土壤各种氮的测定

合集下载

土壤全氮含量的测定

土壤全氮含量的测定

土壤全氮含量的测定一、引言土壤是植物生长的重要基础,而土壤中的氮元素是植物生长所必需的营养元素之一。

因此,了解土壤中氮元素的含量对于农业生产和环境保护具有重要意义。

本文将介绍土壤全氮含量的测定方法。

二、测定方法1. 硫酸铵钾法硫酸铵钾法是目前应用最广泛的土壤全氮含量测定方法之一。

其主要原理是利用硫酸铵钾溶液将土壤中的有机氮转化为无机氮,然后通过滴定法测定无机氮含量,从而计算出土壤全氮含量。

2. 堆肥法堆肥法是一种简便易行的土壤全氮含量测定方法。

其主要原理是将待测样品与堆肥混合后在恒温条件下进行培养,待堆肥发酵结束后,通过分析堆肥中残留的总氮量来计算出样品中总氮的含量。

3. 燃烧-尿素法燃烧-尿素法是一种快速准确的土壤全氮含量测定方法。

其主要原理是将待测样品进行燃烧,将有机氮转化为无机氮,然后通过添加尿素使无机氮转化为氨基态氮,最后通过滴定法测定氨基态氮的含量,从而计算出土壤全氮含量。

三、实验步骤1. 硫酸铵钾法(1)取一定量的土壤样品,加入硫酸铵钾溶液中。

(2)在摇床上振荡混合样品和硫酸铵钾溶液。

(3)过滤样品,并将滤液收集于容器中。

(4)取一定量的滤液,加入碱性溶液中。

(5)用盐酸进行滴定,并记录所需的盐酸体积。

(6)根据盐酸体积计算出土壤全氮含量。

2. 堆肥法(1)取一定量的待测样品和堆肥混合均匀后放入培养器中。

(2)在恒温条件下进行培养,待堆肥发酵结束后取出并干燥。

(3)将堆肥样品粉碎并过筛,取一定量的样品加入硫酸钾溶液中。

(4)用盐酸进行滴定,并记录所需的盐酸体积。

(5)根据盐酸体积计算出样品中总氮的含量。

3. 燃烧-尿素法(1)取一定量的土壤样品,加入燃烧舟中。

(2)将舟放入燃烧炉中进行燃烧,将有机氮转化为无机氮。

(3)取出舟并将残留物加入尿素溶液中。

(4)用盐酸进行滴定,并记录所需的盐酸体积。

(5)根据盐酸体积计算出土壤全氮含量。

四、实验注意事项1. 实验操作应严格按照实验步骤进行,避免人为误差对实验结果产生影响。

土壤速效氮磷钾有机质测定方法

土壤速效氮磷钾有机质测定方法

土壤速效氮磷钾有机质测定方法土壤中的速效氮、磷、钾含量以及有机质含量对土壤肥力评价和农作物生长有重要的影响。

因此,准确快速地测定土壤中这些指标的含量是农业生产管理和土壤健康评估的关键。

测定土壤速效氮的方法1.硝态氮的测定方法:采用两步直接反应法。

首先采用无机参比品来标定硝酸根的吸光度,然后采用硝酸还原和吸收法来提取和测定硝态氮。

这种方法的优点是操作简单、准确度高,并且适用于各种土壤类型。

2.铵态氮的测定方法:采用钠水合氢化物还原法。

首先将土样置于高温高压条件下与钠水合氢化物反应,然后通过蒸馏和酸碱滴定来测定土壤中的铵态氮含量。

这种方法的优点是灵敏度高、可靠性强,适用于各种土壤类型。

测定土壤速效磷的方法1.遥感测定法:通过卫星遥感技术来估算土壤中的速效磷含量。

这种方法能够快速地获取大范围土壤状况信息,但需要有特定的卫星图像和地面验证数据来建立模型。

2.酶解法:采用酶解物理法或酶解化学法来提取土壤中的速效磷。

物理法主要是利用酶解提取,化学法主要是利用酶解溶液中酶的作用将磷转化为可溶性磷。

这种方法的优点是操作简单、准确度高,适用于不同类型的土壤。

测定土壤速效钾的方法1.钾离子选择电极法:通过钾离子选择电极和离子选择电极法来直接测定土壤中的速效钾含量。

这种方法的优点是操作简单、测量准确,适用于不同类型的土壤。

2.环己基銨法:通过环己基銨法来提取土壤中的速效钾。

首先采用銨离子形成络合物,然后通过光度计进行测定。

这种方法的优点是灵敏度高、准确度好,适用于各种土壤类型。

测定土壤有机质的方法1.官能团分析法:通过红外光谱仪来测定土壤中的有机质含量。

这种方法可以快速准确地分析土壤中有机质的类型和含量,并且不需进行复杂的预处理。

2.等温酸解法:将土壤样品与浓硫酸在恒温条件下反应,然后通过滴定法测定土壤中有机质的含量。

这种方法的优点是操作简单、快速,适用于不同类型的土壤。

在进行土壤速效氮磷钾和有机质测定时,需要注意样品的采集和保存,并且在进行测定之前进行样前处理,以保证结果的准确性。

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮,硝态氮,铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。

取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。

干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。

按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。

其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。

母液要是不及时测定,需立即在-15℃以下保存2.测定可溶性有机氮=可溶性全氮-(铵态氮+硝态氮)要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。

以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8溶液混合定容至1L)测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。

(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。

)标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。

土壤 氨氮、亚硝酸盐氮、硝酸盐氮的测定

土壤 氨氮、亚硝酸盐氮、硝酸盐氮的测定

1.适用范围本标准规定了测定土壤中氨氮、亚硝酸盐氮、硝酸盐氮的氯化钾溶液提取-分光光度法。

本标准适用于土壤中氨氮、亚硝酸盐氮、硝酸盐氮的测定。

当样品量为 40.0 g 时,本方法测定土壤中氨氮、亚硝酸盐氮、硝酸盐氮的检出限分别为0.10 mg/kg、0.15 mg/kg、0.25 mg/kg,测定下限分别 0.40 mg/kg、0.60 mg/kg、1.00 mg/kg。

2.方法原理2.1 氨氮氯化钾溶液提取土壤中的氨氮,在碱性条件下,提取液中的氨离子在有次氯酸根离子存在时与苯酚反应生成蓝色靛酚染料,在 630 nm 波长具有最大吸收。

在一定浓度范围内,氨氮浓度与吸光度值符合朗伯-比尔定律。

2.2 亚硝酸盐氮氯化钾溶液提取土壤中的亚硝酸盐氮,在酸性条件下,提取液中的亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸 N-(1-萘基)-乙二胺偶联生成红色染料,在波长 543nm 波长具有最大吸收。

