电磁场与电磁波(电磁场理论)第二章.
《电磁场理论与电磁波》课后思考题
《电磁场理论与电磁波》课后思考题第一章 P301.1 如果A B =A C ,是否意味着B =C ?为什么?答:否。
1.2 如果⨯⨯A B =A C ,是否意味着B =C ?为什么?答:否。
1.3 两个矢量的点积能是负的吗?如果是,必须是什么情况?答:能。
当两个矢量的夹角θ满足(,]2πθπ∈时。
1.4 什么是单位矢量?什么是常矢量?单位矢量是否是常矢量?答:单位矢量:模为1的矢量;常矢量:大小和方向均不变的矢量(零矢量可以看做是特殊的常矢量);单位矢量不一定是常矢量。
例如,直角坐标系中,坐标单位矢量,,x y z e e e 都是常矢量;圆柱坐标系中,坐标单位矢量,ρφe e 不是常矢量,z e 是常矢量;球坐标系中,坐标单位矢量,,r θφe e e 都不是常矢量。
1.5 在圆柱坐标系中,矢量ρφz a b c =++A e e e ,其中a 、b 、c 为常数,则A 能是常矢量吗?为什么?答:否。
因为坐标单位矢量,ρφe e 的方向随空间坐标变化,不是常矢量。
1.6 在球坐标系中,矢量cos sin r θa θa θ=-A e e ,其中a 为常数,则A 能是常矢量吗?为什么?答:是。
对cos sin r θa θa θ=-A e e 转换为直角坐标系的表示形式,化简可得22(cos sin )z z a θθe ae ==+=A 。
1.7 什么是矢量场的通量?通量的值为正、负或0分别表示什么意义?答:通量的概念:d d d n SSψψF S F e S ==⋅=⋅⎰⎰⎰(曲面S 不是闭合)d d n SSF S F e S =⋅=⋅⎰⎰ψ(曲面S 是闭合)通过闭合曲面有净的矢量线穿出S 内有正通量源<ψ有净的矢量线进入,S内有负通量源进入与穿出闭合曲面的矢量线相等,S内没有通量源1.8 什么是散度定理?它的意义是什么?答:散度定理:d d SVF S F V ⋅=∇⋅⎰⎰意义:面积表示的通量=体积表示的通量1.9 什么是矢量场的环流?环流的值为正、负或0分别表示什么意义?答:环流的概念:Γ(,,)d CF x y z l =⋅⎰环流的值为正、负或0分别表示闭合曲线C 内有正旋涡源、负旋涡源和无旋涡源。
电磁场与电磁波第二章电磁场的基本规律笔记
电磁场与电磁波第二章电磁场的基本规律笔记下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!第一节电磁场的基本概念。
1.1 电磁场的概念。
微波遥感第二章电磁场理论_电磁波与地表作用
入射电磁波与地表面各类地物发生相互作用的过程中,
在地物表面产生镜面发射或漫反射(或称散射),并 由透射或绕射进入表层以下,在部分或全部被吸收后, 可能部分或全部再辐射出去。通常地物表面的反射, 散射,透射,吸收和发射仅仅作为表面现象处理。更 全面的分析则还应考虑表面以下介质的作用,因为即 使是金属,不光其表面产生反射,也还有电磁波的透 入,只不过其透入的深度有限,随波长而异。这样在 表面以下物质与电磁波发生相互作用的积累就构成地 物对电磁波相互作用的一个组成部分。
k不是任意常数,它与时变场的频率,媒质的电容率和 磁导率有关。
(k1 / k2 )sin1 1
镜面特性
sin2 (k1 / k2 )sin1
若波从一密集的媒质投射到一较低密集的媒质(即k1>k2)时,上 式右边可能大于1。在这种情况下,不存在透射角,称这种波被全 反射了,发生这种现象的最小透射角称为临界角,它定义为:
镜面特性
镜面特性
镜面特性
镜面特性
反射光振幅与入射光振幅的比值,其数值多以百分数表示。反 射系数的平方称为反射率。 一般的波动方程可以写为:
方程中复系数可以写成:
镜面特性
