最新勾股定理逆定理讲义(经典例题+详解+习题)
勾股定理及其逆定理,经典过关题及练习题(含答案)
CBAFEDCB A勾股定理及其逆定理(讲义)一、 知识点睛1. 11-19的平方:_______________________________________________________________________________________________________.2. 勾股定理:_______________________________________________________________________________________________________. 3. 勾股定理的验证:4. 勾股定理逆定理:_______________________________________________________________________________________________________.5. 勾股数:满足a 2+b 2=c 2的三个正整数,称为勾股数.常见勾股数有______________;______________;_______________;________________;________________;_________________.二、精讲精练1. 一个直角三角形两直角边长分别为3和4,下列说法正确的是( )A .斜边长为25B .三角形的周长为25C .斜边长为5D .三角形的面积为202. 如图,在Rt △ABC 中,∠C =90°,若BC =8,AB =17,则AC 的长是________.S 3S 2S 1AB C86C3. 已知:如图,在Rt △ABC 和Rt △ACF 中,BC 长为3cm ,AB 长为4cm ,AF长为12cm ,则正方形CDEF 的面积为_________.4. 如图,在△ABC 中,∠ABC =90°,分别以BC ,AB ,AC 为边向外作正方形,面积分别记为S 1,S 2,S 3.若S 2=4,S 3=6,则S 1=___________.5. 如图,已知Rt △ABC 的两直角边长分别为6和8,分别以其三边为直径作半圆,则图中阴影部分的面积为___________.6. (1)等面积法是几何中一种常见的证明方法,可以直观地推导或验证公式,俗称“无字证明”.例如,著名的赵爽弦图(如图1,其中四个直角三角形较长的直角边长都为a ,较短的直角边长都为b ,斜边长都为c ),大正方形的面积可以表示为c 2,也可以表示为4×12ab +(a -b )2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a ,b ,斜边长为c ,则a 2+b 2=c 2.图2为美国第二十任总统伽菲尔德的“总统证法”,请你利用图2推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形的两直角边长为3和4,则斜边上的高为________. 7. 如图,点C 在线段BD 上,AC ⊥BD ,CA =CD ,点E 在线段CA 上,且满足DE =AB ,连接DE 并延长交AB 于点F . (1)求证:DE ⊥AB ;(2)若已知BC =a ,AC =b ,AB =c ,你能借助本题提供的图形证明勾股定理吗?试一试吧.图2图1b ba ED A ABDEFc c图2b aba ED CBAlcba8. 如图,小方格都是边长为1的正方形,则四边形ABCD 的面积是_________.第8题图 第9题图9. 如图,在△ABC 中,∠ACB =90°,AC >BC ,分别以AB ,BC ,CA 为一边向△ABC 外作正方形ABDE ,正方形BCMN ,正方形CAFG ,连接EF ,GM ,ND .设△AEF ,△CGM ,△BND 的面积分别为S 1,S 2,S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 110. 如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为______.11. 如图,从电线杆离地面8m 处向地面拉一条钢索,若这条钢索在地面的固定点距离电线杆底部6m ,那么需要多长的 钢索?12. 小明将升旗的绳子拉到旗杆底端,并在绳子上打了一个结,子拉到离旗杆底端5米处,发现此时绳子底端距离打结处1米.法算出旗杆的高度.13. 下列各组数中不能作为直角三角形三边长的是( )DCBAAB C DE F GH图3图2图1h 26246b 106c 125A .B .C .D .7152024257202425715202425252420157图2图1DCBAA .0.3,0.4,0.5B .7,12,15C .11,60,61D .9,40,4114. 如图,在单位正方形组成的网格图中有AB ,CD ,EF ,GH 四条线段,其中能构成一个直角三角形三边的线段是( )A .CD ,EF ,GHB .AB ,EF ,GHC .AB ,CD ,GHD .AB ,CD ,EF 15. 若三角形的三边长分别是222122221n n n n n ++++,,(n 为正整数),则三角形的最大内角等于_______度.16. 将直角三角形的三边长同时扩大同一倍数,得到的三角形是( )A .钝角三角形B .锐角三角形C .直角三角形D .等腰三角形17. 三边长分别是15,36,39的三角形是_______三角形.18. 如图,求出下列直角三角形中未知边的长度:c =____,b =____,h =_____.19. 五根小木棒,其长度分别为7,15,20,24,25,现将它们摆成两个直角三角形,下列图形中正确的是( )20. 一个零件的形状如图1中∠A 和∠DBC 都应为直角.工人师傅量得这个零件各边长如图2请说明理由.勾股定理及其逆定理(随堂测试)1.有一块土地形状如图所示,∠B =∠D =90°,AB =20米,BC =15米,CD =7BAD CB .A .c b c a b a a b c a b c c b a c b a A BCD EF D .c b a a b c C .米,则这块地的面积为__________.2.若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④0.3,0.4,0.5;⑤2n +1,2n ,2n 2+2n +1(n 为正整数).则其中能构成直角三角形的是_____________.3.如图,在四边形ABCD 中,AD =3,AB =4,BC =12,CD =13,∠BAD =90°. (1)求BD 的长; (2)证明:BD ⊥BC ; (3)求四边形ABCD 的面积.勾股定理及其逆定理(作业)1. 以下列长度的三条线段为边,不能组成直角三角形的是( )A .1.5,2,2.5B .9,12,15C .7,24,25D .1,1,22. 若三角形的三边长是:①5k ,12k ,13k (k >0);②111345,,;③32,42,52;④11,60,61;⑤22(+)12(+)(+)+1m n m n m n ,,(m ,n 为正整数).其中能构成直角三角形的有( )A .2个B .3个C .4个D .5个3. 下列选项中,不能用来证明勾股定理的是( )4. 已知甲、乙两人从同一点出发,甲往东走了12km ,乙往南走了5km ,这时甲、乙两人相距______.5. 在Rt △ABC 中,∠C =90°,AC =9,BC =12,则点C 到AB 的距离为____________.DC BAF E D CB A 6. 记为S 1,S 2,S 3,则S 1,S 2,S 3之间的关系是( A .S l +S 2>S 3 B .S l +S 2< S 3C .S 1+S 2=S 3D .S 12+S 22=S 327. 中最大的正方形的边长为7cm ,则正方形A ,B ,___________cm 2.8. 如图,每个小方格都是边长为1的正方形,则四边形ABCD 的面积为_________.9. 如图,在正方形ABCD 中,AB =4,AE =2,DF =1,则图中共有直角三角形________个.10. 11. 如图,一架长25(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4方向上滑动了几米?12. 已知一个三角形的三边长分别是5cm ,12cm ,13cm ,你能算出这个三角形的面积吗?b915勾股定理及其逆定理【参考答案】➢ 课前预习1. 大于,互余;2. 121,144,169,196,225,256,289,324,3613. 16A S =9B S = 25C S =A B C S S S +=➢ 知识点睛1. 直角三角形两直角边的平方和等于斜边的平方.2. 略3. 三角形两边的平方和等于第三边的平方,直角三角形.4. 3,4,5;5,12,13;7,24,25;8,15,17;9,40,41;11,60,61.➢ 精讲精练1. C2. 169 cm 23. 24.245. 证明略6. 167. 148. AD =12 cm ,AC =15 cm 9. B 10. B 11. 90 12. 直角 13. C14. 符合要求,理由略15. (1)同位角相等,两直线平行.逆命题成立.(2)如果两个实数的积是正数,那么这两个实数是正数.逆命题不成立. (3)锐角三角形是等边三角形.逆命题不成立.(4)到一条线段两个端点距离相等的点在这条线段的垂直平分线上.逆命题成立.。
勾股定理及其逆定理(习题及答案)
勾股定理及其逆定理(习题)例题示范例1:如图,强大的台风使得一棵树在离地面3m处折断倒下,树的顶部落在离树的底部4m处,这棵树折断之前有多高?解:如图,由题意,得AC=3,BC=4,∠ACB=90°.在Rt△ABC中,∠ACB=90°,由勾股定理,得AC2+BC2=AB2.∴32+42=AB2.∴AB=5.∴AB+AC=5+3=8.答:这棵树折断之前高8m.例2:如图,在△ABC中,AB=13cm,AC=5cm,BC=12cm.求证:∠C=90°.证明:如图,在△ABC中,AB=13,AC=5,BC=12,∵52+122=132,∴AC2+BC2=AB2.∴△ABC为直角三角形,且∠C=90°.巩固练习1.如图,在Rt△ABC中,∠C=90°,若BC=8,AB=17,则AC的长为________.2.已知甲、乙两人从同一地点出发,甲往东走了12km,乙往南走了5km,这时甲、乙两人之间的距离为___________.3.已知某直角三角形的两直角边长分别为3和4,则此三角形的周长为_______.4.如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,则图中半圆的面积是_______.第4题图第5题图5.如图,分别以直角三角形的三边为直径作半圆,三个半圆的面积从小到大依次记为S1,S2,S3,则S1,S2,S3之间的关系是()A.S l+S2>S3B.S l+S2<S3C.S1+S2=S3D.S12+S22=S326.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,若其中最大正方形的边长为7cm,则正方形A,B,C,D的面积之和为___________cm2.7.在△ABC中,AB=AC=13,BC=10,则△ABC的面积为______.8.已知:如图,在△ABC中,AD⊥BC,垂足为点D,AB=13,AC=20,AD=12,求BC的长.9.如图,一架长25米的云梯斜靠在一面墙上,梯子底端与墙根之间的距离为7米.(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向上滑动了几米?10.如图1是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c.图2是以c为直角边的等腰直角三角形.请你开动脑筋,将它们拼成一个能证明勾股定理的图形.(1)画出拼成的这个图形的示意图,并利用这个图形证明勾股定理;(2)假设图1中的直角三角形有若干个,你能运用图1中所给的直角三角形拼出另一种能证明勾股定理的图形吗?请画出拼成的图形的示意图,并利用该图形证明勾股定理.11.以下列长度的三条线段为边,不能组成直角三角形的是()A.1.5,2,2.5B.8,15,17C.7,24,25D.1,1,212.下面四组数,其中是勾股数的是()A.3,4,5B.0.3,0.4,0.5C.32,42,52D.6,7,813.已知一个三角形的三边长分别是12cm,16cm,20cm,则这个三角形的面积为__________.14.如图,在正方形ABCD中,点E,F分别在AD,CD边上,若AB=4,AE=2,DF=1,则图中的直角三角形共有____个.15.在△ABC中,AB=10,BC=12,BC边上的中线AD=8,求AC的长.思考小结1.赵爽弦图和毕达哥拉斯弦图都是由四个全等的__________三角形拼成的,但是在拼的过程中有区别,赵爽弦图的弦在____(填“内”或“外”),毕达哥拉斯弦图的弦在____(填“内”或“外”),请你画出对应的弦图.赵爽弦图毕达哥拉斯弦图2.我们知道3,4,5是一组勾股数,那么3k,4k,5k(k是正整数)____(填“是”或“不是”)一组勾股数;一般地,如<<)是一组勾股数,那么ak,bk,ck(k 果a,b,c(a b c是正整数)是一组勾股数吗?若是,请证明;若不是,请说明理由.解:ak,bk,ck(k是正整数)______一组勾股数,理由如下:∵a,b,c是一组勾股数,∴___________________.∵k≠0,∴k2a2+k2b2______k2c2.∴(ak)2+(bk)2_____(ck)2.∵k为正整数,∴ak,bk,ck也是________.∴ak,bk,ck(k是正整数)_______一组勾股数.【参考答案】巩固练习1.152.13km3.124.16985.C6.497.608.BC的长为219.(1)这个梯子的顶端距地面24米高;(2)梯子的底端在水平方向上滑动了8米10.略11.D12.A13.96cm214.415.AC的长为10思考小结1.直角;外;内图略2.是;是;a2+b2=c2;=;=;正整数;是。
初二数学下册知识点《勾股定理的逆定理》经典例题和解析
初二数学下册知识点《勾股定理的逆定理》经典例题和解析初二数学下册知识点《勾股定理的逆定理》经典例题及解析副标题题号一二三四总分得分一、选择题(本大题共73小题,共219.0分)1.如图所示,被纸板遮住的三角形是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 以上三种情况都有可能【答案】D【解析】解:从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个锐角.故选D.三角形按角分类,可以分为锐角三角形、直角三角形、钝角三角形.有一个角是直角的三角形是直角三角形;有一个角是钝角的三角形是钝角三角形;三个角都是锐角的三角形是锐角三角形.本题考查了三角形内角和定理的运用以及图形的识别能力和推理能力,解题的关键是熟记三角形内角和定理.2.如图,在△ABC中,AB=5,AC=3,BC=4,将△ABC绕A逆时针方向旋转40°得到△ADE,点B经过的路径为弧BD,是图中阴影部分的面积为()A. π-6B. πC. π-3D. +π【答案】B【解析】解:∵AB=5,AC=3,BC=4,∴△ABC为直角三角形,由题意得,△AED的面积=△ABC的面积,由图形可知,阴影部分的面积=△AED的面积+扇形ADB的面积-△ABC的面积,∴阴影部分的面积=扇形ADB的面积==π,故选:B.根据AB=5,AC=3,BC=4和勾股定理的逆定理判断三角形的形状,根据旋转的性质得到△AED的面积=△ABC的面积,得到阴影部分的面积=扇形ADB的面积,根据扇形面积公式计算即可.本题考查的是扇形面积的计算、旋转的性质和勾股定理的逆定理,根据图形得到阴影部分的面积=扇形ADB的面积是解题的关键.3.已知a、b、c为△ABC的三边,且满足a2c2-b2c2=a4-b4,则△ABC是()A. 直角三角形B. 等腰三角形C. 等腰三角形或直角三角形D. 等腰直角三角形【答案】C【解析】【分析】本题考查了因式分解的应用,提取公因式并利用平方差公式分解因式得到a、b、c的关系式是解题的关键.移项并分解因式,然后解方程求出a、b、c的关系,再确定出△ABC的形状即可得解. 【解答】解:移项得,a2c2-b2c2-a4+b4=0,c2(a2-b2)-(a2+b2)(a2-b2)=0,(a2-b2)(c2-a2-b2)=0,所以,a2-b2=0或c2-a2-b2=0,即a=b或a2+b2=c2,因此,△ABC等腰三角形或直角三角形.故选C.4.一个三角形的三边长为15,20,25,则此三角形最大边上的高为( ).A. 10B. 12C. 24D. 48【答案】B【解析】【分析】此题主要考查了三角形面积,直角三角形的判定,勾股定理及其逆定理,解答此题的关键是根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形.根据三角形的三边的长,利用勾股定理逆定理求证该三角形为直角三角形,然后根据三角形面积公式得出BD•AC=AB•BC,即可求得答案.【解答】解:已知三角形的三边分别是BC=15,AB=20,AC=25,BD是AC上的高,∵BC=15,AB=20,AC=25,∴AC2=AB2+BC2,∴三角形ABC为直角三角形,∵BD是AC上的高,∴BD•AC=AB•BC,∴BD=12.故选B.5.下列各组数是三角形的三边,能组成直角三角形的一组数是()A. 2,3,4B. 3,4,5C. 6,8,12D.【答案】B【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、22+32≠42,故不是直角三角形,故此选项错误;B、42+32=572,故是直角三角形,故此选项正确;初二数学下册知识点《勾股定理的逆定理》经典例题和解析C、62+82≠122,故不是直角三角形,故此选项错误;D、()2+()2≠()2,故不是直角三角形,故此选项错误.故选:B.6.下列以a,b,c为边的三角形,不是直角三角形的是()A. a=1,b=1,B. a=1,,c=2C. a=3,b=4,c=5D. a=2,b=2,c=3【答案】D【解析】解:A、∵12+12=()2,∴该三角形是直角三角形,故此选项不符合题意;B、∵12+()2=22,∴该三角形是直角三角形,故此选项不符合题意;C、∵32+42=52,∴该三角形是直角三角形,故此选项不符合题意;D、∵22+22≠32,∴该三角形不是直角三角形,故此选项符合题意.故选:D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,这个就是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.7.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. 0.5,1.2,1.3C. 7,8,9D. 7,24,25【答案】C【解析】解:A、92+122=152,故是直角三角形,故不符合题意;B、(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C、72+82≠92,故不是直角三角形,故符合题意;D、72+242=252,故是直角三角形,故不符合题意.故选:C.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.8.如图△ABC,BC=6,AC=8,AB=10,则点B到AC的距离是()A. 6B. 7C. 8D. 10【答案】A【解析】解:∵BC2+AC2=62+82=100,AB2=102=100,∴BC2+AC2=AB2,根据勾股定理逆定理得,△ABC是直角三角形,∠C=90°,所以,点B到AC的距离是6.故选:A.利用勾股定理逆定理判断出△ABC是直角三角形,∠C=90°,再根据点到直线的距离的定义解答.