鲁教版七年级(下)数学测试题
强化训练鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组同步测评试卷(含答案详解)

七年级数学下册第十一章一元一次不等式与不等式组同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、已知a b <,则下列各式中,不一定成立的是( )A .33a b <B .33a b ->-C .a b a b +>-D .31a b -<-2、下列不是不等式5x -3<6的一个解的是( )A .1B .2C .-1D .-23、若不等式组3x a x >⎧⎨≥-⎩的解集为x a >,则下列各式正确的是( ) A .3a < B .3a ≤ C .a >-3 D .3a ≥-4、在 ① 1x y +=;② x y >;③ 2x y +;④ 21x y -≥;⑤ 0x < 中,属于不等式的有 ()A .1 个B .2 个C .3 个D .4 个 5、下列说法正确的是( )A .x =3是2x +1>5的解B .x =3是2x +1>5的唯一解C .x =3不是2x +1>5的解D .x =3是2x +1>5的解集6、若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ≥D .3a ≤7、已知三角形的两边长为2,4,则第三边长应为( )A .6B .5C .2D .18、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能 9、下列命题中,假命题是( )A .对顶角相等B .同一平面内,过一点有且只有一条直线与已知直线垂直C .两条直线被第三条直线所截,同旁内角互补D .如果a b >,b c >,那么a c >10、如果a >b ,那么下列结论中,正确的是( )A .a ﹣1>b ﹣1B .1﹣a >1﹣bC .33a b <D .﹣2a >﹣2b第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若x y >,则35x -______35y -(填“>”或“=”或“<”).2、用数轴表示不等式的解集,应记住下面的规律:①大于向______画;小于向______画;②>,<画______圆.空心圆表示______此点3、某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为 _____盒.4、小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元钱,一盒方便面3元钱,他买了5盒方便面,他还可能买多少根火腿肠?解:设他还可能买x根火腿肠.根据题意,得:_________,解这个不等式,得:_________,所以他最多还能买_________根火腿肠.5、“a与b的2倍的和大于1”用不等式可表示为________.三、解答题(5小题,每小题10分,共计50分)1、利用不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式,并将解集在数轴上表示出来.(1)3x<5x-4;(2)23x+2≤1;2、x取什么值时,代数式123x的值是非负数.3、快递员把货物送到客户手中称为送件,帮客户寄出货物称为揽件.快递员的提成取决于送件数和揽件数.某快递公司快递员小李若平均每天的送件数和揽件数分别为80件和20件,则他平均每天的提成是160元;若平均每天的送件数和揽件数分别为120件和25件,则他平均每天的提成是230元(1)求快递员小李平均每送一件和平均每揽一件的提成各是多少元;(2)已知快递员小李一周内平均每天的送件数和揽件数共计200件,且揽件数不大于送件数的14.如果他平均每天的提成不低于318,求他平均每天的送件数.4、渔场计划购买甲、乙两种鱼苗共4000尾,甲种鱼苗每尾0.6元,乙种鱼苗每尾0.8元.(1)若购买这批鱼苗共用了2900元,甲乙两种鱼苗分别购买了多少尾?(2)若要使这批鱼苗的费用不超过3000元,那么应至少购买多少尾甲种鱼苗?5、解不等式组{x −12>−13(x −1)<x +1,并写出不等式组的整数解-参考答案-一、单选题1、C【解析】【分析】根据不等式的性质进行解答.【详解】解:A 、在不等式的两边同时乘以3,不等式仍成立,即33a b <,故本选项不符合题意.B 、在不等式的两边同时乘以13-,不等号方向改变,即33a b ->-,故本选项不符合题意. C 、a b <,则a b a b +>-不一定成立,如当2a =-,1b =-时,a b a b +<-,故本选项符合题意.D 、在不等式的两边同时减去1,不等式仍成立,即11a b -<-,所以31a b -<-,故本选项不符合题意.故选:C .【点睛】此题主要考查了不等式的基本性质:(1)不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;(2)不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变;(3)不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变.2、B【解析】略3、D【解析】【分析】不等式组解集的确定方法是:同大取大,同小取小,大小小大取中间,大大小小无解.【详解】解:∵不等式组3x a x >⎧⎨≥-⎩的解为x a >, ∴3a ≥-,故选D .【点睛】本题考查了一元一次不等式组的解法,熟练掌握一元一次不等式组的解法是解答本题的关键.4、C【解析】【分析】用不等号连接而成的式子叫不等式,根据不等式的定义即可完成.【详解】①是等式;③是代数式;②④⑤是不等式;即属于不等式的有3个故选:C本题考查了不等式的概念,理解不等式的概念是关键.5、A【解析】略6、A【解析】【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.7、B【解析】【分析】根据三角形三边关系求解即可,三角形三边关系,两边之和大于第三边,三角形的两边差小于第三边.解:∵三角形的两边长为2,4,设第三边为x ,∴4242x -<<+即26x <<故选B【点睛】本题考查了三角形三边关系,掌握三角形三边关系是解题的关键.8、D【解析】【分析】设腰长为x ,则底边为162x -,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.【详解】解:设腰长为x ,则底边为162x -,162162x x x x x --<<-+,48x ∴<<,三边长均为整数, x 可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D .【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.9、C【解析】【分析】依题意,对于A 选项,结合对顶角的定理即可;对于B 选项,结合相关定理;对于C 选项,平行线定理即可;对D 选项,不等式的传递即可;【详解】A 、对顶角相等,本选项为定理,所以为真命题,不符合题意;B 、同一平面内,过一点有且只有一条直线与已知直线垂直,本选项为定理,所以是真命题,不符合题意;C 、依据平行线定理,只有平行的两条直线被第三条直线所截,同旁内角互补,故本选项说法不正确,是假命题,符合题意;D 、如果a b >,b c >,那么a c >,本选项为定理,所以是真命题,不符合题意;故选:C .【点睛】本题主要考查对顶角、平行线定理、不等式定理等,关键在熟练理解和掌握相关命题及定理;10、A【解析】【分析】直接利用不等式的基本性质判断即可得出答案.【详解】解:A 、a >b 两边都减去1得a ﹣1>b ﹣1,故本选项正确;B 、a >b 两边都乘以﹣1再加1得1﹣a <1﹣b ,故本选项错误;C 、a >b 两边都乘以13得,33a b >,故本选项错误; D 、a >b 两边都乘以﹣2得,﹣2a <﹣2b ,故本选项错误.故选:A .【点睛】本题主要考查不等式的性质,掌握不等式的性质是解题的关键.二、填空题1、<【解析】【分析】根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.【详解】解:∵x y >,∴55x y -<-,∴3535x y -<-,故答案为:<.【点睛】题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.2、 右 左 空心 不含【解析】略3、2020或2050或2000或1950或1900或1850或1800或1750或1700【解析】【分析】设A ,B ,C 三类疫苗每件的盒数分别为,,a b c 盒,得出甲乙接种点配备A 类、B 类、C 类疫苗的盒数,根据甲接种点和乙接种点配备疫苗的总盒数相同,列出方程,列一元一次不等式,进而解二元一次方程,求整数解即可.【详解】解:设A ,B ,C 三类疫苗每件的盒数分别为,,a b c 盒,则甲接种点配备A 类、B 类、C 类疫苗的盒数分别为103040a b c ,,盒,乙接种点配备A 类、B 类、C 类疫苗的盒数分别为203020a b c ,,,则 103040a b c ++=203020a b c ++即2a c =①三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C 与B 两类疫苗每件盒数之差大于4盒,则9524a b c a cc b ⎧++=⎪=⎨⎪->⎩,50,50,50a b c ≤≤≤且,,a b c 都为整数 解得395c b +=953b c ∴=-50b ≤95350c ∴-≤解得15c ≥4c b ->则4c b ->或4b c ->即4b c <-或4b c >+9534c c ∴-<-或9534c c ->+解得3224c <或3244c > ,,a b c 皆为整数,若25c =,则250a c ==,符合题意315224c ∴≤<或25c = c 为整数,则22,21,20,19,18,17,161525c =,,25c =时,50a =,953957520b c =-=-=,882520220c b +=⨯+=22c =时,44a =,953956629b c =-=-=,882229205c b +=⨯+=21c =时,42a =,953956332b c =-=-=,882132200c b +=⨯+=20c =时,40a =,953956035b c =-=-=,882035195c b +=⨯+=19c =时,38a =,953955738b c =-=-=,881938190c b +=⨯+=18c =时,36a =,953955441b c =-=-=,881841185c b +=⨯+==17c 时,34a =,953955144b c =-=-=,881744180c b +=⨯+=16c =时,32a =,953954847b c =-=-=,881647175c b +=⨯+=15c =时,30a =,953954850b c =-=-=,881550170c b +=⨯+=∴20104010(24)10(8)a b c a b c c b ++=++=+2200,2050=,,2000,1950,1900,1850,1800,1750,1700,故答案为:2020,2050,2000,1950,1900,1850,1800,1750,1700【点睛】本题考查了二元一次方程组,一元一次不等式组的应用,求得c 的取值范围是解题的关键.4、 2x +3×5≤26 x ≤5.5 5【解析】略5、a +2b >1【解析】【分析】a与b的2倍即为2+a b,再用不等号连接即得答案.【详解】解:由题意得:“a与b的2倍的和大于1”用不等式表示为21a b+>.故答案为:21a b+>.【点睛】本题考查了根据不等关系列出不等式,属于应知应会题型,正确理解题意是关键.三、解答题1、 (1)x>2;在数轴表示见解析(2)x≤-32;在数轴表示见解析【解析】【分析】(1)两边都减去5x再除以-2求出解集,利用数轴上数的大小关系表示出解集;(2)两边同时减去2再乘以32求出解集,利用数轴上数的大小关系表示出解集.(1)(1)两边都减去5x得:-2x<-4,同时除以-2得x>2,数轴上表示为.(2)(2)两边同时减去2得:23x ≤-1,两边同时乘以32得:x ≤-32,在数轴上表示为 .【点睛】此题考查了解一元一次不等式,在数轴上表示不等式的解集,解题的关键是正确掌握不等式的性质求解.2、12x 【解析】 【分析】先列不等式得:1203x -,去分母得:120x -≥,移项得:21x -≥-,解得:12x 即可. 【详解】解:列不等式得:1203x -, 去分母得:120x -≥,移项得:21x -≥-,解得:12x . 答:当12x ≤时,代数式123x -的值是非负数. 【点评】本题考查了不等式的解法,掌握不等式的解法与过程,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.3、 (1)快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元(2)他平均每天的送件数是160件或161件或162件或163件或164件【解析】【分析】(1)设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,列二元一次方程求解;(2)设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,列不等式组求解.(1)解:设快递员小李平均每送一件的提成是x 元,平均每揽一件的提成是y 元,根据题意得: 802016012025230x y x y +=⎧⎨+=⎩, 解得 1.52x y =⎧⎨=⎩, 答:快递员小李平均每送一件和平均每揽一件的提成各是1.5元和2元;(2)解:设他平均每天的送件数是m 件,则他平均每天的揽件数是(200)m -件,根据题意得:()120041.52200318m m m m ⎧-⎪⎨⎪+-⎩, 解得160164m ,m 是正整数,m ∴的值为160,161,162,163,164,答:他平均每天的送件数是160件或161件或162件或163件或164件.【点睛】此题考查了二元一次方程组的实际应用,一元一次不等式组的实际应用,正确理解题意是解题的关键.4、 (1)甲种鱼苗购买了1500尾,乙种鱼苗购买了2500尾(2)应至少购买1000尾甲种鱼苗【解析】【分析】(1)设甲种鱼苗购买了x 尾,乙种鱼苗购买了y 尾,根据购买甲、乙两种鱼苗4000尾共用了2900元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)设购买m 尾甲种鱼苗,则购买()4000m -尾乙种鱼苗,根据总价=单价⨯数量,结合购买这批鱼苗的费用不超过3000元,即可得出关于m 的一元一次不等式,解之取其中的最小值即可得出结论.(1)设甲种鱼苗购买了x 尾,乙种鱼苗购买了y 尾,依题意得:40000.60.82900x y x y +=⎧⎨+=⎩, 解得:15002500x y =⎧⎨=⎩. 答:甲种鱼苗购买了1500尾,乙种鱼苗购买了2500尾.(2)设购买m 尾甲种鱼苗,则购买()4000m -尾乙种鱼苗,依题意得:()0.60.840003000m m +-,解得:1000m .答:应至少购买1000尾甲种鱼苗.【点睛】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.5、不等式组的解集为12x -<<,不等式组的整数解为0,1.【解析】【分析】先分别求出两个不等式的解集,再找出它们的公共部分即为不等式组的解集,然后写出它的整数解即可得.【详解】 解:()112311x x x -⎧>-⎪⎨⎪-<+⎩①②,解不等式①得:1x >-,解不等式②得:2x <,则不等式组的解集为12x -<<,不等式组的整数解为0,1.【点睛】本题考查了解一元一次不等式组,熟练掌握不等式组的解法是解题关键.。
2018-2019学年鲁教版(五四制)七年级下册数学第七章检测试题含答案

第七章 检测试题(时间:45分钟 满分:100分)一、选择题(每小题4分,共32分)1.下列方程组中,属于二元一次方程组的是( D ) (A) (B)(C)(D)解析:选项A 中有三个未知数,选项B,C 中含有未知数的项的最高次数是2,因此只有D 符合二元一次方程组的概念.故选D. 2.利用消元法解方程组下列做法正确的是( D )(A)要消去y,可以将①×5+②×2 (B)要消去x,可以将①×3+②×(-5) (C)要消去y,可以将①×5+②×3 (D)要消去x,可以将①×(-5)+②×2解析:要消去y,可以将①×3+②×5或①×(-3)-②×5, 要消去x,可以将①×5-②×2或①×(-5)+②×2, 只有选项D 正确.故选D.3.(2017博山一模)已知关于x,y 的方程x 2m-n-2+4y m+n+1=6是二元一次方程,则m,n 的值为( B )(A)m=-1,n=1 (B)m=1,n=-1 (C)m=,n=- (D)m=-,n= 解析:根据题意,得解得故选B.4.已知一个两位数的十位数字与个位数字的和是7.如果这个两位数加上45,那么恰好成为个位数字与十位数字对调后组成的两位数,则这个两位数是( C ) (A)34 (B)25 (C)16 (D)61解析:设这个两位数的十位数字为x,个位数字为y,根据题意得解得所以这个两位数是16,故选C.5.如图,以两条直线l 1,l 2的交点坐标为解的方程组是( C )(A)(B)(C) (D)解析:把l1与l2的交点坐标(2,3)代入选项中的每个方程组,只有C项合适.故选C.6.若方程组的解是则方程组的解是( A )(A) (B)(C)(D)解析:由题意可知,当x+2=a,y-1=b时,两方程组对应系数一样,其解相同,即此时有x+2=8.3,y-1=1.2,解得x=6.3,y=2.2.故选A.7.如图,周长为34 cm的长方形ABCD被分成7个相同的长方形,则长方形ABCD 的面积为( D )(A)49 cm2 (B)74 cm2(C)68 cm2 (D)70 cm2解析:设小长方形的长为x cm,宽为y cm,则解得所以长方形ABCD的面积为(5×2)×(5+2)=70 (cm2).故选D.8.为了丰富学生课外小组活动,培养学生动手操作能力,王老师让学生把5 m长的彩绳截成2 m或1 m长的彩绳,用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( C )(A)1 (B)2 (C)3 (D)4解析:设截成2 m长的彩绳x根,1 m长的彩绳y根,根据题意,得2x+y=5.显然,x,y均为非负整数,符合题意的解为因此,共有三种不同的截法.二、填空题(每小题4分,共24分)9.若关于x,y的方程mx+ny=8的两组解是和则m+n= 0 .解析:将和代入方程mx+ny=8,得解得所以m+n=0.10.方程组的解是.解析:直接把x+2y=2代入第一个方程即可先求得x的值.11.图中的□、△符号分别代表一个数字,且满足以下两个等式:□+□+△=5,□-△-△-△=6,则□代表的数字是 3 ,△代表的数字是-1 .解析:设□=x,△=y,由题意,得解得所以□代表的数字是3,△代表的数字是-1.12.方程组的解是.解析:任意两个方程相加即可求得一个未知数的值.13.二元一次方程组==x+2的解是.解析:由题意得由①+②得3x=5(x+2),解得x=-5,将x=-5代入①解得y=-1,所以14.