如果k1,k2分别为电磁波在两类介质中的传播矢量,由 于在界面上的切向分量连续,相位相等,于是可以得到 斯涅耳折射定律:
sinc k2 / k1
这样大于thetaC这个角度的所有波遭受全反射。
镜面特性
当theta1大于thetaC时,cos(theta2)是纯虚数。因 此将上式带入反射系数和透射系数的表达式,可以得 到反射系数为1,透射系数为0
镜面特性
特殊情况下,对于TM波,当入射角为某一角度时,入射电磁波将 全部透过两种均匀介质的界面,进入第二种介质,毫无反射,这 时的入射角称为布儒斯特角。
电磁场与电磁波电子教案
电磁场与电磁波电子教案第一章:电磁场的基本概念1.1 电荷和电场介绍电荷的性质和分类解释电场的概念和电场线电场强度的定义和计算电场的叠加原理1.2 磁场和磁力介绍磁铁和磁性的概念解释磁场的概念和磁感线磁感应强度的定义和计算磁场的叠加原理1.3 电磁感应介绍法拉第电磁感应定律解释感应电动势和感应电流的产生电磁感应的实验现象和应用第二章:电磁波的基本性质2.1 电磁波的产生和传播介绍麦克斯韦方程组和电磁波的理论基础解释电磁波的产生和传播过程电磁波的波动方程和波长、频率、速度的关系2.2 电磁波的能量和动量介绍电磁波的能量密度和能量传递解释电磁波的动量和动量传递电磁波的辐射压和辐射阻力的概念2.3 电磁波的偏振和反射、折射介绍电磁波的偏振现象和偏振光的性质解释电磁波在介质中的反射和折射现象反射定律和折射定律的原理及应用第三章:电磁波的传播和辐射3.1 电磁波在自由空间中的传播介绍自由空间中电磁波的传播特性解释电磁波的辐射和天线原理电磁波的辐射强度和辐射功率的概念3.2 电磁波在介质中的传播介绍电磁波在介质中的传播规律解释介质的折射率和介电常数的概念电磁波在介质中的衰减和色散现象3.3 电磁波的辐射和天线原理介绍天线的分类和基本原理解释天线的辐射特性和发展电磁波的辐射模式和天线的设计方法第四章:电磁波的应用4.1 电磁波在通信技术中的应用介绍电磁波在无线通信中的应用解释无线电波的传播和传播损耗电磁波在移动通信和卫星通信中的应用4.2 电磁波在雷达技术中的应用介绍雷达技术的基本原理和组成解释雷达方程和雷达的探测距离电磁波在雷达系统和雷达导航中的应用4.3 电磁波在医疗技术中的应用介绍电磁波在医学影像诊断中的应用解释磁共振成像(MRI)的原理和应用电磁波在放射治疗和电磁热疗中的应用第五章:电磁波的防护和辐射安全5.1 电磁波的辐射和防护原理介绍电磁波的辐射对人体健康的影响解释电磁波的防护原理和防护措施电磁屏蔽和电磁兼容的概念5.2 电磁波的辐射标准和法规介绍国际和国内电磁波辐射的标准和法规解释电磁波辐射的限制和测量方法电磁波辐射管理的政策和监管措施5.3 电磁波的辐射安全和防护措施介绍电磁波辐射的安全距离和防护措施解释电磁波辐射的个人防护和公共场所的防护措施电磁波辐射的环保意识和公众宣传的重要性第六章:电磁波在电力系统中的应用6.1 电磁波在电力传输中的应用介绍高压输电线路中的电磁干扰问题解释输电线路的屏蔽和接地措施电磁波在特高压输电技术中的应用6.2 电磁波在电力系统监测与控制中的应用介绍电力系统中的电磁场监测和测量技术解释电磁波在电力系统状态监测和故障诊断中的应用电磁波在智能电网和分布式发电系统中的应用6.3 电磁波在电力设备中的影响及防护分析电磁波对电力设备的干扰和影响解释电磁兼容性设计在电力设备中的应用电磁波防护措施在电力设备中的实施方法第七章:电磁波在交通领域的应用7.1 电磁波在铁路交通中的应用介绍铁路信号系统和电磁波在信号传输中的应用解释铁路通信和列车无线通信系统中电磁波的应用电磁波在铁路自动控制系统中的应用7.2 电磁波在汽车交通中的应用介绍汽车电子设备和电磁波的应用解释车载通信系统和电磁波在车辆导航中的应用电磁波在智能交通系统中的应用7.3 