AE EC⊥E ACD-APECBAO1B1ACB1CGEDCBA10. (2015全国II 文19)如图所示,长方体1111ABCD A B C D -中,16AB =,10BC =,18AA =,点E ,F 分别在11A B ,11D C 上,114AE D F ==.过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形.(1)在图中画出这个正方形(不必说明画法和理由);(2)求平面α把该长方体分成的两部分体积的比值.11.(2011全国文16)已知两个圆锥由公共底面,且两圆锥的顶点和底面的圆周都在同一个球面上.若圆锥底面面积是这个球面面积的,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为.12.(2012全国文8)8. 平面截球的球面所得圆的半径为,球心到平面,则此球的体积为(). A.B.C. D.13.(2013全国I 文15)已知是球的直径上一点,,平面,为垂足,截球所得截面的面积为,则球的表面积为. 14.(2013全国II 文15)已知正四棱锥为球心,为半径的球的表面积为________.15.(2015全国II 文10)已知A 、B 是球O 的球面上两点,90AOB∠=o ,C 为该球面上的动点.若三棱锥O ABC ﹣体积的最大值为36,则球O 的表面积为(). A. 36π B. 64π C. 144π D. 256π16.(2011全国文8)在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为().A. B.C. D.316αO 1O αH O AB :1:2AH HB =AB ⊥αHαO πO O ABCD -O OA A C 1A17.(2012全国文7)如图所求,网格纸上小正方形的边长为,粗线画出的是某几何体的三视图,则此几何体的体积为().A. B.C. D.18.(2013全国I文11)某几何函数的三视图如图所示,则该几何体的体积为().A. B.C. D.19.(2013全国II文9)一个四面体的顶点在空间直角坐标系中的坐标分别是,,,画该四面体三视图中的正视图时,以平面为投影面,则得到正视图可以为().A. B. C. D.20.(2014新课标Ⅰ文8)如右图所示,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱21.(2014新课标Ⅱ文6)如图所示,网格纸上正方形小格的边长为(表示),图中粗线画出的是某零件的三视图,该零件由一个底面半径为,高为的圆柱体毛坯切削得到,则切削掉部分的体积与原来毛坯体积的比值为()A. B. C. D.1691218168π+88π+1616π+816π+O xyz-(1,0,1) (1,1,0)(0,1,1)(0,0,0)zOx11cm3cm6cm17275910271322. (2015全国I 文11)圆柱被一个平面截去一部分后与半球(半径为)组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若该几何体的表面积为,则().A. 1B. 2C. 4D. 823.(2015全国II 文6)一个正方体被一个平面截取一部分后,剩余部分的三视图如图所示,则截去部分体积与剩余部分体积的比值为().A. 81B. 71C. 61D. 5124.(2016全国I 文7)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是25.(2016全国I 文18).(本题满分12分)如图,在已知正三棱锥P -ABC 的侧面是直角三角形,PA =6,顶点P 在平面ABC 内的正投影为点D ,D在平面PAB 内的正投影为点E ,连接PE 并延长交AB 于点G .(Ⅰ)证明G 是AB 的中点;(Ⅱ)在答题卡第(18)题图中作出点E 在平面PAC 内的正投影F (说明作法及理由),并求四面体PDEF 的体积.r 1620π+r =A .17π B .18π C .20π D .28π俯视图侧视图主视图26.(2017全国I文6)6.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是A.B.C.D.27(2017全国I文16)16.已知三棱锥S−ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S−ABC的体积为9,则球O的表面积为________.28(2017全国I文18)18.(12分)如图,在四棱锥P−ABCD中,AB//CD,且90BAP CDP∠=∠=.(1)证明:平面PAB⊥平面PAD;(2)若PA=PD=AB=DC,90APD∠=,且四棱锥P−ABCD的体积为83,求该四棱锥的侧面积.29.(2018全国I 文5)5.已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为 A .B .12πC .D .10π30.(2018全国I 文9)9.某圆柱的高为2,底面周长为16,其三视图如右图.圆柱表面上的点M 在正视图上的对应点为A ,圆柱表面上的点N 在左视图上的对应点为B ,则在此圆柱侧面上,从M 到N 的路径中,最短路径的长度为 A .B .C .3D .231(2018全国I 文10)10.在长方体1111ABCD A B C D -中,2AB BC ==,1AC 与平面11BB C C 所成的角为30︒,则该长方体的体积为A .8B .C .D .32(2018全国I 文18)18.(12分)如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC 为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.33.【2019年高考全国Ⅱ卷文数】设α,β为两个平面,则α∥β的充要条件是A .α内有无数条直线与β平行B .α内有两条相交直线与β平行C .α,β平行于同一条直线D .α,β垂直于同一平面34.【2019年高考全国Ⅲ卷文数】如图,点N 为正方形ABCD 的中心,△ECD 为正三角形,平面ECD ⊥平面ABCD ,M 是线段ED 的中点,则A .BM =EN ,且直线BM ,EN 是相交直线B .BM ≠EN ,且直线BM ,EN 是相交直线C .BM =EN ,且直线BM ,EN 是异面直线D .BM ≠EN ,且直线BM ,EN 是异面直线 35.【2019年高考浙江卷】祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,则积不容异”称为祖暅原理,利用该原理可以得到柱体的体积公式V 柱体=Sh ,其中S 是柱体的底面积,h 是柱体的高.若某柱体的三视图如图所示(单位:cm ),则该柱体的体积(单位:cm 3)是A .158B .162C .182D .32436.【2019年高考全国Ⅰ卷文数】已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC P 到平面ABC 的距离为___________. 37.【2019年高考全国Ⅱ卷文数】中国有悠久的金石文化,印信是金石文化的代表之一.印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体.半正多面体体现了数学的对称美.图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1.则该半正多面体共有________个面,其棱长为_________.(本题第一空2分,第二空3分.)38.【2019年高考全国Ⅲ卷文数】学生到工厂劳动实践,利用3D 打印技术制作模型.如图,该模型为长方体1111ABCD A B C D 挖去四棱锥O −EFGH 后所得的几何体,其中O 为长方体的中心,E ,F ,G ,H 分别为所在棱的中点,16cm 4cm AB =BC =AA =,,3D 打印所用原料密度为0.9 g/cm 3,不考虑打印损耗,制作该模型所需原料的质量为___________g.高考真题详解1.解析在正三棱柱中,因为,所以平面,所以,故选C. 2.解析由,得..故堆放的米约有(斛).故选B. 3.解析(1)因为60DBA ∠=,2AB AD =,由余弦定理得BD =,从而222BD AD AB +=,故BD AD ⊥,又PD ⊥底面ABCD ,可得BD PD ⊥.所以BD ⊥平面PAD ,故PA BD ⊥.(2)如图所示,作DE PB ⊥,垂足为E .已知PD ⊥底面ABCD ,则PD BC ⊥. 由(1)知BD AD ⊥,又BC AD ∥,所以BC BD ⊥. 故BC ⊥平面PBD ,BC DE ⊥,则DE ⊥平面PBC . 因为1AD =,2AB =,60DAB ∠=,所以BD =1PD =,所以2PB =. 根据DE PB PD BD ⋅=⋅,得DE =,即棱锥D PBC -111ABC A B C -AD BC ⊥AD ⊥11BDC 111111121332A B DCB DC V S AD -=⋅=⨯⨯=△l r α=816332lr α===21116320354339V ⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭3201.62229÷≈C 1B 1A 1DC BA4.