某服装厂专门安排210名工人进行手工衬衣的缝制,每件衬衣由2个衣袖、1个衣身、1个衣领组成.如果每人每天能够缝制衣袖10个,或衣身15个,或衣领12个,那么应该安排120 名工人缝制衣袖,才能使每天缝制出的衣袖、衣身、衣领正好配套.解析:设安排x人缝制衣袖,y人缝制衣身,z人缝制衣领,则列方程组解得故应该安排120名工人缝制衣袖.三、解答题(共44分)15.(8分)解下列方程组:(1)(2)解:(1)方程①可化简为3x-2y=8.③②+③,得6x=18,所以x=3.把x=3代入②,解得y=.所以原方程组的解为(2)由题意,得3x+5(x+y)=3y+4(x+y),即y=2x.把y=2x代入第一个方程,得3x+15x=36,解得x=2.所以y=4.所以原方程组的解为16.(6分)已知关于x,y的方程组与的解相同,求a,b 的值.解:根据题意,得方程组①+②,得2x=4,解得x=2.把x=2代入①得y=-1.把代入得解得17.(7分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准.该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式.若小敏家某月交水费81元,则这个月用水量为多少立方米?解:(1)若某月用水量为18立方米,则应交水费45元.(2)设函数表达式为y=kx+b(x>18),因为直线y=kx+b过点(18,45),(28,75),所以解得所以y=3x-9(x>18).由81元>45元,得用水量超过18立方米,所以当y=81时,3x-9=81,解得x=30.答:这个月用水量为30立方米.18.(7分)在解方程组时,由于粗心,甲看错了方程组中的a,而得解为乙看错了方程组中的b,而得解为(1)甲把a看成了什么?乙把b看成了什么?(2)求出原方程组的正确解.解:(1)将x=-3,y=-1代入ax+5y=15,解得a=-,即甲把a看成了-.将x=5,y=4代入4x-by=-2,解得b=,即乙把b看成了.(2)将x=-3,y=-1代入4x-by=-2,解得b=10.将x=5,y=4代入ax+5y=15,解得a=-1.所以原方程组为解得19.(8分)如图,直线l1:y=x+1与直线l2:y=mx+n相交于点P(1,b).(1)求b的值;(2)不解关于x,y的方程组请你直接写出它的解;(3)直线l3:y=nx+m是否也经过点P?请说明理由.解:(1)因为(1,b)在直线y=x+1上,所以当x=1时,b=1+1=2.(2)(3)直线y=nx+m也经过点P.理由如下:因为点P(1,2)在直线y=mx+n上,所以m+n=2,所以2=n×1+m,这说明直线y=nx+m 也经过点P.20.(8分)(2018济南)本学期学校开展以“感受中华传统美德”为主题的研学活动,组织150名学生参观历史博物馆和民俗展览馆,每名学生只能参加其中一项馆,则能节省票款多少元.解:设参观历史博物馆的有x人,参观民俗展览馆的有y人,根据题意得解得所有人都参观历史博物馆,所需票款为10×150=1 500(元),则可省下票款为2 000-1 500=500元.答:参观历史博物馆的人数为100人,参观民俗展览馆的人数为50人;若所有人都参观历史博物馆,则可节省票款500元.附加题(共20分)21.(10分)为了学生的身体健康,学校课桌、凳的高度都是按一定的关系科学设计的.小明对学校所添置的一批课桌、凳进行观察,发现它们可以根据人的身长调求出这个关系式;(2)小明回家后,测量了家里的写字台和凳子,写字台的高度为77 cm,凳子的高度为43.5 cm,请你判断它们是否配套,说明理由.解:(1)把x=37时y=70,x=40时y=74.8,分别代入y=kx+b,得解得所以桌高y与凳高x满足的关系式为y=1.6x+10.8.(2)当x=43.5时,y=1.6×43.5+10.8=80.4≠77,所以它们不配套.22.(10分)已知某电脑公司有A型,B型,C型三种型号的电脑,其价格分别为A型每台6 000元,B型每台4 000元,C型每台2 500元,某中学计划将100 500元钱全部用于从该电脑公司购进其中两种不同型号的电脑共36台,请你设计出几种不同的购买方案供该校选择,并说明理由.解:(1)设购买A型电脑x台,B型电脑y台,根据题意,得解得显然不合题意,舍去.(2)设购买A型电脑a台,C型电脑b台,根据题意,得解得(3)设购买B型电脑m台,C型电脑n台,根据题意,得解得综上可知,共有两种方案可供选择:购买A型电脑3台,C型电脑33台,或购买B 型电脑7台,C型电脑29台.。
鲁教版数学七年级下册10.1全等三角形 习题及答案

鲁教版数学七年级下册10.1全等三角形 习题及答案一、单选题1.如图,△ABD ≌△CDB ,下面四个结论中,不正确的是( )A .△ABD 和△CDB 的面积相等 B .△ABD 和△CDB 的周长相等C .∠A +∠ABD =∠C +∠CBD D .AD ∥BC ,且AD =BC2.如图,ABC R t ∆沿直角边BC 所在的直线向右平移得到DEF ∆,下列结论中错误的是( )A.△ABC ≌△DEFB. ︒=∠90DEFC.DF AC =D.CF EC =3.如图,将矩形纸片ABCD 沿对角线BD 折叠一次,则图中全等三角形有( )A.2对B. 3对C. 4对D.5对4.如图,已知AB =DC ,AD =BC ,E ,F 是DB 上两点且BF =DE ,若∠AEB =100°,∠ADB =30°,则∠BCF =( )A .150°B .40°C .80°D .70°5.如图,∠B=∠E=90°,AB=DE ,AC=DF ,则△ABC ≌△DEF 的理由是( )A.SASB.ASAC.AASD.HL6.如图,在四边形ABCD 中,E 是BC 边的中点,连接DE 并延长,交AB 的延长线于F 点,AB =BF.添加一个条件,使四边形ABCD 是平行四边形.你认为下面四个条件中可选择的是( )A、AD=BCB、CD=BFC、∠A=∠CD、∠F=∠CDE7.如图所示,△ABD≌△CDB,下面四个结论中,不正确的是()A.△ABD和△CDB的面积相等B.△ABD和△CDB的周长相等C.∠A+∠ABD=∠C+∠CBDD.AD∥BC,且AD=BC8.如图所示,BE⊥AC于点D,且AD=CD,BD=ED,若∠ABC=54°,则∠E=()A.25°B.27°C.30°D.45°9.如图,在△ABC和△AED中,已知∠1=∠2,AC=AD,添加一个条件后,仍然不能证明△ABC≌△AED,这个条件是()A.AB=AE B.BC=ED C.∠C=∠D D.∠B=∠E10.如图,AD是△ABC的角平分线,DE⊥AB于E,已知△ABC的面积为28.AC=6,DE=4,则AB的长为()A.6 B.8 C.4 D.1011.如图,在△ABC中,点E在边AC上,D E是AB的垂直平分线,△ABC的周长为19,△BCE 的周长为12,则线段AB的长为()A .9B .8C .7D .612.如图,已知AB =AC =BD ,则∠1与∠2的关系是( )A .3∠1﹣∠2=180°B .2∠1+∠2=180°C .∠1+3∠2=180°D .∠1=2∠2二、填空题13.如图为6个边长相等的正方形的组合图形,则∠1+∠3=________ .14. 已知ABC DEF ∆∆≌,AC AB =,且ABC ∆的周长为22cm ,BC=4cm ,则DEF ∆的边=DE cm .15. 在△ABC 中,∠C=90°,BC=4cm ,∠BAC 的平分线交B C 于D ,且BD ︰DC=5︰3,则D 到AB 的距离为_____________.16.如图,已知△ABC 中,∠ABC ,∠ACB 的角平分线交于点O ,连接AO 并延长交BC 于D ,OH ⊥BC 于H ,若∠BAC =60°,OH =5 cm ,则∠BAD =_____________,点O 到AB 的距离为____________ cm.17.△ABC ≌△BAD ,A 和B ,C 和D 是对应顶点,如果AB=8cm ,BD=•6cm ,AD=5cm ,则BC=________cm .18.已知,如图,AD=AC ,BD=BC ,O 为AB 上一点,那么,图中共有 对全等三角形.三、解答题19.如图,已知∠AOB=20°.(1)若射线OC⊥OA,射线OD⊥OB,请你在图中画出所有符合要求的图形;(2)请根据(1)所画出的图形,求∠COD的度数.20.如图,AB=DC,AD=BC,DE=BF.求证:BE=DF.21. 在ABC∆中,︒=∠90ACB,BCAC=,直线MN经过点C,且MNAD⊥于D,MNBE⊥于E.(1)当直线MN绕点C旋转到图1的位置时,求证:①ADC∆≌CEB∆;②BEADDE+=;(2)当直线MN绕点C旋转到图2的位置时,(1)中的结论还成立吗?若成立,请给出证明;若不成立,说明理由.22.已知:如图,在直线MN上求作一点P,使点P到∠AOB两边的距离相等(要求写出作法,并保留作图痕迹,写出结论)ONMBA23.(8分)已知: BE ⊥CD ,BE =DE ,BC =DA ,求证:△BEC ≌△DAE24.已知:如图,AB=AC ,BD ⊥AC ,CE ⊥AB ,垂足分别为D 、E ,BD 、CE 相交于点F ,求证:BE =CD .25.如图,点C 、E 分别在直线AB 、DF 上,小华想知道∠ACE 和∠DEC 是否互补,但是他没有带量角器,只带了一副三角板,于是他想了这样一个办法:首先连结CF ,再找出CF 的中点O ,然后连结EO 并延长EO 和直线AB 相交于点B ,经过测量,他发现EO =BO ,因此他得出结论:∠ACE 和∠DEC 互补,而且他还发现BC =EF .小华的想法对吗?为什么?26.如图,已知CA =CD ,CB =CE ,∠ACB =∠DCE ,试说明△ACE ≌△DCB 的理由.27. 如图,四边形ABCD 中,E 点在AD 上,其中∠BAE =∠BCE =∠ACD =90°,且BC =CE ,求证:△ABC ≌△DEC .BDF AAC BDE F28.如图,在△ABC中,∠C=90°,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC,求证:DE⊥AB.29.如图,在△ABC和△ABD中,∠BAC=∠ABD=90°,点E为AD边上的一点,且AC=AE,连接CE交AB于点G,过点A作AF⊥AD交CE于点F.(1)求证:△AGE≌△AFC;(2)若AB=AC,求证:AD=AF+BD.30.△ABC中,AB=AC,∠A=40°,D、E分别是AB,AC上的不动点.且BD+CE=BC,点P 是BC上的一动点.(1)当PC=CE时(如图1),求∠DPE的度数;(2)若PC=BD时(如图2),求∠DPE的度数还会与(1)的结果相同吗?若相同,请写出求解过程;若不相同,请说明理由.31.已知:如图,O为△ABC的∠BAC的角平分线上一点,∠1=∠2,求证:△ABC是等腰三角形.32.如图,在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE∥AC (1)试判定△ODE的形状,并说明你的理由;(2)若BC=10,求△ODE的周长.33.如图,A、B、C三点在同一直线上,分别以AB、BC为边,在直线AC的同侧作等边△ABD 和等边△BCE,连接AE交BD于点M,连接CD交BE于点N,连接MN得△BMN.(1)求证:△ABE≌△DBC.(2)试判断△BMN的形状,并说明理由.参考答案一、单选题1-5 CDDDD 6-10 DCBBB 11-12 CA二、填空题13、 90°14. 915. 5.116. 30° 517. 518. 3三、解答题19、解:(1)如图1、如图2,OC (或OC ′)、OD (或OD ′)为所作;(2)如图1,∵OC ⊥OA ,OD ⊥OB ,∴∠BOD=∠AOC=90°,∴∠COD=360°﹣90°﹣90°﹣20°=160°,∠COD ′=∠BOC ﹣∠AOC=90°+20°﹣90°=20°,如图2,同理可得∠COD=160°,∠COD ′=20°,∴∠COD=20°或160°.(2)如图1,由于OC ⊥OA ,OD ⊥OB ,则∠BOD=∠AOC=90°,于是利用周角的定义可计算出∠COD=160°,利用∠COD ′=∠BOC ﹣∠AOC 可得到∠COD ′=20°,如图2,同理可得∠COD=160°,∠COD ′=20°.20. 解:连接BD.∵AD =BC ,AB =CD ,BD =BD ,∴△ABD ≌△CDB(SSS),∴∠ADB =∠DBC ,∴180°-∠ADB =180°-∠DBC ,∴∠BDE =∠DBF ,易证△BDE ≌△DBF(SAS),∴BE =DF21.(1)证明①︒=∠+∠90BCE ACD Θ︒=∠+∠90ACD DAC BCE DAC ∠=∠∴ 又︒=∠=∠=90,BEC ADC BC AC CEB ADC ∆∆∴≌.②CEB ADC ∆∆≌ΘCE AD BE CD ==∴,BE AD CD CE DE +=+=∴.(2)CEB ADC ∆∆≌成立,BE AD DE +=不成立,此时应有BE AD DE -=.22.作∠BOA 的平分线交MN 于P 点,就是所求做的点。
【鲁教版】七年级数学下期末试题含答案(1)

一、选择题1.下列事件为随机事件的是()A.367人中至少有2人生日相同B.打开电视,正在播广告C.没有水分,种子发芽D.如果a、b都是实数,那么+=+a b b a 2.下列说法正确的是()A.“打开电视机,正在播放《新闻联播》”是不可能事件B.“两直线被第三条直线所截,同位角相等”是必然事件C.天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨D.“篮球队员在罚球线上投篮一次,投中”为随机事件3.掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是()A.1 B.67C.12D.04.如图,在33⨯的正方形格纸中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中ABC是一个格点三角形,在这个33⨯的正方形格纸中,与ABC成轴对称的格点三角形最多有()A.3个B.4个C.5个D.6个5.如图,在矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在D′处,则重叠部分AFC的面积是()A.8 B.10 C.20 D.326.以下是某中学初二年级的学生在学习了轴对称图形之后设计的.下面这四个图形中,不是轴对称图形的是()A.B.C.D.7.已知三角形的一边长为8,则它的另两边长分别可以是()A.2,9 B.17,29 C.3,12 D.4,48.如图,△ACB≌△A′C B′,∠ACB=70°,∠ACB′=100°,则∠BCA′度数是()A.40°B.35 C.30°D.45°9.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是()A.4、5、6 B.3、4、5 C.2、3、4 D.1、2、310.李钰同学利用计算机设计了一个程序,输入和输出的数据如下表:输入…12345…输出…25101726…那么,当输入数据8时,输出的数据是()A.61 B.63 C.65 D.6711.如图,直线AB,CD被直线EF所截,与AB,CD分别交于点E,F,下列描述:①∠1和∠2互为同位角②∠3和∠4互为内错角③∠1=∠4 ④∠4+∠5=180°其中,正确的是()A.①③B.②④C.②③D.③④12.利用图形中面积的等量关系可以得到某些数学公式.根据如图能得到的数学公式是()A.(a+b)(a-b)=a2-b2B.(a-b)2=a2-2ab+b2C.a(a+b)=a2 +ab D.a(a-b)=a2-ab二、填空题13.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).14.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为____.15.如图,∠AOB = 30°,点P 是∠AOB 内任意一点,且OP = 7,点E 和点F 分别是射线OA 和射线OB 上的动点,则△PEF 周长的最小值是______.16.如图,小章利用一张左、右两边已经破损的长方形纸片ABCD 做折纸游戏,他将纸片沿EF 折叠后,D 、C 两点分别落在'D 、'C 的位置,并利用量角器量得66EFB ∠=︒,则'AED ∠等于__________度.17.如图,ACD ∠是ABC 的外角,ABC ∠的平分线与ACD ∠的平分线交于点1A ,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,…,1n A BC -∠的平分线与1n A CD -∠的平分线交于点n A ,设=A θ∠,则2=A ∠___________,=n A ∠___________.18.烧一壶水,假设冷水的水温为20℃,烧水时每分钟可使水温提高8℃,烧了x 分钟后水壶的水温为y ℃,当水开时就不再烧了.(1)y 与x 的关系式为________,其中自变量是________,它应在________变化.(2)x=1时,y=________,x=5时,y=________.(3)x=________时,y=48.19.一个锐角的补角比它的余角的3倍少40︒,这个锐角的度数是______.20.将7张如图①所示的小长方形纸片按图②的方式不重叠地放在长方形ABCD 内,未被覆盖的部分恰好被分割为两个长方形,面积分别为1S ,2S .已知小长方形纸片的宽为a,长为4a,则21=S S______(结果用含a的代数式表示).三、解答题21.(本题满分8分)“PM2.5”是指大气中危害健康的直径小于2.5微米的颗粒物,它造成的雾霾天气对人体健康的危害甚至要比沙尘暴更大.环境检测中心在京津冀、长三角、珠三角等城市群以及直辖市和省会城市进行PM2.5检测,某日随机抽取25个监测点的研究性数据,并绘制成统计表和扇形统计图如下:根据图表中提供的信息解答下列问题:(1)统计表中的a= _ ,b= _ ,c= _ ;(2)在扇形统计图中,A类所对应的圆心角是 _ 度;(3)我国PM2.5安全值的标准采用世卫组织(WHO)设定的最宽限值:日平均浓度小于75微克/立方米.请你估计当日环保监测中心在检测100个城市中,PM2.5日平均浓度值符合安全值的城市约有多少个?22.如图,在网格中,每个小正方形的边长都为1,网格中有两个格点A、B和直线l,且AB长为3.6.(1)求作点A 关于直线l 的对称点1A .(2)P 为直线l 上一动点,在图中标出使AP BP +的值最小的P 点,且求出AP BP +的最小值?(3)求ABP ∆周长的最小值?23.如图,,AD BF 相交于点,//,O AB DF AB DF =,点E 与点C 在BF 上,且BE CF =.(1)求证:ABC DFE ∆≅∆;(2)求证:点О为BF 的中点.24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm 1 2 3 4 5 6 7 8 9 ()2y cm (3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.如图,在线段MN 上求作一点P ,使∠APM =∠BPM ,(保留作图痕迹,不必写出作法与证明).26.阅读下面材料,完成任务.多项式除以多项式可以类比于多位数的除法进行计算,先把多项式按照某个字母的降幂进行排列,缺少的项可以看做系数为零,然后类比多位数的除法利用竖式进行计算.