电磁波在航空和航天领域的应用介绍电磁波在航空通信和导航中的应用解释电磁波在卫星通信和航天器通信中的应用电磁波在航空航天器中的其他应用,如雷达和遥感技术第八章:电磁波在工科领域的应用8.1 电磁波在电子工程中的应用介绍电磁波在无线电发射和接收中的应用解释电磁波在微波器件和天线技术中的应用电磁波在射频识别(RFID)技术中的应用8.2 电磁波在光电子学中的应用介绍电磁波在光纤通信中的应用解释电磁波在激光器和光电器件中的应用电磁波在光电探测和成像技术中的应用8.3 电磁波在生物医学领域的应用介绍电磁波在医学诊断和治疗中的应用解释电磁波在磁共振成像(MRI)和微波热疗中的应用电磁波在其他生物医学技术中的应用,如电疗和电磁屏蔽第九章:电磁波的环境影响和政策法规9.1 电磁波的环境影响分析电磁波对环境和生物的影响,如电磁辐射污染解释电磁波的环境监测和评估方法电磁波环境保护措施和可持续发展策略9.2 电磁波的政策法规介绍国际和国内关于电磁波辐射的政策法规解释电磁波辐射的标准和限制条件电磁波辐射管理的政策和监管措施9.3 电磁波的公众宣传和教育分析电磁波辐射的公众认知和误解解释电磁波辐射的安全性和健康影响电磁波辐射的公众宣传和教育方法第十章:电磁波的未来发展趋势10.1 新型电磁波技术和材料的研究介绍新型电磁波发射和接收技术的研究解释新型电磁波传输材料和超材料的研究进展电磁波技术在未来的应用前景10.2 电磁波在新型能源领域的应用介绍电磁波在太阳能和风能等新型能源领域的应用解释电磁波在智能电网和能源互联网中的应用电磁波在未来能源系统中的作用和挑战10.3 电磁波与物联网和大数据的结合分析电磁波在物联网通信中的应用解释电磁波在大数据传输和处理中的作用电磁波在未来物联网和大数据技术中的挑战和发展趋势重点和难点解析一、电磁场的基本概念:理解电荷、电场、磁场和磁力的基本性质,以及电磁感应的原理。
《电磁场与电磁波》习题参考答案
况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。
丁君版工程电磁场与电磁波答案 第二章 电磁学基本理论.
2π 0
dθ
1 0
ρS • r • 4πε0 r2 +1
1 dr r2 +1
∫ ∫ = 2π dθ 1 5r ×10-9 • r • 1 dr
0
0 4πε0 r2 +1 r2 +1
∫ = ρS 1
r2
dr
2ε0 0 (r2 +1) r2 +1
= ρS (ln(1+ 2ε 0
2
)
−
1 2
)az
=90π
a 2
⎞ ⎟⎠
r2( t ) =
d
2
+
⎛ ⎜⎝
a 2
⎞2 ⎟⎠
+
2
cos(
ωt
)⋅
d
⋅
⎛ ⎜⎝
a 2
⎞ ⎟⎠
∴
ψ
=
b 2π
μ0 I
ln
r2 (t) r1 (t )
(2) 求 εin
ε in
= − ∂ψ ∂t
= − bμ0I 2π
1 ( r2
dr2 (t) − 1 dt r1
dr1 (t ) ) dt
10z ⋅ dz (4 − z)2
az
∫ + 10−9
4πε 0
0 −2
−10 (4 −
zdz z)2
az
=
10−8 4πε 0
(− ln 2 +1− ln
2 3
−
1 )
3
⋅
az
=
5 ×10−9 2πε 0
(ln
3 4
+
2 3
)
⋅
az
=
《电磁场与电磁波》复习纲要(含答案)
S
第二类边值问题(纽曼问题) 已知场域边界面上的位函数的法向导数值,即 第三类边值问题(混合边值问题) 知位函数的法向导数值,即
|S f 2 ( S ) n
已知场域一部分边界面上的位函数值,而其余边界面上则已
|S1 f1 ( S1 )、 | f (S ) S 2 2 n 2
线处有无限长的线电流 I,圆柱外是空气(µ0 ),试求圆柱内 外的 B 、 H 和 M 的分布。 解:应用安培环路定理,得 H C dl 2 H I I H e 0 磁场强度 2π I e 0 a 2 π 磁感应强度 B I e 0 a 2 π 0 I B e 2π M H 磁化强度 0 0 0