本题考查了勾股定理逆定理,点到直线的距离的定义,熟记定理并判断出三角形是直角三角形是解题的关键.9.如图,在2×2的正方形网格中有9个格点,已经取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的概率是()A.B.C.D.【答案】B【解析】解:如图,C1,C2,C3,C4均可与点A和B组成直角三角形,则使△ABC为直角三角形的概率是:.故选:B.由取定点A和B,在余下的7个点中任取一点C,使△ABC为直角三角形的有4种情况,直接利用概率公式求解即可求得答案.此题主要考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.10.如图,方格中的点A,B称为格点(格线的交点),以AB为一边画△ABC,其中是直角三角形的格点C的个数为()A. 3B. 4C. 5D. 6【答案】B【解析】【分析】本题主要考查了勾股定理逆定理,关键是正确作出图形,不要漏掉任何一种情况.以AB为直角边有2个,以AB为斜边有2个,共4个.【解答】解:如图所示:以AB为一边画△ABC,其中是直角三角形的格点C共有4个,故选B.11.在△ABC中,∠A,∠B,∠C的对边分别为a,b,c,且(a+b)(a-b)=c2,则()A. ∠A为直角B. ∠C为直角C. ∠B为直角D. 不是直角三角形【答案】A【解析】解:∵(a+b)(a-b)=c2,∴a2-b2=c2,即c2+b2=a2,故此三角形是直角三角形,a为直角三角形的斜边,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠A为直角.故选:A.先把等式化为a2-b2=c2的形式,再根据勾股定理的逆定理判断出此三角形的形状,进而可得出结论.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.如图,在四个均由十六个小正方形组成的正方形网格中,各有一个三角形ABC,那么这四个三角形中,不是直角三角形的是()A. B. C. D.【答案】A【解析】解:A、三角形各边长为、、,()2+()2<()2,故该三角形不是直角三角形;B、由图可知该三角形为直角三角形;C、各边长、、,()2+()2=()2,故该三角形为直角三角形;D、各边长、2、5,()2+(2)2=(5)2,故该三角形为直角三角形.故选:A.由图可知B为直角三角形,分别求A、C、D三个选项中各边长,根据勾股定理的逆定理可以判定C、D中三角形为直角三角形,A不是直角三角形,即可解题.本题中考查了勾股定理的逆定理判定直角三角形,勾股定理在直角三角形中的运用,本题中求证B、C、D选项中三角形是直角三角形是解题的关键.13.下列条件:①∠A+∠B=∠C,②∠C=90°,③AC:BC:AB=3:4:5,④∠A:∠B:∠C=3:4:5.⑤a2=(b+c)(b-c)中,能确定△ABC是直角三角形的有()A. 2个B. 3个C. 4个D. 5个【答案】C【解析】解:①∠A+∠B=∠C时,∠C=90°,是直角三角形;②∠C=90°,是直角三角形;③AC:BC:AB=3:4:5,∴32+42=52,是直角三角形;④∠A:∠B:∠C=3:4:5时,∠C=180°×<90°,是锐角三角形;⑤a2=(b+c)(b-c),a2=b2-c2,是直角三角形.故能确定△ABC是直角三角形的有4个.故选:C.分别求出最大的角的度数,然后根据直角三角形的定义和勾股定理的逆定理解答.本题考查了直角三角形的性质,关键是掌握勾股定理,以及三角形内角和定理.14.以下各组线段为边不能组成直角三角形的是()A. 3,4,5B. 6,8,10C. 5,12,13D. 8,15,20【答案】D【解析】解:A、∵32+42=52,∴能构成直角三角形,故本选项错误;B、∵62+82=102,∴能构成直角三角形,故本选项错误;C、∵52+122=132,∴能构成直角三角形,故本选项错误;D、∵82+152≠202,∴不能构成直角三角形,故本选项正确.故选:D.根据勾股定理的逆定理对四个选项进行逐一判断即可.本题考查的是勾股定理的逆定理,即如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.15.满足下列条件的△ABC中,不是直角三角形的是()A. b2=c2-a2B. a:b:c=3:4:5C. ∠C=∠A-∠BD. ∠A:∠B:∠C=3:4:5【答案】D【解析】解:A、b2=c2-a2,a2+b2=c2,故能组成直角三角形,不符合题意;B、32+42=52,故能组成直角三角形,不符合题意;C、∠C=∠A-∠B,∠A=∠B+∠C,故能组成直角三角形,不符合题意;D、∠A:∠B:∠C=3:4:5,∠C=180°×=75°,故不能组成直角三角形,符合题意.故选:D.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.16.三角形的三边长a,b,c满足(a+b)2—c2 =2ab,则此三角形是( )A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形【答案】A【解析】【分析】本题考查勾股定理的逆定理,若是两边的平方和等于另一个边的平方,那么这个三角形是直角三角形.因为a、b、c,为三角形的三边长,可化简:(a+b)2-c2=2ab,得到结论.【解答】解:∵(a+b)2-c2=2ab,∴a2+2ab+b2-c2=2ab ,∴a2+b2=c2.所以为直角三角形.故选A.17.下面的三角形中:①△ABC中,∠C=∠A-∠B;②△ABC中,∠A:∠B:∠C=1:2:3;③△ABC中,a:b:c=5:12:13;④△ABC中,三边长分别为,其中,直角三角形的个数有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】解:①△ABC中,∠C=∠A-∠B,即∠C+∠B=∠A,∵∠A+∠B+∠C=180°,∴∠A=90°,∴△ABC是直角三角形,故①正确;②△ABC中,∠A:∠B:∠C=1:2:3,∵∠A+∠B+∠C=180°,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠C=90°,∴△ABC是直角三角形,故②正确;③∵△ABC中,a:b:c=5:12:13,∴a2+b2=c2,即△ABC是直角三角形,故③正确;④∵△ABC中,三边长分别为,∴()2+()2≠()2,即△ABC不是直角三角形,故④错误;即正确的个数是3个,故选:C.根据三角形内角和定理即可判断②;根据勾股定理的逆定理即可判断③④.本题考查了勾股定理的逆定理和三角形的内角和定理,能灵活运用定理进行推理和计算是解此题的关键.18.如图,有四个三角形,各有一边长为6,一边长为8,若第三边分别为6,8,10,12,则面积最大的三角形是()A. B.C. D.【答案】C【解析】【分析】本题主要考查了三角形的面积以及勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.过C作CD⊥AB于D,依据AB=6,AC=8,可得CD≤8,进而得到当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC 的面积最大.【解答】解:如图,过C作CD⊥AB于D,∵AB=6,AC=8,∴CD≤8,∴当CD与AC重合时,CD最长为8,此时,∠BAC=90°,△ABC的面积最大,∴BC==10,∴四个三角形中面积最大的三角形的三边长分别为6,8,10,故选C.19.四根小木棒的长分别为5cm,8cm,12cm,13cm,任选三根组成三角形,其中是直角三角形的有()A. 1个B. 2个C. 3个D. 4个【答案】A【解析】解:∵四根小木棒的长分别为5cm,8cm,12cm,13cm,∴可以组成三角形的有:5cm、8cm、12cm;5cm、12cm、13cm;8cm、12cm、13cm.要组成直角三角形,根据勾股定理两边的平方和等于第三边的平方,则只有5cm、12cm、13cm的一组.∴有1个直角三角形.故选:A.要组成三角形,由三角形的边长关系,两边之和大于第三边,两边之差小于第三边.根据直角三角形的性质,两个直角边的平方和等于斜边的平方,从四个数中可以得出5cm、12cm、13cm可以满足要求,其中5cm、12cm为直角边,13cm为斜边.本题考查了勾股定理逆定理的运用以及三角形的三边关系,两边的平方和等于第三边的平方.属于比较简单的题目.20.下列各组数据中能作为直角三角形的三边长的是()A. 1,2,2B. 1,1,C. 4,5,6D. 1,,2【答案】D【解析】【分析】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.解答此题根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A.∵12+22=5≠22,∴此组数据不能作为直角三角形的三边长,故本选项错误;B.∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C.∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D.∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.21.在△ABC中,∠A,∠B,∠C的对边分别是a,b,c,则满足下列条件但不是直角三角形的是()A. a2-c2=b2B. a=n2-1,b=2n,c=n2+1 (n>1)C. ∠A:∠B:∠C=3:4:5D. ∠A=∠B=∠C【答案】C【解析】解:A、a2-c2=b2,那么a2=b2+c2,故△ABC是直角三角形;故不符合题意;B、∵a2+b2=(n2-1)2+(2n)2=(n2+1)2=c2,故△ABC是直角三角形;故不符合题意;C、∠A:∠B:∠C=3:4:5,故△ABC不是直角三角形;故符合题意;D、∵∠A=∠B=∠C,∠A+∠B+∠C=180°,∴∠A+∠A+2∠A=180°,∴∠A=45°,初二数学下册知识点《勾股定理的逆定理》经典例题和解析∴∠C=90°,故△ABC是直角三角形;故不符合题意;故选:C.运用直角三角形的判定方法,当一个角是直角时,或两边的平方和等于第三条边的平方,也可得出它是直角三角形.分别判定即可.此题主要考查了直角三角形的判定方法,勾股定理逆定理的实际运用,灵活的应用此定理是解决问题的关键.22.以a,b,c为边的三角形是直角三角形的是()A. a=2,b=3,c=4B. a=1,b=,c=2C. a=4,b=5,c=6D. a=2,b=2,c=【答案】B【解析】解:A、32+22≠42,故不是直角三角形,故本选项不符合题意;B、12+()2=22,故是直角三角形,故本选项符合题意;C、42+52≠62,故不是直角三角形,故本选项不符合题意;D、22+22≠()2,故不是直角三角形,故本选项不符合题意.故选:B.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.本题考查了勾股定理的逆定理;熟练掌握勾股定理的逆定理,并能进行推理计算是解决问题的关键.23.如图,每个小正方形的边长为1,A,B,C是小正方形的顶点,连接AB,BC,CA,则∠ACB的度数为()A. 30°B. 45°C. 60°D. 75°【答案】B【解析】解:根据勾股定理可以得到:AC=AB=,BC=,∵,即AC2+AB2=BC2,∴△ABC是等腰直角三角形.∴∠ACB=45°.故选:B.分别在格点三角形中,根据勾股定理即可得到AB,BC,AC的长度,继而可得出∠ABC 的度数.本题考查了勾股定理,判断△ABC是等腰直角三角形是解决本题的关键,注意在格点三角形中利用勾股定理.24.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的性质,主要利用了三角形的内角和定理,勾股定理逆定理.根据三角形的内角和定理和勾股定理逆定理对各选项分析判断利用排除法求解.【解答】解:A.∵a2+b2=c2,根据勾股定理的逆定理∠C=90°,是直角三角形,故本选项错误;B.∵(3k)2+(4k)2=25k2=(5k)2,∴△ABC是直角三角形,故本选项错误;C.∵∠C=∠A-∠B,∴∠C+∠B=∠A,∴∠A=90°,是直角三角形,故本选项错误;D.∵∠A:∠B:∠C=3:4:5,∴最大的角∠C=180°×<90°,是锐角三角形,故本选项正确.故选D.25.下列给定的三条线段中,不能组成直角三角形的是()A. 9,12,15B. ,,C. 7,8,9D. 7,24,25【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A.92+122=152,故是直角三角形,故不符合题意;B.(0.5)2+(1.2)2=(1.3)2,故是直角三角形,故不符合题意;C.72+82≠92,故不是直角三角形,故符合题意;D.72+242=252,故是直角三角形,故不符合题意.故选C.26.若△ABC的三边长a,b,c满足(a -b)(b-c)=0 ,则△ABC是()A. 直角三角形B. 等腰三角形C. 等边三角形D. 等腰或等边三角形【答案】D【解析】【分析】此题主要考查等腰三角形的判断.根据(a-b)(b-c)=0,可知三边关系,即可判断结果. 【解答】解:∵a,b,c是△ABC的三边长,又∵(a-b)(b-c)=0,∴a=b或者b=c或者a=b=c,所以三角形是等腰三角形或等边三角形 .故选D.27.五根小木棒,其长度分别为,现将他们摆成两个直角三角形,其中正确的是( )初二数学下册知识点《勾股定理的逆定理》经典例题和解析A. B.C. D.【答案】C【解析】【分析】本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A:152+202≠242,72+242=252,故A错误;B:72+242=252,152+202≠242,故B错误;C:72+242=252,152+202=252,故C正确;D:72+202≠252,152+242≠252,故D错误.故选C.28.满足下列条件的△ABC,不是直角三角形的是( )A. B.C. D.【答案】D【解析】【分析】本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.【解答】解:A.由b2-a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B.由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C.由三角形三个角度数和是180°及∠C=∠A-∠B解得∠A=90°,故是直角三角形;D.由∠A:∠B:∠C=3:4:5,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.故选D.29.如图,在△ABC中,AB=10,AC=6,BC=8,将△ABC折叠,使点C落在AB边上的点E处,AD是折痕,则△BDE的周长为()A. 6B. 8C. 12D. 14【答案】C【解析】解:在Rt△ABC中,∵AC=6,BC=8,∠C=90°,∴AB==10,由翻折的性质可知:AE=AC=6,CD=DE,∴BE=4,∴△BDE的周长=DE+BD+BE=CD+BD+E=BC+BE=8+4=12,故选:C.利用勾股定理求出AB=10,利用翻折不变性可得AE=AC=6,推出BE=4即可解决问题.本题考查翻折变换,勾股定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.30.下列各组数不能构成直角三角形的是A. 12,5,13B. 40,9,41C. 7,24,25D. 10,20,16【答案】D【解析】【分析】本题主要考查了勾股定理的逆定理的运用,判断三条线段能否构成直角三角形,只需看两条短边的平方和是否等于长边的平方,如果等就是直角三角形,不等就不是直角三角形,解答此题根据勾股定理的逆定理进行判断即可.【解答】解:A.∵52+122=132,∴能构成直角三角形;B.∵402+92=412,∴能构成直角三角形;C.∵72+242=252,∴能构成直角三角形;D.∵102+162≠202,∴不能构成直角三角形.故选D.31.以下列各组线段为边作三角形,能构成直角三角形的是()A. 2,3,4B. 4,4,6C. 6,8,10D. 7,12,13【答案】C【解析】解:A、22+32=13≠42,不能构成直角三角形,故本选项错误;B、42+42=32≠62,不能构成直角三角形,故本选项错误;C、62+82=100=102,能构成直角三角形,故本选项正确;D、122+72=193≠132,不能构成直角三角形,故本选项错误;故选:C.只要验证两小边的平方和等于最长边的平方即可判断是直角三角形.本题考查勾股定理的逆定理的应用,判断三角形是否为直角三角形只要验证两小边的平方和等于最长边的平方即可.32.有四条线段,长度分别是4,6,8,10,从中任取三条能构成直角三角形的概率是()A. B. C. D.【答案】D【解析】解:所有的情况有:4,6,8;4,6,10;4,8,10;6,8,10,共4种,其中能构成三角形的有:4,6,8;6,8,10;4,8,10,共3种,所以从中任取三条能构成直角三角形的概率是;故选:D.找出四条线段任取三条的所有等可能的情况数,找出能构成三角形的情况,即可求出所初二数学下册知识点《勾股定理的逆定理》经典例题和解析求的概率.此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.33.若△ABC三边分别是a,b,c,且满足(b-c)(a2+b2)=bc2-c3,则△ABC是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰或直角三角形【答案】D【解析】略34.下列选项中,不能判断△ABC为直角三角形的是()A. ∠A+∠B=∠CB. A:∠B:∠C=1:2:3C. ∠A=∠B=2∠CD. AB2+BC2=AC2【答案】C【解析】解:A、正确,因为∠A+∠B=∠C,∠A+∠B+∠C=180°,则∠C=90°,故为直角三角形;B、因为∠A:∠B:∠C=1:2:3,所以设∠A=x,则∠B=2x,∠C=3x,故x+2x+3x=180°,解得x=30°,3x=30°×3=90°,故为直角三角形;C、因为∠A=∠B=2∠C,∠A+∠B+∠C=180°,则∠A=∠B=72°,∠C=36°,故此三角形是锐角三角形,错误;D、因为AB2+BC2=AC2,故为直角三角形;故选:C.A、根据三角形的内角和为180度,即可计算出∠C的值;B、根据角的比值求出各角的度数,便可判断出三角形的形状;C、根据三角形的内角和为180度,即可计算出∠A、∠B、∠C的值;D、根据勾股定理的逆定理进行判定即可.此题考查了解直角三角形的相关知识,根据勾股定理的逆定理、三角形的内角和定理结合解方程是解题的关键.35.在下列条件中:,,,④,⑤中,能确定是直角三角形的条件有( )A. 1个B. 2个C. 3个D. 4个【答案】D【解析】【分析】本题考查了三角形内角和定理的应用,能求出每种情况的最大角的度数是解此题的关键,题目比较好,难度适中.根据三角形的内角和定理得出∠A+∠B+∠C=180°,再根据已知的条件逐个求出∠C的度数,即可得出答案.【解答】解:①∵∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故①正确;②∵∠A:∠B:∠C=1:2:3,∠A+∠B+∠C=180°,∴∠C=×180°=90°,∴△ABC是直角三角形,故②正确;③∵∠A=90°-∠B,∴∠A+∠B=90°,∵∠A+∠B+∠C=180°,∴∠C=90°,∴△ABC是直角三角形,故③正确;④∵∠A=∠B=∠C,设∠A=x,∠B=2x,∠C=3x,∴x+2x+3x=180°,∴x=30º,3x=90º,∴∠C=90°,∴△ABC是直角三角形,故④正确,⑤∵∠A=∠B=2∠C,∠A+∠B+∠C=180°,∴5∠C=180°∴∠C=36°∴∠A=∠B=72°∴△ABC不是直角三角形,∴⑤错误.