解析(1)证明:由题设知1BC CC ⊥,BC AC ⊥,1CC AC C =,所以BC ⊥平面11ACC A .又1DC ⊂平面11ACC A ,所以1DC BC ⊥.由题设知1145A DC ADC ∠=∠=,所以190CDC ∠=,即.又,所以平面.(2)设棱锥的体积为,,由题意得.又三棱柱 的体积,所以.故平面分此棱柱所得两部分体积的比为.5.分析(1)先证明直线与平面垂直,再利用线面垂直的性质求解;(2)先证明三棱柱的高,再利用体积公式求解体积.解析:(1)取的中点,连接,.因为,所以.由于,,故为等边三角形,所以.因为,所以.又,故. (2)由题设知与都是边长为2的等边三角形,所以.又,则,故因为,所以,为三棱柱的高.又的面积,故三棱柱的体积.6.分析(1)运用直线与平面平行的判定定理进行求解;(2)求三棱锥的体积,应先找出三棱锥的高及底面积并求出,然后运用体积公式求解.解析:(1)证明:连接交于点,则为中点.又是中点,连接, 则.因为,,所以. (2)解:因为是直三棱柱,所以.由已知,为的中点,所以.又,于是.由得,,,故,即.所以.1DC DC ⊥DCBC C =1DC ⊥BDC 1B DACC -1V 1AC =1112111322V ⨯=⨯⨯⨯=111ABCA B C -1V=()11:1:1V V V -=1BDC 1:1AB O OC 11,OA A B CA CB =OC AB ⊥1AB AA =160BAA ∠=︒1AA B △1OA AB ⊥1OC OA O =1AB OA C ⊥平面11AC OAC ⊂平面1AB A C ⊥ABC △1AA B △1OC OA ==1AC 22211A C OC OA =+1.OA OC ⊥OCAB O =1OA ABC ⊥平面1OA 111-ABC A B C ABC △ABC S =△111-ABC A B C 13ABC V S OA =⋅=△1AC 1A C F F 1AC D AB DF 1//BC DF 1DF ACD ⊂平面11BC ACD ⊄平面11//BC A CD 平面111-ABC A B C 1AA CD ⊥AC CB =D AB CD AB ⊥1AA AB A =11//CD ABB A 平面12,AA AC CD AB ====90ACB ∠=︒CD =1A D 13DE A E ==22211A D DE A E +=1DE A D ⊥1-11132C A DE V =⨯=三棱锥7.解析(1)连接,则为与的交点.因为侧面为棱形,所以.又平面,所以,故平面.由于平面,故.(2)作,垂足为,连接.作,垂足为.由于,,故平面,所以.又,所以平面.因为,所以为等边三角形,又,可得.由于,所以.由,且,得.又为的中点,所以点到平面的距离为.故三棱柱的高为. 评注本题考查直线与平面垂直的判定,点到平面的距离的求法等知识,同时考查空间想象能力和逻辑推理能力.第(2)文中作出垂线段是关键,也可用等积法求解.8.解析(I )设与的交点为,连接.因为为矩形,所以为的中点.又为的中点,所以.平面,平面,所以平面. (II ).由,可得.作交于.由题设知平面,所以,故平面.又到平面评注本题考查直线和平面平行、垂直的判定方法以及空间距离的计算,考查了空间想象能力.9.解析(1)因为平面,所以. 又为菱形,所以.1BC O 1B C 1BC 11BB C C 11B C BC ⊥AO ⊥11BB C C 1B C AO ⊥1B C ⊥ABO AB ⊂ABO 1BC AB ⊥C 1A 1B 1OH DC BAOD BC ⊥D AD OH AD ⊥H BC AO ⊥BC OD ⊥BC ⊥AOD OH BC ⊥OH AD ⊥OH ⊥ABC 160CBB ∠=1CBB △1BC =OD =1AC AB ⊥11122OA B C ==OH AD OD OA ⋅=⋅AD ==14OH =O 1B C 1B ABC 111ABC A B C -BD AC O EO ABCD O BD E PD //EO PB EO ⊂AEC PB ⊄AEC //PB AEC 16V PA AB AD AB =⋅⋅=4V =32AB =AH PB ⊥PB H BC ⊥PAB BC AH ⊥AH ⊥PBC PA AB AH PB ⋅==A PBC BE ⊥ABCD BE AC ⊥ABCD AC BD ⊥EAHEOPDCBA又因为,,平面,所以平面.又平面,所以平面平面.(2)在菱形中,取,又,所以,.在中,,所以, 所以在中,,所以,解得.在,,中,可得所以三棱锥的侧面积10.解析 (1)交线围成的正方形EHGF 如图所示: (2)作EM AB ⊥,垂足为M ,则14AM A E ==,112EB =,18EM AA ==.因为EHGF 为正方形,所以10EH EF BC ===.于是6MH ==,10AH =,6HB =.因为长方体被平面α分成两个高为10的直棱柱,所以其体积的比值为()()141081072196128102+⨯⨯=+⨯⨯或97. 评注文科对立体几何的考查主要是线面关系的推理证明,画图及简单推理,重点考查多边形,多面体的体积计算,注意在计算中能从不同角度看图的能力.11.解析设圆锥底面半径为,球的半径为,则由,知. 根据球的截面的性质可知两圆锥的高必过球心,且两圆锥的顶点以及圆锥与球的交点是球的大圆上的点,因此. 设,,则.又,知.BD BE B =BD BE ⊂BED AC ⊥BED AC ⊂AEC AEC ⊥BED ABCD 2AB BC CD AD x ====120ABC ∠=AG GC ==BG GD x ==AEC △90AEC ∠=12EG AC ==Rt EBG △BE ==31122sin12023233E ACD V x x x x -=⨯⨯⋅⋅⋅==1x =Rt EBA △Rt EBC △Rt EBD △AE EC ED ===1122322S =⨯⨯=+侧r R 223π4π16r R =⨯2234r R =O PB QB ⊥PO x '=QO y '=2x y R +=PO B BO Q ''△∽△22r O B xy '==H GFE DCB A 1D 1C 1B 1A即.②由①②及可得.则这两个圆锥中,体积较小者的高与体积较大者的高的比为.故答案为.12.分析利用截面圆的性质先求得圆的半径长.解析如图所示,设截面圆的圆心为,为截面圆上任一点, 则,所以即球的半径为,所以.故选B.13.分析利用球的截面建立直角三角形求解.解析:如图,设球的半径为,则由得,所以.因为截面面积为,所以.在中,,所以,所以.所以. 14.分析本题先求出正四棱锥的高,然后求出侧棱的长,再运用球的表面积公式求解.解析:,得.所以.15.解析根据题意,可得图如下,当点C 位于垂直于面AOB 的直径端点时,三棱锥O ABC ﹣的体积最大,则可设球O 的半径为R ,此时21132O ABC C AOB V V R ==⨯⨯﹣﹣31366R R ==, 故6R =,则球O 的表面积为24π144πS R ==.故选C .16.解析由几何体的正视图和侧视图可知,该几何体的底面为半圆和等腰三角形,其侧视图可以是一个由等腰三角形及底边上的高构成的平面图形. 故选D.17.分析结合三视图知识求解三棱锥的体积.2234xy r R ==x y >3,22Rx R y ==1313'O M 'OO ='1O M =OM ==34π3V ==O R 12AH HB =::12233HA R R =⋅=3ROH =()2HM π=π⋅1HM =Rt HMO △222OM OH HM =+222211199R R HM R =+=+4R =229442S R ⎛=π=π⋅=π 4⎝⎭球h -13O ABCD V ==四棱锥h =2221866244AC OA h ⎛⎫=+=+= ⎪⎝⎭2424S OA =π=π球解析由题意知,此几何体是三棱锥,其高,相应底面面积为,所以.故选B.18.分析将三视图还原为原来的几何体,再利用体积公式求解.解析:原几何体为组合体:上面是长方体,下面是圆柱的一半(如图所示),其体积为故选A.19.分析结合已知条件画出图形,然后按照要求作出正视图.解析:根据已知条件作出图形:四面体,标出各个点的坐标如图(1)所示,可以看出正视图是正方形,如图(2)所示.故选A.20.解析由题中三视图可知该几何体的直观图如图所示,则这个几何体是三棱柱,故选B.评注本题考查几何体的三视图,记住基本几何体的三视图是解题的关键.21.解析该零件是两个圆柱体构成的组合体,其体积为,圆柱体毛坯的体积为,所以切削掉部分的体积为,所以切削掉部分的体积与原来毛坯体积的比值为,故选C. 22.解析由几何体的视图,还原其立体图形,并调整其摆放姿势,让半圆柱体在下方,半球在上方,如图所示.,得.故选B.23.解析 由三视图得,在正方体1111ABCDA B C D ﹣中,截去四面体111A A B D ﹣,如图所示,设正方体棱长为a ,则11133111326A A B D V a a =⨯=﹣,故剩余几何体体积为3331566a a a -=, 所以截去部分体积与剩余部分体积的比值为15.故选D.24.(2016全国I 文7)7.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是28π3,则它的表面积是3h =16392S =⨯⨯=1193933V Sh ==⨯⨯=21422241682V =⨯⨯+π⨯⨯=+π.11-C A DB 22π24π3234π⨯⨯+⨯⨯=3cm 2π3654π⨯⨯=3cm 54π34π20π-=3cm 20π1054π27=224π22π2π2r S r r r r r =+++=2245π1620πr r +=+2r=r答案:A解析:该图形的直观图如图所示,所以此图属于切割体,切去了该球18的体积,根据体积公式34=3V r π球,有317428(1)=8833V r ππ-=球,解得2r =。