C
F dl F dS
S
5、无旋场和无散场概念。 旋度表示场中各点的场量与旋涡源的关系。 矢量场所在空间里的场量的旋度处处等于零,称该场为无旋场(或保守场) 散度表示场中各点的场量与通量源的关系。 矢量场所在空间里的场量的散度处处等于零,称该场为无散场(或管形场) 。 6、理解格林定理和亥姆霍兹定理的物理意义 格林定理反映了两种标量场 (区域 V 中的场与边界 S 上的场之间的关系) 之间满足的关系。 因此,如果已知其中一种场的分布,即可利用格林定理求解另一种场的分布 在无界空间,矢量场由其散度及旋度唯一确定 在有界空间,矢量场由其散度、旋度及其边界条件唯一确定。 第二章 电磁现象的普遍规律 1、 电流连续性方程的微分形式。
D H J t B E t B 0 D
D ) dS C H dl S ( J t B E dl dS S t C SB dS 0 D dS ρdV V S
电磁场的源与边界条件
根据安培环路定理可得恒定磁场的磁感应强度 B 的旋度为
当有磁介质存在时,上式变为
B 0J B 0 (J JM )
式中 J 为传导电流密度, J M 为磁化电流密度。
(3)磁感应强度 B 的边界条件 将积分形式的麦克斯韦第三方程应用于如图 4 所示的圆
柱,易得
en (B1 B2 ) 0 上式表明磁感强度的法向分量是连续的。
球的极限当带电体的尺寸相对于观察点至带电体的距离可以忽略时,就可以认为电荷分布于
带电体中心上,即将带电体抽象为一个几何点。点电荷的电荷密度分布可以用数学上的 (r )
来描述。
二、 电流及电流分布
电荷做定向运动形成电流,通常以电流强度来描述其大小。在电磁理论研究中,常用到 体电流模型,面电流模型和线电流模型。 1、 体电流
移矢量的切向分量是不连续的(两种介质的 通常不等)。
3、磁感应强度 B 的散度、旋度和边界条件
(1)磁感应强度 B 的散度 根据磁通连续性原理的微分形式可知恒定磁场为无散场,故 B0
磁通连续性原理表明自然界无孤立的磁荷存在。上式即为麦克斯韦第二方程的微分形式。 (2)磁感应强度 B 的旋度
即
故有
(P1 P2 ) enS SPS
en (P1 P2 ) SP 上式表明极化强度的法向分量是不连续的。一般情况下,其切向分量也不连续。
7、磁化强度 M 的散度、旋度和边界条件
7/9
电磁场与电磁波
第二章 电磁场的基本规律
学习报告
(1)磁化强度 M 的散度
对于各向同性和线性磁介质, M m H ,由于 H 的散度为零,故
自然界中存在两种电荷:正电荷和负电荷。带电体上所带的电荷是以离散的方式分布的, 任何带电体的电荷量都是基元电荷的整数倍,但在研究宏观电磁现象时,人们关注的是大量 微观带电粒子的整体效应,因此可以认为电荷是以一定形式连续分布的,并用电荷密度来描 述电荷的分布。 1、 电荷体密度
电磁场与电磁波理论基础 第二章 课后答案
u=0
∂u 1 ∂u ∂u E = −∇u = − e ρ + eϕ + e z ρ ∂ϕ ∂z ∂ρ
得到 题 2-9 图
E = −∇u = 0, ρ ≤ a
a2 a2 E = − A 1 + 2 cos ϕ e ρ + A 1 − 2 sin ϕ eϕ , ρ ≥ a ρ ρ
代入得到
2 2
r1
-2 q
Y
S1 (-a, 0 , 0)
X
S 2 (a, 0, 0)
题 2-7 图
u (r ) =
q 4πε 0
1
( x + a)
2
+ y2 + z2
−
2 2 2 ( x − a) + y + z 2
电位为零,即令
q u (r ) = 4πε 0
∂u2 =0 ∂x
代入,得到
ρ S下 = −ε 0
∂u1 ∂x
=
x =0
ρd ρd ε U ε U x2 − 0 0 + 0 = − 0 0 + 0 2d 6 x =0 6 d d