综上所述①②③④4个全部符合题意.故选D.36.在下列条件中:①∠A+∠B=∠C,②∠A∶∠B∶∠C=1∶2∶3,③∠A=900-∠B,④∠A=∠B=∠C中,能确定△ABC是直角三角形的条件有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】略37.下列说法中:①如果∠A+∠B﹣∠C=0,那么△ABC是直角三角形;②如果∠A:∠B:∠C=5:12:13,则△ABC是直角三角形;③如果三角形三边之比为,则△ABC为直角三角形;④如果三角形三边长分别是n2﹣4、4n、n2+4(n>2),则△ABC是直角三角形.其中正确的有()A. 1个B. 2个C. 3个D. 4个【答案】C【解析】【分析】本题考查了直角三角形的判定,勾股定理的逆定理和三角形的内角和定理.利用三角形内角和定理和勾股定理逆定理逐项进行判断,从而得到答案.【解答】解:①符合题意,由三角形内角和定理可求出∠C为90度;初二数学下册知识点《勾股定理的逆定理》经典例题和解析②不符合题意,根据三角形的内角和定理可以求出三角形的三个内角分别为30°,72°,78°,不是直角三角形;③符合题意,设三边分别为x,x,x,则有7x2+10x2=17x2,则△ABC为直角三角形;④符合题意,因为,则△ABC是直角三角形.所以正确的有①③④.故选C.38.如图,四边形ABCD中,AB=4cm,BC=3cm,CD=12cm,DA=13cm,且∠ABC=90°,则四边形ABCD的面积为()A. 6cm2B. 30cm2C. 24cm2D. 36cm2【答案】C【解析】解:连接AC,∵∠ABC=90°,AB=4cm,BC=3cm,∴AC=5cm,∵CD=12cm,DA=13cm,AC2+CD2=52+122=169=132=DA2,∴△ADC为直角三角形,∴S四边形ABCD=S△ACD-S△ABC=AC×CD-AB×BC=×5×12-×4×3=30-6=24(cm2).故四边形ABCD的面积为24cm2.故选:C.连接AC,在Rt△ADC中,已知AB,BC的长,运用勾股定理可求出AC的长,在△ADC 中,已知三边长,运用勾股定理逆定理,可得此三角形为直角三角形,故四边形ABCD 的面积为Rt△ACD与Rt△ABC的面积之差.本题考查的是勾股定理的逆定理及三角形的面积公式,根据题意作出辅助线,判断出△ACD的形状是解答此题的关键.39.王老师给出了下列三条线段的长度,其中能首尾相接构成直角三角形的是()A. 1,2,3B.C. 6,8,9D. 5,12,13【答案】D【解析】解:A、由22+12=5≠32,故本选项错误;B、由()2+()2=7≠()2,故本选项错误;C、由62+82=100≠92,故本选项错误;D、由52+122=169=132,故本项正确.故选:D.根据三边的长,运用勾股定理的逆定理进行分析解答即可.本题主要考查勾股定理的逆定理,关键在于正确的表示出斜边、直角边的长度,熟练运用勾股定理的逆定理进行分析.40.图中三角形的个数是( )A. 6B. 7C. 8D. 9【答案】C【解析】【分析】本题考查了三角形的定义,根据图形找出其中三角形即可得结果.【解答】解:图中三角形有ΔABF、ΔADF、ΔCDF、ΔAEC、ΔACD、ΔABD、ΔAED、ΔBDE,共8个.故选C.41.在下列几组数中,能作为直角三角形三边的是().A. 0.9,1.6,2.5B. ,,C. 32,42,52D. ,,【答案】D【解析】解:A、0.92+1.62≠2.52,不符合勾股定理的逆定理,故选项错误;B、()2+()2≠()2,不符合勾股定理的逆定理,故选项错误;C、(32)2+(42)2≠(52)2,不符合勾股定理的逆定理,故选项错误;D、()2+()2=()2,符合勾股定理的逆定理,故选项正确.故选D.根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.42.给出下列四个说法:①由于0.3,0.4,0.5不是勾股数,所以以0.3,0.4,0.5为边长的三角形不是直角三角形;②由于以0.5,1.2,1.3为边长的三角形是直角三角形,所以0.5,1.2,1.3是勾股数;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,其中正确的是()A. ①②B. ②③C. ③④D. ①④【答案】C【解析】【分析】此题考查了勾股数:满足a2+b2=c2的三个正整数,称为勾股数.注意:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以初二数学下册知识点《勾股定理的逆定理》经典例题和解析它们不是勾股数.②一组勾股数扩大相同的整数倍得到的三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;….欲判断是否为勾股数,必须根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.【解答】解:①由于0.32+0.42=0.52,所以以0.3,0.4,0.5为边长的三角形是直角三角形,但是0.3,0.4,0.5不是整数,所以0.3,0.4,0.5不是勾股数,故①说法错误;②虽然以0.5,1.2,1.3为边长的三角形是直角三角形,但是0.5,1.2,1.3不是整数,所以0.5,1.2,1.3不是勾股数,故②说法错误;③若a,b,c是勾股数,且c最大,则一定有a2+b2=c2,故③说法正确;④若三个整数a,b,c是直角三角形的三边长,则2a,2b,2c一定是勾股数,故④说法正确.故选:C.43.已知△ABC,三边长AB=8cm,AC=6cm,BC=10cm,则最长边上的高是()A. 48cmB. 4.8cmC. 0.48cmD. 5cm【答案】B【解析】【分析】本题考查了勾股定理的逆定理,直角三角形斜边上的中线的性质,三角形的面积,是基础知识要熟练掌握.勾股的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形. 首先根据勾股定理的逆定理得出斜边为AB,再利用“面积法”来求AB边上的高.【解答】解:∵Rt△ABC的三边AC=6cm,BC=8cm,AB=10cm,∴AB2=AC2+BC2,∠C=90°,,∴AB边上的高.故选B.44.线段BC上有3个点P1、P2、P3,线段BC外有一点A,把A和B、P1、P2、P3、C连接起来,可以得到的三角形个数为()A. 8个B. 10个C. 12个D. 20个【答案】B【解析】解:从5个点中,任意选2个点组合,显然有10种情况.故选B.45.将下列各组数据中的三个数作为三角形的三边长,其中能构成直角三角形的是( )。
勾股定理和勾股定理逆定理的经典例题精讲(辅导班、提高班)
勾股定理和勾股定理逆定理的经典例题精讲一题型一:直接考查勾股定理例1.在ABC ∆中,90C ∠=︒.⑴已知6AC =,8BC =.求AB 的长⑵已知17AB =,15AC =,求BC 的长。
解析:直接应用勾股定理222a b c +=解:题型二:利用勾股定理测量长度例题1 如果梯子的底端离建筑物9米,那么15米长的梯子可以到达建筑物的高度是多少米?解析:这是一道大家熟知的典型的“知二求一”的题。
把实物模型转化为数学模型后,.已知斜边长和一条直角边长,求另外一条直角边的长度,可以直接利用勾股定理!例题2 如图(8),水池中离岸边D 点1.5米的C 处,直立长着一根芦苇,出水部分BC 的长是0.5米,把芦苇拉到岸边,它的顶端B 恰好落到D 点,并求水池的深度AC. 解析:同例题1一样,先将实物模型转化为数学模型,如图2. 由题意可知△ACD 中,∠ACD=90°,在Rt △ACD 中,只知道CD=1.5,这是典型的利用勾股定理“知二求一”的类型。
解:题型三:勾股定理和逆定理并用例题3 如图3,正方形ABCD 中,E 是BC 边上的中点,F 是AB 上一点, 且AB FB 41=那么△DEF 是直角三角形吗?为什么? 解析:这道题把很多条件都隐藏了,乍一看有点摸不着头脑。
仔细读题会意可以发现规律,没有任何条件,我们也可以开创条件,由AB FB 41=可以设AB=4a ,那么BE=CE=2 a,AF=3 a,BF= a,那么在Rt △AFD 、Rt △BEF 和 Rt △CDE 中,分别利用勾股定理求出DF,EF 和DE 的长,反过来再利用勾股定理逆定理去判断△DEF 是否是直角三角形。
详细解题步骤如下:解:.注:本题利用了四次勾股定理,是掌握勾股定理的必练习题。
题型四:利用勾股定理求线段长度例题4 如图4,已知长方形ABCD 中AB=8cm,BC=10cm,在边CD 上取一点E ,将△ADE 折叠使点D 恰好落在BC 边上的点F ,求CE 的长.解析:解题之前先弄清楚折叠中的不变量。
(完整版)勾股定理典型例题详解及练习(附答案)
典型例题知识点一、直接应用勾股定理或勾股定理逆定理例1:如图,在单位正方形组成的网格图中标有 AB CD EF 、GH 四条线段, 其中能构成一个直角三角形三边的线段是( )1) 题意分析:本题考查勾照定理及勾股定理的逆定理./2) 解题思踏;可利用勾照定理直接求出各也长,再进行判断.卜 解答过程:#ai^AEAF 中,AF=h AE=2,根据勾股定理,得。
跻=J 招己'十』十F = 姊同理 = 2思* QH. = 1 CD = 2^5计算发现(右尸十0招”=(雁沪t 即/费+寥=奇,根据 勾股定理的迎定理得到以AE 、EF 、GH 为也的三角形是直角三角形.故选 B. *解题后B0思考、1.勾股定理只适用于直角三角形,而不适用于锐角三角形和钝角三角形. 因此,解跑时一定要认真分析题目所蛤条件,看是否可用勾股定理来解n ,L 在运用勾股定理时,要正确分析题目所给的条件,不要习惯性地认为 七”就是斜诳而.固执"地运用公式"二/十舛 其实,同样是四"6 NC 不一定就等于叩幻I 不一定就是斜遮,A ABC 不一定就是直角三痢 形.卜A. CD 、EF 、GH C. AB 、CD GHB. AB 、EF 、GHD. AB 、CD EF3.直角三角形的判定条件与勾股定理是互逆的.区别在于勾股定理的运用是一个从"形胡(一个三角形是直角三角形)到板'3’ =疽十瑟)的辿程,而直角三角形的判定是一个从W〔一个三角形的三满是L = ^+广的条件)到胃形'这个三弟形是直急三甬形)的过程.甘1在应用勾股定理解题时,要全面地毒虑问题.注意m题中存在的多种可能性,避免漏解。
/例2-如图'有一块直角三角形舐板幽G两直角边ACMkm, BWg 现博直甬边AC沿直线AD折叠,庾它落在斜辿AB上,且点C落到点E处, 则CD等于(EC 。
A. 2cmB. 3cm C 4an D 5cm*" iiEMraZJ VI :『n暴意分析,本题考查勾股定理的应用,:)解题思路;本题若直接在△XOQ中运用勾股定理是无法求得® ffi 长的,因为只知道一条迫应。
人教版 八年级数学 勾股定理逆定理讲义 (含解析)
第17讲勾股定理逆定理知识定位讲解用时:3分钟A、适用范围:人教版初二,基础一般;B、知识点概述:本讲义主要用于人教版初二新课,本节课我们要学习勾股定理的逆定理。
它是初中几何中及其重要的一个定理,是今后判断某三角形是直角三角形的证明方法之一,有着广泛的应用,同时在应用中渗透了利用代数计算的方法证明几何问题的思想,因此本节内容至关重要。
知识梳理讲解用时:20分钟勾股定理逆定理1.勾股定理:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.2.勾股定理逆定理:如果三角形三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形,且边c所对的角为直角.勾股定理与勾股定理逆定理是互逆的关系3.定理:经过证明被确认正确的命题叫做定理.4.我们把题设、结论正好相反的两个命题叫做互逆命题.如果把其中一个叫做原命题,那么另一个叫做它的逆命题.(例:勾股定理与勾股定理逆定理)5.勾股数:勾股数就是可以构成一个直角三角形三边的一组正整数.熟记几组常见的勾股数:(3,4,5)、(6,8,10)、(5,12,13)(7,24,25)、(9、40、41)等等.注意:一组勾股数同时扩大或缩小相应的倍数,仍满足勾股定理的逆定理.课堂精讲精练【例题1】在以下列三个数为边长的三角形中,不能组成直角三角形的是()A.4、7、9 B.5、12、13 C.6、8、10 D.7、24、25【答案】A【解析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.解:A、42+72≠92,故不是直角三角形,故此选项符合题意;B、52+122=132,故是直角三角形,故此选项不符合题意;C、82+62=102,故是直角三角形,故此选项不符合题意;D、72+242=252,故是直角三角形,故此选项不符合题意.故选:A.讲解用时:2分钟解题思路:本题考查勾股定理的逆定理.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.教学建议:掌握勾股定理的逆定理,只要满足最长的边的平方等于另外两边的平方和即可.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习1.1】满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2 B.a:b:c=3:4:5C.∠A:∠B:∠C=9:12:15 D.∠C=∠A﹣∠B【答案】C【解析】依据勾股定理的逆定理,三角形内角和定理以及直角三角形的性质,即可得到结论.解:A、由b2﹣a2=c2得b2=a2+c2符合勾股定理的逆定理,故是直角三角形;B、由a:b:c=3:4:5得c2=a2+b2符合勾股定理的逆定理,故是直角三角形;C、由∠A:∠B:∠C=9:12:15,及∠A+∠B+∠C=180°得∠C=75°≠90°,故不是直角三角形.D、由三角形三个角度数和是180°及∠C=∠A﹣∠B解得∠A=90°,故是直角三角形;故选:C.讲解用时:2分钟解题思路:本题考查了直角三角形的判定及勾股定理的逆定理,掌握直角三角形的判定及勾股定理的逆定理是解题的关键.教学建议:通过勾股定理逆定理或者三角形内角和判断出直角即可.难度: 2 适应场景:当堂练习例题来源:金堂县期末年份:2017【练习1.2】下列各组数中,是勾股数的为()A.1,1,2 B.1.5,2,2.5 C.7,24,25 D.6,12,13【答案】C【解析】根据勾股定理的逆定理分别对各组数据进行检验即可.解:A、∵12+12≠22,∴不是勾股数,此选项错误;B、1.5和2.5不是整数,此选项错误;C、∵72+242=252,∴是勾股数,此选项正确;D、∵62+122≠132,∴不是勾股数,此选项错误.故选:C.讲解用时:3分钟解题思路:此题考查了勾股数,说明:①三个数必须是正整数,例如:2.5、6、6.5满足a2+b2=c2,但是它们不是正整数,所以它们不是够勾股数.②一组勾股数扩大相同的整数倍得到三个数仍是一组勾股数.③记住常用的勾股数再做题可以提高速度.如:3,4,5;6,8,10;5,12,13;…教学建议:熟记基本的勾股数同时扩大或缩小相应的倍数仍然满足勾股定理的逆定理.难度: 3 适应场景:当堂练习例题来源:无年份:2017【例题2】已知三角形三边长分别是6,8,10,则此三角形的面积为.【答案】24【解析】根据三角形三边长,利用勾股定理逆定理求证此三角形是直角三角形,然后即可求得面积.解:∵62+82=102,∴此三角形为直角三角形,∴此三角形的面积为:×6×8=24.故答案为:24.讲解用时:3分钟解题思路:此题主要考查学生对勾股定理逆定理的理解和掌握,解答此题的关键是利用勾股定理逆定理求证此三角形是直角三角形.教学建议:通过勾股定理逆定理判断出直角三角形,然后求面积.难度: 3 适应场景:当堂例题例题来源:牡丹区期末年份:2017【练习2.1】三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,则此三角形的形状是三角形.【答案】直角【解析】根据题目中的式子和勾股定理的逆定理可以解答本题.解:∵2ab=(a+b)2﹣c2,∴2ab=a2+2ab+b2﹣c2,∴a2+b2=c2,∵三角形的三边长a,b,c满足2ab=(a+b)2﹣c2,∴此三角形是直角三角形,故答案为:直角.讲解用时:3分钟解题思路:本题考查勾股定理的逆定理、完全平方公式,解答本题的关键是明确题意,利用勾股定理的逆定理解答.教学建议:化简之后通过勾股定理的逆定理证明直角.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题3】探索勾股数的规律:观察下列各组数:(3,4,5),(5,12,13),(7,24,25),(9,40,41)…可发现,4=,12=,24=…请写出第5个数组:.【答案】11,60,61【解析】先找出每组勾股数与其组数的关系,找出规律,再根据此规律进行解答.解:∵①3=2×1+1,4=2×12+2×1,5=2×12+2×1+1;②5=2×2+1,12=2×22+2×2,13=2×22+2×2+1;③7=2×3+1,24=2×32+2×3,25=2×32+2×3+1;④9=2×4+1,40=2×42+2×4,41=2×42+2×4+1;⑤11=2×5+1,60=2×52+2×5,61=2×52+2×5+1,故答案为:11,60,61.讲解用时:4分钟解题思路:本题考查的是勾股数,根据所给的每组勾股数找出各数与组数的规律是解答此题的关键.教学建议:学会探索勾股数的规律.难度: 3 适应场景:当堂例题例题来源:永城市期中年份:2017【练习3.1】若8,a,17是一组勾股数,则a= .【答案】【解析】分a为最长边,17为最长边两种情况讨论,根据勾股数是正整数,同时还需验证两小边的平方和是否等于最长边的平方.解:①a为最长边,a=,不是正整数,不符合题意;②17为最长边,a==15,三边是整数,能构成勾股数,符合题意.故答案为:15.讲解用时:3分钟解题思路:考查了勾股数的定义,解答此题要用到勾股数的定义及勾股定理的逆定理:已知△ABC的三边满足a2+b2=c2,则△ABC是直角三角形.教学建议:本题要分两种情况考虑,熟记勾股数都是正整数.难度: 3 适应场景:当堂练习例题来源:通州区校级期中年份:2017【例题4】如图,△ABC的三个顶点在正方形网格的格点上,网格中的每个小正方形的边长均为单位1.(1)求证:△ABC为直角三角形;(2)求点B到AC的距离.【答案】(1)△ABC为直角三角形;(2)【解析】(1)根据勾股定理以及逆定理解答即可;(2)根据三角形的面积公式解答即可.解:(1)由勾股定理得,AB=,BC=2,AC=AB2+BC2=65=AC2△ABC为直角三角形;(2)作高BD,由得,解得,BD=点B到AC的距离为.讲解用时:3分钟解题思路:此题考查勾股定理问题,关键是根据勾股定理以及逆定理解答.教学建议:熟练掌握并应用勾股定理的逆定理.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习4.1】计算图中四边形ABCD的面积.【答案】246【解析】首先利用勾股定理求出BD的长,再利用勾股定理的逆定理证明三角形BDC是直角三角形,最后利用三角形的面积公式求出答案.解:∵∠A=90°,∴BD2=AD2+AB2=400,∴BD2+CD2=625=BC2,∴△BCD为直角三角形,∴S四边形ABCD=AD•AB+CD•BD=246.讲解用时:3分钟解题思路:本题主要考查了勾股定理的逆定理以及勾股定理的知识,解题的关键是证明△BCD为直角三角形,此题难度不大.教学建议:灵活应用勾股定理和勾股定理逆定理.难度: 3 适应场景:当堂练习例题来源:阜宁县期末年份:2017【例题5】如图,已知在四边形ABCD中,∠A=90°,AB=2cm,AD=cm,CD=5cm,BC=4cm,求四边形ABCD的面积.