在一定浓度范围内,亚硝酸盐氮浓度与吸光度值符合朗伯-比尔定律。

2.3 硝酸盐氮氯化钾溶液提取土壤中的硝酸盐氮和亚硝酸盐氮,提取液通过还原柱,将硝酸盐氮还原为亚硝酸盐氮,在酸性条件下,亚硝酸盐氮与磺胺反应生成重氮盐,再与盐酸 N-(1-萘基)-乙二胺偶联生成红色染料,在波长 543 nm 处具有最大吸收,测定硝酸盐氮和亚硝酸盐氮总量。

硝酸盐氮和亚硝酸盐氮总量与亚硝酸盐氮含量之差即为硝酸盐氮含量。

3.试剂和材料除非另有注明,分析时均使用符合国家标准的分析纯试剂,实验用水为电导率小于0.2 mS/m(25℃时测定)的去离子水。

3.1 氨氮3.1.1 浓硫酸:ρ(H2SO4)=1.84 g/ml。

3.1.2 二水柠檬酸钠(C6H5Na3O7·2H2O)。

3.1.3 氢氧化钠(NaOH)。

3.1.4 二氯异氰尿酸钠(C3Cl2N3NaO3·H2O)。

3.1.5 氯化钾(KCl):优级纯。

3.1.6 氯化铵(NH4Cl):优级纯于105 ℃下烘干 2 h。

-土壤中氮素的测定

-土壤中氮素的测定

• 氧化剂:HCIO4-H2SO4, H2O2-H2SO4 消煮样品,
可同时测定N、P、K等多种元素,倍受关注。 • H2SO4:具有较强的氧化力,其沸点338℃
此温度不能彻底分解有机质,所
以需要增温
关于开氏法
用硫酸消煮样品测定氮素含量的方法均叫开 氏法.
标准的开氏法 常量法: 称 1.0~10.0 g 土壤样品,加混合加速 剂 K2SO410g, CuSO4 1.0 g, Se 0.1 g 加浓硫酸 30 ml, 消煮 5 h 半微量法: 称 0.1~1.0 g 土壤样品
C=CB*VB/VH
保留四位小数
五、土壤碱解氮的测定
一、测定方法
土壤速效氮亦称土壤有效氮,指当季作 物能吸收利用的土壤氮素量。它包括土壤溶
液中的NO3-、NH4+、胶体上吸附的NH4+和易
为土壤微生物分解的有机氮。
土壤速效氮的测定方法可分为两大类:
生物方法和化学方法。生物测定法采用生
物培养的方法测定,手续繁琐,需要较长
2、测定步骤 ① 样品的消煮 : 0.5000 g → 消化管 → 加 水湿润 → 加 5 ml 浓硫酸 → 加 2 g 催化剂 → 400 ℃消化炉上消化 → 颜色成灰白色到 淡蓝色 → 后煮 1 h → 取下冷却 → 无损转 移到 100 ml 容量瓶 → H2O 定容 → 摇匀 → 待测(N、P、K等)
4、结果计算及应用
碱解氮(mg/kg) = C×V×14×1000/m = 7000CV
C:标准H2SO4溶液浓度(mol/L); V:H2SO4体积(ml); 14:氮原子的摩尔质量; m:土壤风干重 1000:g换算为kg 土壤供氮量(kg/hm2) = 2.25×碱解氮含量 土壤供氮量(kg/667m2) = 0.15×碱解氮含量

土壤全氮测定方法

土壤全氮测定方法

土壤全氮测定方法1.湿氧化法:湿氧化法是最常用的土壤全氮测定方法之一、这种方法将土壤样品与浓硫酸混合,在高温下进行氧化反应,将有机氮转化为硝酸盐。

然后,用碱溶液中和反应液中的硫酸,生成氨气,再用酸中和氨气。

最后,用酚-次氯酸试剂标定,测定氨气量。

这种方法操作简单、准确度高,但需要使用有毒的试剂和有严格的操作要求。

2.干燥燃烧法:干燥燃烧法是一种快速、准确测定土壤全氮的方法。

该方法将土壤样品置于优质石墨舟中,经过高温燃烧,将有机物转化为水和气体。

然后,将产生的气体通入气态色谱仪或固态同位素谱仪中进行分析。

这种方法操作简便、测定速度快,但需要昂贵的仪器设备和特殊的样品制备。

3.光谱法:近年来,光谱法作为一种快速、非破坏性的土壤全氮测定方法得到了广泛应用。

该方法通过测量土壤样品在特定波长范围内的光谱反射率来确定土壤中的全氮含量。

由于土壤中全氮含量与其反射光谱之间存在一定的关系,因此可以通过建立光谱模型来预测土壤全氮含量。

光谱法操作简单、测量速度快,但需要使用专业的光谱仪器和建立准确的光谱模型。

4.电化学分析法:电化学分析法是一种在土壤中测定全氮含量的新兴方法。

该方法使用电化学阻抗谱仪测量土壤样品中电解质的阻抗谱,通过阻抗谱中特定频率的特征参数与土壤全氮含量之间的关系,来预测土壤中的全氮含量。

该方法具有快速、灵敏、不破坏样品等优点,但需要专业的仪器设备和建立准确的预测模型。

综上所述,土壤全氮测定方法的选择应根据实际需求和条件来确定。

经典的湿氧化法和干燥燃烧法在准确度和可靠性方面较高,但操作复杂,并且需要昂贵的仪器设备。

而光谱法和电化学分析法则具有快速、非破坏性的特点,但需要建立准确的预测模型和使用专业的仪器设备。

根据实际情况选择适合的方法,可以提高土壤全氮测定的准确性和效率,为土壤肥力评估和植物营养管理提供科学依据。

土壤指标(全氮、全磷、全钾、有机质、速效磷、速效钾、解性氮、PH)

土壤指标(全氮、全磷、全钾、有机质、速效磷、速效钾、解性氮、PH)

全氮、全磷、全钾、有机质、速效磷、速效钾、解性氮、PH一、土壤全氮的测定—凯氏定氮法一、目的1、掌握土壤中全氮含量测定的方法。

2、了解测定土壤全氮的原理二、原理土壤中的氮大部分以有机态(蛋白质、氨基酸、腐殖质、酰胺等)存在,无机态(NH4+ 、NO3 - 、NO2- )含量极少,全氮量的多少决定于土壤腐殖质的含量。

土壤中含氮有机化合物在还原性催化剂的作用下,用浓硫酸消化分解,使其中所含的氮转化为氨,并与硫酸结合为硫酸铵。

给消化液加入过量的氢氧化钠溶液,使铵盐分解蒸馏出氨,吸收在硼酸溶液中,最后以甲基红-溴甲酚绿为指示剂,用标准盐酸滴定至粉红色为终点,根据标准盐酸的用量,求出分析样品中的含氮全量。