ρ0
对于上极板,导体中的电位为常数
u1 = U 0
有
∂u1 =0 ∂x
上极板下表面电荷密度为
l
场分布具有柱对称性,电通密度矢量 D 仅有 e ρ 分量,由 高斯定理 题 2-15 图
D ⋅ dS = ρ
(S ) (V )
V
dV
取圆柱面为高斯面,有
2π
Dρ ρ ldϕ = 20 ρ e
0 0 0
电磁场与电磁波理论基础第二章作业题解答
利用非零边界条件,有
该式就是奇周期函数的傅里叶级数展开式,所以需要把U在(-b,b)进行奇周期延拓,即取 为奇函数,然后求傅立叶级数的系数,有
则Bm为
将Bm代入,得到边值问题的解为
或
(2)当 时,有
比较两边系数,得到
因此,电位分布为
2-28.两平行的无限大导体平面,其间距离为b,在两板间沿X方向有一无限长的极薄的导体片,其坐标由y=d到y=b,如图所示。上板和薄片保持电位为U0,下板为零电位,求板间的电位分布。设在薄片平面上,从y=0到y=d电位线性变化,即 。
解由于平板沿X方向无穷大,且 与 两区域对称,因此两区域间的电位分布相同,仅需求解 区域的电位分布。
为了求解电位分布,应用电位叠加原理,把电位分布看作是由如题2-28图(a)和(b)两个电位分布的叠加。对于题2-28(a)两平行板之间的电位,有
对于题2-28图(b)所示的两板间的电位分布,首先列出边界条件为
根据电场强度与电位的关系式,有
(2)根据电通密度矢量的边界条件,得到感应电荷分布密度为
在导体表面上z=0,R1=R2,令R=R1=R2,得到导体表面的电场强度为
因此,有
(3)点电荷+q所受的力就是点电荷+q与镜像电荷-q之间的作用力,也就等于点电荷+q与无限大导体板上感应电荷之间的作用力,方向向下,沿 方向,即
2-27.如图所示,一个沿Z轴很长且中空的矩形金属管,其中三边保持零电位,第四边电位为U,求:(1)当U=U0时,管内的电位分布;(2)当 时,管内的电位分布。
解 由于矩形金属管沿Z轴方向无限长,故金属管内电位与z无关,由此得到金属管电位分布的边值问题为
令
代入拉普拉斯方程,得到X(x)和Y(y)满足的本征方程为
电磁场理论 答案 习题2
ρ SP
=
v P
⋅
evz
=
P0
在底面,外法向为 nv = −evz ,故
ρ SP
=
v P
⋅
(−evz
)
=
− P0
2-10 假设 x < 0 的区域为空气,x > 0 的区域为电介质,电介质的介电常数为 3ε 0 ,
m 如果空气中的电场强度
v E1
=
3evx
+
4evy
+
5evz
(V / m) ,求电介质中的电场强
∫∫ aw Ev(rv)
=
ρS0 4πε 0
zevz − r′ cosφ evx − r′sin φ evy r′ dφ d r′
( ) z 2 + r′2
3 2
∫ h∫ d (( ) ) Ex
=
ρS0 4πε 0
a − r′2 d r′
0
z2 + r′2
3 2
2π
cosφ dφ = 0
0
∫ k ∫ ( ) Ey
. 电位为ϕ1 ,介质中电位为ϕ2 ,利用球坐标系的泊松方程。
w 当r
>
b 时, ∇2ϕ1
=
1 r2
d dr
⎜⎛ r 2 ⎝
d ϕ1 dr
⎟⎞ ⎠
=
0
ww当a
<
r
< b 时, ∇2ϕ2
=
1 r2
d dr
⎜⎛ r 2 ⎝
dϕ2 dr
⎟⎞ ⎠
=0
解以上方程,得 ϕ1
=
C1 r
+ C2
,ϕ2
=
电磁场与电磁波-1、2、3章矢量分析与场论基础
位置矢量的微分元是
dR
它在
d 、
(
和e ) dBiblioteka (zez ) e d e d ezdz
z 增加方向的微分元分别为d 、d和dz,如
图1.6所示。与单位坐标矢量相垂直的三个面积元分别为
dS ddz
dS d dz
体积元可表示为
dSz d d
dV dddz