【答案】+6【解析】连接BD,根据勾股定理求得BD的长,再根据勾股定理的逆定理证明△BCD是直角三角形,则四边形ABCD的面积是两个直角三角形的面积和.解:连接BD.∵∠A=90°,AB=2cm,AD=,∴根据勾股定理可得BD=3,又∵CD=5,BC=4,∴CD2=BC2+BD2,∴△BCD是直角三角形,∴∠CBD=90°,∴S四边形ABCD =S△ABD+S△BCD=AB•AD+BC•BD=×2×+×4×3=+6(cm2).讲解用时:3分钟解题思路:此题考查勾股定理和勾股定理的逆定理的应用,辅助线的作法是关键.解题时注意:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.教学建议:灵活应用勾股定理和勾股定理逆定理.难度: 3 适应场景:当堂例题例题来源:无年份:2018【练习5.1】如图,四边形ABCD中,AB=AD=2,BC=3,CD=1,∠A=90°,求四边形ABCD的面积.【答案】2+【解析】首先在Rt△BAD中,利用勾股定理求出BD的长,再根据勾股定理逆定理在△BCD中,证明△BCD是直角三角形,再根据四边形ABCD的面积=三角形BAD的面积+三角形BDC的面积即可求出答案.解:连接BD,在Rt△BAD中,∵AB=AD=2,∴BD==2,在△BCD中,DB2+CD2=(2)2+12=9=CB2,∴△BCD是直角三角形,∴∠BDC=90°,∴四边形ABCD的面积=三角形BAD的面积+三角形BDC的面积=2×2÷2+1×2÷2=2+.讲解用时:3分钟解题思路:此题考查了勾股定理,以及勾股定理的逆定理,熟练掌握勾股定理,以及勾股定理的逆定理是解本题的关键.教学建议:灵活应用勾股定理和勾股定理逆定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【例题6】如图,AD是△ABC的中线,AD=12,AB=13,BC=10,求AC长.【答案】13【解析】首先利用勾股定理逆定理证明∠ADB=90°,再利用勾股定理计算出AC 的长即可.解:∵AD是△ABC的中线,且BC=10,∴BD=BC=5.∵52+122=132,即BD2+AD2=AB2,∴△ABD是直角三角形,则AD⊥BC,又∵CD=BD,∴AC=AB=13.讲解用时:3分钟解题思路:此题主要考查了勾股定理,以及勾股定理逆定理,根据题意证明∠ADB=90°是解决问题的关键.教学建议:熟练运用并掌握勾股定理及其逆定理.难度: 3 适应场景:当堂例题例题来源:滨海县期末年份:2017【练习6.1】如图,有一块耕地ACBD,已知AD=24m,BD=26m,AC⊥BC,且AC=6m,BC=8m.求这块耕地的面积.【答案】96m2【解析】连接AB,先根据勾股定理求出AB的长,再由勾股定理的逆定理,判断出△ABD的形状,根据S四边形ADBC =S△ABD﹣S△ABC即可得出结论.解:连接AB,∵AC⊥BC,AC=6m,BC=8m,∴Rt△ABC中,AB==10m,∵AD=24m,BD=26m,∴AD2=242=576,BD2=262=676,AB2=102=100,∴AB2+AD2=BD2,∴△ABD是直角三角形,∴S四边形ADBC =S△ABD﹣S△ABC=AB•AD﹣AC•BC=×10×24﹣×8×6=120﹣24=96m2.答:这块土地的面积是96m2.讲解用时:3分钟解题思路:本题考查的是勾股定理及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.教学建议:熟练运用并掌握勾股定理及其逆定理.难度: 3 适应场景:当堂练习例题来源:无年份:2018【练习6.2】如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.若一只小鸟从一棵树的树梢A飞到另一棵树的树梢B,小鸟至少需飞行多少米?【答案】10【解析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB﹣EB=10﹣4=6m,在Rt△AEC中,AC==10m,故小鸟至少飞行10m.讲解用时:3分钟解题思路:本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.教学建议:将实际问题转化为具体的几何问题,通过勾股定理进行计算.难度: 3 适应场景:当堂练习例题来源:高安市期中年份:2018【例题7】如图,小明的家位于一条南北走向的河流MN的东侧A处,某一天小明从家出发沿南偏西30°方向走60m到达河边B处取水,然后沿另一方向走80m到达菜地C 处浇水,最后沿第三方向走100m回到家A处.问小明在河边B处取水后是沿哪个方向行走的?并说明理由.【答案】沿南偏东60°方向【解析】首先根据勾股定理逆定理得出∠ABC=90°,然后再判断AD∥NM,可得∠NBA=∠BAD=30°,再根据平角定义可得∠MBC=180°﹣90°﹣30°=60°,进而得到答案.解:∵AB=60,BC=80,AC=100,∴AB2+BC2=AC2,∴∠ABC=90°,∴AD∥NM,∴∠NBA=∠BAD=30°,∴∠MBC=180°﹣90°﹣30°=60°,∴小明在河边B处取水后是沿南偏东60°方向行走的.讲解用时:3分钟解题思路:此题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.教学建议:熟练掌握并应用勾股定理的逆定理.难度: 3 适应场景:当堂例题例题来源:灵石县期中年份:2018【练习7.1】某港口位于东西方向的海岸线上.“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口小时后相距30海里.如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【答案】沿西北方向航行【解析】根据路程=速度×时间分别求得PQ、PR的长,再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.解:根据题意,得PQ=16×1.5=24(海里),PR=12×1.5=18(海里),QR=30(海里),∵242+182=302,即PQ2+PR2=QR2,∴∠QPR=90°.由“远洋号”沿东北方向航行可知,∠QPS=45°,则∠SPR=45°,即“海天”号沿西北方向航行.讲解用时:3分钟解题思路:本题考查路程、速度、时间之间的关系,勾股定理的逆定理、方位角等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.教学建议:熟练掌握并应用勾股定理的逆定理.难度: 4 适应场景:当堂练习例题来源:无年份:2018课后作业【作业1】如图,在△ABC中,CD⊥AB于D,AD=9,BD=16,CD=12.(1)求△ABC的周长;(2)△ABC是直角三角形吗?请说明理由.【答案】(1)60;(2)是【解析】(1)由勾股定理求出BC、AC,即可得出结果;(2)由勾股定理的逆定理即可得出结论.解:(1)∵CD⊥AB,∴∠BDC=∠ADC=90°,∴BC==20,AC==15,∵AB=AD+BD=25,∴△ABC的周长=AB+BC+AC=25+20+15=60;(2)△ABC是直角三角形;理由如下:∵BC2+AC2=202+152=252=AB2,∴△ABC是直角三角形.难度: 3 适应场景:练习题例题来源:东海县校级期中年份:2017【作业2】如图,四边形ABCD中,∠ADC=90°,AD=12,CD=9,AB=25,BC=20,求四边形ABCD的面积.【答案】204【解析】连接AC,根据勾股定理求出AC,根据勾股定理的逆定理求出△ACB是直角三角形,分别求出△ABC和△ACD的面积,即可得出答案.解:连结AC,在△ADC中,∵∠D=90°,AD=12,CD=9,∴AC==15,S△ABC=AD•CD=×12×9=54,在△ABC中,∵AC=15,AB=25,BC=20,∴BC2+AC2=AB2,∴△ACB是直角三角形,∴S△ACB=AC•BC=×15×20=150.∴四边形ABCD的面积=S△ABC +S△ACD=150+54=204.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:岱岳区期中年份:2017【作业3】如图,每个小方格都是边长为1的小正方形,△ABC的位置如图所示,你能判断△ABC是什么三角形吗?请说明理由.【答案】直角三角形【解析】根据勾股定理即可求得△ABC的三边的长,再由勾股定理的逆定理即可作出判断.解:△ABC是直角三角形.在直角△ABF、直角△BCD、直角△ACE中,根据勾股定理即可得到:AB==;BC==;AC==5;则AC2=BC2+AB2∴△ABC是直角三角形.讲解用时:3分钟难度: 3 适应场景:练习题例题来源:成都期中年份:2017【作业4】如图,在四边形ABCD中,AB=BC=3,CD=,AD=,且∠B=90°,∠D=60°,求∠BCD的度数.【答案】75°【解析】连接AC,由于∠B=90°,AB=BC=3,利用勾股定理可求AC,并可求∠BAC=45°,而CD=,AD=,易得AC2+AD2=CD2,可证△ACD是直角三角形,于是有∠CAD=90°,根据直角三角形的性质可求∠DCA,从而易求∠BCD.解:连接AC,∵∠B=90°,AB=BC=3,∴AC===3,∠BAC=∠BCA=45°,又∵CD=,AD=∴AC2+AD2=18+6=24,CD2=24,∴AC2+AD2=CD2,∴△ACD是直角三角形,∴∠CAD=90°,∴∠DCA=90°﹣∠D=30°,∴∠BCD=∠BCA+∠DCA=75°.讲解用时:4分钟难度: 4 适应场景:练习题例题来源:无年份:2018【作业5】已知△ABC的三边长为a、b、c,满足a+b=10,ab=18,c=8,则此三角形为三角形.【答案】直角【解析】对原式进行变形,发现三边的关系符合勾股定理的逆定理,从而可判定其形状.解:∵a+b=10,ab=18,c=8,∴(a+b)2﹣2ab=100﹣36=64,c2=64,∴a2+b2=c2,∴此三角形是直角三角形.故答案为:直角.讲解用时:3分钟难度:4 适应场景:练习题例题来源:无年份:2018。
(word完整版)初二数学--勾股定理讲义(经典)
第一章 勾股定理【知识点归纳】123456⎧⎪⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎪⎩⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩⎩1、已知直角三角形的两边,求第三边勾股定理2、求直角三角形周长、面积等问题3、验证勾股定理成立1、勾股数的应用勾股定理勾股定理的逆定理2、判断三角形的形状3、求最大、最小角的问题、面积问题、求长度问题、最短距离问题勾股定理的应用、航海问题、网格问题、图形问题 考点一:勾股定理(1)对于任意的直角三角形,如果它的两条直角边分别为a 、b ,斜边为c ,那么一定有222c b a =+ 勾股定理:直角三角形两直角边的平方和等于斜边的平方。
(2)结论:①有一个角是30°的直角三角形,30°角所对的直角边等于斜边的一半。
②有一个角是45°的直角三角形是等腰直角三角形。
③直角三角形斜边的中线等于斜边的一半。
(3)勾股定理的验证abcab cab cabcababa bba例题:例1:已知直角三角形的两边,利用勾股定理求第三边。
(1)在Rt △ABC 中,∠C=90°①若a=5,b=12,则c=___________; ②若a=15,c=25,则b=___________; ③若c=61,b=60,则a=__________;④若a ∶b=3∶4,c=10则Rt △ABC 的面积是=________。
(2)如果直角三角形的两直角边长分别为1n 2-,2n (n>1),那么它的斜边长是( ) A 、2nB 、n+1C 、n 2-1D 、1n 2+(3)在Rt △ABC 中,a,b,c 为三边长,则下列关系中正确的是( )A.222a b c +=B. 222a c b +=C. 222c b a +=D.以上都有可能(4)已知一个直角三角形的两边长分别为3和4,则第三边长的平方是( )A 、25B 、14C 、7D 、7或25例2:已知直角三角形的一边以及另外两边的关系利用勾股定理求周长、面积等问题。
勾股定理详解与经典例题解析
勾股定理(基础)学习目标1.掌握勾股定理的内容,了解勾股定理的多种证明方法,体验数形结合的思想;2.能够运用勾股定理求解三角形中相关的边长(只限于常用的数);3.通过对勾股定理的探索解决简单的实际问题,进一步运用方程思想解决问题.要点梳理要点一、勾股定理直角三角形两条直角边的平方和等于斜边的平方.如果直角三角形的两直角边长分别为,斜边长为,那么.要点诠释:(1)勾股定理揭示了一个直角三角形三边之间的数量关系.(2)利用勾股定理,当设定一条直角边长为未知数后,根据题目已知的线段长可以建立方程求解,这样就将数与形有机地结合起来,达到了解决问题的目的.(3)理解勾股定理的一些变式:,,.要点二、勾股定理的证明方法一:将四个全等的直角三角形拼成如图(1)所示的正方形.图(1)中,所以.方法二:将四个全等的直角三角形拼成如图(2)所示的正方形.图(2)中,所以.方法三:如图(3)所示,将两个直角三角形拼成直角梯形.,所以.要点三、勾股定理的作用1.已知直角三角形的任意两条边长,求第三边;2.用于解决带有平方关系的证明问题;3.与勾股定理有关的面积计算;4.勾股定理在实际生活中的应用.典型例题类型一、勾股定理的直接应用1、在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)若=5,=12,求;(2)若=26,=24,求.【变式】在△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为、、.(1)已知=6,=10,求;(2)已知,=32,求、.类型二、与勾股定理有关的证明2、如图所示,在Rt△ABC中,∠C=90°,AM是中线,MN⊥AB,垂足为N,试说明.【变式】如图,在△ABC中,∠C=90°,D为BC边的中点,DE⊥AB于E,则AE2-BE2等于()A.AC2B.BD2C.BC2D.DE2类型三、与勾股定理有关的线段长3、如图,长方形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F 处,折痕为AE,且EF=3,则AB的长为()A.3B.4C.5D.6类型四、与勾股定理有关的面积计算4、如图,直线l上有三个正方形a,b,c,若a,c的面积分别为5和11,则b的面积为()A.6B.5C.11D.16类型五、利用勾股定理解决实际问题5、一圆形饭盒,底面半径为8,高为12,若往里面放双筷子(精细不计),那么筷子最长不超过多少,可正好盖上盒盖?巩固练习一.选择题1.在△ABC中,AB=12,AC=9,BC=15,则△ABC的面积等于()A.108B.90C.180D.542.若直角三角形的三边长分别为2,4,,则的值可能有()A.1个B.2个C.3个D.4个3.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是()A.12米B.10米C.8米D.6米4.Rt△ABC中,斜边BC=2,则的值为()A.8B.4C.6D.无法计算5.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于()A.4B.6 C.8D.56.如图,Rt△ABC中,∠C=90°,若AB=15,则正方形ADEC和正方形BCFG的面积和为()A.150B.200C.225D.无法计算二.填空题7.甲、乙两人同时从同一地点出发,已知甲往东走了4,乙往南走了3,此时甲、乙两人相距____.8.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______米路,却踩伤了花草.9.如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离为mm.10.如图,有两棵树,一棵高8,另一棵高2,两树相距8,一只小鸟从一棵树的树梢飞到另一棵树的树梢,至少要飞______.11.如图,直线经过正方形ABCD的顶点B,点A、C到直线的距离分别是6、8,则正方形的边长是______.12.如图,王大爷准备建一个蔬菜大棚,棚宽2.4m,高3.2m,长15m,棚的斜面用塑料薄膜遮盖,不计墙的厚度,请计算阳光透过的最大面积是m2.三.解答题13.如图四边形ABCD的周长为42,AB=AD=12,∠A=60°,∠D=150°,求BC的长.14.已知在三角形ABC中,∠C=90°,AD平分∠BAC交BC于D,CD=3,BD=5,求AC的长.勾股定理逆定理(基础)学习目标1.理解勾股定理的逆定理,并能与勾股定理相区别;2. 能运用勾股定理的逆定理判断一个三角形是否是直角三角形;3. 理解勾股数的含义;4. 通过探索直角三角形的判定条件的过程,培养动手操作能力和逻辑推理能力.要点梳理要点一、勾股定理的逆定理如果三角形的三条边长,满足,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如).(2)验证与是否具有相等关系.若,则△ABC是∠C=90°的直角三角形;若,则△ABC不是直角三角形.要点诠释:当时,此三角形为钝角三角形;当时,此三角形为锐角三角形,其中为三角形的最大边.要点三、勾股数满足不定方程的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果是勾股数,当为正整数时,以为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)(是自然数)是直角三角形的三条边长;(2)(是自然数)是直角三角形的三条边长;(3)(是自然数)是直角三角形的三条边长;典型例题类型一、勾股定理的逆定理1、判断由线段组成的三角形是不是直角三角形.(1)=7,=24,=25;(2)=,=1,=;(3),,();【变式】一个三角形的三边之比是3:4:5 则这个三角形三边上的高之比是()A.20:15:12B.3:4:5C.5:4:3D.10:8:2类型二、勾股定理逆定理的应用例3、已知:为的三边且满足,试判断的形状.例:4、“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行“远航”号每小时航行16海里,“海天”号每小时航行12海里,它们离开港口一个半小时后相距30海里,如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?巩固练习一.选择题1.在三边分别为下列长度的三角形中,不是直角三角形的是().A. 9,12,15B.3,4,5C.1.4,4.8,5D.4,7,52. 如图,在单位正方形组成的网格图中标有AB、CD、EF、GH四条线段,其中能构成一个直角三角形三边的线段是().A.CD、EF、GH B.AB、EF、GH C.AB、CF、EF D.GH、AB、CD3. 下列说法:(1)在△ABC中,若a2+b2≠c2,则△ABC不是直角三角形;(2)若△ABC是直角三角形,∠C=90°,则a2+b2=c2;(3)在△ABC中,若a2+b2=c2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为.其中说法正确的有().A.4个B.3个C.2个D.1个4.下面各选项给出的是三角形中各边的长度的平方比,其中不是直角三角形的是().A.1∶1∶2B.1∶3∶4C.9∶25∶26D.25∶144∶1695.已知三角形的三边长为(其中),则此三角形().A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定6.三角形的三边长分别为、、(都是正整数),则这个三角形是().A.直角三角形B.钝角三角形C.锐角三角形D.不能确定二.填空题7.若一个三角形的三边长分别为6,8,10,则这个三角形中最短边上的高为______.8.已知两条线段的长分别为11和60,当第三条线段的长为时,这3条线段能组成一个直角三角形(要求三边长均为整数).9. 已知,则由此为边的三角形是三角形.10.在△ABC中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是_____.11.若一个三角形的三边之比为5:12:13,且周长为60,则它的面积为.12.如图,AB=5,AC=3,BC边上的中线AD=2,则△ABC的面积为______.三.解答题13.已知:如图,在正方形ABCD中,F为DC的中点,E为CB的四等分点且CE=,求证:AF⊥FE.14.观察下列各式:,,,,…,你有没有发现其中的规律?请用含的代数式表示此规律并证明,再根据规律写出接下来的式子.15.在B港有甲、乙两艘渔船,若甲船沿北偏东60°方向以每小时8海里的速度前进,乙船沿南偏东某个角度以每小时15海里的速度前进,2小时后,甲船到M岛,乙船到P岛,两岛相距34海里,你知道乙船是沿哪个方向航行的吗?。