2011年高考数学立体几何配套试卷及答案
2011年最新高考+最新模拟——立体几何1.【2010·浙江理数】设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A.若l m ⊥,m α⊂,则l α⊥ B.若l α⊥,l m //,则m α⊥ C.若l α//,m α⊂,则l m // D.若l α//,m α//,则l m // 【答案】B【解析】可对选项进行逐个检查.本题主要考察了立体几何中线面之间的位置关系及其中的公理和判定定理,也蕴含了对定理公理综合运用能力的考察,属中档题.2.【2010·全国卷2理数】与正方体1111ABCD A BC D -的三条棱AB 、1CC 、11A D 所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个 【答案】D【解析】直线上取一点,分别作垂直于于则分别作,垂足分别为M ,N ,Q ,连PM ,PN ,PQ ,由三垂线定理可得,PN ⊥PM ⊥;PQ ⊥AB ,由于正方体中各个表面、对等角全等,所以,∴PM=PN=PQ ,即P 到三条棱AB 、CC 1、A 1D 1.所在直线的距离相等所以有无穷多点满足条件,故选D.3.【2010·全国卷2理数】已知正四棱锥S ABCD -中,SA =,那么当该棱锥的体积最大时,它的高为( )【答案】C【解析】本试题主要考察椎体的体积,考察告辞函数的最值问题.设底面边长为a ,则高所以体积,设,则,当y 取最值时,,解得a=0或a=4时,体积最大,此时,故选C.4.【2010·陕西文数】若某空间几何体的三视图如图所示,则该几何体的体积是( ) A.2B.1C.23D.13【答案】B【解析】本题考查立体图形三视图及体积公式如图,该立体图形为直三棱柱,所以其体积为122121=⨯⨯⨯. 5.【2010·辽宁文数】已知,,,S A B C 是球O 表面上的点,SA ABC ⊥平面,AB BC ⊥,1SA AB ==,BC =O 的表面积等于( )A.4πB.3πC.2πD.π 【答案】A【解析】由已知,球O 的直径为22R SC ==,∴表面积为244.R ππ=6.【2010·辽宁理数】有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是( ) A.(B.(1,D.(0,【答案】A 【解析】本题考查了学生的空间想象能力以及灵活运用知识解决数学问题的能力.根据条件,四根长为2的直铁条与两根长为a 的直铁条要组成三棱镜形的铁架,有以下两种情况:(1)地面是边长为2的正三角形,三条侧棱长为2,a ,a ,如图,此时a 可以取最大值,可知228a <+=,即有(2)构成三棱锥的两条对角线长为a ,其他各边长为2,如图所示,此时a>0; 综上分析可知a ∈(2217.【2010·全国卷2文数】与正方体ABCD —A 1B 1C 1D 1的三条棱AB 、CC 1、A 1D 1所在直线的距离相等的点( )A.有且只有1个B.有且只有2个C.有且只有3个D.有无数个 【答案】D【解析】本题考查了空间想象能力.∵到三条两垂直的直线距离相等的点在以三条直线为轴,以正方体边长为半径的圆柱面上,∴三个圆柱面有无数个交点.8.【2010·全国卷2文数】已知三棱锥S ABC -中,底面ABC 为边长等于2的等边三角形,SA 垂直于底面ABC ,SA =3,那么直线AB 与平面SBC 所成角的正弦值为( )34【答案】D【解析】本题考查了立体几何的线与面、面与面位置关系及直线与平面所成角.过A 作AE 垂直于BC 交BC 于E ,连结SE ,过A 作AF 垂直于SE 交SE 于F ,连BF ,∵正三角形ABC ,∴ E 为BC 中点,∵ BC ⊥AE ,SA ⊥BC ,∴ BC ⊥面SAE ,∴ BC ⊥AF ,AF ⊥SE ,∴ AF ⊥面SBC ,∵∠ABF 为直线AB 与面SBC 所成角,由正三角形边长3,∴AE =AS=3,∴SE=AF=32,∴3sin 4ABF ∠=. 9.【2010·江西理数】过正方体1111ABCD A BC D -的顶点A 作直线L ,使L 与棱AB ,AD ,1AA 所成的角都相等,这样的直线L 可以作( ) A.1条 B.2条 C.3条 D.4条【答案】D【解析】考查空间感和线线夹角的计算和判断,重点考查学生分类、划归转化的能力.第一类:通过点A 位于三条棱之间的直线有一条体对角线AC 1,第二类:在图形外部和每条棱的外角和另2条棱夹角相等,有3条,合计4条.10.【2010·安徽文数】一个几何体的三视图如图,该几何体的表面积是( ) A.372 B.360 C.292 D.280 【答案】B【解析】该几何体由两个长方体组合而成,其表面积等于下面长方体的全面积加上面长方体的4个侧面积之和. 把三视图转化为直观图是解决问题的关键.又三视图很容易知道是两个长方体的组合体,画出直观图,得出各个棱的长度.把几何体的表面积转化为下面长方体的全面积加上面长方体的4个侧面积之和.2(10810282)2(6882)360S =⨯+⨯+⨯+⨯+⨯=.ABC SEF11.【2010·重庆文数】到两互相垂直的异面直线的距离相等的点( ) A.只有1个 B.恰有3个 C.恰有4个 D.有无穷多个 【答案】D【解析】放在正方体中研究,显然,线段1OO 、EF 、FG 、GH 、HE 的中点到两垂直异面直线AB 、CD 的距离都相等,所以排除A 、B 、C ,选D.亦可在四条侧棱上找到四个点到两垂直异面直线AB 、CD 的距离相等.12.【2010·浙江文数】若某几何体的三视图(单位:cm )如图所示,则此几何体的体积是( )A.3523cm 3 B.3203cm 3C.2243cm 3 D.1603cm3 【答案】B【解析】本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题. 13.【2010·山东文数】在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行 【答案】D14.【2010·北京文数】如图,正方体1111ABCD-A B C D 的棱长为2,动点E 、F 在棱11A B 上.点Q 是CD 的中点,动点P 在棱AD 上,若EF=1,DP=x ,1A E=y(x,y 大于零),则三棱锥P-EFQ 的体积( ) A.与x ,y 都有关; B.与x ,y 都无关;C.与x 有关,与y 无关;D.与y 有关,与x 无关; 【答案】C15.【2010·北京文数】一个长方体去掉一个小长方体,所得几何体的正(主)视图与侧(左)视图分别如右图所示,则该集合体的俯视图为:( )【答案】C16.【2010·北京理数】如图,正方体ABCD-1111A B C D 的棱长为2,动点E 、F 在棱11A B 上,动点P ,Q 分别在棱AD ,CD 上,若EF=1,1A E=x ,DQ=y ,D P=z(x,y,z大于零),则四面体PE FQ的体积( ) A.与x,y,z都有关 B.与x有关,与y,z无关 C.与y有关,与x,z无关 D.与z有关,与x,y无关 【答案】D17.【2010·四川理数】半径为R 的球O 的直径AB 垂直于平面α,垂足为B ,BCD 是平面α内边长为R 的正三角形,线段AC 、AD 分别与球面交于点M ,N ,那么M 、N 两点间的球面距离是( )A.17arccos 25RB.18arccos 25RC.13R πD.415R π 【答案】A【解析】由已知,AB =2R,BC =R,故tan ∠BAC =12,cos ∠BAC OM ,则△OAM为等腰三角形,AM =2AOcos ∠BAC,同理AN R ,且MN ∥CD ,而AC =R ,故MN :CD =AN:AC ⇒ MN =45R ,连结OM 、ON ,有OM =ON =R ,于是cos ∠MON =22217225OM ON MN OM ON +-= ,所以M 、N 两点间的球面距离是17arccos 25R .18.【2010·广东理数】如图1,△ ABC 为三角形,AA '//BB ' //CC ' , CC ' ⊥平面ABC 且3AA '=32BB '=CC' =AB,则多面体△ABC -A B C '''的正视图(也称主视图)是【答案】D19.【2010·广东文数】20.【2010·福建文数】若一个底面是正三角形的三棱柱的正视图如图所示,则其侧面积...等于 ( )A B .2C .D .6【答案】D【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为24=3216⨯⨯=,选D . 21.