r 3.球坐标系
A aA A ,其中是与同方向的单位矢量,为矢量的模值。
其中 aA 是 与 A同方向的单位矢量,A为矢量A模值。 一个矢量在三个相互垂直的坐标轴上的分量已知,则
这个矢量就确定了。如在直角坐标系中,若矢量A的坐标
分量为( Ax,Ay, Az),则可表示为则 A可表示为
A ex Αx ey Αy ez Αz
矢量A和B矢量的平面,方向满足右手螺旋法则,即
当右手四指从矢量A到B旋转 角时大拇指所指的方 向,其大小为 ABsin ,即
A B en AB sin
是叉积方向的单位矢量。 在直角坐标系中,各单位坐标矢量的叉积满足如下关系
ex ey ez ,ey ez ex ,ez ex ey
ex ex ey ey ez ez 0
y
x
图1.4 直角坐标系 在直角坐标系中,以坐标原点为起点,指向M (x, y, z点) 的矢 量R称为M点的位置矢量,可表示为
R xex yey zez 位置矢量的微分元是
dR exdx e ydy ezdz
它在x、y和z增加方向的微分元分别为 dx、dy和 dz ,
而与单位坐标矢量相垂直的三个面积元分别为
【提示】A B的模就是A与B所形成的平行四边形的面 积,因此C ( A B)是平行六面体的体积。
电磁场与电磁波(电磁场理论)第二章
例2.7.6 球形电容器的内导体半径为a ,外导体内半径为b,
设内球带电荷为q ,外球壳带电荷为-q ,求两球壳间的电场和极
q q
,
2
1
即为切向分量。根据边界条件可知
但 。由高斯定理,有
q q
2
1
处:
处:
相互抵消。 在圆环的中心点上,即z = 0 磁感应强 度最大
当场点P 远离圆环,即z >> a 时
3. 利用安培环路定理计算磁感应强度
在磁场分布具有一定对称性的情况下,可以利用安培环路 定理计算磁感应强度。 例2.3.2 求电流面密度为 感应强度。 解:分析场的分布,取安培环路如图,则 的无限大电流薄板产生的磁
以上各个场矢量都应满足麦克斯韦方程,将以上得到的 H 和 D 代入式
由
例2.7.1 z < 0的区域的媒质参数为 区域的媒质参数为 强度为 媒质2中的电场强度为 (1)试确定常数A的值;(2)求磁场强度 (3)验证 和 满足边界条件。 和
, z>0 。若媒质1中的电场
;
解:(1)这是两种电介质的分界面,在分界面z = 0 处,有
例 2.6.2 在无源
电场强度矢量
的电介质
中,若已知
,式中的E0为振幅、ω为
角频率、k 为相位常数。试确定 k 与ω 之间所满足的关系,并求
出与
相应的其他场矢量。
解: 是电磁场的场矢量,应满足麦克斯韦方程组。因此,利
用麦克斯韦方程组可以确定 k 与ω 之间所满足的关系,以及与
相应的其他场矢量。
对时间 t 积分,得
的球形电介质内的极化强
,式中的 k 为常数。(1)计算极化电荷体密度 解:(1)电介质球内的极化电荷体密度为
电磁场与电磁波第四版之第二章电磁场基本规律
解:
E(r) 1 S (r)R dS
4π0 S R3
dE z
场点:P(0, 0, z)
R r r r ez z
dS ' 'd 'd '
源点:
r e
E(r ) S
4π 0
b a
2π 0
ez z e (z2 2 )3/2
d d
r dS ' 'd 'd ' P(0,0,z) R
电 荷密度为 0 。
解:(1)球外某点的场强
S
E dS
q
0
1
0
4 3
π a30
E
0a3 3 0r 2
(r≥a)
(2)求球体内一点的场强
E dS
1
S
0
V 0dV
4
r2E
1
0
4π
q a3
4 πr3 33
E 0r
2021/3/9
3 0
(r < a)
0
r
r
a
E
a
r
电磁场理论
第 2 章 电磁场的基本规律
流过体积内任意曲面S 的电流为
2021/3/9
i S J dS
体电流与体电 荷的关系?