勾股定理知识点及典型例题
勾股定理知识点及典型例题一、勾股定理:勾股定理定义为:直角三角形两直角边的平方和等于斜边的平方,即a²+b²=c²,其中a和b是直角三角形的两条直角边,c是斜边。
勾股定理的逆定理为:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。
勾股数是满足a²+b²=c²的三个正整数a,b,c。
注意,若a,b,c为勾股数,那么ka,kb,kc同样也是勾股数。
常见的勾股数有3,4,5;6,8,10;9,12,15;5,12,13.判断直角三角形的方法有两种:一是如果三角形的三边长a、b、c满足a+b=c,那么这个三角形是直角三角形。
二是如果有一个角为90°或两个角互余,那么这个三角形是直角三角形。
具体判断方法是确定最大边(不妨设为c),若c=a+b,则为直角三角形;若a+bc,则为锐角三角形。
直角三角形斜边上的中线等于斜边的一半,在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
勾股定理的作用有四个:一是已知直角三角形的两边求第三边;二是已知直角三角形的一边,求另两边的关系;三是用于证明线段平方关系的问题;四是利用勾股定理,作出长为a,b,c的直角三角形。
二、勾股定理的证明:勾股定理的证明方法有很多种,其中常见的是拼图的方法。
具体证明过程如下:在直角三角形ABC中,以BC为底边,作等腰直角三角形ABD,连接AD,则AD=AB,BD=BC。
因此,AB²=AD²+BD²=AD²+BC²,即a²=b²+c²。
1.一个无盖的正方体盒子内有两只昆虫,昆虫甲在顶点C1处,昆虫乙在棱BB1的中点E处。
昆虫乙要在最短时间内捕捉到昆虫甲,可以沿着路径A→E→C1爬行。
专题02 勾股定理逆定理(解析版)
八年级数学上册北师大版版链接教材精准变式练专题02 勾股定理的逆定理【典例1】判断由线段a b c ,,组成的三角形是不是直角三角形.(1)a =7,b =24,c =25;(2)a =43,b =1,c =34; (3)22a m n =-,22b m n =+,2c mn =(0m n >>);【点拨】判断三条线段能否组成直角三角形,关键是运用勾股定理的逆定理:看较短的两条线段的平方和是否等于最长线段的平方.若是,则为直角三角形,反之,则不是直角三角形.【解析】解:(1)∵ 2222724625a b +=+=,2225625c ==,∴ 222a b c +=.∴ 由线段a b c ,,组成的三角形是直角三角形. (2)∵ a b c >>,222239251141616b c ⎛⎫+=+=+= ⎪⎝⎭,2241639a ⎛⎫== ⎪⎝⎭, ∴ 222b c a +≠.∴ 由线段a b c ,,组成的三角形不是直角三角形.(3)∵ 0m n >>,∴ 222m n mn +>,2222m n m n +>-.∵2222224224224224()(2)242a c m n mn m m n n m n m m n n +=-+=-++=++, 22224224()2b m n m m n n =+=++,∴ 222a cb +=.∴ 由线段a b c ,,组成的三角形是直角三角形. 典例解读【总结】解此类题的关键是准确地判断哪一条边最大,然后再利用勾股定理的逆定理进行判断,即首先确定最大边,然后验证2c 与22a b 是否具有相等关系,再根据结果判断是否为直角三角形.【典例2】如图,点D 是△ABC 内一点,把△ABD 绕点B 顺时针方向旋转60°得到△CBE ,若AD=4,BD=3,CD=5.(1)判断△DEC 的形状,并说明理由;(2)求∠ADB 的度数.【点拨】把△ABD 绕点B 顺时针方向旋转60°,注意旋转只是三角形的位置变了,三角形的边长和角度并没有变,并且旋转的角度60°,因此出现等边△BDE ,从而才能更有利的判断三角形的形状和求∠ADB 的度数.【解析】解:(1)根据图形的旋转不变性,AD=EC ,BD=BE ,又∵∠DBE=∠ABC=60°,∴△ABC 和△DBE 均为等边三角形,于是DE=BD=3,EC=AD=4,又∵CD=5,∴DE 2+EC 2=32+42=52=CD 2;故△DEC 为直角三角形.(2)∵△DEC 为直角三角形,∴∠DEC=90°,又∵△BDE 为等边三角形,∴∠BED=60°,∴∠BEC=90°+60°=150°,即∠ADB=150°.【总结】此题考查了旋转后图形的不变性、全等三角形的性质、等边三角形的性质、勾股定理的逆定理等知识,综合性较强,是一道好题.解答(2)时要注意运用(1)的结论.【典例3】已知:,,a b c 为ABC ∆的三边且满足222338102426a b c a b c +++=++,试判断ABC ∆的形状.【解析】解:∵222338102426a b c a b c +++=++∴0338262410222=+-+-+-c c b b a a 0)13()12()5(222=-+-+-c b a∴5,12,13a b c ===,222c b a =+∴△ABC 是直角三角形.【总结】此类问题中要判断的三角形一般都是特殊三角形,一定要善于把题目中已知的条件等式进行变形,从而得到三角形的三边关系.对条件等式进行变形常用的方法有配方法,因式分解法等.【典例4】如图,铁路MN 和铁路PQ 在P 点处交汇,点A 处是第九十四中学,AP=160米,点A 到铁路MN 的距离为80米,假使火车行驶时,周围100米以内会受到噪音影响.(1)火车在铁路MN 上沿PN 方向行驶时,学校是否会受到影响?请说明理由.(2)如果受到影响,已知火车的速度是180千米/时那么学校受到影响的时间是多久?【点拨】(1)过点A 作AE ⊥MN 于点E ,由点A 到铁路MN 的距离为80米可知AE=80m ,再由火车行驶时,周围100米以内会受到噪音影响即可直接得出结论;(2)以点A 为圆心,100米为半径画圆,交直线MN 于BC 两点,连接AB 、AC ,则AB=AC=100m ,在Rt △ABE 中利用勾股定理求出BE 的长,进而可得出BC 的长,根据火车的速度是180千米/时求出火车经过BC 是所用的时间即可.【解析】解:(1)会受到影响.过点A 作AE ⊥MN 于点E ,∵点A到铁路MN的距离为80米,∴AE=80m,∵周围100米以内会受到噪音影响,80<100,∴学校会受到影响;(2)以点A为圆心,100米为半径画圆,交直线MN于BC两点,连接AB、AC,则AB=AC=100m,在Rt△ABE中,∵AB=100m,AE=80m,∴BE===60m,∴BC=2BE=120m,∵火车的速度是180千米/时=50m/s,∴t===2.4s.答:学校受到影响的时间是2.4秒.【总结】题考查的是勾股定理的应用,在解答此类题目时要根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解.【典例5】已知a、b、c是△ABC的三边,且满足438324a b c+++==,且a+b+c=12,请你探索△ABC的形状.【解析】解:令438 324a b c+++===k.∴a+4=3k,b+3=2k,c+8=4k,∴a=3k﹣4,b=2k﹣3,c=4k﹣8.又∵a+b+c=12,∴(3k﹣4)+(2k﹣3)+(4k﹣8)=12,∴k=3.∴a=5,b=3,c=4.∴△ABC 是直角三角形.【总结】此题借用设比例系数k 的方法,进一步求得三角形的三边长,根据勾股定理的逆定理判定三角形的形状.【典例6】如图所示,MN 以左为我国领海,以右为公海,上午9时50分我国缉私艇A 发现在其正东方向有一走私艇C 并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN 线上巡逻的缉私艇B 密切注意,并告知A 和C 两艇的距离是13海里,缉私艇B 测得C 与其距离为12海里,若走私艇C 的速度不变,最早在什么时间进入我国海域?【解析】解:∵ 22222251216913AB BC AC +=+===,∴ △ABC 为直角三角形.∴ ∠ABC =90°.又BD ⊥AC ,可设CD =x ,∴ 22222212,(13)5,x BD x BD ⎧+=⎪⎨-+=⎪⎩①②①-②得2216926119x x x -+-=, 解得14413x =.∴ 1441441313169÷=≈0.85(h)=51(分). 所以走私艇最早在10时41分进入我国领海.【总结】(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.【教材知识必背】一、勾股定理的逆定理如果三角形的三条边长a b c ,,,满足222a b c +=,那么这个三角形是直角三角形. 教材知识链接要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.二、如何判定一个三角形是否是直角三角形(1) 首先确定最大边(如c ).(2) 验证2c 与22a b +是否具有相等关系.若222c a b =+,则△ABC 是∠C =90°的直角三角形;若222c a b ≠+,则△ABC 不是直角三角形.要点诠释:当222a b c +<时,此三角形为钝角三角形;当222a b c +>时,此三角形为锐角三角形,其中c 为三角形的最大边.三、勾股数满足不定方程222x y z +=的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以x y z 、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:① 3、4、5; ②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果a b c 、、是勾股数,当t 为正整数时,以at bt ct 、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121n n n -+,,(1,n n >是自然数)是直角三角形的三条边长;(2)2222,21,221n n n n n ++++(n 是自然数)是直角三角形的三条边长;(3)2222,,2m n m n mn -+ (,m n m n >、是自然数)是直角三角形的三条边长;【变式1】发现下列几组数据能作为三角形的边:(1)8,15,17;(2)5,12,13;(3)12,15,20;(4)7,24,25.其中能作为直角三角形的三边长的有( )A.1组B.2组C.3组D.4组【答案】C.解:①∵82+152=172,∴能组成直角三角形; 精准变式题②∵52+122=132,∴能组成直角三角形;③122+152≠202,∴不能组成直角三角形;④72+242=252,∴能组成直角三角形.故选C .【变式2】如图所示,在△ABC 中,已知∠ACB =90°,AC =BC ,P 是△ABC 内一点,且PA =3,PB =1,PC =CD =2,CD ⊥CP ,求∠BPC 的度数.【答案】解:连接BD .∵ CD ⊥CP ,且CD =CP =2,∴ △CPD 为等腰直角三角形,即∠CPD =45°.∵ ∠ACP+∠BCP =∠BCP+∠BCD =90°,∴ ∠ACP =∠BCD .∵ CA =CB ,∴ △CAP ≌△CBD(SAS),∴ DB =PA =3.在Rt △CPD 中,22222228DP CP CD =+=+=.又∵ PB =1,则21PB =.∵ 29DB =,∴ 22819DB DP PB =+=+=,∴ △DPB 为直角三角形,且∠DPB =90°,∴ ∠CPB =∠CPD+∠DPB =45°+90°=135°.【变式3】请阅读下列解题过程:已知a 、b 、c 为△ABC 的三边,且满足a 2c 2﹣b 2c 2=a 4﹣b 4,试判断△ABC 的形状.解:∵a 2c 2﹣b 2c 2=a 4﹣b 4, 第一步∴c2(a2﹣b2)=(a2+b2)(a2﹣b2),第二步∴c2=a2+b2,第三步∴△ABC为直角三角形.第四步问:(1)在上述解题过程中,从哪一步开始出现错误:_________ ;(2)错误的原因是:_________ ;(3)本题正确的结论是:_________ .【答案】解:(1)第三步;(2)方程两边同时除以(a2﹣b2)时,没有考虑(a2﹣b2)的值有可能是0;(3)∵c2(a2﹣b2)=(a2+b2)(a2﹣b2)∴c2=a2+b2或a2﹣b2=0∵a2﹣b2=0∴a+b=0或a﹣b=0∵a+b≠0∴c2=a2+b2或a﹣b=0∴c2=a2+b2或a=b∴该三角形是直角三角形或等腰三角形.【变式4】△ABC的三边a、b、c满足|a+b﹣50|++(c﹣40)2=0.试判断△ABC的形状是.【答案】直角三角形.解:∵|a+b﹣50|++(c﹣40)2=0,∴,解得,∵92+402=412,∴△ABC是直角三角形.1.下列各组数中,可以构成勾股数的是( )A .13,16,19B .31,41,51 C .18,24,36 D .12,35,37 【答案】D【解析】判断一组数是不是勾股数时,应先判断他们是否都是正整数,在验证他们平方间的关系,所以只有D 项满足.2.△ABC 中,∠A ,∠B ,∠C 所对的边分别是a ,b ,c ,满足下列条件的△ABC ,不是直角三角形的是( )A.a :b :c=1:2:1B.∠A :∠B :∠C=3:4:5C.(a+b )(a ﹣b )=c 2D.∠A :∠B :∠C=1:2:3【答案】B3. 已知△ABC 三边长分别为2n +1,2n 2+2n ,2n 2+2n +1,(n 为正整数),则△ABC 为( )A .直角三角形 B . 等腰三角形 C . 锐角三角形 D . 钝角三角形 【答案】A ;【解析】由2n 2+2n+1>2n 2+2n ,且2n 2+2n+1>2n+1,得到2n 2+2n+1为最长的边,∵(2n+1)2+(2n 2+2n )2=1+4n+8n 2+8n 3+4n 4,(2n 2+2n+1)2=1+4n+8n 2+8n 3+4n 4∴(2n+1)2+(2n 2+2n )2=(2n 2+2n+1)2∴△ABC 为直角三角形.4. 有下面的判断:①△ABC 中,a 2+b 2≠c 2,则△ABC 不是直角三角形.②△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2.③若△ABC 中,a 2﹣b 2=c 2,则△ABC 是直角三角形.④若△ABC 是直角三角形,则(a +b )(a ﹣b )=c 2.以上判断正确的有( )A . 4个B . 3个C . 2个D . 1个 【答案】C ;【解析】①c 不一定是斜边,故错误;④若△ABC 是直角三角形,c 不是斜边,则(a+b )(a ﹣b )≠c 2,故错误.5. c b a ,,为直角三角形的三边,且c 为斜边,h 为斜边上的高,下列说法:①222,,c b a 能组成一个三角形 ②222111,,a b c能组成直角三角形 综合提升变式练③h b a 1,1,1能组成直角三角形 ④三个内角的度数之比为3:4:5能组成一个三角形 其中正确结论的个数是( )A .1B .2C .3D .4【答案】B ;【解析】因为222a b c +=,两边之和等于第三边,故222,,c b a 不能组成一个三角形,①错误;因为ab ch =,所以ab c h =.又因为222a b c +=.得22222a b a b h+=.两边同除以22a b ,得222111a b h +=②正确;因为2222222222222111a b c c a b a b a b c h h +⎛⎫⎛⎫⎛⎫+==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以③正确,360°×512=150°,最大角并不是90°,所以④错误.6. 如图,在单位正方形组成的网格图中标有AB 、CD 、EF 、GH 四条线段,其中能构成一个直角三角形三边的线段是( ).A. CD 、EF 、GHB.AB 、EF 、GHC.AB 、CF 、EFD.GH 、AB 、CD 【答案】B【解析】AB 2=22+22=8,CD 2=42+22=20,EF 2=12+22=5,GH 2=32+22=13,所以AB 2+EF 2=GH 2.7. 下列说法:(1)在△ABC 中,若a 2+b 2≠c 2,则△ABC 不是直角三角形;(2)若△ABC 是直角三角形,∠C=90°,则a 2+b 2=c 2;(3)在△ABC 中,若a 2+b 2=c 2,则∠C=90°;(4)直角三角形的两条直角边的长分别为5和12,则斜边上的高为1360.其中说法正确的有( ). A.4个 B.3个 C.2个D.1个 【答案】B【解析】(1)根据勾股定理的逆定理,若a 2+c 2=b 2,则△ABC 也为直角三角形,故错误;(2)符合勾股定理,故正确;(3)符合勾股定理的逆定理,故正确;(4)首先根据勾股定理计算其斜边是13,再根据面积计算其斜边上的高,该高等于两条直角边的乘积除以斜边,故正确.8.已知三角形的三边长为1n n m +、、(其中221m n =+),则此三角形( ).A.一定是等边三角形B.一定是等腰三角形C.一定是直角三角形D.形状无法确定【答案】C 【解析】()()222221,211n m n n n n +=+++=+,满足勾股定理的逆定理. 9.三角形的三边长分别为 22a b +、2ab 、22a b -(a b 、都是正整数),则这个三角形是( ).A .直角三角形B . 钝角三角形C .锐角三角形D .不能确定【答案】A【解析】()2222222()2()a b ab a b -+=+,满足勾股定理的逆定理. 10.在某港口有甲乙两艘渔船,若甲沿北偏东60°方向以每小时8海里的速度前进,同时,乙船沿南偏东角度以每小时15海里速度前进,2小时后,甲乙两船相距34海里,那么,乙船航行的方向是南偏东___________度.【答案】30;【解析】解:由题意得:甲船的路程:AO=8×2=16,乙船的路程:BO=15×2=30,∵302+162=342,∴∠AOB=90°,∵AO 是北偏东60°方向,∴BO 是南偏东30°.故答案为:30.11. 如果线段a b c ,,能组成一个直角三角形,那么2,2,2c b a ________组成直角三角形.(填“能”或“不能”).【答案】能;【解析】设c 为斜边,则222c b a =+,两边同乘以41,得222414141c b a =+,即222)2()2()2(c b a =+ . 12. 已知0435=-+-+-Z y x ,则由此x y z ,,为边的三角形是 三角形.【答案】直角13.在△ABC 中,若其三条边的长度分别为9、12、15,则以两个这样的三角形所拼成的四边形的面积是 .【答案】108【解析】△ABC 是直角三角形.14.已知:如图,在正方形ABCD 中,F 为DC 的中点,E 为CB 的四等分点且CE =CB 41,求证:AF ⊥FE .【解析】解:连结AE ,设正方形的边长为4a ,则DF =CF =2a ,CE =a ,BE =3a ,在Rt △ADF 中,22222216420AF AD DF a a a =+=+=,在Rt △CEF 中,22222245EF CE CF a a a =+=+=,在Rt △ABE 中,22222216925AE AB BE a a a =+=+=,因为222AE AF EF =+,所以三角形AEF 为直角三角形,AF ⊥FE .15.观察下列各式:322345+=,2228610+=,22215817+=,222241026+=,…,你有没有发现其中的规律?请用含n 的代数式表示此规律,再根据规律写出接下来的式子.【解析】解:222351237+=, ()()()22222112111n n n ⎡⎤⎡⎤+-++=++⎡⎤⎣⎦⎣⎦⎣⎦.(n ≥1且n 为整数) 16. 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称正方形、长方形、直角梯形(任选两个均可);(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你画出以格点为顶点,OA,OB为勾股边且对角线相等的勾股四边形OAMB;(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD,DC,∠DCB=30度.求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.【解析】(1)解:正方形、长方形、直角梯形.(任选两个均可)(2)解:答案如图所示.(3)证明:连接EC,∵△ABC≌△DBE,∴AC=DE,BC=BE,∵∠CBE=60°,∴EC=BC,∠BCE=60°,∵∠DCB=30°,∴∠DCE=90°,∴DC2+EC2=DE2,∴DC2+BC2=AC2.即四边形ABCD是勾股四边形.。