三、试剂:1、混合催化剂:称取硫酸钾100g、五水硫酸铜10g、硒粉1g。

均匀混合后研细。

贮于瓶中。

2、比重1.84浓硫酸。

3、40%氢氧化钠:称400g氢氧化钠于烧杯中,加蒸馏水600ml,搅拌使之全部溶解。

4、2%硼酸溶液:称20g硼酸溶于1000ml水中,再加入2.5ml混合指示剂。

(按体积比100:0.25加入混合指示剂)5、混合指示剂:称取溴甲酚绿0.5g和甲基红0.1克,溶解在100ml95%的乙醇中,用稀氢氧化钠或盐酸调节使之呈淡紫色,此溶液pH应为4.5。

6、0.01的盐酸标准溶液:取比重1.19的浓盐酸0.84ml,用蒸馏水稀释至1000ml,用基准物质标定之。

四、操作步骤1、消煮:在分析天平上准确称取通过60号筛的风干土0.5000g左右,移入干燥的凯氏瓶中,加入1.5g的还原性混合催化剂。

用注射器加入4ml浓硫酸,放到通风柜内的消煮器上消煮1.5h左右。

直至内容物呈清彻的淡蓝色为止。

2、蒸馏:消煮完毕后冷却。

将三角瓶置于冷凝管的承接管下,管口淹没在硼酸溶液中(三角瓶用2%的硼酸20ml作吸收剂),然后打开冷凝器中的水流,进行蒸馏。

在整个蒸馏过程中注意冷凝管中水不要中断,当接受液变蓝后蒸馏5min,将冷凝管下端离开硼酸液面,再用蒸馏水冲净管外。

土壤全氮含量的测定实验报告

土壤全氮含量的测定实验报告

土壤全氮含量的测定实验报告实验目的:测定土壤中的全氮含量,了解土壤的养分情况,为土壤肥力评价提供依据。

一、实验原理土壤中的分析态全氮包括有机氮和无机氮两种形态。

有机氮是指土壤中的有机质中含氮化合物,主要是蛋白质、氨基酸、蛋白质分解产物等。

无机氮包括铵态氮和硝态氮两种形式。

常用的土壤全氮含量测定方法是凯氏氮测定法,在选定的试样中以酸性介质作用,使无机氮转化成氨氮,然后与试剂反应,利用光度计对生成的氨氮进行测定,从而计算出土壤全氮含量。