∴26445123215÷= ∴()()32223133x x x x x +-÷-=++ 请用以上方法解决下列问题:(计算过程要有竖式)(1)计算:()()3223102x x x x +--÷- (2)若关于x 的多项式43225x x ax b +++能被二项式2x +整除,且a ,b 均为自然数,求满足以上条件的a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】根据事件发生的可能性大小判断相应事件的类型即可.【详解】A. 367人中至少有2人生日相同 ,是必然事件,故A 不符合题意;B. 打开电视,正在播广告,是随机事件,故B 符合题意;C. 没有水分,种子发芽, 是不可能事件,故C 不符合题意;D. 如果a 、b 都是实数,那么+=+a b b a ,是必然事件,故D 不符合题意. 故选B.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.D解析:D【解析】【分析】根据必然事件、不可能事件、随机事件的概念以及概率定义分别进行分析,即可得出答案.【详解】A、打开电视机,正在播放《新闻联播》,这个事件可能发生,也可能不发生,是不确定事件,故本选项错误;B、两直线被第三条直线所截,同位角相等是不确定事件,故本选项错误;C、天气预报说“明天的降水概率为40%只是反映了事件发生的机会的大小,不是发生的时长,故本项错误;D、“篮球队员在罚球线上投篮一次,投中”为随机事件,故本选项正确.故选D.【点睛】本题考查了随机事件、全面调查与抽样调查、概率定义,解题关键是根据事件包括必然事件和不可能事件以及概率定义进行分析.3.C解析:C【解析】【分析】根据大量重复试验事件发生的频率接近事件发生的可能性的大小(概率),时间确定了则概率是不变的,而频率是改变的,根据此特点可得答案.【详解】解:掷一枚质地均匀的硬币,前6次都是正面朝上,则掷第7次时正面朝上的概率是1 2 .故选C.【点睛】本题考查概率,大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).4.D解析:D【分析】根据网格结构分别确定出不同的对称轴,然后作出成轴对称的三角形即可得解.【详解】解:与ABC成轴对称的格点三角形最多有6个.故答案为:D.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.5.B解析:B【分析】解决此类问题,应结合题意,最好实际操作图形的折叠,易于找到图形间的关系.【详解】解:重叠部分△AFC的面积是矩形ABCD的面积减去△FBC与△AFD’的面积再除以2,矩形的面积是32,∵AB∥CD,∴∠ACD=∠CAB,∵△ACD′由△ACD翻折而成,∴∠ACD=∠ACD′,∴∠ACD′=∠CAB,∴AF=CF,∵BF=AB﹣AF=8﹣AF,∴CF2=BF2+BC2∴AF2=(8﹣AF)2+42∴AF=5,BF=3∴S△AFC=S△ABC﹣S△BFC=10.故选:B.【点睛】本题通过折叠变换考查学生的逻辑思维能力,解题关键是熟练掌握图形折叠的性质.6.C解析:C【分析】根据轴对称图形的概念判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形.故选:C.【点睛】本题考查的是轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.A解析:A【分析】根据三角形三边关系判断即可;【详解】9211+=>8,927-=<8,故A正确;-=>8,故B错误;+=>8,291712172946-=>8,故C错误;12315+=>8,1239+=,故D错误;448故答案选A.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.8.A解析:A【分析】根据已知ACB≌A′CB′,得到∠A′CB′=∠ACB=70︒,再通过∠ACB′=100︒,继而利用角的和差求得∠BCB′=30︒,进而利用∠BCA′=∠A′CB′-∠BCB′得到结论.【详解】解:∵ACB≌A′CB′,∴∠A′CB′=∠ACB=70︒,∵∠ACB′=100︒,∴∠BCB′=∠ACB′-∠ACB=30︒,∴∠BCA′=∠A′CB′-∠BCB′=40︒,故选:A.【点睛】本题考查了全等三角形的性质,熟练掌握全等三角形的性质是解题的关键.9.D解析:D【分析】根据三角形三边关系定理:三角形两边之和大于第三边进行分析即可.【详解】D、4+5>6,能组成三角形,故此选项错误;B、3+4>5,能组成三角形,故此选项错误;A、2+3>4,能组成三角形,故此选项错误;D、1+2=3,不能组成三角形,故此选项正确;故选:D.【点睛】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.10.C解析:C【分析】观察表格发现,输入的数字是几,输出数就是输入数的平方加1+由此求解.【详解】输入8,输出数就是82+1=64+1=65;故选C.【点睛】解决本题关键是找出输入数据与输出的数据之间的关系,再由此进行求解.11.C解析:C【分析】根据同位角,内错角,同旁内角的定义判断即可.【详解】①∠1和∠2互为邻补角,故错误;②∠3和∠4互为内错角,故正确;③∠1=∠4,故正确;④∵AB不平行于CD,∴∠4+∠5≠180°故错误,故选:C.【点睛】本题考查了同位角,内错角,同旁内角的定义,熟记定义是解题的关键.12.B解析:B【分析】根据图形得出阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,即可得出选项.【详解】解:从图中可知:阴影部分的面积是(a-b)2和b2,剩余的矩形面积是(a-b)b和(a-b)b,即大阴影部分的面积是(a-b)2,∴(a-b)2=a2-2ab+b2,故选:B.【点睛】本题考查了完全平方公式的应用,主要考查学生的阅读能力和转化能力,题目比较好,有一定的难度.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.随机【解析】【分析】根据必然事件不可能事件随机事件的概念必然事件指在一定条件下一定发生的事件可能事件是指在一定条件下一定不发生的事件不确定事件即随机事件是指在一定条件下可能发生也可能不发生的事件即可解析:随机【解析】【分析】根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【点睛】此题考查随机事件,难度不大14.【分析】可运用相似三角形的性质求出GFMN从而求出OFOM进而可求出阴影部分的面积【详解】解:如图∵GF∥HC∴△AGF∽△AHC∴∴同理MN=则有OM=故答案为:【点睛】本题主要考查了相似三角形的解析:1112【分析】可运用相似三角形的性质求出GF 、MN ,从而求出OF 、OM ,进而可求出阴影部分的面积. 【详解】 解:如图,∵GF ∥HC ,∴△AGF ∽△AHC ,∴1,2GF AG HC AH ⋅== ∴13,22GF HC == 312.22OF OG GF =-=-= 同理MN=23,则有OM=13 1111,22312OFM S ∆=⨯⨯= 1111.1212S =-=阴影 故答案为:1112 【点睛】本题主要考查了相似三角形的判定与性质、三角形的面积公式,求得△OFM 的面积是解决本题的关键.15.7【分析】设点P 关于OA 的对称点为C 关于OB 的对称点为D 当点EF 在CD 上时△PEF 的周长最小【详解】分别作点P 关于OAOB 的对称点CD 连接CD 分别交OAOB 于点EF 连接OPOCODPEPF ∵点P 关于解析:7【分析】设点P 关于OA 的对称点为C ,关于OB 的对称点为D ,当点E 、F 在CD 上时,△PEF 的周长最小.【详解】分别作点P关于OA、OB的对称点C、D,连接CD,分别交OA、OB于点E、F,连接OP、OC、OD、PE、PF.∵点P关于OA的对称点为C,关于OB的对称点为D,∴PE=CE,OP=OC,∠COA=∠POA;∵点P关于OB的对称点为D,∴PF=DF,OP=OD,∠DOB=∠POB,∴OC=OD=OP=7,∠COD=∠COA+∠POA+∠POB+∠DOB=2∠POA+2∠POB=2∠AOB=60°,∴△COD是等边三角形,∴CD=OC=OD=7.∴△PEF的周长的最小值=PE+EF+PF=CE+EF+DF≥CD=7.故答案为7.【点睛】此题主要考查轴对称−−最短路线问题,熟知两点之间线段最短是解答此题的关键.16.48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°再由折叠的性质可得∠DEF=∠DEF=66°则∠DED=132°然后再由邻补角的定义求解即可【详解】解:∵AD∥BC∴∠DEF=∠解析:48【解析】【分析】首先由平行线的性质得到∠DEF=∠EFB=66°,再由折叠的性质可得∠D'EF=∠DEF=66°,则∠DED'=132°,然后再由邻补角的定义求解即可.【详解】解:∵AD∥BC,∴∠DEF=∠EFB=66°,由折叠的性质可得∠D'EF=∠DEF=66°,∴∠DED'=132°,∴∠AED'=180°-132°=48°.故答案为48.【点睛】本题考查了折叠的性质,以及平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.17.【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ∠A1CD=∠A1+∠A1BC 根据角平分线的定义可得∠A1BC=∠ABC ∠A1CD=∠ACD 整理得到∠A1=∠A 同理可得∠A2=∠A1从而判断 解析:4θ 2n θ 【分析】根据三角形的外角性质可得∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,根据角平分线的定义可得∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD ,整理得到∠A 1=12∠A ,同理可得∠A 2=12∠A 1,从而判断出后一个角是前一个角的12,然后表示出∠A n 即可得答案. 【详解】∵ACD ∠是ABC 的外角,∠A 1CD 是△A 1BC 的外角,∴∠ACD=∠A+∠ABC ,∠A 1CD=∠A 1+∠A 1BC ,∵ABC ∠的平分线与ACD ∠的平分线交于点1A ,∴∠A 1BC=12∠ABC ,∠A 1CD=12∠ACD , ∴∠A 1=12∠A , 同理可得∠A 2=12∠A 1=14∠A , ∵∠A=θ,∴∠A 2=4θ, 同理:∠A 3=12∠A 2=382θθ=, ∠A 4=12∠A 3=4162θθ= …… ∴∠A n =2nθ. 故答案为:4θ,2n θ 【点睛】 本题考查了三角形的外角性质及角平分线的定义,三角形的一个外角等于与它不相邻的两个内角的和;熟记性质并准确识图,求出后一个角是前一个角的12是解题的关键.18.(1)y=8x+20x在0--10变化;(2)2860;(3)35【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到与间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从解析:(1)y=8x+20,x,在0--10变化;(2)28,60;(3)3.5【解析】试题分析:(1)由每分钟水温升高8℃结合冷水的温度为20℃即可得到y与x间的关系式;由题意可知:自变量是烧水的时间;由烧水时间从0开始,到水烧开停止结合前面所得关系式即可求出自变量的取值范围;(2)将x的取值代入(1)中所得关系式即可求得对应的y的值;(3)将48y=代入(1)中所得关系式解出对应的x的值即可.试题(1)根据题意,y=8x+20;∵水温是随着时间的变化而变化的,∴自变量是时间x ;∵当水温y=100时,水烧开了就不再烧了,∴8x+20=100,解得x=10,∴x的变化范围是0≤x≤10.(2)当x=1时, y=1×8+20=28;当x=5时,y=5×8+20=60;(3)把y=48代入y=8x+20得:8x+20=48,解得:x=3.5,∴当x=3.5时,y=48.19.【分析】设这个角为α根据余角的和等于90°补角的和等于180°表示出这个角的补角与余角然后根据题意列出方程求解即可【详解】解:设这个角为α则它的补角为180°-α余角为90°-α根据题意得180°-解析:25︒【分析】设这个角为α,根据余角的和等于90°,补角的和等于180°表示出这个角的补角与余角,然后根据题意列出方程求解即可.【详解】解:设这个角为α,则它的补角为180°-α,余角为90°-α,根据题意得,180°-α=3(90°-α)-40°,解得α=25°.故答案为:25°.【点睛】本题考查了余角与补角的定义,熟记“余角的和等于90°,补角的和等于180°”是解题的关键.20.【分析】可设长方形ABCD的长为m分别求出S1S2再代入S2-S1计算即可求解【详解】解:设长方形ABCD的长为m则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16解析:24a【分析】可设长方形ABCD的长为m,分别求出S1,S2,再代入S2-S1计算即可求解.【详解】解:设长方形ABCD的长为m,则S2-S1=(m-3a)×4a-(m-4a)×4a=4ma-12a2-4am+16a2×=4a2.故答案为:4a2.【点睛】本题考查了列代数式和整式的运算,关键是熟练掌握长方形的面积公式,准确的进行整式计算.三、解答题21.(1)5,0.20,0.24;(2)72°;(3)60.【解析】试题分析:(1)根据总的监测点个数为25,即可求出第5个组别的频率;已知各个组别的频数,即可求出a的值,继而求出该组别的频数;(2)A类所对应的圆心角=A类的频率×360°;(3)PM2.5日平均浓度值符合安全值的城市的个数=100×PM2.5日平均浓度值符合安全值的城市的频率.试题(1)a=25﹣(2+3+5+6+4)=5,b=525=0.20,c=625=0.24;故答案为:5,0.20,0.24;(2)A类所对应的圆心角=(0.08+0.12)×360°=72°;故答案为:72°;(3)∵100×(0.08+0.12+0.20+0.20)=60个,∴PM2.5日平均浓度值符合安全值的城市的个数约为60个.考点:1.频数(率)分布表;2.用样本估计总体;3.扇形统计图.22.(1)见解析;(2)点P位置见解析,最小值为5;(3)8.6【分析】(1)根据题意作图即可(2)连接BA1交直线l于点P,由两点间,线段最短即可确定点P的位置(3)由(2)中求得点P的位置,即可得AB+AP+BP=AB+A1P+BP=AB+A1B【详解】(1)如图,点A1即为所作点A关于直线l的对称点(2)连接BA1交直线l于点P,连接AB,AP,则AP=A1P,由两点之间,线段最短可知,AP BP +最短值为5,(3)由(2)可知,点P 即可使△ABP 最小的位置故△ABP 周长的最小值为AB+AP+BP=AB+A 1P+BP=3.6+A 1B=3.6+5=8.6【点睛】此题考查轴对称变换的作图及两点间线段最短的问题,解题关键在于掌握通过轴对称建立最短路径进行解题.23.(1)见解析;(2)见解析【分析】(1)由已知可证∠B=∠F ,BC=EF ,然后根据SAS 可以得到结论;(2)同(1)有∠B=∠F ,再结合已知条件和对顶角相等可以证得ΔABO ≅ΔDFO ,从而得到OB=OF ,所以点O 为BF 中点 .【详解】证明:(1)∵AB//DF ,∴∠B=∠F ,∵BE=CF ,∴BE+CE=CF+CE ,即BC=EF ,∴在ΔABC 和ΔDFE 中,AB DF B F BC EF =⎧⎪∠=∠⎨⎪=⎩,∴ΔABC ≅ΔDFE (SAS );(2)与(1)同理有∠B=∠F ,∴在ΔABO 和ΔDFO 中,AOB DOF B F AB DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ΔABO ≅ΔDFO (AAS ),∴OB=OF ,∴点O 为BF 中点 .【点睛】本题考查三角形全等的应用,熟练掌握三角形全等的判定与性质并灵活应用是解题关键. 24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可;(3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求.【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-.x 是自变量,010x <<. (2)当x 从1变到9时(每次增加1),y 的相应值列表如下()x cm 1 23 4 5 6 7 8 9 ()2y cm 916 21 24 25 24 21 16 9 (3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为25cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽.25.见解析【分析】作点B 关于直线MN 的对称点B ′,作直线AB′交MN 于点P ,连接BP ,点P 即为所求.【详解】解:如图,点P 即为所求.【点睛】本题考查作图−基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)()()3222310245x x x x x x +--÷-=++;(2)0a =,8b =;1a =,4b =;2a =,0b =【分析】(1)直接利用竖式计算即可;(2)竖式计算,根据整除的意义,利用对应项的系数对应倍数求得答案即可.【详解】解:(1)列竖式如下:()()3222310245x x x x x x +--÷-=++ (2)列竖式如下:∵多项式43225x x ax b +++能被二项式2x +整除 ∴余式()420b a +-=∵a ,b 均为自然数∴0a =,8b =;1a =,4b =;2a =,0b =【点睛】此题考查利用竖式计算整式的除法,解题时要注意同类项的对应.。
鲁教版七年级下册数学第10章三角形的有关证明单元检测(含答案)