(完整版)勾股定理及其逆定理复习典型例题
勾股定理及其逆定理复习典型例题1.勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
(即:a 2+b 2=c 2) 勾股定理的逆定理:如果三角形的三边长:a 、b 、c 有关系a 2+b 2=c 2,那么这个三角形是直角三角形。
2.勾股定理与勾股定理逆定理的区别与联系区别:勾股定理是直角三角形的性质定理,而其逆定理是判定定理联系:勾股定理与其逆定理的题设和结论正好相反,都与直角三角形有关。
3.如果用勾股定理的逆定理判定一个三角形是否是直角三角形 (1)首先确定最大边(如:C ,但不要认为最大边一定是C )(2)验证c 2与a 2+b 2是否具有相等关系,若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形。
(若c 2>a 2+b 2则△ABC 是以∠C 为钝角的三角形,若c 2<a 2+b 2则△ABC 是以∠C 为锐角三角形)二、例题分析例1、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
解:设此直角三角形两直角边分别是3x ,4x ,根据题意得: (3x )2+(4x )2=202 化简得x 2=16; ∴直角三角形的面积=21×3x ×4x =6x 2=96注:直角三角形边的有关计算中,常常要设未知数,然后用勾股定理列方程(组)求解。
例2、等边三角形的边长为2,求它的面积。
解:如图,等边△ABC ,作AD ⊥BC 于D 则:BD=21BC (等腰三角形底边上的高与底边上的中线互相重合)∵AB=AC=BC=2(等边三角形各边都相等) ∴BD=1在直角三角形ABD 中AB 2=AD 2+BD 2,即:AD 2=AB 2-BD 2=4-1=3 ∴AD=3 S △ABC =21BC·AD=3 ABCD注:等边三角形面积公式:若等边三角形边长为a ,则其面积为43a 例3、直角三角形周长为12cm ,斜边长为5cm ,求直角三角形的面积。
数学勾股定理(讲义及答案)附解析
一、选择题1.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )A .4B .6C .8D .92.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,若CE=1,AB=42,则下列结论一定正确的个数是( )①BC=2CD ;②BD>CE ;③∠CED+∠DFB=2∠EDF ;④△DCE 与△BDF 的周长相等; A .1个B .2个C .3个D .4个 3.以线段a 、b 、c 的长为边长能构成直角三角形的是( ) A .a =3,b=4,c=6B .a =1,b=2,c=3C .a =5,b=6,c=8D .a =3,b=2,c=54.ABC 三边长为a 、b 、c ,则下列条件能判断ABC 是直角三角形的是( ) A .a =7,b =8,c =10B .a =41,b =4,c =5C .a =3,b =2,c =5D .a =3,b =4,c =65.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a ,较短直角边长为b ,若2)21a b +=(,大正方形的面积为13,则小正方形的面积为( )A .3B .4C .5D .6 6.下列各组线段能构成直角三角形的一组是( )A .30,40,60B .7,12,13C .6,8,10D .3,4,67.甲、乙两艘轮船同时从港口出发,甲以16海里/时的速度向北偏东75︒的方向航行,它们出发1.5小时后,两船相距30海里,若乙以12海里/时的速度航行,则它的航行方向为()A.北偏西15︒B.南偏西75°C.南偏东15︒或北偏西15︒D.南偏西15︒或北偏东15︒8.如图是我国一位古代数学家在注解《周髀算经》时给出的,曾被选为2002年在北京召开的国际数学家大会的会徽,它通过对图形的切割、拼接,巧妙地证明了勾股定理,这位伟大的数学家是()A.杨辉B.刘徽C.祖冲之D.赵爽9.如图,在矩形ABCD中,BC=6,CD=3,将△BCD沿对角线BD翻折,点C落在点C'处,B C'交AD于点E,则线段DE的长为()A.3 B.154C.5 D.15210.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A=90°,BD=4,CF=6,设正方形ADOF的边长为x,则210x x+=()A.12 B.16 C.20 D.24二、填空题11.如图,AB=12,AB⊥BC于点B, AB⊥AD于点A,AD=5,BC=10,E是CD的中点,则AE的长是____ ___.12.如图,点E 在DBC △边DB 上,点A 在DBC △内部,∠DAE =∠BAC =90°,AD =AE ,AB =AC ,给出下列结论,其中正确的是_____(填序号)①BD =CE ;②∠DCB =∠ABD =45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2).13.如图,在平面直角坐标系中,等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,依此规律,得到等腰直角三角形OA 2018A 2019,则点A 2019的坐标为________.14.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若22AB =,42AC =,则DA 的长为______.15.在Rt ABC 中,90,30,2C A BC ∠=∠==,以ABC 的边AC 为一边的等腰三角形,它的第三个顶点在ABC 的斜边AB 上,则这个等腰三角形的腰长为_________.16.如图,在Rt △ABC 中,∠B=90°,以AC 为斜边向外作等腰直角三角形COA ,已知BC=8,OB=102,则另一直角边AB 的长为__________.17.已知Rt △ABC 中,AC =4,BC =3,∠ACB =90°,以AC 为一边在Rt △ABC 外部作等腰直角三角形ACD,则线段BD的长为_____.18.如图,P是等边三角形ABC内的一点,且PA=3,PB=4,PC=5,以BC为边在△ABC外作△BQC≌△BPA,连接PQ,则以下结论中正确有_____________ (填序号)①△BPQ是等边三角形②△PCQ是直角三角形③∠APB=150°④∠APC=135°19.如图,长方体纸箱的长、宽、高分别为50cm、30cm、60cm,一只蚂蚁从点A处沿着纸箱的表面爬到点B处.蚂蚁爬行的最短路程为_______cm.20.在△ABC 中,∠A=30°,∠B=90°,AC=8,点 D 在边 AB,且 BD=3,点 P 是△ABC 边上的一个动点,若 AP=2PD 时,则 PD的长是____________.三、解答题21.如图,在△ABC中,AB=30 cm,BC=35 cm,∠B=60°,有一动点M自A向B以1 cm/s的速度运动,动点N自B向C以2 cm/s的速度运动,若M,N同时分别从A,B出发.(1)经过多少秒,△BMN为等边三角形;(2)经过多少秒,△BMN为直角三角形.22.定义:有一组邻边均和一条对角线相等的四边形叫做邻和四边形.(1)如图1,四边形ABCD中,∠ABC=70°,∠BAC=40°,∠ACD=∠ADC=80°,求证:四边形ABCD是邻和四边形.(2)如图2,是由50个小正三角形组成的网格,每个小正三角形的顶点称为格点,已知A 、B 、C 三点的位置如图,请在网格图中标出所有的格点.......D .,使得以A 、B 、C 、D 为顶点的四边形为邻和四边形.(3)如图3,△ABC 中,∠ABC =90°,AB =2,BC =23,若存在一点D ,使四边形ABCD 是邻和四边形,求邻和四边形ABCD 的面积.23.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .(1)判断AE 与BD 的数量关系和位置关系;并说明理由.(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由.24.如图,△ABC 中AC =BC ,点D ,E 在AB 边上,连接CD ,CE .(1)如图1,如果∠ACB =90°,把线段CD 逆时针旋转90°,得到线段CF ,连接BF , ①求证:△ACD ≌△BCF ;②若∠DCE =45°, 求证:DE 2=AD 2+BE 2;(2)如图2,如果∠ACB =60°,∠DCE =30°,用等式表示AD ,DE ,BE 三条线段的数量关系,说明理由.25.如图,在ABC ∆中,90ACB ∠=︒,2BC AC =.(1)如图1,点D 在边BC 上,1CD =,5AD =,求ABD ∆的面积.(2)如图2,点F 在边AC 上,过点B 作BE BC ⊥,BE BC =,连结EF 交BC 于点M ,过点C 作CG EF ⊥,垂足为G ,连结BG .求证:2EG BG CG =+.26.(1)如图1,在Rt ABC ∆中,90ACB ∠=︒,60A ∠=︒,CD 平分ACB ∠. 求证:CA AD BC +=.小明为解决上面的问题作了如下思考:作ADC ∆关于直线CD 的对称图形A DC '∆,∵CD 平分ACB ∠,∴A '点落在CB 上,且CA CA '=,A D AD '=.因此,要证的问题转化为只要证出A D A B ''=即可.请根据小明的思考,写出该问题完整的证明过程.(2)参照(1)中小明的思考方法,解答下列问题:如图3,在四边形ABCD 中,AC 平分BAD ∠,10BC CD ==,17AC =,9AD =,求AB 的长.27.已知ABC ∆中,90ACB ∠=︒,AC BC =,过顶点A 作射线AP .(1)当射线AP 在BAC ∠外部时,如图①,点D 在射线AP 上,连结CD 、BD ,已知21AD n =-,21AB n =+,2BD n =(1n >).①试证明ABD ∆是直角三角形;②求线段CD 的长.(用含n 的代数式表示)(2)当射线AP 在BAC ∠内部时,如图②,过点B 作BD AP ⊥于点D ,连结CD ,请写出线段AD 、BD 、CD 的数量关系,并说明理由.28.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.29.(1)如图1,在Rt △ABC 和Rt △ADE 中,AB =AC ,AD =AE ,且点D 在BC 边上滑动(点D 不与点B ,C 重合),连接EC ,①则线段BC ,DC ,EC 之间满足的等量关系式为 ;②求证:BD 2+CD 2=2AD 2;(2)如图2,在四边形ABCD 中,∠ABC =∠ACB =∠ADC =45°.若BD =9,CD =3,求AD 的长.30.菱形ABCD 中,∠BAD =60°,BD 是对角线,点E 、F 分别是边AB 、AD 上两个点,且满足AE =DF ,连接BF 与DE 相交于点G .(1)如图1,求∠BGD 的度数;(2)如图2,作CH ⊥BG 于H 点,求证:2GH =GB +DG ;(3)在满足(2)的条件下,且点H 在菱形内部,若GB =6,CH =43,求菱形ABCD 的面积.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.【详解】设AB=c ,AC=b ,BC=a ,由题意得'A BC 的面积=11022a a ⋅⋅=,'AB C △的面积=142b ⋅=∴2a = 2b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2,∴c 2=a 2-b 2=∴'ABC △的面积=212c ⋅=6= 故此题选B【点睛】此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积2.D解析:D【分析】利用等腰直角三角形的相关性质运用勾股定理以及对应角度的关系来推导对应选项的结论即可.【详解】解:由AC=BC=4,则AE=3=DE ,由勾股定理可得, ①正确;1>,②正确;由∠A=∠EDF=45°,则2∠EDF=90°,∠CED=90°-∠CDE=90°-(∠CDF-45°)= 135°-∠CDF=135°-(∠DFB+45°)= 90°-∠DFB ,故∠CED+∠DFB=90°=2∠EDF ,③正确;△DCE 的周长,△BDF 的周长+4-4个,故选:D.【点睛】本题主要考查等腰直角三角形的相关性质以及勾股定理的运用,本题涉及的等腰直角三角形、翻折、勾股定理以及边角关系,需要熟练地掌握对应性质以及灵活的运用.3.B解析:B【分析】根据勾股定理的逆定理对四个选项进行逐一分析即可.【详解】A 、222346+≠,C 、222568+≠,D 、2222+≠,故错误;B 、22213+==,能构成直角三角形,本选项正确. 故选B .【点睛】本题考查了勾股定理的知识点,解题的关键是熟练的掌握勾股定理的定理与运算.4.B解析:B【分析】根据勾股定理逆定理对每个选项一一判断即可.【详解】A 、∵72+82≠102,∴△ABC 不是直角三角形;B 、∵52+42=)2,∴△ABC 是直角三角形;C 、∵2222,∴△ABC 不是直角三角形;D 、∵32+42≠62,∴△ABC 不是直角三角形;故选:B .【点睛】本题主要考查勾股定理逆定理,熟记定理是解题关键.5.C解析:C【详解】如图所示,∵(a+b )2=21∴a 2+2ab+b 2=21,∵大正方形的面积为13,2ab=21﹣13=8,∴小正方形的面积为13﹣8=5.故选C .考点:勾股定理的证明.6.C解析:C【分析】根据勾股定理的逆定理解答即可.【详解】A 、∵222304060+≠,∴该选项的三条线段不能构成直角三角形;B 、∵22271213+≠,∴该选项的三条线段不能构成直角三角形;C 、∵2226810+=,∴该选项的三条线段能构成直角三角形;D 、∵222346+≠,∴该选项的三条线段不能构成直角三角形;故选:C .【点睛】此题考查勾股定理的逆定理,掌握勾股定理的逆定理的计算法则及正确计算是解题的关键.7.C解析:C【分析】先求出出发1.5小时后,甲乙两船航行的路程,进而可根据勾股定理的逆定理得出乙船的航行方向与甲船的航行方向垂直,进一步即可得出答案.【详解】解:出发1.5小时后,甲船航行的路程是16×1.5=24海里,乙船航行的路程是12×1.5=18海里;∵222241857632490030+=+==,∴乙船的航行方向与甲船的航行方向垂直,∵甲船的航行方向是北偏东75°,∴乙船的航行方向是南偏东15°或北偏西15°.故选:C .【点睛】本题考查了勾股定理的逆定理和方位角,属于常考题型,正确理解题意、熟练掌握勾股定理的逆定理是解题的关键.8.D解析:D【分析】3世纪,汉代赵爽在注解《周髀算经》时,通过对图形的切割、拼接、巧妙地利用面积关系证明了勾股定理.【详解】由题意,可知这位伟大的数学家是赵爽.故选D .【点睛】考查了数学常识,勾股定理的证明.3世纪我国汉代的赵爽在注解《周髀算经》时给出的,人们称它为“赵爽弦图”.赵爽通过对这种图形切割、拼接,巧妙地利用面积关系证明了著名的勾股定理.9.B解析:B【分析】首先根据题意得到BE=DE ,然后根据勾股定理得到关于线段AB 、AE 、BE 的方程,解方程即可解决问题.【详解】解:设ED=x ,则AE=6-x ,∵四边形ABCD 为矩形,∴AD ∥BC ,∴∠EDB=∠DBC;由题意得:∠EBD=∠DBC,∴∠EDB=∠EBD,∴EB=ED=x;由勾股定理得:BE2=AB2+AE2,即x2=9+(6-x)2,解得:x=154,∴ED=154.故选:B.【点睛】本题主要考查了几何变换中的翻折变换及其应用问题;解题的关键是根据翻折变换的性质,结合全等三角形的判定及其性质、勾股定理等几何知识,灵活进行判断、分析、推理或解答.10.D解析:D【分析】设正方形ADOF的边长为x,在直角三角形ACB中,利用勾股定理可建立关于x的方程,整理方程即可.【详解】解:设正方形ADOF的边长为x,由题意得:BE=BD=4,CE=CF=6,∴BC=BE+CE=BD+CF=10,在Rt△ABC中,AC2+AB2=BC2,即(6+x)2+(x+4)2=102,整理得,x2+10x﹣24=0,∴x2+10x=24,故选:D.【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.二、填空题11.5【详解】解:如图,延长AE交BC于点F,∵点E 是CD 的中点,∴DE=CE ,,∵AB ⊥BC ,AB ⊥AD,∴AD ∥BC,∴∠ADE=∠BCE 且DE=CE ,∠AED=∠CEF,∴△AED ≌△FEC (ASA ),∴AD=FC=5,AE=EF,∴BF=BC-FC=5,∴在Rt △ABF 中,2213AF AB BF =+=,6.52AF AE == 故答案为:6.5.12.①③【分析】 ①由已知条件证明DAB ≌EAC 即可;②由①可得∠ABD=∠ACE<45°,∠DCB>45°;③由∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°可判断③; ④由BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2可判断④.【详解】解:∵∠DAE =∠BAC =90°,∴∠DAB =∠EAC ,∵AD =AE ,AB =AC ,∴∠AED=∠ADE=∠ABC=∠ACB=45°, ∵在DAB 和EAC 中,AD AE DAB EAC AB AC ⎧⎪⎨⎪⎩===, ∴DAB ≌EAC ,∴BD =CE ,∠ABD =∠ECA ,故①正确;由①可得∠ABD=∠ACE<45°,∠DCB>45°故②错误;∵∠ECB+∠EBC=∠ABD+∠ECB+∠ABC=∠ACE+∠ECB+∠ABC =45°+45°=90°,∴∠CEB =90°,即CE ⊥BD ,故③正确;∴BE 2=BC 2-EC 2=2AB 2-(CD 2﹣DE 2)=2AB 2-CD 2+2AD 2=2(AD 2+AB 2)-CD 2. ∴BE 2=2(AD 2+AB 2)-CD 2,故④错误.故答案为:①③.