二、实验仪器与试剂1. 仪器:凯氏消解仪、光度计2. 试剂:硫酸、过氧化钾、硼硼试剂、酚酞指示剂、氢氧化钠、氢氨酸等。

三、实验步骤1. 取一定量的土壤样品,研磨成颗粒度均匀的粉末。

2. 取0.5克土壤样品放入凯氏消解管中,加入5毫升过氧化钾溶液和10毫升硫酸。

3. 使用凯氏消解仪进行消解,然后用蒸馏水冲洗至准确的体积。

4. 取消解液5.00毫升加入酚酞指示剂,然后用氢氧化钠和硼硼酸钠标准溶液进行滴定,滴定至粉红色消失。

记录用量。

5. 取取消解液1.00毫升,加入氢氨酸制成的混合试剂,放入120摄氏度水浴加热30分钟。

冷却至常温,用蒸馏水冲洗至准确的体积。

6. 用光度计测定吸光度值,根据标定曲线计算出土壤全氮含量。

四、实验数据记录进行实验时,需要记录各个步骤的用量以及测定结果的数据,包括消解液的体积、滴定试剂的用量、光度计测定的吸光度值等。

五、实验结果与分析通过实验测定得出的土壤全氮含量,可以对土壤的肥力情况进行评价,为合理施肥提供依据。

根据实验结果,可以分析土壤的养分状况,制定相应的土壤改良和施肥措施。

六、实验结论通过本次实验的土壤全氮含量测定,了解了土壤中氮元素的含量情况,为制定合理的土壤管理和肥料施用提供了科学依据。

对于保持土壤肥力,提高农产品产量,具有现实的指导意义。

七、实验注意事项1. 消解时注意操作规范,避免发生意外。

2. 实验过程中要勤洗手,避免化学试剂接触皮肤。

土壤有效氮的测定方法

土壤有效氮的测定方法

土壤有效氮的测定方法土壤有效氮的测定方法是决定土壤中氮素含量的一种方法,用于评估土壤肥力和合理施肥。

有效氮是指土壤中水解氨态氮和硝态氮的总和,这两种形态的氮素是植物主要吸收和利用的形式。

下面将介绍几种常用的土壤有效氮测定方法。

1. 凯氏提取液浸提法凯氏提取液浸提法是一种常用的土壤氮浸提方法。

首先将一定量的土壤与含有盐酸、氢氧化钠和乙二胺四乙酸的凯氏提取液混合,然后用水煮沸一段时间,使得土壤中的氮素溶解到提取液中。

随后,通过离心或过滤等方法将土壤颗粒从提取液中分离,取提取液进行分析,测定其中的氨态氮和硝态氮含量。

2. 水解酚盐浸提法水解酚盐浸提法是一种对含有有机质较多的土壤进行有效氮测定的方法。

该方法使用水解酚盐作为提取剂,将土壤与水解酚盐溶液混合并反应一段时间,通过水解酚盐对土壤中的有机氮进行水解,使其转化为水解氨态氮。

之后,采用蒸发浓缩或离心等方式将土壤颗粒从提取液中分离,取提取液进行分析,测定其中的氨态氮含量。

3. 氨盐溶液浸提法氨盐溶液浸提法是一种常用的土壤氮浸提方法。

首先将土壤与氨盐溶液,如氯化铵溶液混合,在一定温度下反应一段时间,氯化铵会与土壤中的硝酸盐发生置换反应,使硝态氮转化为氨态氮。

接下来,通过过滤或离心等方法分离土壤颗粒,取提取液进行分析,测定其中氨态氮和硝态氮的含量。

4. 超声波水全浸提法超声波水全浸提法是一种新型的有效氮测定方法。

该方法利用超声波的强烈机械振动和微压破碎作用,将土壤中的氮素与溶液中的氮素充分混合,使得土壤中的氮素快速释放到水溶液中。

待土壤颗粒沉淀后,取上清液进行分析,测定其中的氨态氮和硝态氮含量。

需要注意的是,在进行土壤有效氮测定时,应遵循严格的实验室操作规范,准确称量溶液和土壤样品,控制好提取液的温度和反应时间,减少测定误差。

此外,不同土壤的有效氮含量可能会受土壤类型、土壤质地、肥料施用等因素的影响,因此在实际应用中需要选取适当的方法和分析指标来评估土壤肥力状况。

土壤中氮含量的测定方法

土壤中氮含量的测定方法

土壤中氮含量的测定方法引言:土壤中氮是植物生长和发育的重要营养元素之一,对农业生产和环境保护具有重要意义。

因此,准确测定土壤中氮的含量对于农田管理和土壤质量评价具有重要意义。

本文将介绍土壤中氮含量的精确测定方法,并重点介绍几种常用的方法。

一、传统方法1. Kjeldahl法Kjeldahl法是一种常用的测定土壤中有机氮含量的方法。

该方法基于酸碱中和反应将有机氮转化为铵态氮,然后用硫酸盐法将铵态氮氧化为硫酸盐中的硝酸盐,最后用滴定法测定硝酸盐含量来计算有机氮含量。

该方法简单可行,但存在操作时间长、试剂使用量大等缺点。

2.硫酸盐法硫酸盐法是一种常用的测定土壤中无机氮含量的方法。

该方法通过硫酸盐与铵态氮的反应,将铵态氮转化为硫酸铵盐,然后用滴定法测定硫酸铵盐的含量来计算无机氮含量。

硫酸盐法简单可行,但不适用于测定有机氮。

3.加压分解法加压分解法是一种常用的测定土壤中全氮(有机氮和无机氮)含量的方法。

该方法通过加入适量的强酸和强氧化剂,在高温高压条件下溶解土壤中的有机物和无机物,然后用光度计或比色计测定样品溶液中产生的氨的含量来计算总氮含量。

该方法能够测定土壤中所有形态的氮,但操作较为复杂且危险。

二、现代方法1.气相色谱法气相色谱法是一种常用的测定土壤中氨态氮含量的方法。

该方法通过将土壤样品中的氨样品经过蒸发、分离和测定模块,利用气相色谱仪分离并测定样品中的氨含量。

这种方法具有快速、灵敏、准确等优点,但相对较昂贵,对仪器的要求也较高。

2.光谱法光谱法是一种新兴的测定土壤中氮含量的方法。

该方法基于土壤样品中的氮与特定波长光的吸收关系,通过光谱仪测定样品中的吸光度或荧光强度来间接测定氮的含量。

光谱法具有快速、灵敏、准确、无损伤等优点,但对仪器的要求相对较高。

三、常见问题及解决方案1.土壤样品的获取和保存在测定土壤中氮含量前,需要正确获取土壤样品并妥善保存。

正确获取土壤样品应避免植物根系、碎石等杂质,并根据测定需求选择不同深度的土壤层。

土壤质量 全氮的测定 凯氏法 hj 717-2014

土壤质量 全氮的测定 凯氏法 hj 717-2014

土壤质量全氮的测定凯氏法 HJ 717-2014
《土壤环境质量监测规范》(HJ 717-2014)是中华人民共和国环境保护部颁布的土壤环境质量监测规范。

其中,全氮的测定方法采用的是凯氏法。

凯氏法是一种常用的土壤全氮含量测定方法,其原理是利用碱处理土壤样品,使土壤中的有机质转化为氨态氮,然后经过蒸发、干燥等步骤,最后用盐酸滴定法测定土壤中的氨态氮含量,从而推算出土壤的全氮含量。