第10章三角形的有关证明一、选择题1.下列判断不正确的是()A. 形状相同的图形是全等图形B. 能够完全重合的两个三角形全等C. 全等图形的形状和大小都相同D. 全等三角形的对应角相等2.已知某等腰三角形两边长长分别为1,2,则周长为()A. 3B. 4C. 5D. 4或53.如图所示,八年级某同学书上的图形(三角形)不小心被墨迹污染了一部分,但他很快就根据所学知识,画出一个与书上完全一样的三角形,那么这两个三角形全等的依据是()A. SSSB. SASC. ASAD. AAS4.如图,∠C=∠D,DE=EC,则以下说法错误的是()A.AD=BCB.OA=ACC.∠OAD=∠OBCD.△OAD≌△OBC5.如图,在△ABC中,已知∠C=90°,AC=BC=4,D是AB的中点,点E、F分别在AC、BC边上运动(点E 不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①四边形CEDF有可能成为正方形;②△DFE是等腰直角三角形;③四边形CEDF的面积是定值;④点C 到线段EF的最大距离为.其中正确的结论是()A. ①④B. ②③C. ①②④D. ①②③④6.如图,在四边形ABCD中,∠A=58°,∠C=100°,连接BD,E是AD上一点,连接BE,∠EBD=36°.若点A,C分别在线段BE,BD的中垂线上,则∠ADC的度数为()A. 75°B. 65°C. 63°D. 61°7.如图,在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为()A.3B.4C.5D.68.下列说法:①全等三角形的形状相同,大小相等;②全等三角形的对应边相等;③全等三角形的对应角相等;④全等三角形的周长,面积分别相等;⑤所有的等边三角形都是全等三角形.其中正确的说法有()A. 5个B. 4个C. 3个D. 1个9.已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A.3个B.2个C.1个D.0个10.如图,在3×3网格中,已知点A,B是网格顶点(也称格点),若点C也是图中的格点,且使得△ABC 为等腰三角形,则满足条件的点C的个数为()A. 3B. 4C. 5D. 611.已知△ABC与△DEF全等,BC=EF=4cm,△ABC的面积是12cm2,则EF边上的高是()A.3cmB.4cmC.6cmD.无法确定12.如图,有一池塘,要测池塘两端A,B的距离,可先在平地上取一个直接到达A和B的点C,连接AC 并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长,就是A、B的距离.我们可以证明出△ABC≌△DEC,进而得出AB=DE,那么判定△ABC和△DEC全等的依据是()A.SSSB.SASC.ASAD.AAS二、填空题(共10题;共20分)13.如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=________时,△AOP为等边三角形.14.如图,某同学把三角形玻璃打碎三块,现在他要去配一块完全一样的,你帮他想一想,带________片去,应用的原理是________(用字母表示).15.如图,以Rt△ABC的斜边AB为一边在△ABC同侧作正方形ABEF.点O为AE与BF的交点,连接CO.若CA=2,CO=,那么CB的长为________.16.如图5,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为14cm,则△ABC的周长为________cm。
难点详解鲁教版(五四制)七年级数学下册第十章三角形的有关证明专项测试练习题(精选含解析)

鲁教版(五四制)七年级数学下册第十章三角形的有关证明专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在△ABC 中,AB =AC ,AC 边上的中线BD 把△ABC 的周长分为24 cm 和30 cm 的两部分,则BC 的长为 ( )cmA .14B .16或22C .22D .14或222、如图,直线DE 是ABC 边AC 的垂直平分线,且与AC 相交于点E ,与AB 相交于点D ,连接CD ,已知BC =8cm ,AB =12cm ,则BCD 的周长为( )A .16cmB .18cmC .20cmD .22cm3、如图,点P ,D 分别是∠ABC 边BA ,BC 上的点,且4BD =,60ABC ∠=︒.连结PD ,以PD 为边,在PD 的右侧作等边△DPE ,连结BE ,则△BDE 的面积为( )A.B.2 C.4 D.4、如图,△ABD≌△ECB,若5AD=,6DE=,则BC的长为()A.11 B.10 C.9 D.85、等腰三角形的顶角为80°,则其底角的度数是()A.100°B.80°C.50°D.40°6、已知:如图,在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②∠ACE+∠DBC=45°;③BD⊥CE;④∠BAE+∠DAC=180°.其中正确的个数有()A.1个B.2个C.3个D.4个7、下列命题为假命题的是()A.三角形的三个内角的和等于180度B .三角形的任意两边之和大于第三边C .三角形的角平分线是一条射线D .三角形的面积等于一条边上的长与该条边上的高的乘积的一半8、在ABC 中,线段AP ,AQ ,AR 分别是BC 边上的高线,中线和角平分线,则( )A .AP AQ ≤B .AQ AR ≤C .AP AR >D .AP AQ >9、如图,点D 为ABC 的边BC 上一点,且满足AD DC =,作DE AB ⊥于点E ,若68BAC ∠=︒,36C ∠=︒,则ADE ∠的度数为( )A .56°B .58°C .60°D .62°10、如图,在△ABC 中,∠C =90°,D ,E 是AC 上两点,且AE =DE ,BD 平分∠EBC ,那么下列说法中不正确的是( )A .BE 是△ABD 的中线B .BD 是△BCE 的角平分线C .∠1=∠2=∠3D .S △AEB =S △EDB第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,5AB AC ==,6BC =,AD 是BAC ∠的平分线,4=AD .若P ,Q 分别是AD 和AC 上的动点,则PC PQ +的最小值是______.2、等边三角形的边长为a ,则该等边三角形的面积为________.(用含a 的代数式表示)3、如图,△ABC 是等边三角形.在AC ,BC 边上各取一点P ,Q ,使AP =CQ ,且∠ABP =20°,AQ ,BP 相交于点O ,则∠AQB =_____.4、已知ABC DEF ≌△△,若5AB =,6BC =,7AC =,则DEF 的周长是______. 5、如图,D 是等边三角形ABC 外一点.若BD =8,CD =6,则AD 的最大值与最小值的差为 _____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 中,AB AC =,AD 为BC 边上的中线,E 为AC 上一点,且AE AD =,∠=︒,求∠CDE的度数.BAD502、在△ABC中,AB=AC,CD⊥AB于D.(1)若∠A=40°,求∠DCB的度数;(2)若BC=15,CD=12,求AC的长.3、如图,△ACB 和△DCE 都是等腰直角三角形,∠ACB=∠DCE=90°.AC=41,DE=18,将△DCE 绕着顶点C 旋转,连接AD,BE.(1)求证:△ACD≌△BCE;(2)在△DCE 的旋转过程中,探求:点A,D,E 在同一直线上时,AE 的长.4、已知OM是∠AOB的平分线,点P是射线OM上一点,点C、D分别在射线OA、OB上,连接PC、PD.(1)如图①,当PC⊥OA,PD⊥OB时,则PC与PD的数量关系是.(2)如图②,点C、D在射线OA、OB上滑动,且∠AOB=90°,当PC⊥PD时,PC与PD在(1)中的数量关系还成立吗?说明理由.5、如图,CD是△ABC的角平分线,DE,DF分别是△ACD和△BCD的高.(1)求证CD⊥EF;(2)若AC=6,BC=4,S△ABC=10,∠ACB=60°,求CG的长.-参考答案-一、单选题1、D【解析】【分析】根据点D为AC中点,得出AD=DC=12AC,根据AB=AC,得出AB=2AD,分两种情况当AB+AD=24cm时,2AD+AD=24cm,可求BC=30cm-CD=30cm-8cm=22cm,当AB+AD=30cm时,2AD+AD=30cm,可求BC=24cm-CD=24cm-10cm=14cm即可.【详解】解:∵点D为AC中点,∴AD=DC=12 AC,∵AB=AC,∴AB=2AD,分两种情况,当AB+AD=24cm时,2AD+AD=24cm,解得AD=8cm,∵BC+CD=30cm,∴BC=30cm-CD=30cm-8cm=22cm,当AB+AD=30cm时,2AD+AD=30cm,解得AD=10cm,∵BC+CD=24cm,∴BC=24cm-CD=24cm-10cm=14cm,∴BC的长为14cm或22cm.故选D.【点睛】本题考查等腰三角形性质,中线性质,一元一次方程,线段和差,分类思想的应用,掌握等腰三角形性质,中线性质,一元一次方程,线段和差,分类思想的应用是解题关键.2、C【解析】【分析】根据线段垂直平分线的性质得出AD=CD,求出△BCD的周长=BC+CD+BD=BC+AB,再代入求出答案即可.【详解】解:∵直线DE是AC的垂直平分线,∴AD=CD,∵BC=8cm,AB=12cm,∴△BCD的周长=BC+CD+BD=BC+AD+BD=BC+AB=8+12=20(cm),故选:C.【点睛】本题考查了线段垂直平分线的性质,能熟记线段垂直平分线上的点到线段两个端点的距离相等是解此题的关键.3、A【解析】【分析】要求BDE ∆的面积,想到过点E 作EF BC ⊥,垂足为F ,因为题目已知60ABC ∠=︒,想到把ABC ∠放在直角三角形中,所以过点D 作DG BA ⊥,垂足为G ,利用勾股定理求出DG 的长,最后证明GPD FDE ∆≅∆即可解答.【详解】解:过点E 作EF BC ⊥,垂足为F ,过点D 作DG BA ⊥,垂足为G ,在Rt BGD 中,4BD =,60ABC ∠=︒,30BDG ∴∠=︒,122BG BD ∴==,GD ∴PDE ∆是等边三角形,60PDE ∴∠=︒,PD DE =,180120PDB EDF PDE ∴∠+∠=︒-∠=︒,60ABC ∠=︒,180120PDB BPD ABC ∴∠+∠=︒-∠=︒,BPD EDF ∴∠=∠,90PGD DFE ∠=∠=︒,()GPD FDE AAS ∴∆≅∆,GD EF ∴==,BDE∴∆的面积12BD EF=⋅,142=⨯⨯=故选:A.【点睛】本题考查了等边三角形的性质,全等三角形、勾股定理,解题的关键是根据题目的已知条件并结合图形添加适当的辅助线.4、A【解析】【分析】由三角形全等的性质可知AD=BE,BD=BC,故可得BC=BD=BE+DE=11.【详解】∵△ABD≌△ECB∴AD=BE,BD=BC∴BE=5∵BD=BE+DE=5+6=11∴BC=BD=11故选:A.【点睛】本题考查了全等三角形的性质,全等三角形的对应边相等,对应角相等,可以进一步推广到全等三角形对应边上的高相等,对应角的平分线相等,对应边上的中线相等,周长及面积相等.5、C【解析】【分析】根据等腰三角形两底角相等即可得解.【详解】解:∵等腰三角形的顶角为80°,∴它的底角度数为12(180°-80°)=50°.故选:C.【点睛】本题考查了等腰三角形两底角相等的性质,关键是根据等腰三角形的性质解答.6、D【解析】【分析】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形AEC全等,由全等三角形的对应边相等得到BD=CE,本选项正确;②由三角形ABD与三角形AEC全等,得到一对角相等,由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°,本选项正确;③再利用等腰直角三角形的性质及等量代换得到BD垂直于CE,本选项正确;④利用周角减去两个直角可得答案.【详解】解:①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB ACBAD CAEAD AE=⎧⎪∠=∠⎨⎪=⎩,∴△BAD≌△CAE(SAS),∴BD=CE,本选项正确;②∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵△BAD≌△CAE,∴∠ABD=∠ACE,∴∠ACE+∠DBC=45°,本选项正确;③∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=90°,则BD⊥CE,本选项正确;④∵∠BAC=∠DAE=90°,∴∠BAE+∠DAC=360°-90°-90°=180°,故此选项正确,综上,四个选项都是正确的,故选:D.【点睛】本题考查了全等三角形的判定与性质,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.7、C【解析】【分析】分别根据三角形内角和定理、三角形三边的关系、三角形角平分线定义以及三角形面积公式对各个命题进行判断.【详解】解:A.三角形三个内角的和等于180°,所以此选项为真命题;B.三角形两边之和大于第三边,所以此选项为真命题;C.三角形的角平分线是一条线段,所以此选项为假命题;D.三角形的面积等于一条边的长与该边上的高的乘积的一半,所以此选项为真命题.故选:C .【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理论证的真命题叫定理.8、A【解析】【分析】根据垂线段最短解答即可.【详解】解:∵线段AP 是BC 边上在的高线,∴根据垂线段最短得:PA ≤AQ ,P A ≤AR ,故选:A .【点睛】本题考查三角形的高、中线和角平分线、垂线段最短等知识,熟练掌握垂线段最短是解答的关键.9、B【解析】【分析】首先根据等边对等解救出36DAC ∠=︒,再求出32DAE ∠=︒,最后根据“直角三角形两锐角互余”得58ADE ∠=︒,从而得到结论.【详解】解:∵AD DC =,且36C ∠=︒∴36DAC C ∠=∠=︒又68BAC ∠=︒∴683632BAD BAC DAC ∠=∠-∠=︒-︒=︒∵DE AB ⊥∴90DEA ∠=︒∴90903258ADE BAD ∠=︒-∠=︒-︒=︒故选:B【点睛】本题主要考查了等腰三角形的性质,以及直角三角形两锐角互余等知识,利用等腰三角形的性质“等边对等角”求出36DAC ∠=︒是解答本题的关键.10、C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A 、∵AE =DE ,∴BE 是△ABD 的中线,故本选项不符合题意;B 、∵BD 平分∠EBC ,∴BD 是△BCE 的角平分线,故本选项不符合题意;C 、∵BD 平分∠EBC ,∴∠2=∠3,但不能推出∠2、∠3和∠1相等,故本选项符合题意;D、∵S△AEB=12×AE×BC,S△EDB=12×DE×BC,AE=DE,∴S△AEB=S△EDB,故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义,熟练掌握三角形中,连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.二、填空题1、4.8【解析】【分析】作点Q关于AD的对称点E,连接PE,过点C作CF⊥AB于点F,则当C、P、E三点共线且与CF重合时,PC+PQ取得最小值;由等腰三角形的性质及勾股定理可求得AD的长,再利用面积关系即可求得最小值CF的长.【详解】如图,作点Q关于AD的对称点E,连接PE,过点C作CF⊥AB于点F∵AB =AC ,AD 是BAC ∠的平分线∴AD ⊥BC ,△ABC 关于直线AD 对称,132BD CD BC ===∵点Q 、点E 关于AD 对称∴PQ =PE∴PC +PQ =PC +PE ≥CF当C 、P 、E 三点共线且与CF 重合时,PC +PQ 取得最小值,且最小值为线段CF 的长在Rt △ABD 中,由勾股定理得:4AD = ∵1122ABC S BC AD AB CF =⨯=⨯△ ∴64 4.85BC AD CF AB ⨯⨯=== 即PC +PQ 的最小值为4.8故答案为:4.8【点睛】本题考查了等腰三角形的性质,垂线段最短,勾股定理等知识,作点Q 的对称点是本题的关键与难点所在.22 【解析】【分析】求出等边三角形的高,根据三角形面积公式即可得出答案.【详解】如图所示,ABC 是等边三角形,过点A 作AD BC ⊥交于点D ,∵ABC 的边长为a ,∴AB BC a ==,122a BD BC ==,∴AD ===,∴212ABC S a =⨯=,2. 【点睛】本题考查等边三角形的性质,掌握等边三角形“三线合一”求长度是解题的关键.3、80︒##80度【解析】【分析】先证明,BAP ACQ ≌ 再利用全等三角形的性质可得20,ABP CAQ 再利用三角形的外角的性质可得结论.【详解】 解: △ABC 是等边三角形,,60,AB AC ABC C BAC,AP CQ,BAP ACQ ≌20,ABP CAQ 602080.AQB C CAQ故答案为:80︒【点睛】本题考查的是三角形的外角的性质,全等三角形的判定与性质,等边三角形的性质,证明20ABP CAQ 是解本题的关键.4、18【解析】【分析】根据全等三角形的性质,即可求解.【详解】解:∵ABC DEF ≌△△, ∴5,6,7DE AB EF BC DF AC ====== ,∴DEF 的周长为56718DE EF DF ++=++= .故答案为:18【点睛】本题主要考查了全等三角形的性质,熟练掌握全等三角形的对应边相等,对应角相等是解题的关键. 5、12【解析】【分析】以CD 为边向外作等边△CDE ,连接BE ,可证得△ECB ≌△DCA 从而得到BE =AD ,再根据三角形的三边关系即可得出结论.【详解】解:如图,以CD为边向外作等边△CDE,连接BE,∵△CDE和△ABC是等边三角形,∴CE=CD,CB=CA,∠ECD=∠BCA=60°,∴∠ECB=∠DCA,在△ECB和△DCA中,CE CDECB DCACB CA=⎧⎪∠=∠⎨⎪=⎩,∴△ECB≌△DCA(SAS),∴BE=AD,∵DE=CD=6,BD=8,∴BD﹣DE≤BE≤BD+DE,即8﹣6≤BE≤8+6,∴2≤BE≤14,∴2≤AD≤14.则当B、D、E三点共线时,如图所示:可得BE 的最大值与最小值分别为14和2.∴AD 的最大值与最小值的差为14﹣2=12.故答案为:12.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质以及三角形的三边关系,解题关键在于添加辅助线构建全等三角形把AD 转化为BE 从而求解,是一道较好的中考题.三、解答题1、25°【解析】【分析】由题意知AD BC ⊥,50CAD BAD ∠=∠=︒,根据等边对等角,三角形内角和定理求出ADE ∠的值,进而可求出CDE ∠的值.【详解】解:∵AB AC =,AD 是中线,50BAD ∠=︒∴AD BC ⊥,50CAD BAD ∠=∠=︒∵AE AD = ∴18050652ADE ︒-︒∠==︒ ∴25CDE ADC ADE ∠=∠-∠=︒∴CDE ∠的值为25°.【点睛】本题考查了等腰三角形的性质,三角形的内角和定理.解题的关键在于熟练掌握等腰三角形的性质.2、 (1)∠DCB =20°(2)AC =12.5【解析】【分析】(1)利用等腰三角形的性质,求出∠B ,然后根据直角三角形中的互余关系求出∠DCB ;(2)利用勾股定理,用一个未知数表示出直角三角形的未知边长,解方程求出边长.(1)∵AB =AC ,∴∠B =∠ACB ,∵∠A =40°,∴∠B =∠ACB =70°,∵CD ⊥AB ,∴∠BDC =90°.∴∠DCB =90°-∠B =20°;(2)在Rt △BCD 中,BD =9,设AC =AB =x ,则AD =x -9,∵在Rt △ACD 中,22AD CD +=2AC ,∴22(9)12x -+=2x ,解得x =22518=12.5, ∴AC =12.5.【点睛】本题主要考查等腰三角形的性质,勾股定理的知识点,解答本题的关键是熟练掌握勾股定理去求边长.3、 (1)见解析(2)AE 的长为49或31【解析】【分析】(1)根据△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.