【2010·全国卷1文数】已知在半径为2的球面上有A 、B 、C 、D 四点,若AB=CD=2,则四面体ABCD 的体积的最大值为( )【答案】B【解析】本小题主要考查几何体的体积的计算、球的性质、异面直线的距离,通过球这个载体考查考生的空间想象能力及推理运算能力.过CD 作平面PCD ,使AB ⊥平面PCD,交AB 与P,设点P 到CD 的距离为h ,则有ABCD 11222323V h h =⨯⨯⨯⨯=四面体,当直径通过AB 与CD 的中点时,max h =故max 3V =. 22.【2010·全国卷1文数】正方体ABCD -1111A B C D 中,1BB 与平面1ACD 所成角的余弦A BC DA 1B 1C1D 1O值为()A.3B.3C.23D.3【答案】D【解析】本小题主要考查正方体的性质、直线与平面所成的角、点到平面的距离的求法,利用等体积转化求出D 到平面AC 1D 的距离是解决本题的关键所在,这也是转化思想的具体体现.方法一:因为BB 1//DD 1,所以B 1B 与平面AC 1D 所成角和DD 1与平面AC 1D 所成角相等,设DO ⊥平面AC 1D ,由等体积法得11D ACD D ACD V V --=,即111133ACD ACD S DO SDD ∆∆⋅=⋅.设DD 1=a,则122111sin 60)2222ACD S AC AD a ∆==⨯⨯= ,21122ACD S AD CD a ∆== . 所以1313A C D A C D S D D D O a S ∆∆==,记DD 1与平面AC 1D 所成角为θ,则1sin DO DD θ==,所以cos 3θ=. 方法二:设上下底面的中心分别为1,O O ;1O O 与平面AC 1D 所成角就是B 1B 与平面AC1D所成角,1111cos 1/O O O OD OD ∠===. 23.【2010·全国卷1文数】直三棱柱111ABC A B C -中,若90BAC ∠=︒,1AB AC AA ==,则异面直线1BA 与1AC 所成的角等于( )A.30°B.45°C.60°D.90°【答案】C【解析】本小题主要考查直三棱柱111ABC A B C -的性质、异面直线所成的角、异面直线所成的角的求法.延长CA 到D ,使得AD AC =,则11ADAC 为平行四边形,1DA B ∠就是异面直线1BA 与1AC 所成的角,又三角形1A DB 为等边三角形,0160DA B ∴∠=.24.【2010·湖北文数】用a 、b 、c 表示三条不同的直线,y 表示平面,给出下列命题: ①若a ∥b ,b ∥c ,则a ∥c ;②若a ⊥b ,b ⊥c ,则a ⊥c ; ③若a ∥y ,b ∥y ,则a ∥b ;④若a ⊥y ,b ⊥y ,则a ∥b .A. ①②B. ②③C. ①④D.③④25.【2010·山东理数】在空间,下列命题正确的是( ) A.平行直线的平行投影重合B.平行于同一直线的两个平面平行C.垂直于同一平面的两个平面平行D.垂直于同一平面的两条直线平行【答案】D【解析】考查空间直线与平面的位置关系及线面垂直与平行的判定与性质,属基础题.由空间直线与平面的位置关系及线面垂直与平行的判定与性质定理可以得出答案. 26.【2010·福建理数】所以EH ∥FG ,故EH ∥FG ∥11B C ,所以选项A 、C 正确;因为11A D ⊥平面11ABB A ,EH ∥11A D ,所以EH ⊥平面11ABB A ,又EF ⊂平面11ABB A , 故EH ⊥EF ,所以选项B 也正确,故选D.【命题意图】本题考查空间中直线与平面平行、垂直的判定与性质,考查同学们的空间想象能力和逻辑推理能力.27.【2010·湖北省武汉市四月调研】若a 、b 是异面直线,α、β是两个不同平面,,,a b l αβαβ⊂⊂= ,则( )A .l 与a 、b 分别相交B .l 与a 、b 都不相交C .l 至多与a 、b 中一条相交D .l 至少与a 、b 中的一条相交【答案】B【解析】假设l 与a 、b 均不相交,则l∥a,l∥b,从而a∥b 与a 、b 是异面直线矛盾.故l 至少与a 、b 中的一条相交选D.28.【2010·北京西城一模】如图,平面α⊥平面β,αβ =直线l ,,A C 是α内不同的两点,,B D 是β内不同的两点,且,,,A B C D ∉直线l ,,M N 分别是线段,AB CD 的中点.下列判断正确的是( )A .当||2||CD AB =时,,M N 两点不可能重合B .,M N 两点可能重合,但此时直线AC 与l 不可能相交 C .当AB 与CD 相交,直线AC 平行于l 时,直线BD 可以与l 相交 D .当,AB CD 是异面直线时,直线MN 可能与l 平行【答案】B【解析】若,M N 两点重合,由,AM MB CM MD ==知AC BD ∥,从而AC ∥平面β,故有AC l ∥,故B 正确.29.【2010·宁波市二模】已知βα,表示两个互相垂直的平面,b a ,表示一对异面直线,则b a ⊥的一个充分条件是( )A.βα⊥b a ,//B.βα//,//b aC.βα//,b a ⊥D.βα⊥⊥b a ,【答案】D【解析】依题意,a⊥α ,则a 平行β或在β内,由于b⊥β,则b a ⊥,选择D. 30.【2010·上海市浦东新区4月二模】“直线a 与平面M 没有公共点”是“直线a 与平面M 平行”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】C【解析】由直线与平面平行的定义知,选C.31.【2010··北京崇文一模】已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( )A .若,,αγβγ⊥⊥则αβ∥B .若,,m n αα⊥⊥则m n ∥C .若,m n αα∥∥,则m n ∥D .若,,m m αβ∥∥则αβ∥ 【答案】Bl【解析】A 中,αβ可以是任意关系;B 正确;C 中,m n 平行于同一平面,其位置关系可以为任意.D 中平行于同一直线的平面可以相交或者平行.32.【2010·甘肃省部分普通高中第二次联合考试】已知直线l m 、,平面βα、,且βα⊂⊥l m ,,给出下列命题:①若α∥β,则m⊥l ; ②若α⊥β,则m∥l ; ③若m⊥l ,则α∥β; ④若m∥l ,则α⊥β其中正确命题的个数是( )A .1B .2C .3D .4 【答案】B【解析】对于①∵βα⊂⊥l m ,,若α∥β,∴m⊥β,所以m⊥l ,①正确;对于②,若α⊥β,则m∥β或m 在β内,m 与l 可以平行可以异面还可以相交,所以②错;对于③∵βα⊂⊥l m ,,若m⊥l ,则α与β可以相交,③错;对于④若m∥l ,则l⊥α ,∴α⊥β,④正确,选择B.33.【2010·湖北六市四月联考】给出互不相同的直线m 、n 、l 和平面α、β,下列四个命题:①若m α⊂,l A α= ,A m ∉,则l 与m 不共面;②若m 、l 是异面直线,//l α,//m α,且n l ⊥,n m ⊥,则n α⊥; ③若l α⊂,m α⊂,l m A = ,//l β,//n β,则//αβ; ④若//l α,//m β,//αβ,则//l m 其中真命题有( ) A.4个B.3个C.2个D.1个【答案】B【解析】由异面直线的判定定理,易知①是真命题;由线面平行的性质,存在直线l α'⊂,m α'⊂,使得//l l ',//m m ',∵m 、l 是异面直线,∴l '与m '是相交直线,又n l ⊥,n m ⊥,∴n l '⊥,n m '⊥,故n α⊥,②是真命题;由线面平行的性质和判定,知③是真命题;满足条件//l α,//m β,//αβ的直线m 、l 或相交或平行或异面,故④是假命题,于是选B.34.【2010•河南省郑州市第二次质检】已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题.如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有( ) A .0个 B .1个 C .2个 D .3个【答案】C【解析】依题意,α与β换成直线后是真命题,γ与β换成直线后是真命题,γ与α换成直线后是假命题,选择C.35.【2010•宁波二模】已知βα,表示两个互相垂直的平面,b a ,表示一对异面直线,则b a ⊥的一个充分条件是( )A.βα⊥b a ,//B.βα//,//b aC.βα//,b a ⊥D.βα⊥⊥b a , 【答案】D【解析】依题意,a⊥α ,则a 平行β或在β内,由于b⊥β,则b a ⊥,选择D. 36.【2010•绵阳三诊】已知α,β表示两个不同的平面,m 是一条直线且m α⊂,则:“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】B【解析】若m β⊥,因m 是一条直线且m α⊂,由面面垂直的判定定理,知αβ⊥,反之,若m 是一条直线且m α⊂,当αβ⊥时,m 与平面β的位置关系可以为:相交或平行或m β⊂,故“αβ⊥”是“m β⊥”的必要不充分条件,选B.37.【2010·吉林市下学期期末质量检测】已知a ,b 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中正确的是( ) A .若.//,,,//b a b a 则βαβα⊂⊂B .若αα与a a ,⊥所成角等于b 与β所成角,则a//b.C .若.