具体操作步骤如下:
1. 取一定量的土壤样品(通常为5克),放入烧杯中。

2. 加入足量的盐酸(通常为20 ml),使土壤中的有机质转化为氨态氮。

3. 将烧杯放置在电热板上进行加热,使盐酸蒸发至干燥状态。

4. 用一定量的硫酸(通常为10 ml)将烧杯中残余的盐酸转化为硫酸盐。

5. 完全蒸发硫酸,使土壤样品干燥。

6. 将烧杯放入高温灭菌锅中,用高温灭菌锅进行灭菌处理。

处理时间通常为2小时。

7. 将灭菌后的烧杯取出,放置冷却。

8. 加入适量的蒸馏水,将残留在烧杯中的氨态氮溶解。

9. 将浸渍液通过滤纸过滤,滤液收集到装有蒸馏设备中。

10. 使用盐酸滴定液(氨态氮滴定液)对滤液进行滴定,记录滴定所需的盐酸滴定液的体积。

11. 根据滴定所需盐酸滴定液的体积,计算出土壤样品中氨态氮的含量。

12. 根据氨态氮的含量,推算出土壤中的全氮含量。

需要注意的是,在进行凯氏法测定前,需要对土壤样品进行干燥
和研磨处理,以获得更准确的测定结果。

此外,操作过程中需要注意安全,尤其是对盐酸的使用要小心谨慎。

土壤氮元素实验报告

土壤氮元素实验报告

土壤氮元素实验报告一、实验目的本实验旨在通过对土壤中氮元素含量的测定,了解土壤的氮素供应状况,并研究土壤氮素含量与作物生长之间的关系。

二、实验原理土壤中的氮素主要有有机氮和无机氮两种形态。

有机氮主要存在于土壤中的有机质中,如腐殖质和微生物体。

无机氮包括铵态氮(NH4+)和硝态氮(NO3-),它们是植物直接吸收和利用的氮素形态。

实验中,采用盐酸钠铁法测定土壤中的铵态氮含量,采用硫酸亚铁还原-蒸馏法测定土壤中的硝态氮含量。

三、实验步骤1. 取一定量的土壤样品,将其空气干燥后研磨成细粉末。

2. 取0.5g土壤样品,加入100ml盐酸钠铁溶液中,摇匀,蒸发至干燥。

3. 将干燥后的土壤样品与蒸馏水混合,过滤后用盐酸钠铁溶液进行洗涤,将洗涤液集中收集。

4. 取一定量的洗涤液,加入硫酸亚铁溶液,并加入硫酸溶液进行酸化,使其产生反应生成亚铁离子。

5. 将生成的亚铁离子与硝态氮反应生成氨气,通过导热管送入酸性缓冲溶液中。

6. 用盐酸进行滴定,直到溶液颜色变为橙黄色,记录滴定消耗的盐酸体积。

7. 根据滴定消耗的盐酸体积推算出硝态氮的含量。

四、实验结果和分析根据实验数据,计算出土壤样品中的铵态氮和硝态氮的含量,并计算土壤总氮的含量。

通过与对照组进行比较,可以评估土壤中的氮素供应状态。

五、实验结论根据实验结果分析,得出结论并总结实验中的发现。

并可以进一步展望与讨论。

六、实验改进和优化对于实验过程中存在的问题和不足之处提出改进建议,并分析可能的改进方法,以提高实验结果的准确性和可重复性。

七、实验应用和展望根据实验结果,探讨土壤氮素含量与作物生长之间的关系,以及对农业生产的应用价值。

并展望未来对土壤氮素研究的发展方向。

八、参考文献列出实验中所参考的文献和资料。

以上为土壤氮元素实验报告的基本结构和要点。

根据具体实验内容和结果,进行相应的补充和扩展。

实验报告要包含实验目的、原理、步骤、结果、结论等内容,并进行全面的分析与讨论。

土壤氮测定实验报告

土壤氮测定实验报告

一、实验目的1. 学习掌握土壤氮含量的测定原理和方法;2. 了解土壤全氮、速效氮的测定原理及操作步骤;3. 培养实验操作技能,提高实验数据的准确性和可靠性。

二、实验原理1. 土壤全氮测定:采用凯氏定氮法,将土壤样品中的有机氮转化为无机氮,然后测定无机氮的含量,从而推算出土壤全氮含量。

2. 土壤速效氮测定:采用碱解扩散法,将土壤样品中的速效氮转化为氨气,然后用硼酸吸收,最后用标准酸滴定,计算出土壤速效氮含量。

三、实验材料与仪器1. 实验材料:土壤样品、浓硫酸、氢氧化钠、硼酸、标准酸、锌-硫酸亚铁粉剂等。

2. 实验仪器:电子天平、凯氏烧瓶、凯氏蒸馏器、扩散皿、滴定管、移液管、容量瓶、烘箱等。

四、实验步骤1. 土壤全氮测定(1)称取2.00 g土壤样品于凯氏烧瓶中。

(2)加入5.0 mL浓硫酸,置于电热板上加热,直至溶液呈蓝色。

(3)继续加热,直至溶液变为透明。

(4)冷却后,加入10 mL蒸馏水,继续加热至沸腾。

(5)将溶液转移至凯氏蒸馏器中,加入10 mL氢氧化钠溶液。

(6)连接冷凝管,加热蒸馏,直至吸收液呈碱性。

(7)用标准酸滴定,计算出土壤全氮含量。

2. 土壤速效氮测定(1)称取2.00 g土壤样品于扩散皿中。

(2)加入3 mL硼酸溶液,滴加1滴定氮混合指示剂。

(3)将扩散皿置于40℃烘箱中,加热24小时。

(4)取出扩散皿,用标准酸滴定,计算出土壤速效氮含量。

五、实验结果与分析1. 土壤全氮含量:通过实验,测得土壤全氮含量为2.3 mg/g。

2. 土壤速效氮含量:通过实验,测得土壤速效氮含量为1.5 mg/g。

3. 结果分析:土壤全氮含量反映了土壤中氮素的总储备,而土壤速效氮含量则反映了土壤中可供植物吸收利用的氮素。

本实验结果显示,该土壤样品中氮素储备较为丰富,但可供植物吸收利用的氮素相对较少,可能与土壤质地、有机质含量等因素有关。

六、实验总结1. 本实验成功掌握了土壤氮含量的测定原理和方法,了解了土壤全氮、速效氮的测定步骤。

土壤氮磷钾测定方法

土壤氮磷钾测定方法

土壤氮磷钾测定方法土壤中的氮、磷、钾是植物生长所需的三大主要营养元素,对于土壤肥力的评价和合理施肥具有重要意义。

同时,准确测定土壤中的氮、磷、钾含量也是科学研究和农业生产中常见的需求。

下面将介绍几种常用的土壤氮磷钾测定方法。

1. 土壤氮的测定方法:a. 凯氏法(Kjeldahl法):将土壤样品与硫酸、硼酸混合加热,将其中氮转化为铵盐形式,再用酸溶解,并借助于碱性指示剂滴定盐酸溶液来测定氮的含量。

b. 硫酸铵法:将土壤样品与浓硫酸、浓氯化铵混合,得到铵态氮的盐溶液,然后采用滴定法测定溶液中铵态氮的含量。

c. 气体采样法:运用土壤氮气体捕获器采样,通过气相色谱仪等仪器对氮的含量进行测定。

2. 土壤磷的测定方法:a. 弗里斯法:将土壤样品与硫酸溶解后,在高温下加入巴氏试剂,形成磷酸钙沉淀,再经过高温烘干和加热重量,最后用酸溶解磷酸钙沉淀并过滤,用钼酸铵法测定磷的含量。

b. 西蒙兹方法:将土壤样品与碱溶解,再加入氧化铁褐化剂,与二酸铵反应生成蓝色络合物,利用分光光度计直接测定土壤中的有效磷含量。

3. 土壤钾的测定方法:a. 火焰光度法:将土壤样品与王水溶解,加热蒸干,再用稀硝酸溶解,使钾离子转化为火焰中可发射的激发态激发的钾原子辐射光,通过光度计测定其光密度,以计算钾离子的含量。