得出∠ACD =∠BCE , 再证△ACD ≌△BCE (SAS )即可;(2)过点C 作CF ⊥DE 于F ,根据△CDE 为等腰直角三角形,CF ⊥DE ,求出DE =DF =EF =1118922DE =⨯=,分两种情况,点E 在AD 延长线上,在Rt△ACF 中,根据勾股定理AF=40=,点E 在AD 上利用线段和差求出AE 即可.(1)证明:∵△ACB 和△DCE 都是等腰直角三角形,∠ACB =∠DCE =90°.∴AC =BC ,DC =EC ,∠ACD +∠DCB =∠DCB +∠BCE ,∴∠ACD =∠BCE ,在△ACD 和△BCE 中,AC BC ACD BCE DC EC =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ),(2)解:过点C作CF⊥DE于F,∵△CDE为等腰直角三角形,CF⊥DE,∴DE=DF=EF=11189 22DE=⨯=,分两种情况点E在AD延长线上,在Rt△ACF中,根据勾股定理AF40,∴AE=AF+EF=40+9=49;点E在AD上,在Rt△ACF中,根据勾股定理AF40,∴AE=AF-EF=40-9=31;∴点A,D,E 在同一直线上时,AE 的长为49或31.【点睛】本题考查等腰直角三角形性质,三角形全等判定,图形旋转性质,勾股定理,线段和差,掌握等腰直角三角形性质,三角形全等判定,图形旋转性质,勾股定理,线段和差是解题关键.4、 (1)PC=PD(2)成立,理由见解析【解析】【分析】(1)根据角平分线性质可知PC=PD;(2)过点P点作PE⊥OA于E,PF⊥OB于F,根据垂直的定义得到∠PEC=∠PFD=90°,由OM是∠AOB的平分线,根据角平分线的性质得到PE=PF,利用四边形内角和定理可得到∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,则∠PCE=∠PDF,然后根据“AAS”可判断△PCE≌△PDF,根据全等的性质即可得到PC=PD.(1)解:PC=PD,理由:∵OM是∠AOB的平分线,∴PC=PD(角平分线上点到角两边的距离相等),故答案为:PC=PD;(2)证明:过点P点作PE⊥OA于E,PF⊥OB于F,如图,∴∠PEC=∠PFD=90°,∵OM是∠AOB的平分线,∴PE=PF,∵∠AOB=90°,∠CPD=90°,∴∠PCE+∠PDO=360°﹣90°﹣90°=180°,而∠PDO+∠PDF=180°,∴∠PCE=∠PDF,在△PCE和△PDF中,PCE PDFPEC PFD PE PF∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△PCE≌△PDF(AAS),∴PC=PD.【点睛】本题考查角平分线的性质,全等三角形的证明,能够在图中构造适合的辅助线是解决本题的关键.5、 (1)见解析(2)3【解析】【分析】根据角平分线的性质定理可得DE =DF ,从而得到Rt CDE Rt CDF ≅,进而得到CE =CF ,即可求证;(2)先证得△CEF 是等边三角形,可得EF =CE ,∠ACD =30°,1122EG EF CE ==,再由ABC ACD BCD S S S =+△△△,可得DE =2,再根据直角三角形的性质可得CD =2DE =4,然后由勾股定理,即可求解.(1)∵CD 是△ABC 的角平分线,DE ⊥AC ,DF ⊥BC ,∴DE =DF ,△CDE 和△CDF 是直角三角形,∵CD =CD ,∴()Rt CDE Rt CDF HL ≅,∴CE =CF ,∴CD 垂直平分EF ,即CD ⊥EF .(2)∵CE =CF ,∠ACB =60°,∴△CEF 是等边三角形,∴EF =CE ,∠ACD =30°,∵CD ⊥EF , ∴1122EG EF CE ==, ∵AC =6,BC =4,S △ABC =10,DE =DF ,ABC ACD BCD S S S =+△△△, ∴ ()11110222DE AC DF BC DE AC BC ⨯+⨯=⨯+=,解得:DE =2,在Rt CDE △ 中,∠ACD =30°,∴CD =2DE =4,∴CE ==∴1122EG EF CE ===∴3CG =.【点睛】本题主要考查了全等三角形的判定和性质,角平分线的性质定理,直角三角形的性质,勾股定理、等边三角形的判定和性质,熟练掌握全等三角形的判定和性质,角平分线的性质定理,直角三角形的性质,勾股定理、等边三角形的判定和性质是解题的关键.。
鲁教版七年级下册数学分层卷电子版

第七章二元一次方程组测试卷姓名 成绩 一、选择题。
1、下列各式中,是二元一次方程的是( ) A 、923=-y x B 、z x 662=+ C 、y 32x1=+ D 、243y x =- 2、下列方程组中是二元一次方程组的是( )A 、⎩⎨⎧==+x y y x 2102B 、⎩⎨⎧=+=-732y x y x C 、⎩⎨⎧=+=+824y x z x D 、 ⎩⎨⎧=+=+85x 32y y x 3、方程组82=+y x 的解有 ( ) A 、只有一个 B 、只有两个 C 、只有三个 D 、有无数个4、二元一次方程组⎩⎨⎧=-=+15y x y x 的解是 ( )A 、⎩⎨⎧==32y xB 、⎩⎨⎧==23y xC 、⎩⎨⎧==14y xD 、⎩⎨⎧==41y x5、解二元一次方程组的基本思想是( ).A 、代入法B 、由一个未知数的值求另一个未知数的值C 、消元,化二元为一元D 、加减法6、已知⎩⎨⎧==33y x 是方程3=-y kx 的解,那么k 的值是( )A 、2B 、-2C 、1D 、-1 7、下列各式中,是三元一次方程的是( ) A 、9z 232=+-y x B 、z x 6y 62=+ C 、y 3z 2x1=+ D 、24z 3y x =- 8、解三元一次方程组的基本思想是( ).A 、代入法B 、由一个未知数的值求另一个未知数的值C 、消元,化三元为一元D 、加减法二、填空题。
9、已知方程3x +y -3=0,用含x 的代数式表示y ,则y= . 10、方程5x +7y=21有___ _____组解.11、在1043=+y x 中,如果1=y ,那么x= 。
12、解方程组⎩⎨⎧-=-=+454357y x y x 用_____________法解较简便.13、方程组⎩⎨⎧=+=+4332b a b a 的解是 。
三、计算题。
14、解下列方程组(1) ⎩⎨⎧=++=9573y x x y (2)⎩⎨⎧-=+=-1244b a b a (3)⎩⎨⎧=-=+1126723t u t u (4)⎩⎨⎧=-=+102322y x y x15、某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,问甲乙两种票各买了多少张?16、有大小两种货车,2辆大货车与3辆小货车一次可以运货15.5t ,5辆大货车与6辆小货车一次可以运货35t 。
初中数学鲁教版(五四制)七年级下册第八章1定义与命题练习题

初中数学鲁教版七年级下册第八章1定义与命题练习题一、选择题1. 下列语句中,是命题的是( )A. 对顶角相等吗B. 作∠A 的平分线ADC. 两个锐角的和大于90°D. 在线段AB 上取一点C2. 判断命题“如果n <1,那么n 2−1<0”是假命题,只需举出一个反例.反例中的n 可以为( )A. −2B. −12C. 0D. 12 3. 对于下列命题: (1)关于某一直线成轴对称的两个三角形全等;(2)等腰三角形的对称轴是顶角的平分线;(3)一条线段的两个端点一定是关于经过该线段中点的直线的对称点;(4)如果两个三角形全等,那么它们关于某直线成轴对称.其中真命题的个数为( )A. 0B. 1C. 2D. 34. 下列命题错误的是 A. 4是16的算术平方根B. 2是4的一个平方根C. 平方根等于它本身的数是0D. 114的算术平方根是112 5. 下列选项中,可以用来说明命题“若x 2>4,则x >2”是假命题的反例是( )A. x = −3B. x =3C. x = −2D. x =26. 对于命题“若a 2>b 2,则a >b ”,下面四组关于a ,b 的值中,能说明这个命题是假命题的是A. a =3,b =−2B. a =−2,b =3C. a =2,b =−3D. a =−3,b =27. 下列命题,正确的是 A. 相等的角是内错角B. 如果x 2=y 2,那么x =yC. 有一个角是60°的三角形是等边三角形D. 角平分线上的点到角两边的距离相等8.在下列命题中:①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形:③有一边上的高也是这边上的中线的三角形是等边三角形:④三个外角都相等的三角形是等边三角形正确的命题有()A. 4个B. 3个C. 2个D. 1个9.下列四个命题中,说法正确的有()①两条直线被第三条直线所截,内错角相等.②如果∠1和∠2是对顶角,那么∠1=∠2.③三角形的一个外角大于任何一个内角.④如果x2>0,那么x>0.A. 1个B. 2个C. 3个D. 4个10.下列各定理中有逆定理的是()A. 两直线平行,同旁内角互补B. 若两个数相等,则这两个数的绝对值也相等C. 对顶角相等D. 如果a=b,那么a2=b2二、填空题11.“你喜欢数学吗⋅”这句话________命题.(填“是”或者“不是”)12.命题“如果a=b,那么|a|=|b|”的逆命题是______(填“真命题“或“假命题”).13.“同旁内角互补”的逆命题是.它是命题(填“真”或“假”).14.把命题“平行于同一直线的两直线平行”改写成“如果⋯⋯,那么⋯⋯”的形式:__________.三、解答题15.判断下列命题的真假,是假命题的举出反例.(1)两个锐角的和是钝角;(2)一个角的补角大于这个角;(3)不相等的角不是对顶角.16.把下列命题改写成“如果……那么……”的形式,并判断其真假.(1)钝角大于它的补角;(2)相等的角是内错角.17.举反例说明下列命题是假命题:(1)互补的两个角一个是钝角,一个是锐角;(2)若|a|=|b|,则a=b;(3)内错角相等;(4)一个正数与一个负数之和是0.18.写出下列命题的逆命题,并判断原命题和逆命题的真假.(1)若m 2≠n 2,则m≠n.(2)如果一个三角形有一个内角是钝角,那么它的另外两个内角是锐角.19.(1)完成下面的推理说明:已知:如图,BE//CF,BE、CF分别平分∠ABC和∠BCD.求证:AB//CD.证明:∵BE、CF分别平分∠ABC和∠BCD(已知),∴∠1=12∠______,∠2=12∠______(______ ).∵BE//CF(______ ),∴∠1=∠2(______).∴12∠ABC=12∠BCD(______).∴∠ABC=∠BCD(等式的性质).∴AB//CD(______ ).(2)说出(1)的推理中运用了哪两个互逆的真命题.答案和解析1.【答案】C解:A、不能判断其真假,不构成命题,故本选项错误;B、不能判断其真假,不构成命题,故本选项错误;C、是,因为能够判断真假,故本选项正确;D、不能判定其真假,不构成命题,故本选项错误.故选C.根据命题的定义对各个选项进行分析从而得到答案.本题主要考查了学生对命题的理解及掌握情况,比较简单.2.【答案】A解:当n=−2时,满足n<1,但n2−1=3>0,所以判断命题“如果n<1,那么n2−1<0”是假命题,举出n=−2.故选:A.反例中的n满足n<1,使n2−1≥0,从而对各选项进行判断.本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.3.【答案】B解:关于某一直线成轴对称的两个三角形全等,所以(1)为真命题;等腰三角形的对称轴是直线而等腰三角形顶角的平分线为线段,所以(2)为假命题;一条线段的两个端点关于该线段的垂直平分线对称,所以(3)为假命题;两个全等三角形不一定是轴对称图形,所以(4)为假命题.故选B.根据轴对称的性质得到关于某一直线成轴对称的两个三角形全等,而两个全等三角形不一定是轴对称图形;等腰三角形的对称轴垂直平分底边,且平分顶角;一条线段的两个端点关于该线段的垂直平分线对称.本题考查了命题与定理:判断事物的语句叫命题;正确的命题叫真命题,错误的命题叫假命题;经过推理、论证得到的真命题称为定理.也考查了轴对称的性质.4.【答案】D【解答】故此选项不符合题意;B .4的平方根±2,所以2是4的一个平方根,原说法正确,故此选项不符合题意;C .0的平方根是0,负数没有平方根,正数平方根都是一正一负,原说法正确,故此选项不符合题意;D .114的平方根是±√52,原说法错误,故此选项符合题意; 故选:D .5.【答案】A解:用来证明命题“若x 2>4,则x >2”是假命题的反例可以是:x =−3, ∵(−3)2>4,但是x =−3<2,∴A 正确.故选A .6.【答案】D【解答】解:在A 中,a 2=9,b 2=4,且3>−2,满足“若a 2>b 2,则a >b ”,故A 选项中a 、b 的值不能说明命题为假命题;在B 中,a 2=4,b 2=9,且−2<3,此时不但不满足a 2>b 2,也不满足a >b 不成立,故B 选项中a 、b 的值不能说明命题为假命题;在C 中,a 2=4,b 2=9,且2>−3,此时不但不满足a 2>b 2,也不满足a >b 不成立,故C 选项中a 、b 的值不能说明命题为假命题;在D 中,a 2=9,b 2=4,且−3<2,此时满足满足a 2>b 2,但不能满足a >b ,即意味着命题“若a 2>b 2,则a >b ”不能成立,故D 选项中a 、b 的值能说明命题为假命题;故选:D .7.【答案】D【解答】解:A.相等的角是不一定是内错角,故A错误;B.如果x2=y2,那么x=±y,故B错误;C.有一个角是60°的等腰三角形是等边三角形,故C错误;D.角平分线上的点到角两边的距离相等,故D正确.故选D.8.【答案】B解:①有一个外角是120°的等腰三角形是等边三角形,说法正确;②有两个外角相等的等腰三角形是等边三角形,说法正确;③有一边上的高也是这边上的中线的三角形是等边三角形,说法错误;④三个外角都相等的三角形是等边三角形,说法正确,正确的命题有3个,故选:B.根据有一个角等于60°的等腰三角形是等边三角形,三个角相等的三角形是等边三角形进行分析即可.此题主要考查了命题与定理,关键是掌握等边三角形的判定方法.9.【答案】A解:两条平行直线被第三条直线所截,内错角相等,所以①错误;如果∠1和∠2是对顶角,那么∠1=∠2,所以②正确;三角形的一个外角大于任何一个不相邻的内角,所以③错误;如果x2>0,那么x≠0,所以④错误.故选:A.10.【答案】A解:A.两直线平行,同旁内角互补,逆命题是:同旁内角互补,两直线平行,正确,符合题意;B.若两个数相等,则这两个数的绝对值也相等,逆命题是:如果两数的绝对值相等,则这两数相等,逆命题不成立,不符合题意;C.对顶角相等,逆命题是:如果两个角相等,则这两个角是对顶角,逆命题不成立,不符合题意;D.如果a=b,那么a2=b2,逆命题是:如果a2=b2,则a=b,逆命题不成立,不符合题意.11.【答案】不是12.【答案】假命题解:如果a=b,那么|a|=|b|的逆命题是:如果|a|=|b|,则a=b是假命题.故答案为:假命题.直接利用绝对值的性质进而判断命题的正确性.此题主要考查了命题与定理,正确写出逆命题是解题关键.13.【答案】互补的角为同旁内角;假解:命题“同旁内角互补”的逆命题为:互补的角为同旁内角,此逆命题为假命题.故答案为:互补的角为同旁内角,假.交换原命题的题设与结论即可得到原命题的逆命题,然后根据同旁内角的定义进行判断.本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.14.【答案】如果两条直线平行于同一条直线,那么这两条直线平行解:命题可以改写为:如果两条直线平行于同一条直线,那么这两条直线平行.故答案为:如果两条直线平行于同一条直线,那么这两条直线平行.15.【答案】解:(1)假命题.反例为:∠A=30°,∠B=40°,∠A+∠B=70°,为锐角;(2)假命题,反例为:∠A=120°,∠A的补角=180°−120°=60°,∠A的补角小于∠A;(3)真命题.【解析】【分析】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.(1)(2)利用特殊角可说明命题为假命题;(3)真命题.见答案.16.【答案】解:(1)如果一个角是钝角,那么这个角大于它的补角,是真命题;(2)如果两个角相等,那么这两个角是内错角,是假命题.【解析】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.(1)首先写成“如果……那么……”的形式,再判断真假即可;(2)首先写成“如果……那么……”的形式,再判断真假即可.17.【答案】解:(1)∠A=90°,∠B=90°,∠A与∠B互补,但∠A与∠B为两个直角.(2)|−3|=|3|,但−3≠3.(答案不唯一)(3)如图,∠1与∠2是内错角,但∠1≠∠2.(4)3与−5的和为−2,不为0.(答案不唯一)【解析】本题考查了定义与命题的概念,属于简单题型.(1)根据两个直角也互补举出反例即可.(2)根据绝对值的性质,负数的绝对值是正数举出反例.(3)内错角相等的前提是两直线平行,所以取不平行的两条直线就可以举出反例.(4)绝对值相等的正负数之和为0,据此举出反例.18.【答案】(1)逆命题是:若m≠n,则m2≠n2;原命题是真命题,逆命题是假命题;(2)逆命题:如果一个三角形有两个内角是锐角,那么这个三角形的另一个内角是钝角.原命题是真命题,逆命题是假命题.【解析】本题考查了命题与定理的知识,解题的关键是能够正确的写出该命题的逆命题,分别写出各个命题的逆命题,然后判断真假即可.19.【答案】(1)ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)两个互逆的真命题为:两直线平行,内错角相等;内错角相等,两直线平行.【解析】【分析】本题考查的是平行线的判定与性质的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系;平行线的性质是由平行关系来寻找角的数量关系.命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项.(1)根据平行线的性质,可得∠1=∠2,根据角平分线的定义,可得∠ABC=∠BCD,再根据平行线的判定,即可得出AB//CD;(2)在两个命题中,如果一个命题的结论和题干是另一个命题的题干和结论,则称它们为互逆命题.【解答】解:(1)∵BE、CF分别平分∠ABC和∠BCD(已知)∴∠1=12∠ABC,∠2=12∠BCD(角平分线的定义)∵BE//CF(已知)∴∠1=∠2(两直线平行,内错角相等)∴12∠ABC=12∠BCD(等量代换)∴∠ABC=∠BCD(等式的性质)∴AB//CD(内错角相等,两直线平行)故答案为:ABC;BCD;角平分线的定义;已知;两直线平行,内错角相等;等量代换;内错角相等,两直线平行;(2)见答案.第11页,共11页。
鲁教版数学七年级下册第九章《四边形性质探索》水平测试(F)