电磁场理论
第 2 章 电磁场的基本规律
2. 面电流
i di
JS
et
lim l0 l
et
dl
en et
12
JS
正电荷运动的方向
单位:A/m (安/米) 。
l
dh0 0
面电流密度矢量
通过面上任意横截线的电流为
z S q
电磁场与电磁波 第2章静电场
如果是一个闭合路径,则W=0 电场强度的环路线积分恒为零,即
应用斯托克斯定理
因此,静电场的电场强度 可以用一个标量函数 的梯度来表示,即定义
单位正实验电荷在电场中移动电场力做功
两点间的电位差定义为两点间的电压U,即
单位:V
电位函数不唯一确定,取
故可选空间某点Q作为电位参考点,空间任一点P的电位为 通常选取无限远作为电位参考点,则任一P点的电位为
在交界面上不存在 时,E、D满足折射定律。
D 1 n D 2 n 1 E 1 c1 o 2 E s 2 c2 os
E 1 t E 2 t E 1 si1 n E 2 si2n
图2.3.3 分界面上E线的折射
t电位函数 表示分界面上的衔接条件
Ax Ay Az
对应静电场的基本方程 E 0 ,矢量 A 可以表示一个静电场。
能否根据矢量场的散度来判断该矢量场是否是静电场?
2.3.2 分界面上的边界条件
1、 电位移矢量D的衔接条件 以分界面上点P作为观察点,作一
小扁圆柱高斯面( L 0)。
图2.3.1 在电介质分界面上应用高斯定律
根据 DdSq
V ' P d ' V S 'P e n d ' S 0
• 在均匀极化的电介质内,极化电荷体密度 p 0。
• 有电介质存在的场域中,任一点的电位及电场强度表示为
(r) 4 1 0 V '( r f r 'p )d' V S '( r f r 'p )d' S E (r ) 4 1 0 V '( f r p r )'3 r( r ')d' V S '( f r p r ) '3 r( r ')d' S
《电磁场与电磁波》习题参考答案
《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。
2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。
3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。
4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。
( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。
( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。
( √ )7、梯度的方向是等值面的切线方向。
(× )8、标量场梯度的旋度恒等于0。
( √ ) 9、习题1.12, 1.16。
第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。
2、在国际单位制中,电场强度的单位是V/m(伏特/米)。
3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。
4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。
5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。
6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。
7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。
8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当场点P 远离圆环,即z >> a 时
3. 利用安培环路定理计算磁感应强度
在磁场分布具有一定对称性的情况下,可以利用安培环路 定理计算磁感应强度。 例2.3.2 求电流面密度为 强度。 解:分析场的分布,取安培环路如图,则 的无限大电流薄板产生的磁感应
例 2.5.2 在时变磁场
图所示。试求:
中,放置有一个
的
矩形线圈。初始时刻,线圈平面的法向单位矢量 与
成α 角,如
(1)线圈静止时的感应电动势;
(2)线圈以角速度 ω 绕 x 轴旋转时的感应电动势。 解: (1)线圈静止时,感应电动势是由时变磁场引起,故
z
a
x
b
B
y
en
时变磁场中的矩形线圈
(2)线圈绕 x 轴旋转时, 的指向将随时间变化。线圈内的 感应电动势可以用两种方法计算。 方法一:利用式 假定 故 时 计算 ,则在时刻 t 时, 与y 轴的夹角 ,
位移电流密度的振幅值为
而传导电流密度的振幅值为
通常所说的无线电频率是指 f = 300 MHz以下的频率范围,即使 扩展到极高频段(f = 30~300 GHz),从上面的关系式看出比