b. 铵酸钠法:将土壤样品与稀盐酸溶解,再用氢氧化钠溶液和氯化铵溶液将土壤中的钾转化为铵态,用铵树脂或滤纸吸附铵态氮,再用酸溶解吸附物,测定溶液中的铵态氮含量。

这些方法在土壤氮、磷、钾的测定中都是常用的,具有一定的准确性和可操作性。

根据实际需求和条件选择合适的方法进行测定,可以提供准确的土壤养分含量数据,为科学施肥和农业生产提供有效的依据。

同时,为保证测定结果的准确性,应注意样品的采集方法和保存条件,以及仪器的校准和操作规范。

土壤全氮的测定

土壤全氮的测定

土壤全氮的测定土壤全氮的测定是农业科学中重要的一项研究内容。

土壤中的氮元素对作物的生长发育起着至关重要的作用。

因此,准确测定土壤中的全氮含量对于合理施肥、提高农作物产量和保护环境具有重要意义。

本文将介绍土壤全氮的测定方法及其应用。

一、土壤全氮的测定方法1. Kjeldahl法Kjeldahl法是测定土壤中总氮含量的常用方法。

该方法通过将土壤样品与硫酸和硫酸钾混合加热,将有机氮转化为无机氮,然后用氢氧化钠溶液中和反应产生的硫酸,最后用硫酸铵溶液沉淀氮元素。

通过蒸馏、滴定等步骤计算出土壤中的全氮含量。

2. 尿素酶法尿素酶法是测定土壤中尿素态氮的一种方法。

该方法通过土壤尿素酶催化尿素分解为氨气和二氧化碳,然后通过蒸馏、滴定等步骤计算出尿素态氮的含量。

尿素态氮是土壤中的一种有效氮形态,对农作物的生长起着重要作用。

二、土壤全氮的应用1. 施肥建议土壤全氮的测定结果可以提供施肥建议。

根据土壤中全氮含量的高低,可以合理调整氮肥的施用量,避免过量或不足的施肥,提高农作物的产量和品质。

2. 土壤质量评价土壤全氮含量是评价土壤质量的重要指标之一。

高全氮含量的土壤往往具有较高的肥力和较好的农业生产潜力,而低全氮含量的土壤则提示土壤贫瘠,需要进行改良措施。

3. 环境保护土壤中的氮元素会通过农业活动进入水体,造成水体富营养化,导致水体中藻类过度生长,破坏水生态系统的平衡。

因此,准确测定土壤中的全氮含量有助于合理利用氮肥,减少氮素的流失,保护水资源。

三、总结土壤全氮的测定是农业科学中的重要研究内容。

准确测定土壤中的全氮含量对于合理施肥、提高农作物产量和保护环境具有重要意义。

Kjeldahl法和尿素酶法是常用的土壤全氮测定方法。

测定结果可用于施肥建议、土壤质量评价和环境保护等方面。

通过科学的土壤全氮测定和合理利用氮肥,可以实现农业可持续发展和生态环境的保护。

土壤中氮含量的测定方法

土壤中氮含量的测定方法

土壤中氮含量的测定方法1.气相色谱法:气相色谱法是测定土壤中氮含量最常用的方法之一、该方法是通过气相色谱仪对土壤样品中的氮物质进行分离和检测。

首先将土壤样品溶解在适当的溶剂中,然后经过萃取和蒸发浓缩,得到氮物质的纯化提取液。

最后,将纯化提取液注入气相色谱仪进行分析测定,通过峰面积或峰高比对样品中的氮含量进行定量测定。

2.原子吸收光谱法:原子吸收光谱法是一种精密度高的分析方法,可以测定土壤中各种元素的含量,包括氮。

该方法是通过将土壤样品溶解在酸性消解液中,然后使用原子吸收光谱仪对溶液中的氮进行测定。

原子吸收光谱法可以测定各种形态的氮,例如无机氮和有机氮。

3.光谱法:光谱法是通过分析土壤光谱特征来推断土壤中的氮含量。

该方法是将土壤样品中的光谱信号与已知含氮土壤样品的光谱进行比较,建立光谱与氮含量之间的相关性模型。

通过这一模型,可以对未知土壤样品的氮含量进行预测。

4.红外光谱法:红外光谱法是通过检测土壤样品在红外光谱范围内吸收的辐射来测定氮含量。

该方法是将土壤样品制成薄片或固体盘,并在红外光谱仪中进行扫描。

通过分析样品在不同红外波段的吸收峰,可以推断样品中氮的含量。

5.混合酸法:混合酸法是一种常用于测定土壤有机氮含量的方法。

该方法是将土壤样品与一定比例的混合酸溶解,然后用碱溶液将溶液中的无机氮中和,再通过蒸发浓缩和红外光谱法测定有机氮含量。

混合酸法适用于含有机质较多的土壤样品。

6.菌株培养法:菌株培养法是一种定量测定土壤中细菌固氮的方法。

该方法是将土壤样品进行稀释后,接种在含有适宜细菌生长的培养基中,培养一定时间后,通过测定生长菌落的数量或生物量,可以推断土壤中固氮菌数量和固氮活性,从而间接测定土壤中的氮含量。

综上所述,测定土壤中氮含量常用的方法有气相色谱法、原子吸收光谱法、光谱法、红外光谱法、混合酸法和菌株培养法。

根据需要和实际情况,可以选择适合的方法进行测定。

土壤中氮的测定(全氮、速效氮)

土壤中氮的测定(全氮、速效氮)

1 土壤全氮量的测定(重铬酸钾—硫酸消化法)。

土壤含氮量的多少及其存在状态,常与作物的产量在某一条件下有一定的正相关,从目前我国土壤肥力状况看,80%左右的土壤都缺乏氮素。

因此,了解土壤全氮量,可作为施肥的参考,以便指导施肥达到增产效果。

方法原理:土壤与浓硫酸及还原性催化剂共同加热,使有机氮转化成氨,并与硫酸结合成硫酸铵;无机的铵态氮转化成硫酸铵;极微量的硝态氮在加热过程中逸出损失;有机质氧化成CO2。

样品消化后,再用浓碱蒸馏,使硫酸铵转化成氨逸出,并被硼酸所吸收,最后用标准酸滴定。

主要反应可用下列方程式表示:NH2·CH2CO·NH-CH2COOH+H2SO4=2NH2-CH2COOH+SO2+[O]NH2-CH2COOH+3H2SO4=NH3+2CO2↑+3SO2↑+4H2O2NH2-CH2COOH+2K2Cr2O7+9H2SO4=(NH4)2SO4+2K2SO4+2Cr2(SO4)3+4CO2↑+10H2O (NH4)2SO4+2NaOH=Na2SO4+2H2O+2NH3↑NH3+H3BO3=H3BO3·NH3H3BO3·NH3+HCl=H3BO3+NH4Cl操作步骤1.在分析天平上称取通过60号筛(孔径为0.25mm)的风干土壤样品0.5—1g(精确到0.001g),然后放入150ml开氏瓶中。

2.加浓硫酸(H2SO4)5ml,并在瓶口加一只弯颈小漏斗,然后放在调温电炉上高温消煮15分钟左右,使硫酸大量冒烟,当看不到黑色碳粒存在时即可(如果有机质含量超过5%时,应加1—2g焦硫酸钾,以提高温度加强硫酸的氧化能力)。

3.待冷却后,加5ml饱和重铬酸钾溶液,在电炉上微沸5分钟,这时切勿使硫酸发烟。

4.消化结束后,在开氏瓶中加蒸馏水或不含氮的自来水70ml,摇匀后接在蒸馏装置上,再用筒形漏斗通过Y形管缓缓加入40%氢氧化钠(NaOH)25ml。

5.将一三角瓶接在冷凝管的下端,并使冷凝管浸在三角瓶的液面下,三角瓶内盛有25ml 2%硼酸吸收液和定氮混合指示剂1滴。

土壤中氮含量的测定方法

土壤中氮含量的测定方法

土壤中氮含量的测定方法
一、化学方法:
1. 水浸提法:将200g干土壤样品与500ml蒸馏水混合,用机械振荡器搅拌1小时,过滤,取150ml过滤液进行全氮测定,通过计算得到土壤样品的氮含量。

2. 0.5mol/L氯化钠溶液提取法:将10g土壤样品与25ml 0.5mol/L 氯化钠溶液混合,用机械振荡器搅拌1小时,离心分离,取上清液进行全氮测定。

3. Kjeldahl法:将土壤样品与浓硫酸混合,并加热至沸腾,经蒸馏和中和处理后,收集氨水,并用酸进行滴定,计算氨氮含量。

4.硫酸钾碱解法:将土壤样品与硫酸钾混合,加热水浴酸解,并用氧化氢溶液中和,加适量氨水,然后滴定测定氨氮含量。

二、光谱方法:
1.近红外光谱:利用土壤样品在近红外光谱范围内的吸收特性,建立土壤中氮含量与光谱特征之间的关系模型,通过光谱预测氮含量。

2.荧光光谱:利用荧光光谱仪测定土壤样品在不同波长下的荧光发射强度,通过光谱数据处理,建立氮含量与荧光特征之间的定量关系模型。

三、生物学方法:
1.全氮测定法:通过采集土壤样品并经过处理后,在采样点上进行植物的生长、收获和称重等实验,通过植物的生物量与氮素吸收量建立氮含量与植物生长之间的关系,从而测定土壤中的氮含量。

2.MnSO4还原法:将土壤样品与MnSO4溶液混合后,加入硫酸钠和苯磺酸钠等试剂,加热回流,还原得到的还原氮进行滴定,计算土壤中的氮含量。

综上所述,测定土壤中氮含量的方法有化学方法、光谱方法和生物学方法等。

根据实际需求选择适合的方法进行测定,可为农田土壤肥力评价和施肥制度确定提供重要支持。

土壤可溶性有机氮_硝态氮_铵态氮和微生物量氮测定

土壤可溶性有机氮_硝态氮_铵态氮和微生物量氮测定

土壤可溶性有机氮、硝态氮、铵态氮、微生物量氮最方便最简单的测定方法1.母液制样:称取新鲜土壤(30.0g)于放置烧杯中,加约等于田间持水量60%水在25℃下培养7~15d。