鲁教版数学七年级下册第九章《四边形性质探索》水平测试一、试试你的身手1.菱形有一个内角为120°,如果它的较短对角线长为6cm,则其周长为.2.菱形ABCD中的一边与两条对角线夹角的差是20°,那么该菱形的各内角的度数分别为.3.在菱形ABCD中,∠D∶∠A=5∶1,若菱形的周长为8cm,则菱形的高DE=.4.若矩形一个角的平分线分一边为3cm和5cm,则这个矩形的面积为.5.在矩形ABCD中,对角线AC、BD相交于点O,若∠AOB=110°,则∠OAB=.6.在正方形ABCD中,对角线AC、BD相交于点O,AE平分∠BAC交BD于点E.若正方形ABCD的周长为16cm,则DE=.7.图1,以正方形ABCD的对角线AC为边长作菱形AEFC,则∠EAF=度.8.四边形ABCD的对角线AC、BD相交于O,且AD∥BC,AD=BC,请你补上两个条件,使四边形ABCD为正方形,则这两个条件可以是.二、相信你的选择1.菱形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.两条对角线互相垂直D.邻角互补2.菱形的两条对角线长分别是6cm和8cm,则菱形的边长是()A.10cm B.7cm C.5cm D.4cm3.下列判别错误的是()A.两条对角线互相垂直平分的四边形是菱形B.有一条对角线平分一组对角的四边形是菱形C.对角线互相垂直的平行四边形是菱形D.邻边相等的平行四边形是菱形4.如图2,过矩形ABCD的顶点D作对角线AC的平行线交BA的延长线于点E,则△DEB一定是()A.不等边三角形B.等腰三角形C.等边三角形D.直角三角形5.矩形具有而平行四边形不一定具有的性质是()A.对角线互相平分B.对角线相等C.对角线互相垂直D.一条对角线平分一组对角6.能判定四边形是正方形的条件是()A.对角线相等B.对角线互相垂直平分C.对角线相等且垂直D.对角线相等且互相垂直平分7.已知正方形ABCD的边长为2,E、F分别是BC和CD边上的中点,则△AEF的面积为()A.52B.32C.2 D8.下列四边形中,两条对角线不一定相等的有()①平行四边形,②矩形,③菱形,④正方形.A.1个B.2个C.3个D.4个三、挑战你的技能1.如图3所示,矩形ABCD的两条对角线AC,BD相交于点O,∠AOD=120°,且两条对角线与两短边之和为36cm,求其对角线长.2.如图4,菱形ABCD中,E是AB的中点,且DE⊥AB,AB=a,求(1)∠ABC的度数;(2)对角线AC的长.3.□ACD的两条对角线AC、BD相交于点O,AB=13,OA=5,OB=12,四边形ABCD是菱形吗?为什么?4.如图5,在矩形ABCD中,P是矩形内一点,且P A=PD,试说明线段PB与PC相等的理由.四、拓广探索如图6,是2002年8月在北京召开的第24届国际数学家大会会标中的图案,其中四边形ABCD 和EFGH都是正方形,则△ABF与△DAE全等吗?为什么?提升能力题:1.已知:如图1,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.2.如图2,Rt△ABC中,∠A=90°,D为BC上一动点(D点与B、C 点不重合),DE∥AC交AB于点E,DF∥AB交AC于点F,请问AD 满足什么条件时四边形AEDF是正方形?请画出图形,并说明理由.3.如图3,菱形公园内有四个景点,请你用三种不同的方法,按下列要求设计成四个部分:(1)用直线分割;(2)每个部分内各有一个景点;(3)各部分的面积相等(只要求画出图形,不写画法).答案一、选择题1、C;2、A;3、C;4、B;5、C;6、C;7、C;8、B;9、D;二、填空题1、四个内角分别是60度,60度,120度,120度,四边之比为1:1:1:2;2、15cm2;3、12;4、33;5、60;6、16cm;三、解答题1、三种情况;2、四个内角分别是60度,60度,120度,120度,四边之为1cm,2cm,3cm,4cm;3、下略;。
鲁教版数学七年级下册第九章《四边形性质探索》水平测试(C)

鲁教版数学七年级下册第九章《四边形性质探索》水平测试(C )一、填空题(每小题3分,共30分)1、在□ABCD 中,若AB ∶BC=2∶3且它的周长为30㎝,则CD= ㎝。
2、在□ABCD 中,若∠A=120°,则∠D= 。
3、在□ABCD 中,若∠A+∠C=100°,则∠B= 。
4、在四边形ABCD 中,若AB=CD ,请你补充一个条件,使四边形ABCD 是平行四边形。
则你补充的条件是 。
(只需填一个你认为正确的条件即可) 5、一个菱形的两条对角线长分别是6㎝和8㎝,则菱形的边长等于 。
6、已知四边形的四条边分别为a 、b 、c 、d ,且满足a 2+b 2+c 2+d 2=2ac+2bd ,则此四边形是 形。
7、在矩形ABCD 中,对角线AC 与BD 相交于O ,AB=6,AC=10,则AD= 。
8、已知正方形的面积等于8m 2,则它的边长等于 。
9、已知菱形ABCD 中,AB=AC=6,则BD= 。
10、矩形ABCD 中,已知∠ACB=30°,则∠BDC= 。
二、选择题(每小题3分,共24分)11、在□ABCD 中,已知∠A -∠B=20°,则∠C=()A 、60° B 、80° C 、100° D 、120° 12、下列条件中,不能判断四边形ABCD 是平行四边形的是( )A 、AB=CD AD ∥BC B 、AB ∥CD AB=CD C 、AB=CD AD=BC D 、AB ∥CD AD ∥BC 13、在 ABCD 中,∠A ∶∠B ∶∠C ∶∠D 的值可能是( )A 、1∶2∶3∶4B 、1∶2∶2∶1C 、2∶2∶1∶1D 、2∶1∶2∶1 14、已知菱形的周长等于40㎝,两对角线的比为3∶4,则对角线的长分别是( )A 、12㎝,16㎝B 、6㎝,8㎝C 、3㎝,4㎝D 、24㎝,32㎝15、用两个全等的直角三角形拼成下列图形:①平行四边形;②矩形;③菱形;④正方形;⑤等腰三角形;⑥等边三角形。
【鲁教版】初一数学下期末试题(附答案)(1)

一、选择题1.下列说法正确的是()A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法B.一组数据2,2,3,6的众数和中位数都是2C.“掷一枚硬币正面朝上的概率是12”,表示每抛硬币2次就有1次正面朝上D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明乙的成绩较为稳定2.下列说法中不正确的是()A.抛掷一枚硬币,硬币落地时正面朝上是随机事件B.把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件C.任意打开九年级下册数学教科书,正好是第38页是确定事件D.一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是63.以下事件为必然事件的是()A.掷一枚质地均匀的骰子,向上一面的点数小于6B.多边形的内角和是360C.二次函数的图象不过原点D.半径为2的圆的周长是4π4.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是()A.21:10 B.10:21C.10:51 D.12:015.下列图形是轴对称图形的是( )A.B. C. D.6.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C .D .7.如图,在ABC 中,8AB AC ==厘米,6BC =厘米,点D 为AB 的中点.如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上,由C 点向A 点运动,为了使BPD CPQ △≌△,点Q 的运动速度应为( )A .1厘米/秒B .2厘米/秒C .3厘米/秒D .4厘米/秒8.如图,AE ∥DF ,AE =DF .添加下列的一个选项后.仍然不能证明△ACE ≌△DBF 的是( )A .AB =CD B .EC =BF C .∠E =∠FD .EC ∥BF9.如图,在ABC 和AEF 中,EAC BAF ∠=∠,EA BA =,添加下面的条件:①EAF BAC ∠=∠;②E B ∠=∠;③AF AC =;④EF BC =,其中可以得到ABC AEF ≌△△的有( )个.A .1B .2C .3D .410.圆的周长公式C=2πR 中,下列说法正确的是( )A .π、R 是自变量,2是常量B .C 是因变量,R 是自变量,2π为常量 C .R 为自变量,2π、C 为常量D .C 是自变量,R 为因变量,2π为常量11.如图,若//AB CD ,EF CD ⊥,154∠=,则2∠=( )A .36B .46C .54D .12612.下列运算正确的是( )A .236a a a ⋅=B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠二、填空题13.在一个有10万人的小镇随机调查了1000人,其中有100人看中央电视台的早间新闻.在该镇随便问一个人,他看早间新闻的概率大约是_______.14.一个均匀的正方体,6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是____.15.如图,四边形ABCD 中,∠B =∠D =90°,∠C =50°,在BC 、CD 边上分别找到点M 、N ,当△AMN 周长最小时,∠AMN +∠ANM 的度数为______.16.如图,有一张长方形纸片ABCD,点E.F 分别在边AB 、CD 上,连接EF,将∠BEF 对折,点B 落在直线EF 上的点B /处,得折痕EM;将∠AEF 对折,点A 落在直线EF 上的点A’处,得折痕EN,则∠MEN 的度数为__________.17.如图,顶点O 重合的AOB ∠与COD ∠,且90AOB COD ∠=∠=︒,若4AOD BOC ∠=∠,OE 为BOC ∠的平分线,则DOE ∠的度数为_____________.18.日常生活中,“老人”是一个模糊概念.可用“老人系数”表示一个人的老年化程度.“老人系数”的计算方法如下表: 人的年龄x (岁) x≤60 60<x <80x≥80 “老人系数”6020x - 1按照这样的规定,“老人系数”为0.6的人的年龄是__岁. 19.一个角是它的补角的五分之一,则这个角的余角是______度. 20.已知a b m -=,4ab =-,化简()()22a b -+的结果是__________.三、解答题21.一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,若红球个数是黑球个数的2倍多3个,从袋中任取一个球是白球的概率是110. (1)求袋中红球的个数.(2)求从袋中任取一个球是黑球的概率.22.在33⨯的正方形格点图中,有格点ABC 和DEF ,且ABC 和DEF 关于某直线成轴对称(对称轴不一定是正方形的边所在直线),请在下面给出的图中画出2个这样的DEF .23.(1)已知直线//a b ,小亮把一块含45︒角的直角三角尺的直角顶点放在直线b 上.①若三角尺与平行线的位置如图1所示,140∠=︒,求2∠的度数;②若三角尺与平行线的位置如图2所示,且125∠=︒,则2∠的度数又是多少? (2)已知直线//a b ,小亮把一块含30角的直角三角尺按图3所示放置,若125∠=︒,求2∠的度数.24.用一根长是20cm 的细绳围成一个长方形,这个长方形的一边的长为xcm ,它的面积为2ycm .(1)写出y 与x 之间的关系式,在这个关系式中,哪个是自变量?自变量的取值范围是怎样的?(2)在下面的表格中填上当x 从1变到9时(每次增加1),y 的相应值; ()x cm1 2 3 4 5 6 7 8 9()2y cm(3)根据表格中的数据,请你猜想一下:怎样围才能使得到的长方形的面积最大?最大是多少?(4)请你估计一下:当围成的长方形的面积是222cm 时,x 的值应在哪两个相邻整数之间?25.作图题:已知∠α,线段m 、n ,请按下列步骤完成作图(不需要写作法,保留作图痕迹)(1)作∠MON =∠α(2)在边OM 上截取OA =m ,在边ON 上截取OB =n . (3)作直线AB .26.先化简,再求值:21(2)(2)(32)()2x y x y x y x ⎡⎤-+--+-+÷-⎣⎦,其中1x =,1=2y .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】根据抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义逐一判断即可得.【详解】A.要了解我市居民的低碳生活状况,适宜采用抽样调查的方法,此选项正确;B.一组数据2,2,3,6的众数是2,中位数是2.5,此选项错误;C.“掷一枚硬币正面朝上的概率是”,表示每抛硬币2次可能有1次正面朝上,此选项错误;D.随机抽取甲乙两名同学的5次数学成绩,平均分都是90分,方差分别是S甲2=5,S乙2=10,说明甲的成绩较为稳定;故选A.【点睛】本题主要考查概率的意义,解题的关键是掌握抽样调查的可靠性和适用情况、众数和中位数的定义、概率的意义及方差的意义.2.C解析:C【解析】【分析】直接利用随机事件的定义分别分析得出答案.【详解】A、抛掷一枚硬币,硬币落地时正面朝上是随机事件,正确,不合题意;B、把4个球放入三个抽屉中,其中一个抽屉中至少有2个球是必然事件,正确,不合题意;C、任意打开九年级下册数学教科书,正好是第38页是随机事件,故此选项错误,符合题意;D、一个盒子中有白球m个,红球6个,黑球n个(每个除了颜色外都相同).如果从中任取一个球,取得的是红球的概率与不是红球的概率相同,那么m与n的和是6,正确,不合题意.故选:C.【点睛】此题主要考查了随机事件,正确把握随机事件的定义是解题关键.3.D解析:D 【分析】必然事件是指一定会发生的事件,概率为1,根据该性质判断即可. 【详解】掷一枚质地均匀的骰子,每一面朝上的概率为16,而小于6的情况有5种,因此概率为56,不是必然事件,所以A 选项错误; 多边形内角和公式为()2180n -︒,不是一个定值,而是随着多边形的边数n 的变化而变化,所以B 选项错误;二次函数解析式的一般形式为2y ax bx c =++()0a ≠,而当c=0时,二次函数图象经过原点,因此不是必然事件,所以C 选项错误;圆周长公式为2C r π=,当r=2时,圆的周长为4π,所以D 选项正确. 故选D . 【点睛】本题考查了必然事件的概念,关键是根据不同选项所包含的知识点的概念进行判断对错;必然事件发生的概率为1,随机事件发生的概率为0<P<1,不可能事件发生的概率为0.4.C解析:C 【分析】利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称. 【详解】根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51, 故选C . 【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.5.B解析:B 【解析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此对图中的图形进行判断.解:A 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误; B 、有六条对称轴,是轴对称图形,故本选项正确;C 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误;D 、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义,故本选项错误. 故选B .6.A解析:A 【分析】根据轴对称图形的概念求解. 【详解】A 、是轴对称图形.故选项正确;B 、不是轴对称图形.故选项错误;C 、不是轴对称图形.故选项错误;D 、不是轴对称图形.故选项错误. 故选:A . 【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.7.D解析:D 【分析】根据三角形全等的性质与路程、速度、时间的关系式求解. 【详解】解:设△BPD ≌△CPQ 时运动时间为t ,点Q 的运动速度为v ,则由题意得:BP CPBD CQ =⎧⎨=⎩, 即3634t t vt =-⎧⎨=⎩,解之得:14t v =⎧⎨=⎩,∴点Q 的运动速度为4厘米/秒, 故选D . 【点睛】本题考查三角形全等的综合应用,熟练掌握三角形全等的判定与性质、路程、速度、时间的关系式及方程的思想方法是解题关键.8.B解析:B 【分析】结合题目条件,依据三角形全等的判定定理逐一判断即可. 【详解】 ∵AE ∥DF ,∴∠A =∠D ,A 、根据SAS ,可以推出△ACE ≌△DBF ,本选项不符合题意.B 、SSA 不能判定三角形全等,本选项符合题意.C 、根据ASA ,可以推出△ACE ≌△DBF ,本选项不符合题意.D 、根据AAS ,可以推出△ACE ≌△DBF ,本选项不符合题意. 故选:B . 【点睛】本题考查了三角形全等的判定,熟记三角形全等的判定定理是解题的关键.9.B解析:B 【分析】根据EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠,经推到得EAF BAC ∠=∠;再结合全等三角形判定的性质分析,即可得到答案. 【详解】∵EAC BAF ∠=∠,EAF EAC CAF ∠=∠+∠,BAC BAF CAF ∠=∠+∠ ∴EAF BAC ∠=∠E B ∠=∠,即E B EAF BAC EA BA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()ASA ,故②符合题意;AF AC =,即AF AC EAF BAC EA BA =⎧⎪∠=∠⎨⎪=⎩∴ABC AEF ≌△△()SAS ,故③符合题意; ①和④不构成三角形全等的条件,故错误; 故选:B . 【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的性质,从而完成求解.10.B解析:B 【解析】试题分析:常量就是在变化过程中不变的量,变量是指在变化过程中随时可以发生变化的量.解:圆的周长公式C=2πR 中,C 是因变量,R 是自变量,2π为常量, 故选B .点评:本题主要考查了常量,变量的定义,是需要识记的内容.11.A解析:A 【分析】根据平行线的性质可求解∠GFD 的度数,再结合垂线的定义可求解. 【详解】解:∵AB//CD ,∠1=54°, ∴∠GFD=∠1=54°, ∵EF ⊥CD , ∴∠EFD=90°, 即∠2+∠GFD=90°, ∴∠2=36°. 故选:A . 【点睛】本题主要考查平行线的性质,垂线的定义,掌握平行线的性质是解题的关键.12.D解析:D 【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可. 【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221aa -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意; D. 0(2)1(0)a a =≠,故D 选项符合题意. 故填:D . 【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.二、填空题13.10【分析】由随机调查了1000人其中100人看中央电视台的早间新闻直接利用概率公式求解即可求得答案【详解】解:∵随机调查了1000人其中100人看中央电视台的早间新闻∴在该镇随便问一个人他看中央电解析:10%【分析】由随机调查了1000人,其中100人看中央电视台的早间新闻,直接利用概率公式求解即可求得答案.【详解】解:∵随机调查了1000人,其中100人看中央电视台的早间新闻,∴在该镇随便问一个人,他看中央电视台早间新闻的概率大约是:10=10%100,故答案为:10%.【点睛】本题考查了概率的知识.用到的知识点为:概率=所求情况数与总情况数之比.14.