值 Jdm/Jm 也是很小的,故可忽略铜中的位移电流。
例 2.6.1 正弦交流电压源
连接到平行板电容器的两个
极板上,如图所示。( 1 ) 证明电容器两极板间的位移电流与连接 导线中的传导电流相等;( 2 )求导线附近距离连接导线为r 处的磁 场强度。 解:( 1 ) 导线中的传导电流为
y
C
根据对称性,有
,故
B1
B2
O
x
例2.3.3
求载流无限长同轴电缆产生的磁感应强度。
解 选用圆柱坐标系,则 取安培环路 ,交链的电流为
I
a
b
I
由安培环路定理,得
c
由安培环路定理,得
I
a
b
由安培环路定理,得
0 I 2 πa 0 I 2 πb
O
I
c
a
b c
例2.4.1 半径为a 、介电常数为 的球形电介质内的极化强 度为 ,式中的 k 为常数。(1)计算极化电荷体密度 和面密度;(2)计算电介质球内自由电荷体密度。 解:(1)电介质球内的极化电荷体密度为
u
ic
r
P C
忽略边缘效应时,间距为d 的两平行板 之间的电场为E = u / d ,则
方法二: 利用式 上式右端第二项与( 1 )相同,第一项
z a 2 y
B
计算。
1
x
b
3
4
en
时变磁场中的矩形线圈
例 2.5.3 海水的电导率为4 S/m ,相对介电常数为 81 ,求频 率为1 MHz 时,位移电流振幅与传导电流振幅的比值 .(设电场随时间作正弦变化) 解:设电场随时间作正弦变化,表示为
圆筒形磁介质
在
的区域,得
磁介质的磁化强度
在磁介质圆筒内表面上
在磁介质圆筒外表面上
例 2.5.1 长为 a、宽为 b 的矩形环中有均匀磁场 B 垂直穿过,
如图所示。在以下三种情况下,求矩形环内的感应电动势。 (1) ,矩形回路静止; (2) 导体L以匀速 (3) 上的可滑动导体L以匀速 由磁场变化产生的,故 ,矩形回路的宽边b = 常数,但其长边因可滑动 运动而随时间增大; ,且矩形回路 运动。
度。
例 2.2.1 计算均匀带电的环形薄圆盘轴线上任意点的电场强 解:如图所示,环形薄圆盘的内半径为a 、外半径为b,电荷
面密度为
。在环形薄圆盘上取面积元
,其位置矢量为 , 。
dE z
r b a P(0,0,z) R
所带的电量为
而薄圆盘轴线上的场点
矢量为 ,因此有
的位置
x
dS
y
均匀带电的环形薄圆盘
由于
dE z
r b P(0,0,z) R
a
x 故
dS
y
均匀带电的环形薄圆盘
例2.2.2 求真空中均匀带电球体的场强分布。已知球体半径
为a ,电 荷密度为 0 。 解:(1)球外某点的场强 由
(r≥a)
r
0
a
r
(2)求球体内一点的场强 由 E
a (r < a)
r
例 2.3.1 计算线电流圆环轴线上任一点的磁感应强度。 解:设圆环的半径为a,流过的电流为I。为计算方便取线电 流圆环位于xoy 平面上,则所求场点为P (0, 0, z ) , 如图 所示。采
则位移电流密度为 其振幅值为 传导电流的振幅值为 故
例 2.5.4 自由空间的磁场强度为
式中的 k 为常数。试求:位移电流密度和电场强度。 解 自由空间的传导电流密度为0,故由式 ,得
例 2.5.5 铜的电导率
设铜中的传导电流介电常数
。
。试证明:在无线
电频率范围内,铜中的位移电流与传导电流相比是可以忽略的。 解:铜中存在时变电磁场时,位移电流密度为
处的极化电荷面密度为 (2)因 ,故
故电介质球内的自由电荷体密度
例2.4.2 有一磁导率为 µ ,半径为a 的无限长导磁圆柱,其轴线处有无限长 的线电流 I,圆柱外是空气(µ 0 ),试 求圆柱内外的 、 和 的分布。 解 磁场为平行平面场,且具有轴对称性, 应用安培环路定理,得
I
a
0
C
例 2.4.3 半径的 a 球形磁介质的磁化强度 如图所示。式中的A、B为常数,求磁化电流密度。 解:磁化电流体密度为
z
,
M
O
er
a
e
在
处的磁化电流面密度为
球形磁介质 的磁化强度
例2.4.4 内、外半径分别为a和b的圆筒形
磁介质中,沿轴向有电流密度为
为
的
z b a
传导电流,如图所示。设磁介质的磁导率 ,求磁化电流分布。 解: 利用安培环路定理求各个区域内 在 在 的区域,得 的区域,得
J
由传导电流 J 产生的磁场分布。
用圆柱坐标系,圆环上的电流元为
,而场点 P 的位置矢量为
, 其位置矢量为
,故得
P
r
z
R
y 轴线上任一点P ( 0, 0, z )的磁感应强度为
x
a o r Idl
载流圆环
由于
线电流圆环轴线上的磁感应强度只有轴向分量,这是因为圆环
上各对称点处的电流元在场点 P 产生的磁感应强度的径向分量
o
y a
解:( 1 ) 回路内的感应电动势是
B
x
L
v
b x
均匀磁场中的矩形环
( 2 ) 均匀磁场 B 为恒定磁场,而回路上的可滑动导体以匀速 运动,因而回路内的感应电动势全部是由导体 L 在磁场中运动产 生的,故得 或 ( 3 ) 矩形回路中的感应电动势是由磁场变化以及可滑动导体 L 在磁场中运动产生的,故得