取15.0g土于烧杯,置于真空干燥器中,同时内放一装有用100ml精制氯仿的小烧杯,密封真空干燥器,密封好的真空干燥器连到真空泵上,抽真空至氯仿沸腾5分钟,静置5分钟,再抽滤5分钟,同样操作三次。

干燥器放入25℃培养箱中24小时后,抽真空15-30分钟以除尽土壤吸附的氯仿。

按照土:0.5M K2SO4=1:4(烘干土算,一般就是湿土:0.5M K2SO4=1:2),加入0.5M K2SO4溶液(未熏蒸为空白直接称取15.0g土,加同样比例0.5M K2SO4溶液)震荡30分钟,过滤。

其中熏蒸后的土壤过滤液为A母液,未熏蒸的土壤过滤液为B母液。

母液要是不及时测定,需立即在-15℃以下保存2.测定可溶性有机氮=可溶性全氮-(铵态氮+硝态氮)要是有流动分析仪器还有TOC的话可以利用A母液测得碳氮减去B母液的碳氮含量根据公式计算得出微生物碳氮,可以用B母液测的铵态氮、硝态氮和可溶性全氮,是很方便的。

以下的是用传统的方法测定以上指标,经过852个土壤样品试验结果还是很好的。

土壤可溶性全氮测定氧化剂:将6g NaOH 和30g K2S2O8溶于蒸馏水中并定容至1L(K2S2O8 比较难溶,在低于60℃得瑟水浴中溶解,高于60℃配置的溶液至其氧化性失效,NaOH制成溶液,致其温度达到常温后与K2S2O8溶液混合定容至1L)测定:移取A母液10ml至消化试管,加入10ml氧化剂,水浴中加热,温度升高到120℃后保持90min,使用紫外分光光度计测定A220和A275,空白需加入1ml氧化剂并同时作水浴处理。

(Tips:农化上母液与氧化剂各取25ml,此处取其比例为1:1。

)标准曲线:0.7218g硝酸钾溶于水中,转入1000ml容量瓶中定容摇匀,制得浓度为100mg/L的氮标准贮存液。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

土壤铵态氮的测定2 mol·L-1KCl浸提—蒸馏法1方法原理用2mol·L-1KCl浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。

取一份浸出液在半微量定氮蒸馏器中加MgO(MgO是弱碱,有防止浸出液中酰铵有机氮水解的可能)蒸馏。

蒸出的氨以H3BO3吸收,用标准酸溶液滴定,计算土壤中的NH4+—N含量。

2主要仪器振荡器、半微量定氮蒸馏器、半微量滴定管(5mL)。

3试剂(1)20g·L -1硼酸—指示剂。

20gH3BO3(化学纯)溶于1L水中,每升H3BO3 溶液中加入甲基红—溴甲酚绿混合指示剂5mL并用稀酸或稀碱调节至微紫红色,此时该溶液的pH为4.8。

指示剂用前与硼酸混合,此试剂宜现配,不宜放。

(2)0.005 mol·L-11/2H2SO4标准液。

量取H2SO4(化学纯)2.83mL,加蒸馏水稀释至5000mL,然后用标准碱或硼酸标定之,此为0.0200 mol·L-1 (1/2H2SO4)标准溶液,再将此标准液准确地稀释4倍,即得0.005mol·L-11/2H2SO4标准液(注1)。

(3)2 mol·L-1KCl溶液称KCl(化学纯)14901g溶解于1L水中。

(4)120g·L–1MgO悬浊液 MgO12g经500~600℃灼烧2h,冷却,放入100mL水中摇匀。

4操作步骤取新鲜土样10.0g(注2),放入100mL三角瓶中,加入2mol·L-1KCl 溶液50.0mL。

用橡皮塞塞紧,振荡30min,立即过滤于50mL三角瓶中(如果土壤NH4+—N含量低,可将液土比改为2.5:1)。

吸取滤液25.0mL(含NH4+—N25µg以上)放入半微量定氮蒸馏器中,用少量水冲洗,先把盛有20g·L–1硼酸溶液5mL的三角瓶放在冷凝管下,然后再加120g·L–1 MgO悬浊液10mL于蒸馏室蒸馏,待蒸出液达30~40mL 时(约10min)停止蒸馏,用少量水冲洗冷凝管,取下三角瓶,用0.005mol·L-11/2H2SO4标准液滴至紫红色为终点,同时做空白试验。

5结果计算土壤中铵态氮NH4+—(N)含量(mg·kg-1)=式中:c——0.005mol·L-11/2H2SO4标准溶液浓度;V——样品滴定硫酸标准溶液体积(mL);V0——空白滴定硫酸标准溶液体积(mL);14.0——氮的原子摩尔质量(g·mol-1);ts——分取倍数;103——“换算系数”(包括mL换算为L,10-3;g换算为mg,103;换算为kg,103);m——烘干样品质量(g)。

2mol·L-1KCl浸提—靛酚蓝比色法1方法原理 2mol·L-1KCl溶液浸提土壤,把吸附在土壤胶体上的NH4+及水溶性NH4+浸提出来。

土壤浸提液中的铵态氮在强碱性介质中与次氯酸盐和苯酚作用,生成水溶性染料靛酚蓝,溶液的颜色很稳定。

在含氮0.05~0.5mol·L-1的范围内,吸光度与铵态氮含量成正比,可用比色法测定。

.2试剂(1)2mol·L-1KCl溶液称取149.1g氯化钾(KCl,化学纯)溶于水中,稀释至1L。

(2)苯酚溶液称取苯酚(C6H5OH,化学纯)10g和硝基铁氰化钠[Na2Fe(CN)5NO2H2O]100mg稀释至1L。

此试剂不稳定,须贮于棕色瓶中,在4℃冰箱中保存。

(3)次氯酸钠碱性溶液称取氢氧化钠(化学纯)10g、磷酸氢二钠(Na2HPO4·7H2O, 化学纯)7.06g、磷酸钠(Na3PO4·12H2O, 化学纯)31.8g和 52.5g·L-1次氯酸钠(NaOCl,化学纯,即含5%有效氯的漂白粉溶液)10mL溶于水中,稀释至1L,贮于棕色瓶中,在4℃冰箱中保存。

(4)掩蔽剂将400g·L-1的酒石酸钾钠(KNaC4H4O6·4H2O, 化学纯)与100g·L-1的EDTA二钠盐溶液等体积混合。

每100mL混合液中加入10 mol·L-1氢氧化钠0.5mL。

(5)2.5µg·mL–1铵态氮(NH4+—N)标准溶液称取干燥的硫酸铵[(NH4)2SO4,分析纯]0.4717g溶于水中,洗入容量瓶后定容至1L,制备成含铵态氮(N)100µg·mL–1的贮存溶液;使用前将其加水稀释40倍,即配制成含铵态氮(N)2.5µg·mL–1的标准溶液备用。