【点睛】本题主要考查全等三角形判定与性质以及勾股定理的应用,熟记全等三角形的判定与性质定理以及勾股定理公式是解题关键.13.(21009,0).【分析】根据等腰直角三角形的性质得到OA 1=1,OA 2=1,OA 3=2,OA 4=3,…OA 2019=2018,再利用1A 、2A 、3A …,每8个一循环,再回到y 轴的正半轴的特点可得到点A 2019在x 轴的正半轴上,即可确定点A 2019的坐标.【详解】∵等腰直角三角形OA 1A 2的直角边OA 1在y 轴的正半轴上,且OA 1=A 1A 2=1,以OA 2为直角边作第二个等腰直角三角形OA 2A 3,以OA 3为直角边作第三个等腰直角三角形OA 3A 4,…,∴OA 1=1,OA 2,OA 3=)2,…,OA 2019=)2018,∵A 1、A 2、A 3、…,每8个一循环,再回到y 轴的正半轴,∴2019÷8=252…3,∴点A 2019在x 轴正半轴上.∵OA 2019=)2018,∴点A 2019的坐标为(2018,0)即(21009,0).故答案为:(21009,0).【点睛】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的2倍.也考查了直角坐标系中各象限内点的坐标特征. 14.6或2.【分析】由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类似于①求解.【详解】解:分两种情况讨论:①当D 点在BC 上方时,如图1所示,把△ABD 绕点D 逆时针旋转90°,得到△DCE ,则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,∴∠ABD+∠ACD=360°-180°=180°,∴∠ACD+∠ECD=180°,∴A、C、E三点共线.∴AE=AC+CE=42+22=62在等腰Rt△ADE中,AD2+DE2=AE2,即2AD2=(62)2,解得AD=6②当D点在BC下方时,如图2所示,把△BAD绕点D顺时针旋转90°得到△CED,则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,∴∠BAD=90°+45°=135°,即∠CED=135°,∴∠CED+∠AED=180°,即A、E、C三点共线.∴AE=AC-CE=42-22=22在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.故答案为:6或2.【点睛】本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.15.232【分析】先求出AC 的长,再分两种情况:当AC 为腰时及AC 为底时,分别求出腰长即可.【详解】在Rt ABC 中,90,30,2C A BC ∠=∠==,∴AB=2BC=4, ∴22224223AC AB BC =-=-=,当AC 为腰时,则该三角形的腰长为23;当AC 为底时,作AC 的垂直平分线交AB 于点D ,交AC 于点E ,如图,此时△ACD 是等腰三角形,则AE=3,设DE=x ,则AD=2x ,∵222AE DE AD +=,∴222(3)(2)x x +=∴x=1(负值舍去),∴腰长AD=2x=2,故答案为:23或2【点睛】此题考查勾股定理的运用,结合线段的垂直平分线的性质,等腰三角形的性质,解题时注意:“AC 为一边的等腰三角形”没有明确AC 是等腰三角形的腰或底,故应分为两种情况解题,这是此题的易错之处.16.12【分析】延长BA 至E ,使AE=BC ,并连接OE.证∆BCO ≅∠EAO ,再证三角形BOE 是等腰直角三角形,利用勾股定理可得BE=()()222210210220BO EO +=+=,可得AB=BE-AE.【详解】如图,延长BA 至E ,使AE=BC ,并连接OE.因为三角形COA是等腰直角三角形所以CO=AO,∠AOC=∠BOC+∠AOB=90°因为∠ABC=90°,∠AOC=90°,所以∠BAO+∠BCO=180°,又∠BAO+∠OAE=180°所以∠BCO=∠OAE所以∆BCO≅∠EAO所以BO=EO, ∠BOC=∠EOA所以,∠BOE=∠EOA+∠AOB=90°所以三角形BOE是等腰直角三角形==所以20所以AB=BE-AE=20-8=12故答案为:12【点睛】考核知识点:全等三角形,勾股定理.构造全等三角形是关键.17.7【分析】分三种情形讨论:(1)如图1中,以点C所在顶点为直角时;(2)如图2中,以点D所在顶点为直角时;(3)如图3中,以点A所在顶点为直角时.【详解】(1)如图1中,以点C所在顶点为直角时.∵AC=CD=4,BC=3,∴BD=CD+BC=7;(2)如图2中,以点D所在顶点为直角时,作DE⊥BC与E,连接BD.在Rt△BDE中DE=2,BE=5,∴BD(3)如图3中,以点A所在顶点为直角时,作DE⊥BC于E,在Rt△BDE中,DE=4.BE=7,∴BD故答案为:7【点睛】本题考查了勾股定理、等腰直角三角形等知识,解题的关键是学会用分类讨论的思想思考问题.18.①②③【解析】【详解】解:∵△ABC是等边三角形,∴∠=,ABC60∵△BQC≌△BPA,∴∠BPA=∠BQC,BP=BQ=4,QC=PA=3,∠ABP=∠QBC,∴∠=∠+∠=∠+∠=∠=,PBQ PBC CBQ PBC ABP ABC60∴△BPQ是等边三角形,①正确.∴PQ=BP=4,222222PQ QC PC+=+===,4325,525222∴+=,PQ QC PC∴∠=,即△PQC是直角三角形,②正确.PQC90∵△BPQ是等边三角形,∴∠=∠=,60PBQ BQP∵△BQC≌△BPA,∴∠APB=∠B QC,∴∠=∠=+=,③正确.BPA BQC6090150∴∠=---∠=-∠,APC QPC QPC36015060150,,∠=≠PQC PQ QC9045QPC ∴∠≠,即135APC ∠≠,④错误.故答案为①②③.19.100【解析】蚂蚁有三种爬法,就是把正视和俯视(或正视和侧视,或俯视和侧视)二个面展平成一个长方形,然后求其对角线:第一种情况:如图1,把我们所看到的前面和上面组成一个平面,则这个长方形的长和宽分别是90cm 和50cm ,则所走的最短线段AB==10cm ;第二种情况:如图2,把我们看到的左面与上面组成一个长方形,则这个长方形的长和宽分别是110cm 和30cm ,所以走的最短线段AB==10cm ;第三种情况:如图3,把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是80cm和60cm,所以走的最短线段AB==100cm;三种情况比较而言,第三种情况最短.故答案为100cm.点睛:本题考查了立体图形中的最短路线问题;通常应把立体几何中的最短路线问题转化为平面几何中的求两点间距离的问题;注意长方体展开图形应分情况进行探讨.20.3或3或15【分析】根据直角三角形的性质求出BC,勾股定理求出AB,根据直角三角形的性质列式计算即可.【详解】解:如图∵∠B=90°,∠A=30°,∴BC=12AC=12×8=4,由勾股定理得,22228443AC BC-=-=43333AD∴==当点P在AC上时,∠A=30°,AP=2PD,∴∠ADP=90°,则AD2+PD2=AP2,即(32=(2PD)2-PD2,解得,PD=3,当点P在AB上时,AP=2PD,3∴3当点P在BC上时,AP=2PD,设PD=x ,则AP=2x ,由勾股定理得,BP 2=PD 2-BD 2=x 2-3,()(22223x x ∴-=-解得,故答案为:3【点睛】本题考查的是勾股定理、直角三角形的性质,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么a 2+b 2=c 2.三、解答题21.(1) 出发10s 后,△BMN 为等边三角形;(2)出发6s 或15s 后,△BMN 为直角三角形.【分析】(1)设时间为x ,表示出AM=x 、BN=2x 、BM=30-x ,根据等边三角形的判定列出方程,解之可得;(2)分两种情况:①∠BNM=90°时,即可知∠BMN=30°,依据BN=12BM 列方程求解可得;②∠BMN=90°时,知∠BNM=30°,依据BM=12BN 列方程求解可得. 【详解】解 (1)设经过x 秒,△BMN 为等边三角形,则AM =x ,BN =2x ,∴BM =AB -AM =30-x ,根据题意得30-x =2x ,解得x =10,答:经过10秒,△BMN 为等边三角形;(2)经过x 秒,△BMN 是直角三角形,①当∠BNM =90°时,∵∠B =60°,∴∠BMN =30°, ∴BN =12BM ,即2x =12(30-x), 解得x =6;②当∠BMN =90°时,∵∠B =60°,∴∠BNM =30°,∴BM =12BN ,即30-x =12×2x , 解得x =15,答:经过6秒或15秒,△BMN 是直角三角形.【点睛】本题考查勾股定理的逆定理,等边三角形的判定.22.(1)见解析;(2)见解析;(3)43或63【分析】(1)先由三角形的内角和为180°求得∠ACB 的度数,从而根据等腰三角形的判定证得AB=AC=AD ,按照邻和四边形的定义即可得出结论.(2)以点A 为圆心,AB 长为半径画圆,与网格的交点,以及△ABC 外侧与点B 和点C 组成等边三角形的网格点即为所求.(3)先根据勾股定理求得AC 的长,再分类计算即可:①当DA=DC=AC 时;②当CD=CB=BD 时;③当DA=DC=DB 或AB=AD=BD 时.【详解】(1)∵∠ACB =180°﹣∠ABC ﹣∠BAC =70°,∴∠ACB =∠ABC ,∴AB =AC .∵∠ACD =∠ADC ,∴AC =AD ,∴AB =AC =AD .∴四边形ABCD 是邻和四边形;(2)如图,格点D 、D'、D''即为所求作的点;(3)∵在△ABC 中,∠ABC =90°,AB =2,BC =3∴AC ()22222234AB BC +=+=,显然AB ,BC ,AC 互不相等.分两种情况讨论:①当DA =DC =AC=4时,如图所示:∴△ADC为等边三角形,过D作DG⊥AC于G,则∠ADG=160302⨯︒=︒,∴122AG AD==,22224223DG AD AG=-=-=,∴S△ADC=1423432⨯⨯=,S△ABC=12AB×BC=23,∴S四边形ABCD=S△ADC+S△ABC=63;②当CD=CB=BD=23时,如图所示:∴△BDC为等边三角形,过D作DE⊥BC于E,则∠BDE=160302⨯︒=︒,∴132BE BD==()()22222333DE BD BE=-=-=,∴S△BDC=123333 2⨯=过D作DF⊥AB交AB延长线于F,∵∠FBD=∠FBC-∠DBC=90︒-60︒=30︒,∴DF=123S△ADB=12332⨯=,∴S四边形ABCD=S△BDC+S△ADB=3;③当DA=DC=DB或AB=AD=BD时,邻和四边形ABCD不存在.∴邻和四边形ABCD的面积是或【点睛】本题属于四边形的新定义综合题,考查了等腰三角形的判定和性质、勾股定理、三角形的面积计算等知识点,数形结合并读懂定义是解题的关键.23.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析【分析】(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】解:(1)AE=BD,AE⊥BD,理由如下:∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠EAC=∠DBC=45°,∴∠EAC+∠CAB=90°,∴AE⊥BD;(2)∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;(3)如图3,若点D在AB的延长线上,∵△ABC,△ECD都是等腰直角三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB,且AC=BC,CE=CD,∴△ACE≌△BCD(SAS)∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ,AE⊥BD,∴PA=AQ,∵EP=EQ=5,AE=BD=4,∴,∴PQ=2AQ=6;如图4,若点D 在BA 的延长线上,∵△ABC ,△ECD 都是等腰直角三角形,∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,∴△ACE ≌△BCD (SAS )∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,∴∠EAB=90°,∵PE=EQ ,AE ⊥BD ,∴PA=AQ ,∵EP=EQ=5,AE=BD=4,∴AQ=22=2516=3EQ AE --,∴PQ=2AQ=6.【点睛】本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.24.(1)①详见解析;②详见解析;(2)DE 2= EB 2+AD 2+EB ·AD ,证明详见解析【分析】(1)①根据旋转的性质可得CF=CD ,∠DCF=90°,再根据已知条件即可证明△ACD ≌△BCF ;②连接EF ,根据①中全等三角形的性质可得∠EBF=90°,再证明△DCE ≌△FCE 得到EF=DE即可证明;(2)根据(1)中的思路作出辅助线,通过全等三角形的判定及性质得出相等的边,再由勾股定理得出AD,DE,BE之间的关系.【详解】解:(1)①证明:由旋转可得CF=CD,∠DCF=90°∵∠ACD=90°∴∠ACD=∠BCF又∵AC=BC∴△ACD≌△BCF②证明:连接EF,由①知△ACD≌△BCF∴∠CBF=∠CAD=∠CBA=45°,∠BCF=∠ACD,BF=AD∴∠EBF=90°∴EF2=BE2+BF2,∴EF2=BE2+AD2又∵∠ACB=∠DCF=90°,∠CDE=45°∴∠FCE=∠DCE=45°又∵CD=CF,CE=CE∴△DCE≌△FCE∴EF=DE∴DE2= AD2+BE2⑵DE2=EB2+AD2+EB·AD理由:如图2,将△ADC绕点C逆时针旋转60°,得到△CBF,过点F作FG⊥AB,交AB 的延长线于点G,连接EF,∴∠CBE=∠CAD,∠BCF=∠ACD, BF=AD∵AC=BC,∠ACB=60°∴∠CAB=∠CBA =60°∴∠ABE=120°,∠EBF=60°,∠BFG=30°∴BG=12BF,3∵∠ACB=60°,∠DCE=30°,∴∠ACD+∠BCE=30°,∴∠ECF=∠FCB+∠BCE=30°∵CD=CF ,CE=CE∴△ECF ≌△ECD∴EF=ED在Rt △EFG 中,EF 2=FG 2+EG 2又∵EG=EB+BG∴EG=EB+12BF , ∴EF 2=(EB+12BF )2+(32BF )2 ∴DE 2= (EB+12AD )2+(3AD )2 ∴DE 2= EB 2+AD 2+EB ·AD【点睛】本题考查了全等三角形的性质与旋转模型,解题的关键是找出全等三角形,转换线段,并通过勾股定理的计算得出线段之间的关系.25.(1)3;(2)见解析.【分析】(1)根据勾股定理可得AC ,进而可得BC 与BD ,然后根据三角形的面积公式计算即可; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则根据余角的性质可得∠CBG =∠EBH ,由已知易得BE ∥AC ,于是∠E =∠EFC ,由于CG EF ⊥,90ACB ∠=︒,则根据余角的性质得∠EFC =∠BCG ,于是可得∠E =∠BCG ,然后根据ASA 可证△BCG ≌△BEH ,可得BG =BH ,CG =EH ,从而△BGH 是等腰直角三角形,进一步即可证得结论.【详解】解:(1)在△ACD 中,∵90ACB ∠=︒,1CD =,5AD =∴222AC AD CD =-=,∵2BC AC =,∴BC=4,BD =3,∴1132322ABD S BD AC ∆=⋅=⨯⨯=; (2)过点B 作BH ⊥BG 交EF 于点H ,如图3,则∠CBG +∠CBH =90°,∵BE BC ⊥,∴∠EBH +∠CBH =90°,∴∠CBG =∠EBH ,∵BE BC ⊥,90ACB ∠=︒,∴BE ∥AC ,∴∠E =∠EFC ,∵CG EF ⊥,90ACB ∠=︒,∴∠EFC +∠FCG =90°,∠BCG +∠FCG =90°,∴∠EFC =∠BCG ,∴∠E =∠BCG ,在△BCG 和△BEH 中,∵∠CBG =∠EBH ,BC=BE ,∠BCG =∠E ,∴△BCG ≌△BEH (ASA ), ∴BG =BH ,CG =EH , ∴222GH BG BH BG =+=,∴2EG GH EH BG CG =+=+.【点睛】本题考查了直角三角形的性质、全等三角形的判定和性质、等腰直角三角形的判定和性质、余角的性质和勾股定理等知识,属于常考题型,正确作出辅助线构造全等三角形是解题的关键.26.(1)证明见解析;(2)21.【分析】(1)只需要证明'30A DB B ∠=∠=︒,再根据等角对等边即可证明''A D A B =,再结合小明的分析即可证明;(2)作△ADC 关于AC 的对称图形AD'C ,过点C 作CE ⊥AB 于点E ,则'D E =BE .设'D E =BE=x .在Rt △CEB 和Rt △CEA 中,根据勾股定理构建方程即可解决问题.【详解】解:(1)证明:如下图,作△ADC 关于CD 的对称图形△A′DC ,∴A′D=AD ,C A′=CA ,∠CA′D=∠A=60°,∵CD 平分∠ACB ,∴A′点落在CB 上∵∠ACB=90°,∴∠B=90°-∠A=30°,∴∠A′DB=∠CA′D -∠B=30°,即∠A′DB=∠B ,∴A′D=A′B ,∴CA+AD=CA′+A′D=CA′+A′B=CB.(2)如图,作△ADC 关于AC 的对称图形△AD′C .∴D′A=DA=9,D′C=DC=10,∵AC 平分∠BAD ,∴D′点落在AB 上,∵BC=10,∴D′C=BC ,过点C 作CE ⊥AB 于点E ,则D′E=BE ,设D′E=BE=x ,在Rt △CEB 中,CE 2=CB 2-BE 2=102-x 2,在Rt △CEA 中,CE 2=AC 2-AE 2=172-(9+x )2.∴102-x 2=172-(9+x )2,解得:x=6,∴AB=AD′+D′E+EB=9+6+6=21.【点睛】本题考查轴对称的性质,勾股定理,等腰三角形的性质,三角形外角的性质.(1)中证明∠A′DB=∠B 不是经常用的等量代换,而是利用角之间的计算求得它们的度数相等,这有点困难,需要多注意;(2)中掌握方程思想是解题关键.27.(1)①详见解析;(2)2222CD n =+-1n >);(2)2AD BD CD -=,理由详见解析.【分析】(1)①根据勾股定理的逆定理进行判断;②过点C 作CE ⊥CD 交DB 的延长线于点E ,利用同角的余角相等证明∠3=∠4,∠1=∠E ,进而证明△ACD ≌△BCE ,求出DE 的长,再利用勾股定理求解即可.(2)过点C 作CF ⊥CD 交BD 的延长线于点F ,先证∠ACD=∠BCF ,再证△ACD ≌△BCF ,得CD=CF ,AD=BF ,再利用勾股定理求解即可.【详解】(1)①∵()()()22222222212214AD BD n n n n n +=-+=-++()()22222211n n n =++=+ 又∵()2221AB n =+∴222AD BD AB +=∴△ABD 是直角三角形②如图①,过点C 作CE ⊥CD 交DB 的延长线于点E ,∵∠3+∠BCD=∠ACD=90°,∠4+∠BCD=∠DCE=90° ∴∠3=∠4由①知△ABD 是直角三角形∴1290∠+∠=︒又∵290E ∠+∠=︒∴∠1=∠E在ACD ∆和BCE ∆中,A 34E AC BC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△BCE∴CD CE =,AD BE =∴221DE BD BE BD AD n n =+=+=+- 又∵CD CE =,90DCE ∠=︒ ∴由勾股定理得222DE CD DE CD =+=∴22CD =222222n n =+-(1n >) (2)AD 、BD 、CD 的数量关系为:2AD BD CD -=,理由如下:如图②,过点C 作CF ⊥CD 交BD 的延长线于点F ,∵∠ACD=90°+∠5,∠BCF=90°+∠5∴∠ACD=∠BCF∵BD ⊥AD∴∠ADB=90°∴∠6+∠7=90°∵∠ACB=90°∴∠9=∠8=90°又∵∠6=∠8∴∠7=∠9ACD ∆和BCF ∆中97AC BCACD BCF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACD ≌△BCF∴CD=CF ,AD=BF又∵∠DCF=90° ∴由勾股定理得222DFCD CF CD =+=又DF=BF-BD=AD-BD∴2AD BD CD -=【点睛】本题考查的是三角形全等、勾股定理及其逆定理,掌握三角形全等的判定方法及勾股定理及其逆定理是关键.28.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析【分析】(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=12(c-a ),AG=12(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.【详解】解:(1)如图1,假设Rt △ABC 是类勾股三角形,∴ab +a 2=c 2,在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,∴ab+b2=a2+b2,∴ab=a2,∴a=b,∴△ABC是等腰直角三角形,∴等腰直角三角形是类勾股三角形,即:原命题是假命题,故答案为:假;(2)∵AB=BC,AC>AB,∴a=c,b>c,∵△ABC是类勾股三角形,∴ac+a2=b2,∴c2+a2=b2,∴△ABC是等腰直角三角形,∴∠A=45°,(3)①在△ABC中,∠ABC=2∠BAC,∠BAC=32°,∴∠ABC=64°,根据三角形的内角和定理得,∠ACB=180°﹣∠BAC﹣∠ABC=84°,∵把这个三角形分成两个等腰三角形,∴(Ⅰ)、当∠BCD=∠BDC时,∵∠ABC=64°,∴∠BCD=∠BDC=58°,∴∠ACD=∠ACB﹣∠BCD=84°﹣58°=26°,∠ADC=∠ABC+∠BCD=122°∴△ACD不是等腰三角形,此种情况不成立;(Ⅱ)、当∠BCD=∠ABC=64°时,∴∠BDC=52°,∴∠ACD=20°,∠ADC=128°,∴△ACD是等腰三角形,此种情况不成立;(Ⅲ)、当∠BDC=∠ABC=64°时,∴∠BCD=52°,∴∠ACD=∠ACB﹣BCD=32°=∠BAC,∴△ACD是等腰三角形,即:分割线和顶角标注如图2所示,Ⅱ、分∠ABC,同(Ⅰ)的方法,判断此种情况不成立;。