【分析】根据简单事件的概率公式计算解答【详解】6个面中有1个面是黄色的2个面是红色的3个面是绿色的任意掷一次该正方体则绿色面朝上的可能性是故答案为:【点睛】此题考查简单事件的概率理解事件中绿色发生的解析:1 2【分析】根据简单事件的概率公式计算解答.【详解】6个面中有1个面是黄色的、2个面是红色的、3个面是绿色的.任意掷一次该正方体,则绿色面朝上的可能性是31 62 ,故答案为:12.【点睛】此题考查简单事件的概率,理解事件中绿色发生的可能性大小是解题的关键.15.100°【分析】根据要使△AMN的周长最小即利用点的对称让三角形的三边在同一直线上作出A关于BC和CD的对称点A′A″即可得出∠AA′M+∠A″=180°-∠DAB=∠C=50°进而得出∠AMN+∠解析:100°【分析】根据要使△AMN的周长最小,即利用点的对称,让三角形的三边在同一直线上,作出A关于BC和CD的对称点A′,A″,即可得出∠AA′M+∠A″=180°-∠DAB =∠C=50°,进而得出∠AMN+∠ANM=2(∠AA′M+∠A″)即可得出答案.【详解】解:作A 关于BC 和CD 的对称点A′,A″,连接A′A″,交BC 于M ,交CD 于N ,则A′A″即为△AMN 的周长最小值. ∵∠B =∠D =90°,∠C =50°, ∵∠DAB=130°,∴∠AA′M+∠A″=180°-130°=50°, 由对称性可知:∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN ,∠NAD+∠A″=∠ANM ,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×50°=100°, 故答案为:100°.【点睛】此题主要考查了平面内最短路线问题求法以及三角形的内角和定理及外角的性质和轴对称的性质等知识,根据已知得出M ,N 的位置是解题关键.16.90°【分析】根据折叠的性质可知∠MEB=∠MEB/∠NEA=∠NEA/即可求得∠MEN 的度数【详解】∵∠BEF 对折点B 落在直线EF 上的点B/;将∠AEF 对折点A 落在直线EF 上的点A/∴∠MEB=∠解析:90° 【分析】根据折叠的性质,可知,∠MEB=∠MEB /,∠NEA=∠NEA /,即可求得∠MEN 的度数. 【详解】∵∠BEF 对折,点B 落在直线EF 上的点B /;将∠AEF 对折,点A 落在直线EF 上的点A / ∴∠MEB=∠MEB /,∠NEA=∠NEA /, ∴∠MEN=∠MEB /+∠NEA /=°°111809022AEB ∠=⨯=. 【点睛】本题主要考查折叠的性质,掌握角的和差倍分运算,是解题的关键.17.【分析】由题意先得到结合求出的度数然后求出即可【详解】解:根据题意∵∴∵∴∵为的平分线∴∴故答案为:72【点睛】本题考查了角平分线的定义余角的性质以及几何图形中求角的度数解题的关键是掌握题意正确理解 解析:72︒【分析】由题意,先得到180AOD BOC ∠+∠=︒,结合4AOD BOC ∠=∠,求出BOC ∠的度数,然后求出DOE ∠即可. 【详解】 解:根据题意, ∵90AOB COD ∠=∠=︒,∴9090180AOD BOC AOB COD ∠+∠=∠+∠=︒+︒=︒, ∵4AOD BOC ∠=∠, ∴36BOC ∠=︒,∵OE 为BOC ∠的平分线, ∴18BOE COE ∠=∠=︒,∴901872DOE COD COE ∠=∠-∠=︒-︒=︒. 故答案为:72︒. 【点睛】本题考查了角平分线的定义,余角的性质,以及几何图形中求角的度数,解题的关键是掌握题意,正确理解图形中角的关系,从而进行计算.18.72【分析】根据所给的函数关系式所对应的自变量的取值范围发现:当y=06时在60<x <80之间所以将y 的值代入对应的函数解析式即可求得函数的值【详解】解:设人的年龄为x 岁∵老人系数为06∴由表得60解析:72 【分析】根据所给的函数关系式所对应的自变量的取值范围,发现:当y=0.6时,在60<x <80之间,所以将y 的值代入对应的函数解析式即可求得函数的值. 【详解】解:设人的年龄为x 岁, ∵“老人系数”为0.6, ∴由表得60<x <80, 即6020x -=0.6,解得,x=72, 故“老人系数”为0.6的人的年龄是72岁. 故答案为:7219.60【分析】设这个角为x 补角为(180°-x )再由这个角是补角的五分之一可得出方程求出x 的值即可得到答案【详解】解:设这个角为x 补角为(180°-x )则解得:x=30°则这个角为30°所以它的余角=解析:60 【分析】设这个角为x ,补角为(180°-x ),再由这个角是补角的五分之一,可得出方程,求出x 的值即可得到答案. 【详解】解:设这个角为x ,补角为(180°-x ),则1(180)5x x =︒- ,解得:x=30°, 则这个角为30°.所以,它的余角=90°-30°=60° 故答案为:60. 【点睛】本题考查了余角和补角的知识,关键是掌握互余的两角之和为90°,互补的两角之和为180°.20.【分析】根据多项式乘以多项式展开在把已知式子代入求解即可;【详解】由题可知∵∴原式;故答案是:【点睛】本题主要考查了整式的化简和代数式求值准确化简计算是解题的关键 解析:28m -【分析】根据多项式乘以多项式展开,在把已知式子代入求解即可; 【详解】由题可知()()()2222424-+=+--=+--a b ab a b ab a b , ∵a b m -=,4ab =-,∴原式42428m m =-+-=-; 故答案是:28m -. 【点睛】本题主要考查了整式的化简和代数式求值,准确化简计算是解题的关键.三、解答题21.(1)袋中红球的个数为175个;(2)从袋中任取一个球是黑球的概率为43145. 【解析】 【分析】先求得白球的数量,再设黑球数量为x 则可得2x +3+x =290﹣29,解得x=86,即可求得红球的数量.由(1)得出黑球的数量再除以总数量即可. 【详解】(1)∵一个口袋中放有290个涂有红、黑、白三种色的质地相同的小球,从袋中任取一个球是白球的概率是110, ∴白球的个数为:290×110=29(个), 设黑球的个数为x 个,则2x+3+x=290﹣29,解得:x=86,则2x+3=175,答:袋中红球的个数为175个;(2)由(1)得:从袋中任取一个球是黑球的概率为:86290=43145.【点睛】本题考查概率公式,熟练掌握概率的计算法则是解题关键.22.见解析【分析】根据轴对称图形的定义进行画图即可.【详解】解:如图所示:【点睛】本题有一定的难度,要求找出所有能与三角形ABC形成对称的轴对称图形,这里注意思维要严密.23.(1)①50°;②20°;(2)35°【分析】(1)①由直角三角板的性质可知∠3=180°-∠1-90°,再根据平行线的性质即可得出结论;②首先过点B作BD∥a,由直线a∥b,可得BD∥a∥b,由两直线平行,内错角相等,即可求得答案∠4的度数,又由△ABC是含有45°角的三角板,即可求得∠3的度数,继而求得∠2的度数;(2)先根据三角形外角的性质求出∠3的度数,再由平行线的性质得出∠4的度数,由直角三角形的性质即可得出结论.【详解】解:(1)①如图①∵∠1=40°,∴∠3=180°-∠1-90°=180°-40°-90°=50°,∵a∥b,∴∠2=∠3=50°;②如图②过点B 作BD ∥a , ∵直线a ∥b , ∴BD ∥a ∥b , ∴∠4=∠1=25°, ∵∠ABC=45°,∴∠3=∠ABC-∠4=45°-25°=20°, ∴∠2=∠3=20°;(2)如图3,∵∠3是△ADG 的外角, ∴∠3=∠A+∠1=30°+25°=55°, ∵直线a ∥b , ∴∠3=∠4=55°, ∵∠4+∠EFC=90°, ∴∠EFC=90°-55°=35°, ∴∠2=35°.【点睛】本题考查的是平行线的性质,三角形外角的性质,熟练掌握两直线平行,同位角相等是解题的关键.24.(1)y=210x x -,x 是自变量,010x <<;(2)见解析;(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm ;(4)当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间.【分析】(1)根据周长的等量关系可得长方形的另一边为10-x ,那么面积=x (10-x ),自变量是x ,取值范围是0<x <10;(2)把相关x 的值代入(1)中的函数解析式求值即可;(3)根据表格可得x 为5时,y 的值最大;(4)观察表格21<y <24时,对应的x 的取值范围即为所求. 【详解】(1)(202)y x x =÷-2(10)10x x x x =-=-. x 是自变量,010x <<.(2)当x 从1变到9时(每次增加1),y 的相应值列表如下 ()x cm1 2 3 4 5 6 7 8 9 ()2y cm 9162124252421169(3)当长方形的长与宽相等,即x 为5时,y 的值最大,最大值为225cm .(4)由表格可知,当围成的长方形的面积是222cm 时,x 的值应在3和4之间或6和7之间. 【点睛】本题考查了变量与函数,函数的表示方法,求函数值等知识.用到的知识点为:长方形的长与宽的和等于周长的一半;长方形的面积等于长×宽. 25.(1)见解析;(2)见解析;(3)见解析 【分析】(1)先画一条射线ON ,以∠α的顶点为圆心,任意长度为半径画弧,交∠α的两个边于两个点,这两个点的距离记为a ,接着以点O 为圆心,同样的长度为半径画弧,交ON 于一个点,以这个点为圆心,a 为半径画弧,与刚刚画的弧有一个交点,连接这个点和点O ,得到射线OM ,即可得到∠MON =∠α;(2)以点O 为圆心,m 为半径画弧,交OM 于点A ,以点O 为圆心,n 为半径画弧,交ON 于点B ;(3)连接AB ,线段AB 所在的直线即直线AB . 【详解】解:(1)如图所示,(2)如图所示,(3)如图所示,【点睛】本题考查尺规作图,解题的关键是掌握作已知角度的方法,截取线段和画直线的方法. 26.-20x+24y ,-8. 【分析】原式中括号中利用平方差公式,以及完全平方公式化简,再利用多项式除以单项式法则计算得到最简结果,把x 与y 的值代入计算即可求出值. 【详解】原式=22(2)(2)(32)()x y x y x y x⎡⎤--+++-+-⎣⎦=()2222249124()x y x xy y x-+-+- =()221012()x xy x-- =2420y x - 当1x =,12y =时, 原式=12420182⨯-⨯=- 故答案为-20x+24y ,-8. 【点睛】此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.。
2022-2023学年七年级下学期数学鲁教版(五四学制)9

9.3 等可能事件的概率练习鲁教版(五四制)七年级数学下册一、单选题1.不透明的袋子中装有2个红球、1个白球,这些球除颜色外无其他差别.从袋子中随机摸出1个球,如果是红球,不放回再随机摸出1个球;如果是白球,放回并摇匀,再摸出1个球.则两次摸出的球都是白球的概率是()A.13B.15C.17D.192.在一个不透明的盒子中装有8个白球和m个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球为黄球的概率是13,则m的值为()A.16B.12C.8D.43,0,π,3.14,6这5个数中随机抽取一个数,抽到有理数的概率是()A.15B.25C.35D.454.分别向如图所示的四个区域投掷一个小球,小球落在阴影部分的概率最小的是()A.B.C.D.5.某班共有6名学生干部,其中4名是男生,2名是女生,任意抽一名学生干部去参加一项活动,恰好是男生的概率是()A.12B.14C.16D.236.如图,在3×3的方格中,A,B,C,D,E,F分别位于格点上,从C,D,E,F四点中任意取一点,与点A,B为顶点作三角形,则所作三角形为等腰三角形的概率是()A.1B.14C.12D.347.五张不透明的卡片,正面分别写有实数1 ,1155.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是()A.15B.25C.35D.458.在某市组织的物理实验操作考试中,考试所用实验室共有24个测试位,分成6组,同组4个测试位各有一道相同试题,各组的试题不同,分别标记为A,B,C,D,E,F,考生从中随机抽取一道试题,则某个考生抽到试题A的概率为()A.23B.14C.16D.1249.在不透明的袋子中装有黑、白两种球共50个,这些球除颜色外都相同,随机从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则袋子中黑球的个数约为()A.20个B.30个C.40个D.50个10.甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋()A.摸出红色糖果的概率大B.摸出红色糖果的概率小C.摸出黄色糖果的概率大D.摸出黄色糖果的概率小二、填空题11.某同学投掷一枚硬币,如果连续4次都是正面朝上,则他第5次抛掷硬币的结果是正面朝上的概率是________.12.如图,小华在5×4的地板砖上行走,并随机停留在某一块方砖上,则他停留在阴影方砖上的概率是________.13.如图,四边形ABCD的对角线AC BD,E,F,G,H分别是AD,AB,BC,CD 的中点,若在四边形ABCD内任取一点,则这一点落在图中阴影部分的概率为_____________.142π、-31、211、0.101001001…(相邻两个1间依次多1个0)五个实数,如果将卡片字面朝下随意放在桌子上,任意取一张,抽到有理数的概率是______.三、解答题15.如图,程序员在数轴上设计了A 、B 两个质点,它们分别位于―6和9的位置,现两点按照下述规则进行移动:每次移动的规则x 分别掷两次正方体骰子,观察向上面的点数:①若两次向上面的点数均为偶数,则A 点向右移动1个单位,B 点向左移2个单位; ①若两次向上面的点数均为奇数,则A 点向左移动2个单位,B 点向左移动5个单位; ①若两次向上面的点数为一奇一偶,则A 点向右移动5个单位,B 点向右移2个单位. (1)经过第一次移动,求B 点移动到4的概率;(2)从如图所示的位置开始,在完成的12次移动中,发现正方体骰子向上面的点数均为偶数或奇数,设正方体骰子向上面的点数均为偶数的次数为a ,若A 点最终的位置对应的数为b ,请用含a 的代数式表示b ,并求当A 点落在原点时,求此时B 点表示的数; (3)从如图所示的位置开始,经过x 次移动后,若3AB =,求x 的值.16.某商场举行有奖销售,发行奖券5万张,其中设一等奖2个、二等奖8个、三等奖40个、四等奖200个、五等奖1000个.有一位顾客购物后得到一张奖券,问这位顾客: (1)获得一等奖的概率是多少? (2)获奖的概率是多少?17.“十一”黄金周期间,某购物广场举办迎国庆有奖销售活动,每购物满100元,就会有一次转动大转盘的机会,某顾客获得一次转动大转盘的机会,请你根据大转盘来计算:(1)该顾客享受七折优惠的概率;(2)该顾客得10元现金奖的概率;(3)该顾客中奖得现金的概率是多少?18.一个批发商从某服装制造公司购进了50包型号为L的衬衫,由于包装工人疏忽,在包裹中混进了型号为M的衬衫.每包中混入的M号衬衫数见下页表:一位零售商从50包中任意选取了一包,求下列事件的概率:(1)包中没有混入M号衬衫;(2)包中混入M号衬衫数不超过7;(3)包中混入M号衬衫数超过10.参考答案:1.D2.D3.C4.A5.D6.D7.B8.C9.A10.C11.1212.720##0.3513.12##0.514.25##0.415.(1)14;(2)B点表示的数为-21;(3)x的值为4或6.16.(1)获得一等奖的概率是125000;(2)获奖的概率为140.17.(1)29(2)1 3(3)7 1218.(1)750;(2)45;(3)350。
初中数学鲁教版(五四制)七年级下册第九章 概率初步1 感受可能性-章节测试习题

章节测试题1.【题文】指出下列事件是确定事件还是不确定事件:(1)地球绕着太阳转;(2)打开电视机,正在播报有关伊拉克的新闻;(3)小明用5秒就跑完了100米.【答案】(1)是确定事件;(2)是不确定事件;(3)是不确定事件.【分析】根据确定事件与不确定事件的定义,即可求得答案.【解答】解:(1)地球绕着太阳转,是确定事件;(2)打开电视机,正在播报有关伊拉克的新闻,是不确定事件;(3)小明用5秒就跑完了100米,是不确定事件.2.【题文】下列事件,哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)用长度分别为2 dm,3 dm,5 dm的三根钢筋,首尾相连能焊成一个三角形;(2)如果两个角相等,那么这两个角是对顶角;(3)任意画一个三角形,其内角和是180°.【答案】(1)是不可能事件.(2)是随机事件.(3)是必然事件.【分析】(1)根据三角形的三边关系可判断;(2)根据对顶角的概念可判断;(3)根据三角形的内角和定理可判断.【解答】解:(1) 根据三角形的三边关系,两边之和大于第三边,可由2+3=5知是不可能事件.(2)根据对顶角的概念,有公共地点,一个角的两边是另一角的两边的反向延长线,故可知两角相等有可能是对顶角也可能不是,故是随机事件.(3)根据三角形的内角和是180°,可知是必然事件.3.【题文】从“不太可能”、“不可能”、“很有可能”和“必然”中选择适当的词描述下列事件.(1)在直线上任取一点作射线,得到两个和为180°的角.(2)任画两条直线与另一条直线都相交,得到两个彼此相等的同位角;(3)小强对数学很感兴趣,常钻研教材内容,在数学测验中取得好成绩;(4)在电话上随机拨一串数字,刚好打通了好朋友的电话;(5)互为倒数的两个有理数符号相同.【答案】(1)必然事件;(2)不太可能事件;(3)很有可能事件;(4)不太可能事件;(5)必然事件.【分析】必然事件指在一定条件下,一定发生的事件;不可能事件是指在一定条件下,一定不发生的事件;不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.据此对各选项依次进行判断即可解答.【解答】解:(1)在直线上任取一点作射线,得到两个和为180°的角,是必然事件;(2)任画两条直线与另一条直线都相交,得到两个彼此相等的同位角,是不太可能事件;(3)小强对数学很感兴趣,常钻研教材内容,在数学测验中取得好成绩,是很有可能事件;(4)在电话上随机拨一串数字,刚好打通了好朋友的电话,是不太可能事件;(5)互为倒数的两个有理数符号相同,是必然事件.4.【题文】世界杯决赛分成8个小组,每小组4个队,小组进行单循环(每个队都与该小组的其他队比赛一场)比赛,选出2个队进入16强,胜一场得3分,平一场得1分,负一场得0分.(1)求每小组共比赛多少场?(2)在小组比赛中,现有一队得到6分,该队出线是一个确定事件,还是不确定事件?【答案】(1)6;(2)该队出线是一个不确定事件;【分析】(1)利用单循环的方法进行计算即可.(2)根据必然事件、不可能事件、随机事件的概念可区别各类事件.【解答】解:(1)4×3÷2 =6(场)答:每小组共比赛6场。
最新鲁教版(五四制)七年级数学下册第十一章一元一次不等式与不等式组达标测试试题(含答案解析)