3仪器与设备往复式振荡机、分光光度计。

4分析步骤(1)浸提称取相当于20.00g干土的新鲜土样(若是风干土,过10号筛)准确到0.01g,置于200mL三角瓶中,加入氯化钾溶液100mL,塞紧塞子,在振荡机上振荡1h。

取出静置,待土壤—氯化钾悬浊液澄清后,吸取一定量上层清液进行分析。

如果不能在24h内进行,用滤纸过滤悬浊液,将滤液储存在冰箱中备用。

(2)比色吸取土壤浸出液2mL~10mL(含NH4+—N2µg~25µg)放入50mL容量瓶中,用氯化钾溶液补充至10mL,然后加入苯酚溶液5mL和次氯酸钠碱性溶液5mL,摇匀。

在20℃左右的室温下放置1h后(注1),加掩蔽剂1mL以溶解可能产生的沉淀物,然后用水定容至刻度。

用1cm比色槽在625nm波长处(或红色滤光片)进行比色,读取吸光度。

(3)工作曲线分别吸取0.00、2.00、4.00、6.00、8.00、10.00mL NH4+—N标准液于50mL容量瓶中,各加10mL氯化钠溶液,同(2)步骤进行比色测定。

5结果计算土壤中NH4+—(N)含量(mg·kg-1)=式中:ρ——显色液铵态氮的质量浓度(µg·mL–1);V——显色液的体积(mL);mts——分取倍数;m——样品质量(g)。

注1. 显色后在20℃左右放置1h,再加入掩蔽剂.过早加入会使显色反应很慢,蓝色偏弱;加入过晚,则生成的氢氧化物沉淀可能老化而不易溶解.土壤硝态氮的测定酚二磺酸比色法1方法原理土壤浸提液中的NO3-—N在蒸干无水怕条件下能与酚二磺酸试剂作用,生成硝基酚二磺酸。

C6H3OH(HSO3)2+HNO3→C6H2OH(HSO3)2 NO2+H2O2,4-酚二磺酸 6-硝基酚-2,4-二磺酸此反应必须在无水条件下才能迅速完成,反应产物在酸性介质中无色,碱化后则为稳定的黄色溶液,黄色的深浅与NO3-—N含量在一定范围内成正相关,可在400~425nm处(或用蓝色滤光片)比色测定。

酚二磺酸法的灵敏度很高,可测出溶液中0.1mol·L-1 NO3-—N,测定范围为0.1~2mol·L-1。

2主要仪器分光光度计、水浴锅、瓷蒸发皿。

3试剂CaSO4·2H2O(分析纯、粉状)、CaCO3(分析纯、粉状)、Ca(OH)2(分析纯、粉状)、MgCO3(分析纯、粉状)、Ag2SO4(分析纯、粉状)、1:1NH4OH、活性碳(不含NO3-)。

溶液配制(1)酚二磺酸试剂:称取白色苯酚(C6H5OH,分析纯)25.0g置于500mL 三角瓶中,以150mL纯浓H2SO4溶解,再加入发烟H2SO475mL并置于沸水中加热2h,可得酚二磺酸溶液,储于棕色瓶中保存。

使用时须注意其强烈的腐蚀性。

如无发烟H2SO4,可用酚25.0g,加浓H2SO4225mL,沸水加热6h配面。

试剂冷后可能析出结晶,用时须重新加热溶解,但不可加水,试剂必须贮于密闭的玻塞棕色瓶中,严防吸湿。

(2)10µg·mL-1 NO3-—N标准溶液:准确称取KNO3(二级)0.7221g 溶于水,定容1L,此为100µg·mL-1 NO3-—N溶液,将此液准确稀释10倍,即为10µg·mL-1 NO3-—N标准溶液。

.4操作步骤(1)浸提称取新鲜土样(注1)50g放在500mL三角瓶中,加入CaSO4·2H2O0.5g(注2)和250mL水,盖塞后,用振荡机振荡10min。

放置5 min后,将悬液的上部清液用干滤纸过滤,澄清的滤液收集地干燥洁净的三角瓶中。

如果滤液因有机质而呈现颜色,可加活性碳除之(注3、4)。

(2)测定吸取清液 25~50mL(含NO3-—N20~150µg)于瓷蒸发皿中,加CaCO3约0.05g(注5),在水浴上蒸干(注6),到达干燥时不应继续加热。

冷却,迅速加入酚二磺酸试剂2 mL,将皿旋转,使试剂接触到所有的蒸干物。

静止10min使其充分作用后,加水20 mL,用玻璃棒搅拌直到蒸干物完全溶解。

冷却后缓缓加入1:1NH4OH(注7)并不断搅混匀,至溶液呈微碱性(溶液显黄色)再多加2mL,以保证NH4OH试剂过量。

然后奖溶液全部转入100mL容量瓶中,加水定容(注8)。

在分光光度计上用光径1cm比色杯在波长420nm处比色,以空白溶液作参比,调节仪器零点。

(3)NO3-—N工作曲线绘制:分别取10µg·mL-1NO3-—N标准液0、1、2、5、10、15、20mL于蒸发皿中,在水浴上蒸干,与待测液相同操作,进行显色和比色,绘制成标准曲线,或用计算器求出回归方程。

5结果计算土壤中NO3-—N含量(mg·kg-1)=ρ(NO3-—N)——从标准曲线上查得(或回归所求)的显色液NO3-—N质量浓度(µg·mL-1);V——显色液的体积(mL);ts——分取倍数;m——烘干样品质量,g。

注释注1.硝酸根为阴离子,不为土壤胶体吸附,且易溶于水,很易在土壤内部移动,在土壤剖面上下层移动频繁,因此测定硝态氮时注采样深度。

即不仅要采集表层土壤,而且要采集心土和底土,采样深度可达40cm、60 cm以至120 cm。

试验证明,旱地土壤上分析全剖面的硝态氮含量能更好地反映土壤人供氮水平。

和表层土壤比较,则全剖面的硝态氮含量与生物反应之间有更好的相关性,土壤经风或烘干易引起NO3-—N变化,故一般都用新鲜土样测定。

注2.用酚二磺酸法测定硝态氮,首先要求浸提液清彻,不能混浊,但是一般中性或碱性土壤滤液不易澄清,且带有机质的颜色,为此在浸提液中应加入凝聚剂。

凝聚剂的种类很多,有CaO、Ca(OH)2、CaCO3、MgCO3、KAl(SO4)2、CuSO4、CaSO4等,其中CuSO4有防止生物转化的作用,但在过滤前必须以氢氧化钙或碳酸镁除去多余的铜,因此以CaSO4法提取较为方便。

注3.如果土壤浸提液由于有机质而有较深的颜色,则可用活性炭除去,但不宜用H2O2,以防最后显色时反常。

相关文档
最新文档