//,//,,ββααb b a a 则⊥⊥D .若.,,,b a b a ⊥⊥⊥⊥则βαβα 【答案】D【解析】对于选项A :直线a ,b 可能平行或异面;对于选项B :只有当平面α与β平行时,才有a//b ,故B 不对;对于选项C ,有可能直线b 在平面β内,故C 错;故选D. 38.【2010·山东德州五月质检】在空间中,给出下面四个命题:(1)过一点有且只有一个平面与已知直线垂直;(2)若平面外两点到平面的距离相等,则过两点的直线必平行 于该平面;(3)两条相交直线在同一平面的射影必为相交直线;(4)两个相互垂直的平面,一个平面内的任意一直线必垂直于另一平面内的无数条直线. 其中正确的是( )A.(1)(2)B.(2)(3)C.(3)(4)D.(1)(4) 【答案】D【解析】对于(2)可能该直线与平面相交;对于(3)可能两相交直线的射影为一条直线或一点与过该点的一条直线,故选D.39.【2010·江西省重点中学第二次联考】已知一个确定的二面角l αβ--,a 和b 是空间的两条异面直线,在下面给出的四个条件中,能使a 和b 所成的角也确定的是( )A .a ∥α且b ∥β B .a ∥α且b ⊥β C .a α⊆且b β⊥ D .a α⊥且b β⊥ 【答案】D【解析】因为二面角的大小是确定的,所以当a α⊥且b β⊥时,a 和b 所成的角与二面角的大小相等或互补,故而a 和b 所成的角也确定,选D. 40.【2010·崇文一模】已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的为 ( )A .若,,αγβγ⊥⊥则αβ∥B .若,,m m αβ∥∥则αβ∥C .若,m n αα∥∥,则m n ∥D .若,,m n αα⊥⊥则m n ∥【答案】D【解析】A 中,垂直于同一平面的平面可能平行或者相交;B 中,平行于同一直线的平面可能平行或者相交;C 中,平行于同一平面的直线可能是任意关系;D 中,垂直于同一平面的直线平行,正确.41.【2010·上海市长宁区二次模】已知α,β表示两个不同的平面,m 为平面α内的一条直线,则“αβ⊥”是“m β⊥”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】B【解析】根据是平面与平面垂直的判定定理知:由m⊥β⇒α⊥β,反之不成立.故选B.42.【2010·河北省衡水中学一模】正四棱锥P —ABCD 的底面积为3E 为侧棱PC 的中点,则PA 与BE 所成的角为( )A .6π B .3π C .4πD .2π【答案】B 【解析】由V=22=13×3×h,所以h=22,从而侧棱长PA=2,取AC 中点O ,连OE ,则OE∥PA,且OE=22,于是∠OEB 为异面直线PA 与BE 所成的角或其补角.在直角三角形BOE 中,BO=62,所以tan∠OEB=3,所以∠OEB=3π. 43.【2010·湖北省襄樊五中5月调研测试】如图,正三棱锥A-BCD 中,E 在棱AB 上,F 在棱CD 上.并且AE EB =CFFD =λ(0<λ<+∞),设α为异面直线EF 与AC 所成的角,β为异面直线EF 与BD 所成的角,则α+β的值是( ) A .π6B .π3C .π2D .与λ的值有关【答案】C【解析】利用特殊化思想,当λ=1,即E 、F 分别为AB 、CD 中点时,取BC 中点M ,则EM∥AC,FM∥BD,又AC⊥BD,所以三角形EMF 为直角三角形,所以α+β=π2.44.【2010·甘肃省兰州市五月实战模拟】二面角3a l πβ--为,A ,B 是棱l 上的两点,AC ,BD 分别在平面,αβ内,A C⊥l ,BD⊥l ,且AC=AB=1,BD=2,则CD 的长等于 ( )A .2BC .D 【答案】A【解析】过B 作BE∥AC,且BE=1,则∠DBE=60°,从而DE=12+22-2×1×2×cos60°=3,在三角形CDE 中,CD=12+3=2.45.【2010·泸州二诊】如图,在正三棱柱111ABC A B C -中,1AB =.若二面角1C AB C --的大小为60,则点C 到平面1C AB 的距离为( )A.34 B.121 【答案】A【解析】取AB 中点D ,连结CD ,1C D ,则1CDC ∠是二面角1C AB C --的平面角.∵1AB =,∴CD =,∴在1Rt DCC ∆中,13tan 602CC CD =⋅==,C 1111cos CDC D CDC ==∠C 到平面1C AB 的距离为h ,则由11CC AB C ABC V V --=得,1111311323222⨯⨯=⨯⨯⨯⨯,解得34h =,选A.46.【2010·湖 北 省年普通高等学校招生全国统一考试模拟训练(二)】 如图,在直三棱柱ABC-A 1B 1C1中,AB =1,AC =2,BC D ,E 分别是AC 1和BB 1的中点,则直线DE 与平面BB 1C 1C 所成的角为 ( ) A .6π B .4π C .3π D .2π【答案】A 【解析】取AC 中点F ,连DF ,BF ,则易知BF∥DE,过F 作FH⊥BC 于H ,则FH⊥平面BCC 1B 1,则角∠FBH 为所求,在直角三角形FHB 中,FH=12,BF=12AC=1,所以∠FBH=30°.47.【2010·湖南师大附中第二次月考试卷】如图,在正三棱柱ABC -A1B 1C 1中,点M 为侧棱AA 1上一动点,已知△BCM 面积的最大值是M―BC―A 的最大值是3π,则该三棱柱的体积等于( )A.B.D. 【答案】A【解析】当点M 与点A1重合时,△BCM 的面积为最大值,此时二面角M―BC―A 也为最大. 由已知可得,ABC S ∆=33cos =π,所以底面正三角形ABC 的边长为2,高为3,从而正三棱柱的高AA 1=33tan3=π.所以正三棱柱的体积V = A.48.【2010·曲靖一中高考冲刺卷数学(八)】 如图,正方体1111ABCD A BC D -中,M,N 分别为AB,DC 中点,则直线MC 与1D N 所成角的余弦值为( ) A.12 B.15 C. 15- D. 13- 【答案】B【解析】连NA ,D 1A ,则∠D 1NA 为所求,在三角形D 1NA 中由余弦定理可求得cos∠D 1NA=15.49.【2010·曲靖一中高考冲刺卷数学(四)】一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积是,332π那么这个三棱柱的体积是()A.D.【答案】DM A B CDA 1D 1C 1B 1N【解析】因为球的体积为323π,柱体的高为2r=4,又正三棱柱的底面三角形内切圆半径与球半径相等,r=2,所以底面边长a=43,所以V 柱=34×(43)2×4=50.【2010·内蒙古赤峰市四月统一考试】已知正三棱锥的侧棱长是底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A.63 B.43 C.22 D.23【答案】A【解析】设底面边长AB=1,则侧棱长SA=2,过顶点S 作底面的垂线,垂足O 为底面中心,连结AO ,则∠SAO 为所求,因为AO=33,所以cos∠SAO=AO SA =36. 51.【2010·上海市奉贤区4月调研】已知一球半径为2,球面上A 、B 两点的球面距离为2π3,则线段AB 的长度为( )A.1B. 3C.2D. 2 3 【答案】C【解析】由l=αR=α×2=2π3得,α=π3,从而知∠AOB=π3,即△AOB 为正三角形,所以AB=OA=R=2.52.【2010·石家庄市教学质量检测(二)】如图,在正三棱锥A-BCD 中,E 、F 分别是AB 、BC 的中点,EF⊥DE,且BC=1,则正三棱锥A-BCD 的体积是( ) A.122 B.242 C.123 D.243【答案】B【解析】EF∥AC,所以AC⊥DE,又AC⊥BD,所以AC⊥平面ABD ,所以侧面三角形为等腰直角三角形,AB=AC=AD=22,V=16×(22)3=224. 53.【2010·甘肃省部分普通高中高三第二次联合考试】如图,在半径为3的球面上有,,A B C 三点,90,ABC BA BC ︒∠==, 球心O 到平面ABC的距离是2,则B C 、两点的球面距离是( )A .3π B .π C .43π D .2π【答案】B【解析】取AC 中点H ,连OH ,则OH 垂直于平面ABC ,又OA=3,所以AC=2AH=CH=2×322=32,又90,ABC BA BC ︒∠==,BC=3,从而三角形OBC 为正三角形,∠BOC=60°,所以球面距离为l=π3×3=π.54.【2010·成都石室中学高三“三诊”模拟考试 】如图所示,在正三棱锥S —ABC 中,M 、N 分别是SC 、BC 的中点,且AM MN ⊥,若侧棱,32=SA 则正三棱锥S —ABC 外接球的表面积是( ) A .12π B .32π C .36π D .48π【答案】C【解析】因为MN⊥AM,所以SB⊥AM,又SB⊥AC,所以侧面三角形为等腰直角三角形,所以SA=SB=SC=23,所以2R=3×(23)=6,所以S=π(2R)2=36π.55.【河南省郑州市2010年高中毕业班第二次质量预测】过球的一条半径的中点作垂直于这条半径的球的截面,则此截面面积是球表面积的( ) A .116B .316 C .112D .18【答案】B【解析】易求得截面圆半径为球半径的32倍,所以S 1S 2=π(32R)24πR 2=316. 