第02讲 勾股定理逆定理(3个知识点+5类热点题型+习题巩固)(解析版)
第02讲勾股定理逆定理课程标准学习目标①勾股定理逆定理②勾股数③勾股定理的应用1.掌握勾股定理的逆定理内容,并能够熟练的运用它来判断直角三角形。
2.掌握勾股数并能够判断勾股数。
3.能够在各类实际问题中熟练应用勾股定理。
知识点01勾股定理逆定理1.勾股定理逆定理内容:在△ABC 中,如果三角形的三边分别是c b a ,,且满足222c b a =+,则该三角形一定是有一个直角三角形且∠C 是直角。
勾股定理的逆定理用于判断一个三角形是不是直角三角形。
2.直角三角形的判定①勾股定理逆定理②三角形中有一个角是90°。
③三角形中有两个角之和为90°。
【即学即练1】1.以下列数据为长度的线段中,可以构成直角三角形的是()A.1,2,3B.2,3,4C.1,,D.,3,5【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+22≠32,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、12+()2=()2,能构成直角三角形,故符合题意;D、()2+32≠52,不能构成直角三角形,故不符合题意.故选:C.【即学即练2】2.如图,在△ABC中,AC=6cm,BC=8cm,AB=10cm,AB的垂直平分线交AB于点D,交BC于点E.(1)试说明△ABC为直角三角形.(2)求CE的长.【分析】(1)先计算AC2+BC2=62+82=100,AB2=102=100,再利用勾股定理的逆定理可得结论;(2)设CE长为x cm,则BE=(8﹣x)cm.由DE垂直平分AB,可得AE=BE=8﹣x.再利用勾股定理建立方程即可.【解答】(1)证明:∵AC2+BC2=62+82=100,AB2=102=100,∴AC2+BC2=AB2,∴△ABC为直角三角形.(2)解:设CE长为x cm,则BE=(8﹣x)cm.∵DE垂直平分AB,∴AE=BE=8﹣x.在Rt△ACE中,由勾股定理得x2+62=(8﹣x)2,解得,所以CE的长为.知识点02勾股数1.勾股数的定义:满足勾股定理:即222cba=+的三个正整数称为勾股数。
勾股定理逆定理讲义(经典例题+详解+习题)
22+=a b∆是直角三角形且ABC22+=b c三边长为a解:此三角形是直角三角形理由:22+=a b22b c+=△ABC的三边长分别为△ABC是直角三角形吗?例4.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=例5.( 1)如图,在△ABC 中,D 是BC 上一点,AB=10,BD=6,AD=8,AC=17,求△ABC 的面积.(2)在△ABC 中,若AB=15,AC=13,高AD=12,求△ABC 的周长. 分析:(1)根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD 是直角三角形,再利用勾股定理求出CD 的长,然后利用三角形面积公式即可得出答案. (2)本题应分两种情况进行讨论:①当△ABC 为锐角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相加即为BC 的长,从而可将△ABC 的周长求出;②当△ABC 为钝角三角形时,在Rt △ABD 和Rt △ACD 中,运用勾股定理可将BD 和CD 的长求出,两者相减即为BC 的长,从而可将△ABC 的周长求出. 解:(1)∵BD 2+AD 2=62+82=102=AB 2, ∴△ABD 是直角三角形, ∴AD⊥BC,在Rt△ACD 中,CD=15,(2)分两种情况:①当△ABC 为锐角三角形时,在Rt△ABD 中,BD=9,在Rt△ACD 中,CD=5, ∴BC=5+9=14∴△ABC的周长为:15+13+14=42;②当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=4,∴BC=9-5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32例6:如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=14BC,求证:AF⊥EF.思路点拨:要证AF⊥EF,需证△AEF是直角三角形,由勾股定理的逆定性,只要证出AF2+EF2=AF2就可以了.基础练习:若△ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC的形状.(提示:根据所给条件,只有从关于a,b,c的等式入手,找出a,b,c三边之间的关系,应用分解因式可得(a-5)2+(b-12)2+(c-13)2=0,求出a=5,b=12,c=13,∵a2+b2=c2,•∴△ABC是Rt△)二、提高例题例1.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
勾股定理经典例题(全解版)
类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6, c=10,求b, (2)已知a=40,b=9,求c; (3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。
解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。
解析:延长AD、BC交于E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XX教育一对一个性化教案授课日期:2014 年月日学生姓名许XX 教师姓名授课时段2h年级8 学科数学课型VIP教学内容勾股定理及逆定理教学重、难点重点:运用勾股定理判定一个三角形是否为直角三角形。
难点:运用用勾股定理和勾股定理逆定理解决实际问题。
教学步骤及突出教学方法一、知识归纳1、勾股定理的逆定理如果三角形三边长a,b,c满足222a b c+=,那么这个三角形是直角三角形,其中c为斜边。
①勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过“数转化为形”来确定三角形的可能形状,在运用这一定理时,可用两小边的平方和22a b+与较长边的平方2c作比较,若它们相等时,以a,b,c为三边的三角形是直角三角形;若222a b c+<,时,以a,b,c为三边的三角形是钝角三角形;若222a b c+>,时,以a,b,c为三边的三角形是锐角三角形;②定理中a,b,c及222a b c+=只是一种表现形式,不可认为是唯一的,如若三角形三边长a,b,c满足222a c b+=,那么以a,b,c为三边的三角形是直角三角形,但是b为斜边。
③勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三角形。
2、勾股数①能够构成直角三角形的三边长的三个正整数称为勾股数,即222a b c+=中,a,b,c为正整数时,称a,b,c为一组勾股数②记住常见的勾股数可以提高解题速度,如3,4,5;6,8,10;5,12,13;7,24,25等③用含字母的代数式表示n组勾股数:221,2,1n n n-+(2,n≥n为正整数);2221,22,221n n n n n++++(n为正整数)2222,2,m n mn m n-+(,m n>m,n为正整数)DCBA题型一:应用勾股定理逆定理,判定一个三角形是否是直角三角形 例1.已知三角形的三边长为a ,b ,c ,判定ABC ∆是否为Rt ∆ ① 1.5a =,2b =, 2.5c = ②54a =,1b =,23c =分析:由勾股定理的逆定理,判断三角形是不是直角三角形,只要看两条较小边的平方和是否等于最大边的平方。
解:①22221.52 6.25a b +=+=,222.5 6.25c == ∴ABC ∆是直角三角形且90C ∠=︒②22139b c +=,22516a =,222b c a +≠ABC ∴∆不是直角三角形例2.三边长为a ,b ,c 满足10a b +=,18ab =,8c =的三角形是什么形状? 解:此三角形是直角三角形理由:222()264a b a b ab +=+-=,且264c =222a b c ∴+= 所以此三角形是直角三角形例3. 如果△ABC 的三边长分别为 a,b,c,且a=m 2-n 2,b=2mn,c=m 2+n 2(m>n,m,n 是正整数),则△ABC 是直角三角形吗?分析:先来判断a,b,c 三边哪条最长,可以代m,n 为满足条件的特殊值来试,m=5,n=4.则a=9,b=40,c=41,c 最大。
解:∵(m 2-n 2)2+(2mn )2=m 4+n 4-2m 2n 2+4m 2n 2=m 4+n 4+2m 2n 2=(m 2+n 2)2, ∴a 2+b 2=c 2,∴能成为直角三角形的三边长.题型二:勾股定理与勾股定理的逆定理综合应用例4.已知ABC ∆中,13AB =cm ,10BC =cm ,BC 边上的中线12AD =cm ,求证:AB AC =证明:AD 为中线,5BD DC ∴==cm在ABD ∆中,22169AD BD +=,2169AB =222AD BD AB ∴+=,90ADB ∴∠=︒,222169AC AD DC ∴=+=,13AC =cm ,AB AC ∴=例5.( 1)如图,在△ABC中,D是BC上一点,AB=10,BD=6,AD=8,AC=17,求△ABC的面积.(2)在△ABC中,若AB=15,AC=13,高AD=12,求△ABC的周长.分析:(1)根据AB=10,BD=6,AD=8,利用勾股定理的逆定理求证△ABD是直角三角形,再利用勾股定理求出CD的长,然后利用三角形面积公式即可得出答案.(2)本题应分两种情况进行讨论:①当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;②当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.解:(1)∵BD2+AD2=62+82=102=AB2,∴△ABD是直角三角形,∴AD⊥BC,在Rt△ACD中,CD=15,(2)分两种情况:①当△ABC为锐角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=5,∴BC=5+9=14∴△ABC的周长为:15+13+14=42;②当△ABC为钝角三角形时,在Rt△ABD中,BD=9,在Rt△ACD中,CD=4,∴BC=9-5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32例6:如图,在正方形ABCD中,F为DC的中点,E为BC上一点,且EC=14BC,求证:AF⊥EF.思路点拨:要证AF⊥EF,需证△AEF是直角三角形,由勾股定理的逆定性,只要证出AF2+EF2=AF2就可以了.基础练习:若△ABC的三边a,b,c满足条件a2+b2+c2+338=10a+24b+26c,试判定△ABC的形状.(提示:根据所给条件,只有从关于a,b,c的等式入手,找出a,b,c三边之间的关系,应用分解因式可得(a-5)2+(b-12)2+(c-13)2=0,求出a=5,b=12,c=13,∵a2+b2=c2,•∴△ABC是Rt△)二、提高例题例1.一根30米长的细绳折成3段,围成一个三角形,其中一条边的长度比较短边长7米,比较长边短1米,请你试判断这个三角形的形状。
分析:⑴若判断三角形的形状,先求三角形的三边长;⑵设未知数列方程,求出三角形的三边长5、12、13;⑶根据勾股定理的逆定理,由52+122=132,知三角形为直角三角形。
【提高练习】1.如图,在我国沿海有一艘不明国籍的轮船进入我国海域,我海军甲、乙两艘巡逻艇立即从相距13海里的A、B两个基地前去拦截,六分钟后同时到达C地将其拦截。
已知甲巡逻艇每小时航行120海里,乙巡逻艇每小时航行50海里,航向E NA BC为北偏西40°,问:甲巡逻艇的航向?2.一根24米绳子,折成三边为三个连续偶数的三角形,则三边长分别为 ,此三角形的形状为 。
3.如图,小明的爸爸在鱼池边开了一块四边形土地种了一些蔬菜,爸爸让小明计算一下土地的面积,以便计算一下产量。
小明找了一卷米尺,测得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。
三、能力培养例1已知:如图,四边形ABCD ,AD ∥BC ,AB=4,BC=6,CD=5,AD=3。
求:四边形ABCD 的面积。
分析:使学生掌握研究四边形的问题,通常添置辅助线把它转化为研究三角形的问题。
本题辅助线作平行线间距离无法求解。
创造3、4、5勾股数,利用勾股定理的逆定理证明DE 就是平行线间距离。
⑴作DE ∥AB ,连结BD ,则可以证明△ABD ≌△EDB (ASA ); ⑵DE=AB=4,BE=AD=3,EC=EB=3;⑶在△DEC 中,3、4、5勾股数,△DEC 为直角三角形,DE ⊥BC ; ⑷利用梯形面积公式可解,或利用三角形的面积。
例2已知:如图,在△ABC 中,CD 是AB 边上的高,且CD 2=AD ·BD 。
DCABABCDE求证:△ABC 是直角三角形。
分析:勾股定理及逆定理的综合应用,注意条件的转化及变形。
∵AC 2=AD 2+CD 2,BC 2=CD 2+BD 2∴AC 2+BC 2=AD 2+2CD 2+BD 2=AD 2+2AD ·BD+BD 2=(AD+BD )2=A B 2【能力训练】1.若△ABC 的三边a 、b 、c ,满足(a -b )(a 2+b 2-c 2)=0,则△ABC 是( ) A .等腰三角形; B .直角三角形; C .等腰三角形或直角三角形; D .等腰直角三角形。
2.若△ABC 的三边a 、b 、c ,满足a :b :c=1:1:2,试判断△ABC 的形状。
3.已知:如图,四边形ABCD ,AB=1,BC=43,CD=413,AD=3,且AB ⊥BC 。
求:四边形ABCD 的面积。
4.已知:在△ABC 中,∠ACB=90°,CD ⊥AB 于D ,且CD 2=AD ·BD 。
求证:△ABC 中是直角三角形。
5.若△ABC 的三边a 、b 、c 满足a 2+b 2+c 2+50=6a+8b+10c ,求△ABC 的面积。
BACDABCD6.在△ABC中,AB=13cm,AC=24cm,中线BD=5cm。
求证:△ABC是等腰三角形。
7.已知△ABC的三边为a、b、c,且a+b=4,ab=1,c=14,试判定△ABC的形状。
《勾股定理及逆定理》测试题一、选择题1.在下列长度的各组线段中,能组成直角三角形的是().A.12,15,17 B.9,16,25 C.5a,12a,13a(a>0) D.2,3,42.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,AB=8,BC=15,CA=17,则下列结论不正确的是().A.△ABC是直角三角形,且AC为斜边 B.△ABC是直角三角形,且∠ABC=90°C.△ABC的面积是60 D.△ABC是直角三角形,且∠A=60°3.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,且a:b:c=1:3:2,则下列说法错误的是().A.∠C=90° B.c2-a2=b2 C.c2=2a2 D.若a=k,则c=2k(k>0)4.下列定理中,没有逆定理的是().A.两直线平行,内错角相等 B.直角三角形两锐角互余C.对顶角相等 D.同位角相等,两直线平行5.在△ABC中,∠A、∠B、∠C的对边分别是a、b、c.则满足下列条件但不是直角三角形BA图33220BA的是( ).A .∠A =∠B -∠C B .∠A :∠B :∠C =1:1:2 C .a :b :c =4:5:6D .a 2-c 2=b26、已知a 、b 、c 是三角形的三边长,如果满足2(6)8100a b c -+-+-=,则三角形的形状是( )A.底与边不相等的等腰三角形B.等边三角形C.钝角三角形D.直角三角形二、填空题7.若一三角形三边长分别为5、12、13,则这个三角形长是13的边上的高是 . 8.若一三角形铁皮余料的三边长为12cm ,16cm ,20cm ,则这块三角形铁皮余料的面积为 cm 2.9.木工师傅要做一个长方形桌面,做好后量得长为80cm ,宽为60cm ,对角线为100cm ,则这个桌面 (填“合格”或“不合格”);10.如图1,一根电线杆高8m.为了安全起见,在电线杆顶部到与电线杆底部水平距离6m 处加一拉线.拉线工人发现所用线长为10.2m (不计捆缚部分),则电线杆与地面 (填“垂直”或“不垂直”)11.一透明的玻璃杯,从内部测得底部半径为6cm ,杯深16cm.今有一根长为22cm 的吸管如图2放入杯中,露在杯口外的长度为2cm ,则这玻璃杯的形状是 体.12.写出一组全是偶数的勾股数是 .13.如图3:是一个高12cm ,底面半径3cm 的圆柱,在圆柱下底的A 点有一只蚂蚁,它想吃到上底面与A 点相对的B 点处的食物,需要沿圆柱侧面爬行的最短路程是____________。