56.【2010·唐山三模】一个与球心距离为1的平面截球所得的圆面面积为4π,则球的表面积为( )A.5πB.17πC.20πD.68π 【答案】C【解析】截面圆的半径为2,所以球半径R=12+22=5,所以S=20π.57.【2010·成都市第37中学五月考前模拟】如图,在多面体ABCDEF 中,已知ABCD 是边长为1的正方形,且BCF ADE ∆∆、均为正三角形,EF∥AB,EF=2,则该多面体的体积为( ) A.32 B.33C.34D.23【答案】A【解析】过A 、B 两点分别作AM 、BN 垂直于EF ,垂足分别为M 、N ,连结DM 、CN ,可证得DM⊥EF、EFABCDCN⊥EF ,多面体ABCDEF 分为三部分,多面体的体积V 为+=-BNC AMD ABCDEF V V BNC F AMD E V V --+,∵21=NF ,1=BF ,∴23=BN ,作NH 垂直于点H ,则H 为BC 的中点,则22=NH ,∴4221=⋅⋅=∆NH BC S BNC ,∴24231=⋅⋅=∆-NF S V BNC BNC F ,242==--BNC F AMD E V V ,42=⋅=∆-MN S V BNC BNC AMD ,∴32=ABCDEF V ,故选A . 58.【2010·内蒙古赤峰市一模】四面体ABCD 的外接球球心在CD 上,且CD=2,3=AB .在外接球球面上A 、B 两点间的球面距离是( ) A .6πB .3π C .32π D .65π 【答案】C【解析】由题意知半径R=1,所以∠AOB=32π,从而球面距离为l=32π×1=32π. 59.【2010·江西赣州十一县(市)第二学期期中联考】棱长为1的正方体1111ABCD A BC D -的8个顶点都在球O 的表面上,E 、F 分别是棱AB 、11A D 的中点,则经过E 、F 的球截面的面积最小值是( ) A .38π B .2π C .58π D .78π【答案】C【解析】当截面圆的圆心在直线EF 上时,其面积最小.因为EF=62,可求得球心O 到直线EF 的距离为24,所以截面圆的半径r=R 2-(24)2=(32)2-(24)2=58,所以S=58π. 60.【2010·上海文数】已知四棱椎P ABCD -的底面是边长为6 的正方形,侧棱PA ⊥底面ABCD ,且8PA =,则该四棱椎的体积是 . 【答案】96EFABC DM NH【解析】考查棱锥体积公式9683631=⨯⨯=V . 61.【2010·湖南文数】图2中的三个直角三角形是一个体积为20cm 2的几何体的三视图,则h= cm.【答案】462.【2010·浙江理数】若某几何体的三视图(单位:cm )如上图(右)所示,则此几何体的体积是___________3cm . 【答案】144【解析】图为一四棱台和长方体的组合体的三视图,由卷中所给公式计算得体积为144,本题主要考察了对三视图所表达示的空间几何体的识别以及几何体体积的计算,属容易题. 63.【2010·辽宁理数】如图,网格纸的小正方形的边长是1,在其上用粗线画出了某多面体的三视图,则这个多面体最长的一条棱的长为___ ___.【答案】【解析】本题考查了三视图视角下多面体棱长的最值问题,考查了同学们的识图能力以及由三视图还原物体的能力.由三视图可知,此多面体是一个底面边长为2的正方形且有一条长为2=64.【2010·江西理数】如图,在三棱锥O ABC -中,三条棱OA ,OB ,OC 两两垂直,且OA >OB >OC ,分别经过三条棱OA ,OB ,OC 作一个截面平分三棱锥的体积,截面面积依次为1S ,2S ,3S ,则1S ,2S ,3S 的大小关系为 .【答案】 321S S S <<【解析】考查立体图形的空间感和数学知识的运用能力,通过补形,借助长方体验证结论,特殊化,令边长为1,2,3得321S S S <<.65.【2010·北京文数】如图放置的边长为1的正方形PABC 沿x 轴滚动.设顶点p (x ,y )的纵坐标与横坐标的函数关系是()y f x =,则()f x 的最小正周期为 ;()y f x =在其两个相邻零点间的图像与x 轴 所围区域的面积为 . 【答案】4 1π+ 【解析】“正方形PABC 沿x 轴滚动”包含沿x 轴正方向和沿x 轴负方向滚动.沿x 轴正方向滚动是指以顶点A 为中心顺时针旋转,当顶点B 落在x 轴上时,再以顶点B 为中心顺时针旋转,如此继续,类似地,正方形PABC 可以沿着x 轴负方向滚动.66.【2010`四川理数】如图,二面角l αβ--的大小是60°,线段AB α⊂.B l ∈,AB 与l 所成的角为30°.则AB 与平面β所成的角的正弦值是 .【答案】4【解析】过点A 作平面β的垂线,垂足为C ,在β内过C 作l 的垂线.垂足为D ,连结AD ,由三垂线定理可知AD ⊥l ,故∠ADC 为二面角l αβ--的平面角,为60°,又由已知,∠ABD =30°,连结CB ,则∠ABC 为AB 与平面β所成的角,设AD =2,则ACCD =1,AB=sin 30AD =4,∴sin ∠ABC=4AC AB =. 67.【2010·天津文数】一个几何体的三视图如图所示,则这个几何体的体积为 . 【答案】3【解析】本题主要考查三视图的基础知识,和主题体积的计算,属于容易题. 正视图和侧视图的高是几何体的高,由俯视图可以确定几何体底面的形状,本题也可以将几何体看作是底面是长为3,宽为2,高为1的长方体的一半.由俯视图可知该几何体的底面为直角梯形,则正视图和俯α∙AB∙βC Dα∙AB ∙β视图可知该几何体的高为1,结合三个试图可知该几何体是底面为直角梯形的直四棱柱,所以该几何题的体积为1+=2⨯⨯(12)213. 68.【2010·天津理数】一个几何体的三视图如图所示,则这个几何体的体积为 . 【答案】103【解析】本题主要考查三视图的概念与柱体、椎体体积的计算,属于容易题.利用俯视图可以看出几何体底面的形状,结合正视图与侧视图便可得到几何体的形状,求锥体体积时不要丢掉13哦.由三视图可知,该几何体为一个底面边长为1,高为2的正四棱柱与一个底面边长为2,高为1的正四棱锥组成的组合体,因为正巳灵珠的体积为2,正四棱锥的体积为144133⨯⨯=,所以该几何体的体积V=2+43= 103. 69.【2010·湖北文数】圆柱形容器内盛有高度为3cm 的水,若放入三个相同的珠(球的半么与圆柱的底面半径相同)后,水恰好淹没最上面的球(如图所示),则球的半径是__ __cm. 【答案】4【解析】设球半径为r ,则由3V V V +=球水柱可得33224863r r r r πππ⨯+⨯=⨯,解得r=4.70.【2010·湖南理数】图3中的三个直角三角形是一个体积为203cm 的几何体的三视图,则h = cm .71.【2010·福建理数】若一个底面是正三角形的三棱柱的正视图如图所示,则其表面积等于 .【答案】【解析】本题考查立体几何中的三视图,考查同学们识图的能力、空间想象能力等基本能力.由正视图知:三棱柱是以底面边长为2,高为1的正三棱柱,所以底面积为244⨯=3216⨯⨯=,所以其表面积为72.【2010·甘肃省兰州市五月实战模拟】已知S —ABC 是正四面体,M 为AB 之中点,则SM 与BC 所成的角为 .【答案】arccos 36【解析】设正四面体边长为1,取AC 中点N ,则MN∥BC,∠SMN 为异面直线SM 与BC 所成的角或其补角,且MN=12,SM=SN=32,由余弦定理可得cos∠SMN=36. 73.【2010·石家庄市质量检测(二)】如图,在底面边长为2的正三棱柱ABC-A 1B 1C 1中,若二面角C 1-AB-C 的大小为600,则点C 到平面ABC 1的距离为 . 【答案】32【解析】过点C 作CD⊥AB 交AB 于D ,连结C 1D ,则由三垂线定理知∠CDC 1为二面角的平面角,则∠CDC 1=60°.过点C 作CH⊥C 1D ,交C 1D 于H ,则CH⊥平面ABC 1,故CH 为所求,在三角形CC 1D 中,CD=3,从而CC 1=3,从而CH=32.74.【2010·云南曲靖一中高考冲刺卷六】正四面体ABCD 外接球的体积为,则点A 到平面BCD 的距离为__________________. 【答案】433【解析】V=,所以R=3,过A 作AH⊥平面BCD ,则垂足为底面中心,则AH 为所求.。
2011年高考试题分类汇编(立体几何)
2011年高考试题分类汇编(立体几何)考点1 公理体系1.(2011·四川卷·文理科)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是A.12l l ⊥,23l l ⊥⇒1l ∥3lB.12l l ⊥,2l ∥3l ⇒1l ⊥3lC.1l ∥2l ∥3l ⇒1l ,2l ,3l 共面D.1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 2.(2011·浙江卷·理科)下列命题中错误的是A.如果平面α⊥平面β,那么平面α内一定存在直线平行于平面βB.如果平面α不垂直于平面β,那么平面α内一定不存在直线垂直于平面βC.如果平面α⊥平面γ,平面β⊥平面γ,l αβ=,那么l ⊥平面γD.如果平面α⊥平面β,那么平面α内所有直线都垂直于平面β 3.(2011·浙江卷·文科)若直线l 不平行于平面α,且l αØ,则 A.α内存在直线与异面 B.α内不存在与l 平行的直线 C.α内存在唯一的直线与l 平行 D.α内的直线与l 都相交4.(2011·江西卷·理科)已知1α,2α,3α是三个相互平行的平面,平面1α,2α之间的距离为1d ,平面2α,3α之间的距离为2d ,直线l 与1α,2α,3α分别相交于321,,p p p .那么“3221p p p p =”是“21d d =”的 A.充分不需要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件考点2 多面体 考点3 旋转体1.(2011·大纲全国卷·文理科)已知平面α截一球面得圆M ,过圆心M 且与α成60二面角的平面β截该球面得N .若该球面的半径为4,圆M 的面积为4π,则圆N 的面积为A.7πB.9πC.11πD.13π考点4 组合体1.(2011S ABCD -的底面是边长为1的正方形,点,,,,S A B C D 均在半径为1的同一球面上,则底面ABCD 的中心与顶点S 之间的距离为C.2.(2011·四川卷·文理科)半径为R 的球O 中有一内接圆柱.当圆柱的侧面积最大时,球的表面积与该圆柱的侧面积之差是 .3.(2011·课标全国卷·理科)已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且6AB =,BC =O ABCD -的体积为 .4.(2011·课标全国卷·文科)已知两个圆锥有公共底面,且两个圆锥的顶点和底面的圆周都在同一个球面上,若圆锥底面面积是这个球面面积的163,则这两个圆锥中,体积较小者的高与体积较大者的高的比值为 .考点5 解答题考法1 线线所成的角1.(2011·大纲全国卷·文科)已知正方体1111ABCD A BC D -中,E 为11C D 的中点,则异面直线AE 与BC 所成角的余弦值为 .2.(2011·陕西卷·理科)如图,在ABC ∆中,60ABC ∠=,90BAC ∠=,AD 是BC 上的高,沿AD 把ABD ∆折起,使90BDC ∠=.(Ⅰ)证明:平面ADB ⊥平面BDC ;(Ⅱ)设E 为BC 的中点,求DB AE 与夹角的余弦值.AC BDEDCBA考法2 线面所成的角1.(2011·大纲全国卷·文理科)如图,四棱锥S ABCD -中,AB ∥CD ,BC ⊥CD ,侧面SAB 为等边三角形,AB =BC =2,CD =SD =1.(Ⅰ)证明:SD ⊥平面SAB ;(Ⅱ)求AB 与平面SBC 所成的角的大小.2.(2011·天津卷·文科)如图,在四棱锥P ABCD -中,底面ABCD 为平行四 边形,45ADC ∠=,1AD AC ==,O 为AC 中点,PO ⊥平面ABCD ,2PO =,M 为PD 中点.(Ⅰ)证明:PB //平面ACM ; (Ⅱ)证明:AD ⊥平面PAC ;(Ⅲ)求直线AM 与平面ABCD 所成角的正切值.考法3 二面角1.(2011·课标全国卷·理科)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD . (Ⅰ)证明:PA BD ⊥;(Ⅱ)若PD AD =,求二面角A PB C --的余弦值.2.(2011·四川卷·理科)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,11AB AC AA ===,D 是棱1CC 上的一点,P 是AD 的延长线与11AC 的延长线的交点且1PB ∥平面1BDA . (Ⅰ)求证:CD ∥1C D ;(Ⅱ)求二面角1A A D B --的平面角的余弦值; (Ⅲ)求点C 到平面1B DP 的距离.SDCBAABCD PA 1B 1C 1ABCDPABCDPMO3.(2011·四川卷·文科)如图,在直三棱柱111ABC A B C -中,90BAC ∠=,11AB AC AA ===,延长11AC 至点P ,使111C P AC =,连接AP 交棱1CC 于点D . (Ⅰ)求证:1PB ∥平面1BDA ;(Ⅱ)求二面角1A A D B --的平面角的余弦值.4.(2011·天津卷·理科)如图,在三棱柱111ABC A B C -中,H 是正方形11AA B B 的中心,1AA =1C H ⊥平面11AA B B , 且1C H =(Ⅰ)求异面直线与所成角的余弦值; (Ⅱ)求二面角111A AC B --的正弦值;(Ⅲ)设N 为棱11B C 的中点,点M 在平面11AA B B 内,且MN ⊥平面11A B C ,求线段BM 的长.5.(2011·江苏卷·理科)如图,在四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,AB AD =,60BAD ∠=,E ,F 分别是AP ,AD 的中点. 求证:(Ⅰ)直线EF ∥平面PCD ; (Ⅱ)平面BEF ⊥平面PAD .ABCHC 1A 1B 1ABCDPA 1B 1C 1ABCDPE F6.(2011·陕西卷·文科)如图,在ABC ∆中,45,90ABC BAC ∠=∠=,AD 是BC 上的高,沿AD 把D AB ∆折起,使90BDC ∠= .(Ⅰ)证明:平面ADB ⊥平面BDC ; (Ⅱ)若1BD =,求三棱锥D ABC -的表面积. 考法4 距离1.(2011·大纲全国卷·文理科)已知直二面角βα--l , 点A α∈,AC l ⊥,C 为垂足,B β∈,BD l ⊥,D 为垂足,若2AB =,1AC BD ==,则D 到平面ABC 的距离等于1 2.(2011·课标全国卷·文科)如图,四棱锥P ABCD -中,底面ABCD 为平行四边形,60DAB ∠=,2AB AD =,PD ⊥底面ABCD .(Ⅰ)证明:PA BD ⊥;(Ⅱ)若1PD AD ==,求棱锥D PBC -的高.ABCDPEDCBAA BCD。
2011-2018高考数学立体几何分类汇编(理)
2011-2018 新课标(理科)立体几何分类汇编一、选填题【2012 新课标】(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为( B )(A) 6 (B) 9 (C) (D)【解析】选 B 。
该几何体是三棱锥,底面是俯视图,高为3,此几何体的体积为V 1 13 26 3 3 9【2012 新课标】(11)已知三棱锥S ABC 的所有顶点都在球O 的求面上,ABC 是边长为1的正三角形,SC 为球O 的直径,且SC 2 ;则此棱锥的体积为( A )( A)26( B)36(C)23(D)22【解析】ABC 的外接圆的半径3r ,点O 到面ABC 的距离32 2 6d R r ,SC 为球3O 的直径点S到面ABC 的距离为 2 2 6d 此棱锥的体积为31 1 32 6 2V S 2dABC3 34 3 6另:1 3V S 2R 排除B, C, D ABC3 6【2013 新课标1】6、如图,有一个水平放置的透明无盖的正方体容器,容器高8cm ,将一个球放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6cm,如果不计容器的厚度,则球的体积为( A )500 π866 π1372 πA、 3 cm 3 cm3 B、 3 cm3 C、2048 π3 D、 3 cm3【解析】设球的半径为R,则由题知球被正方体上面截得圆的半径为4,球心到截面圆的距离为R-2,则 2 ( 2)2 42R R ,解得R=5,∴球的体积为34 53500 π=33cm ,故选 A.【2013 新课标1】8、某几何函数的三视图如图所示,则该几何的体积为( A )A、16+8 π、B8+8 πC、16+16 π、D8+16 π【解析】由三视图知,该几何体为放到的半个圆柱底面半径为 2 高为4,上边放一个长为 4 宽为 2 高为 2 长方体,故其体积为11 222 4 4 2 2 =16 8 ,故选 A .【2013 新课标2】4. 已知m,n 为异面直线,m⊥平面α,n⊥平面β.直线l 满足l⊥m,l⊥n,l α,l β,则( D ) .A.α∥β且l∥α.Bα⊥β且l⊥βC.α与β相交,且交线垂直于l D.α与β相交,且交线平行于l【解析】因为m⊥α,l⊥m,l α,所以l∥α.同理可得l∥β。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、立体几何一、选择题1.(重庆理9)高为的四棱锥S-ABCD的底面是边长为1的正方形,点S、A、B、C、D均在半径为1的同一球面上,则底面ABCD的中心与顶点S之间的距离为A.B.C.1 D.【答案】C2.(浙江理4)下列命题中错误的是A.如果平面,那么平面内一定存在直线平行于平面B.如果平面α不垂直于平面,那么平面内一定不存在直线垂直于平面C.如果平面,平面,,那么D.如果平面,那么平面内所有直线都垂直于平面【答案】D3.(四川理3),,是空间三条不同的直线,则下列命题正确的是A.,B.,C.,,共面D.,,共点,,共面【答案】B【解析】A答案还有异面或者相交,C、D不一定4.(陕西理5)某几何体的三视图如图所示,则它的体积是A.B.C.D.【答案】A5.(浙江理3)若某几何体的三视图如图所示,则这个几何体的直观图可以是【答案】D6.(山东理11)右图是长和宽分别相等的两个矩形.给定下列三个命题:①存在三棱柱,其正(主)视图、俯视图如下图;②存在四棱柱,其正(主)视图、俯视图如右图;③存在圆柱,其正(主)视图、俯视图如右图.其中真命题的个数是33 2正视图侧视图 俯视图 图1A .3B .2C .1D .0【答案】A7.(全国新课标理6)。
在一个几何体的三视图中,正视图与俯视图如右图所示,则相应的侧视图可以为【答案】D8.(全国大纲理6)已知直二面角α− ι−β,点A ∈α,AC ⊥ι,C 为垂足,B ∈β,BD ⊥ι,D 为垂足.若AB=2,AC=BD=1,则D 到平面ABC 的距离等于 A . B .C .D .1【答案】C9.(全国大纲理11)已知平面α截一球面得圆M ,过圆心M 且与α成二面角的平面β截该球面得圆N .若该球面的半径为4,圆M 的面积为4,则圆N 的面积为 A .7 B .9 C .11 D .13 【答案】D10.(湖南理3)设图1是某几何体的三视图,则该几何体的体积为A .B .C .D .【答案】 B11.(江西理8)已知,,是三个相互平行的平面.平面,之间的距离为,平面,之间的距离为.直线与,,分别相交于,,,那么“=”是“”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 【答案】C12.(广东理7)如图1-3,某几何体的正视图(主视图)是平行四边形,侧视图(左视图)和俯视图都是矩形,则该几何体的体积为A .B . C.D . 【答案】B13.(北京理7)某四面体的三视图如图所示,该四面体四个面的面积中,最大的是A.8 B .C.10 D .【答案】C14.(安徽理6)一个空间几何体的三视图如图所示,则该几何体的表面积为(A)48(B)32+8(C)48+8(D)80【答案】C15.(辽宁理8)。
如图,四棱锥S—ABCD的底面为正方形,SD底面ABCD,则下列结论中不正确的是(A)AC⊥SB(B)AB∥平面SCD(C)SA与平面SBD所成的角等于SC与平面SBD所成的角(D)AB与SC所成的角等于DC与SA所成的角【答案】D16.(辽宁理12)。
已知球的直径SC=4,A,B是该球球面上的两点,AB=,,则棱锥S—ABC的体积为(A )(B )(C )(D)1【答案】C17.(上海理17)设是空间中给定的5个不同的点,则使成立的点的个数为A.0 B.1 C.5 D.10【答案】B二、填空题18.(上海理7)若圆锥的侧面积为,底面积为,则该圆锥的体积为。
【答案】19.(四川理15)如图,半径为R的球O中有一内接圆柱.当圆柱的侧面积最大是,求的表面积与改圆柱的侧面积之差是.【答案】【解析】时,,则20.(辽宁理15)一个正三棱柱的侧棱长和底面边长相等,体积为,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面积是 . 【答案】21.(天津理10)一个几何体的三视图如右图所示(单位:),则该几何体的体积为__________【答案】22.(全国新课标理15)。
已知矩形ABCD 的顶点都在半径为4的球O 的球面上,且AB=6,BC=,则棱锥O-ABCD 的体积为_____________. 【答案】23.(湖北理14)如图,直角坐标系所在的平面为,直角坐标系(其中轴一与轴重合)所在的平面为,。
(Ⅰ)已知平面内有一点,则点在平面内的射影的坐标为 (2,2) ; (Ⅱ)已知平面内的曲线的方程是,则曲线在平面内的射影的方程是 。
【答案】 24.(福建理12)三棱锥P-ABC 中,PA ⊥底面ABC ,PA=3,底面ABC 是边长为2的正三角形,则三棱锥P-ABC 的体积等于______。
【答案】 三、解答题25.(江苏16)如图,在四棱锥中,平面PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ∥平面PCD ;(2)平面BEF ⊥平面PAD本题主要考查直线与平面、平面与平面的位置关系,考察空间想象能力和推理论证能力。
满分14分。
证明:(1)在△PAD 中,因为E 、F 分别为AP ,AD 的中点,所以EF//PD.FE A C D B P又因为EF 平面PCD ,PD 平面PCD , 所以直线EF//平面PCD.(2)连结DB ,因为AB=AD ,∠BAD=60°, 所以△ABD 为正三角形,因为F 是AD 的 中点,所以BF ⊥AD.因为平面PAD ⊥平面 ABCD ,BF 平面ABCD ,平面PAD 平面ABCD=AD ,所以BF ⊥平面PAD 。
又因为BF 平面BEF ,所以平面BEF ⊥平面PAD. 26.(安徽理17)如图,为多面体,平面与平面垂直,点在线段上,△OAB ,,△,△,△都是正三角形。
(Ⅰ)证明直线∥; (II )求棱锥F —OBED 的体积。
本题考查空间直线与直线,直线与平面、平面与平面的位置关系,空间直线平行的证明,多面体体积的计算等基本知识,考查空间想象能力,推理论证能力和运算求解能力.(I )(综合法) 证明:设G 是线段DA 与EB 延长线的交点. 由于△OAB 与△ODE 都是正三角形,所以 ∥,OG=OD=2,同理,设是线段DA 与线段FC 延长线的交点,有又由于G 和都在线段DA 的延长线上,所以G 与重合.在△GED 和△GFD 中,由∥和OC ∥,可知B 和C 分别是GE 和GF 的中点,所以BC是△GEF 的中位线,故BC ∥EF. (向量法)过点F 作,交AD 于点Q ,连QE ,由平面ABED ⊥平面ADFC ,知FQ ⊥平面ABED ,以Q为坐标原点,为轴正向,为y 轴正向,为z 轴正向,建立如图所示空间直角坐标系.由条件知则有所以即得BC ∥EF.(II )解:由OB=1,OE=2,,而△OED 是边长为2的正三角形,故所以过点F 作FQ ⊥AD ,交AD 于点Q ,由平面ABED ⊥平面ACFD 知,FQ 就是四棱锥F —OBED 的高,且====FQ=,所以27.(北京理16)如图,在四棱锥中,平面,底面是菱形,. (Ⅰ)求证:平面(Ⅱ)若求与所成角的余弦值;(Ⅲ)当平面与平面垂直时,求的长.证明:(Ⅰ)因为四边形ABCD是菱形,所以AC⊥BD.又因为PA⊥平面ABCD.所以PA⊥BD.所以BD⊥平面PAC.(Ⅱ)设AC∩BD=O.因为∠BAD=60°,PA=PB=2,所以BO=1,AO=CO=.如图,以O为坐标原点,建立空间直角坐标系O—xyz,则P(0,—,2),A(0,—,0),B(1,0,0),C(0,,0).所以设PB与AC所成角为,则.(Ⅲ)由(Ⅱ)知设P(0,-,t)(t>0),则设平面PBC的法向量,则所以令则所以同理,平面PDC的法向量因为平面PCB⊥平面PDC,所以=0,即解得所以PA=28.(福建理20)如图,四棱锥P-ABCD中,PA⊥底面ABCD,四边形ABCD中,AB⊥AD,AB+AD=4,CD=,.(I)求证:平面PAB⊥平面PAD;(II)设AB=AP.(i)若直线PB与平面PCD所成的角为,求线段AB的长;(ii)在线段AD上是否存在一个点G,使得点G到点P,B,C,D的距离都相等?说明理由。
本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力、推理论证能力、抽象根据能力、运算求解能力,考查函数与方程思想、数形结合思想、化归与转化思想,满分14分。
解法一:(I)因为平面ABCD,平面ABCD,所以,又所以平面PAD。
又平面PAB,所以平面平面PAD。
(II)以A为坐标原点,建立空间直角坐标系A—xyz(如图)在平面ABCD内,作CE//AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,(i)设平面PCD的法向量为,由,,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,设G(0,m,0)(其中)则,由得,(2)由(1)、(2)消去t,化简得(3)由于方程(3)没有实数根,所以在线段AD上不存在一个点G,使得点G到点P,C,D的距离都相等。
从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。
解法二:(I)同解法一。
(II)(i)以A为坐标原点,建立空间直角坐标系A—xyz(如图)在平面ABCD内,作CE//AB交AD于E,则。
在平面ABCD内,作CE//AB交AD于点E,则在中,DE=,设AB=AP=t,则B(t,0,0),P(0,0,t)由AB+AD=4,得AD=4-t,所以,设平面PCD的法向量为,由,,得取,得平面PCD的一个法向量,又,故由直线PB与平面PCD所成的角为,得解得(舍去,因为AD),所以(ii)假设在线段AD上存在一个点G,使得点G到点P,B,C,D的距离都相等,由GC=CD,得,从而,即设,在中,这与GB=GD矛盾。
所以在线段AD上不存在一个点G,使得点G到点B,C,D的距离都相等,从而,在线段AD上不存在一个点G,使得点G到点P,B,C,D的距离都相等。
29.(广东理18)如图5.在椎体P-ABCD中,ABCD是边长为1的棱形,且∠DAB=60,,PB=2,E,F分别是BC,PC的中点.(1)证明:AD 平面DEF;(2)求二面角P-AD-B的余弦值.法一:(1)证明:取AD中点G,连接PG,BG,BD。
因PA=PD,有,在中,,有为等边三角形,因此,所以平面PBG又PB//EF,得,而DE//GB得AD DE,又,所以AD 平面DEF。