七年级数学下册第十一章一元一次不等式与不等式组达标测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、若x y <,且()()33->-a x a y ,则a 的取值范围是( )A .3a <B .3a >C .3a ≥D .3a ≤2、若a b >,则下列式子一定成立的是( )A .12a b +<+B .22a b ->-C .22a b ->-D .33a b < 3、如图,一次函数y =f (x )的图像经过点(2,0),如果y >0,那么对应的x 的取值范围是( )A .x <2B .x >2C .x <0D .x >04、已知a b >,那么下列各式中,不一定成立的是( )A .22ac bc >B .22a b >C .31a b +>-D .22a b -<-5、已知a 5<a 的值为( )A .5B .6C .25D .266、不等式组3114x x +>⎧⎨-<⎩的最小整数解是( ) A .5 B .0 C .1- D .2-7、等腰三角形的周长为16,且边长为整数,则腰与底边分别为( )A .5,6B .6,4C .7,2D .以上三种情况都有可能8、关于x 的不等式21x a +≥的解集如图所示,则a 的值是( )A .-1B .1C .2D .39、如果a >b ,那么下列不等式中正确的是( )A .a -b >0B .ac ²>bc ²C .c -a >c -bD .a +3<b -310、如果a 、b 都是实数,且a b <,那么下列结论中,正确的是( )A .1a b <B .1a b -+>-C .11a b >D .||||a b <第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式11x -的非负整数解是__.2、如图,一次函数3y kx =-的图像与y 轴交于点A ,与正比例函数y mx =的图像交于点P ,点P 的横坐标为1.5,则满足36kx mx kx -<<+的x 的范围是______.3、若等腰三角形的底边长为6,则它的腰长x 的取值范围是______;若等腰三角形的腰长为6,则它的底边长y 的取值范围是______.4、 “寒辞去冬雪,暖带入春风”,随着新春佳节的临近,家家户户都在准备年货,腊肉香肠几乎是川渝地区必备的年货之一.某超市购进一批川味香肠和广味香肠进行销售,试销期间,两种香肠各销售100千克,销售总额为12000元,利润率为20%.正式销售时,超市决定将两种香肠混装成礼盒的形式促销(每个礼盒的成本为混装香肠的成本之和),其中A 礼盒混装2千克广味香肠,2千克川味香肠;B 礼盒混装1千克广味香肠,3千克川味香肠,两种礼盒的数量之和不超过180个.超市工作人员在对这批礼盒进行成本核算时将两种香肠的成本刚好弄反,这样核算出的成本比实际成本少了500元,则超巿混装A 、B 两种礼盒的总成本最多为______元.5、若x y >,则35x -______35y -(填“>”或“=”或“<”).三、解答题(5小题,每小题10分,共计50分)1、在“爱心传递”活动中,某校学生积极捐款. 其中六年级的两个班级的捐款情况如下表:小杰在统计时不小心污损了其中的部分数据,但他还记得以下信息:信息一:六(2)班的捐款额比六(1)班多60元;信息二:六(1)班学生平均每人捐款的金额不小于10元;请根据表格中留下的数据和以上信息,帮助小杰同学解决下列问题:(1)六(1)班和六(2)班的捐款总额各是多少元?(2)六(2)班的学生数至少是多少人?2、为纪念一二·九运动86周年,我校组织八年级学生远赴新密参观豫西抗日纪念馆,学校负责人前去联系车辆,目前有甲、乙两种类型的客车供学校租用,据了解:3辆甲型客车与4辆乙型客车的总载客量为276人,2辆甲型客车与3辆乙型客车的总载客量为199人.(1)请帮算一算:1辆甲型客车与1辆乙型客车的载客量分别是多少人?(2)我校八年级学生共850人,拟租用甲、乙两型客车共20辆,一次将全部师生送到指定地点.若每辆甲型客车的租金为800元,每辆乙型客车的租金为1000元,请给出最节省费用的租车方案,并求出最低费用. 3、解不等式:253164x x --+. 4、一个三位自然数a ,满足各数位上的数字之和不超过10,我们称这个数为“完美数”.将“完美数”a 的个位数字与百位数字交换得到一个新数b ,记G (a )=11a b -.例如:a =125,因为1+2+5=8<10,所以a 为“完美数”,交换其个位数字和百位数字后得到b =521,G (125)=12552111-=﹣36.(1)判断236是不是“完美数”,计算G (321);(2)已知两个“完美数”m =100a +10b +2,n =100c +30+d (0≤b <a ≤9,0≤c ≤9,0≤d ≤9,a 、b 、c 、d 为整数),若G (m )能被7整除,G (m )+G (n )=18(d ﹣2),求n .5、用适当的符号表示下列关系:(1)x 的3倍与x 的2倍的和是正数;(2)一枚炮弹的杀伤半径不小于300米;(3)三件上衣与四条长裤的总价钱不高于268元;(4)明天下雨的可能性不小于70%;(5)小明的体重不比小刚轻.-参考答案-一、单选题1、A【解析】【分析】根据不等式的性质求解即可.【详解】解:∵x y <,且()()33->-a x a y ,∴a -3<0,∴a <3,故选A .【点睛】本题考查了不等式的性质:①把不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变.2、B【解析】根据不等式的性质依次分析判断.【详解】解:∵a b >,∴a +1>b +1,故选项A 不符合题意;∵a b >,∴22a b ->-,故选项B 符合题意;∵a b >,∴-2a<-2b ,故选项C 不符合题意;∵a b >,∴33a b >,故选项D 不符合题意; 故选:B .【点睛】此题考查了不等式的性质:不等式两边同时加上或减去同一个整式,不等号方向不变;不等式两边同时乘或除以同一个不为0的整正数,不等号方向不变;不等式两边同时乘或除以同一个不为0的负数,不等号方向改变.3、A【解析】【分析】 y >0即是图象在x 轴上方,找出这部分图象上点对应的横坐标范围即可.【详解】解:∵一次函数y =f (x )的图象经过点(2,0),∴如果y >0,则x <2,故选:A .【点睛】本题考查一次函数的图象,数形结合是解题的关键.4、A【分析】根据不等式的性质1不等式不等式两边同时加或减去同一个数或整式,不等号方向不变,基本性质2:不等式两边同时乘以(或除以)同一个大于0的整数,不等号方向不变•基本性质3:不等式两边同时乘以(或除以)同一个小于0的整数,不等号方向改变,根据不等式性质对各选项进行一一分析判断即可.【详解】c,解:A.a b>,不妨设0则22=,ac bc∴选项A符合题意;B.a b>,∴>,22a b∴选项B不符合题意;C.a b>,a b∴->-,11∴+>-,a b31∴选项C不符合题意;D.a b>,∴-<-,a b∴-<-,a b22∴选项D不符合题意;故选:A.【点睛】本题考查不等式性质,掌握不等式性质是解题关键.5、C【解析】【分析】由2525=可得关于a 的一元一次不等式组,得出24<a <26,即可得出a 的值.【详解】解:∵2525=,∴1251a a -<<+ ,∴24<a <26,∵a 为整数,∴a =25.故选:C .【点睛】本题考查了解一元一次不等式组,估算无理数的大小,得出a 的取值范围是解题的关键.6、C【解析】【分析】分别求出各不等式的解集,再求出其公共解集,然后求出最小整数解即可.【详解】解:解不等式31x +>,得:2x >-,解不等式14x -<,得:5x <, 故不等式组的解集为: 25x -<<,则该不等式组的最小整数解为:1-.故选:C.【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.7、D【解析】【分析】-,根据三角形三边关系可得到腰长可取的值,从而求得底边的长.设腰长为x,则底边为162x【详解】-,解:设腰长为x,则底边为162x--<<-+,x x x x x162162∴<<,x48三边长均为整数,x可取的值为:5或6或7,∴当腰长为5时,底边为6;当腰长为6时,底边为4,当腰长为7时,底边为2;综上所述,以上三种情况都有可能.故选:D.【点睛】此题主要考查等腰三角形的性质及三角形三边关系的综合运用.此题是借用不等式来求等腰三角形的底边的长度.8、D【解析】【分析】根据数轴可确定不等式的解集,根据解集相同列出方程求解即可.【详解】解:根据数轴可知,不等式的解集为1x ≥-,解不等式21x a +≥得,12a x -≥, 故112a -=-, 解得,3a =,故选:D .【点睛】本题考查了一元一次方程的解法和一元一次不等式的解集,解题关键是根据不等式的解集相同列出方程.9、A【解析】【分析】在不等式的两边都加上或减去同一个数或整式,不等号的方向不变,在不等式的两边都乘以或除以同一个正数,不等号的方向不变,在不等式的两边都乘以或除以同一个负数,不等号的方向改变,根据不等式的基本性质逐一分析即可.【详解】 解: a >b ,0,a b 故A 符合题意;a >b ,当0c ≠时,22,ac bc > 故B 不符合题意;a >b ,,,a b c a c b 故C 不符合题意;a >b ,+333,a b b 故D 不符合题意;故选A【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.10、B【解析】【分析】根据题意和不等式的性质,赋予特殊值,可以判断各个选项中的结论是否成立,从而可以解答本题.【详解】解:a 、b 都是实数,且a b <,∴当b 为负数时,1a b>,故选项A 错误; a b ->-,则1a b -+>-,故选项B 正确;当2a =-,3b =时,11a b<,故选项C 错误; 5a =-,3b =时,||||a b >,故选项D 错误;故选:B .【点睛】本题考查不等式,解答本题的关键是明确题意,利用不等式的性质解答.二、填空题1、0x=,1,2【解析】【分析】由题意根据解一元一次不等式基本步骤:移项、合并同类项可得答案.【详解】解:移项得:11x+,合并同类项得:2x,故不等式的非负整数解是0x=,1,2.故答案为:x=0,1,2.【点睛】本题主要考查解一元一次不等式的基本能力,注意掌握解不等式的基本步骤是解题的关键.2、3 1.5x-<<##1.5>x>-3【解析】【分析】根据图象得出P点横坐标为1.5,联立y=kx-3和y=mx得m=k-2,再联立y=kx+6和y=(k-2)x解得x=-3,画草图观察函数图象得解集为3 1.5x-<<.【详解】∵P是y=mx和y=kx-3的交点,点P的横坐标为1.5,∴1.51.53 y my k=⎧⎨=-⎩解得m=k-2联立y=mx和y=kx+6得(2)6y k x y kx =-⎧⎨=+⎩ 解得x =-3即函数y =mx 和y =kx +6交点P ’的横坐标为-3,观察函数图像得,满足kx −3<mx <kx +6的x 的范围为:3 1.5x -<<故答案为:3 1.5x -<<【点睛】本题主要考查对一次函数与一元一次不等式的理解和掌握,解题的关键在于将不等式kx −3<mx <kx +6解集转化为直线y =mx 与直线y =kx -3,直线y =kx +6相交的横坐标x 的范围.3、 x >3 0<y <12【解析】【分析】由等腰三角形的底边长为6,则它的腰长x ,已知腰长是6,底边长为y ,根据三角形三边关系列出不等式,通过解不等式即可得到答案;等腰三角形的两腰长度相等,根据三角形中两边之和大于第三边,两边之差小于第三边可求出解.【详解】等腰三角形的底边长为6,则它的腰长x ,则根据x +x >6且x -x <6,即x >3.腰长是6,底边长为y ,根据三边关系可知:6-6<y <6+6,即0<y <12.故答案为x >3.0<y <12;【点睛】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.4、36250【解析】【分析】设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,先根据利润率的计算公式可得100x y +=,从而可分别求出每个,A B 礼盒的实际成本和核算出的成本,再设A 礼盒的数量为a 个,B 礼盒的数量为b 个,根据“核算出的成本比实际成本少了500元”可得250x y b -=,从而可得12550x b=+,然后结合180a b +≤求出超巿混装,A B 两种礼盒的总成本的最大值即可得. 【详解】解:设每千克川味香肠的成本为x 元,每千克广味香肠的成本为y 元,由题意得:100(120%)()12000x y ⨯++=,即100x y +=,则每个A 礼盒的实际成本和核算出的成本均为22200x y +=(元),每个B 礼盒的实际成本为32100x y x +=+(元),核算出的成本为32100x y y +=+(元),设A 礼盒的数量为a 个,B 礼盒的数量为b 个,由题意得:180200(2100)200(2100)500a b a x b a y b +≤⎧⎨++--+=⎩,即180250a b x y b +≤⎧⎪⎨-=⎪⎩, 联立250100x y b x y ⎧-=⎪⎨⎪+=⎩,解得12550x b =+,则超巿混装,A B 两种礼盒的总成本为200(2100)2002100a x b a xb b ++=++1252002(50)100a b b b=+⋅++ 200()25036250a b =++≤,即超巿混装,A B 两种礼盒的总成本最多为36250元,故答案为:36250.【点睛】本题考查了列代数式、二元一次方程组的应用等知识点,通过设立未知数,正确找出等量关系是解题关键.5、<【解析】【分析】根据不等式的性质:①不等式的两边都加(或减去)同一个整式,不等号的方向不变;②不等式两边都乘(或除以)同一个正数,不等号的方向不变;③不等式两边都乘(或除以)同一个负数,不等号的方向改变,据此变形即可得.【详解】解:∵x y >,∴55x y -<-,∴3535x y -<-,故答案为:<.【点睛】题目主要考查不等式的性质,深刻理解不等式的性质进行变形是解题关键.三、解答题1、 (1)六(1)班的捐款额为420元,六(2)班的捐款额为480元(2)38人【解析】【分析】(1)设六(1)班的捐款额为x 元,从而可得六(2)班的捐款额为(60)x +元,再根据合计总捐款额为900元建立方程,解方程即可得;(2)先求出六(1)班学生数最多不超过42人,再根据合计的学生总人数即可得出答案.(1)解:设六(1)班的捐款额为x 元,则六(2)班的捐款额为(60)x +元,由题意得:60900x x ++=,解得420x =,则6042060480x +=+=,答:六(1)班的捐款额为420元,六(2)班的捐款额为480元;(2)解:因为六(1)班学生平均每人捐款的金额不小于10元,所以六(1)班学生数最多不超过4201042÷=(人),所以六(2)班学生数至少是804238-=(人),答:六(2)班的学生数至少是38人.【点睛】本题考查了一元一次方程的应用、不等式的应用,正确建立方程和理解不等式的概念是解题关键.2、 (1)1辆甲型客车与1辆乙型客车的载客量分别是32,45人(2)最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元【解析】【分析】(1)设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人,由题意知3427623199x y x y +=⎧⎨+=⎩计算求解即可.(2)设租用甲型客车x 辆,乙型客车20x -辆,由题意知()324520850x x +⨯-≥,解得:5013x ≤,费用()80010002020000200W x x x =+⨯-=-,可知 3x =时费用最低,进而得出结果.(1)解:设1辆甲型客车与1辆乙型客车的载客量分别是x y ,人由题意知3427623199x y x y +=⎧⎨+=⎩ 解得3245x y =⎧⎨=⎩ ∴1辆甲型客车与1辆乙型客车的载客量分别是32,45人.(2)解:设租用甲型客车x 辆,乙型客车20x -辆由题意知()324520850x x +⨯-≥ 解得:5013x ≤费用()80010002020000200W x x x =+⨯-=-费用最低时,3x =2020317x -=-=辆20000200319400min W =-⨯=元∴最节省费用的租车方案为甲型车3辆,乙型车17辆,最低费用为19400元.【点睛】本题考查了二元一次方程组的应用,一元一次不等式的应用等知识.解题的关键在于正确的列方程和不等式.3、1x【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项可得.【详解】两边都乘以12,得:()()1222533x x +--,去括号,得:1241093x x +--,移项、合并同类项,得:77x ,系数化为1得,1x .【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.4、 (1)不是;18(2)232【解析】【分析】(1)由2+3+6=11>10可知236不是“完美数”,G (321)=32112311-=18; (2)G (m )+G (n )=(100102)(20010)11a b b a ++-+++(10030)(10030)11c d d c ++-++=9919811a-+999911c d-=(9a﹣18)+(9c﹣9d)=9(a+c﹣d﹣2)=18(d﹣2),可得a+c=3d﹣2,又G(m)=9919811a-是整数且0≤b<a≤9,可得满足条件的a只有2或9,当a=9时,m不是“完美数”;当a=2时,m可以是“完美数”.当a=2时,得2+c=3d﹣2,即4+c=3d,又由0≤c≤9,0≤d≤9可得22cd=⎧⎨=⎩,53cd=⎧⎨=⎩,{c=8c=4.因为n是完美数,所以必须满足c+3+d≤10,即c+d≤7,则只有c=2,d=2满足要求.所以当c=2,d=2时,n=100×2+30+2=232.(1)∵2+3+6=11>10,∴236不是“完美数”,∴G(321)=32112311-=18;(2)∵G(m)+G(n)=(100102)(20010)11a b b a++-+++(10030)(10030)11c d d c++-++=9919811a-+999911c d-=(9a﹣18)+(9c﹣9d)=9(a+c﹣d﹣2)=18(d﹣2),可得a+c=3d﹣2,又∵G(m)=9919811a-是整数且0≤b<a≤9,可得满足条件的a只有2或9,当a=9时,m不是“完美数”;当a=2时,m可以是“完美数”.当a=2时,得2+c=3d﹣2,即4+c=3d,又由0≤c≤9,0≤d≤9,可得22cd=⎧⎨=⎩,53cd=⎧⎨=⎩,{c=8c=4.∵n是完美数,∴必须满足c+3+d≤10,即c+d≤7,∴只有c=2,d=2满足要求.当c=2,d=2时,n=100×2+30+2=232.【点睛】此题考查了问题新定义和数字计算讨论与推理能力,关键是能按新定义进行验证、计算,并能进行算式的讨论、推理.5、 (1)3x+2x>0(2)r≥300(3)3a+4b≤268(4)P≥70%(5)设小明的体重为a千克,小刚的体重为b千克,a≥b【解析】【分析】根据每一道题所叙述内容列出不等关系即可,注意大于与大于等于,小于与小于等于的区别.【详解】(1)3x+2x>0;(2)设炮弹的杀伤半径为r米,r≥300;(3)设每件上衣为a元,每条长裤是b元,3a+4b≤268;(4)用P表示明天下雨的可能性,P≥70%;(5)设小明的体重为a千克,小刚的体重为b千克,a≥b.【点睛】本题考查列不等式,能够分析题意找出不等关系是解决本题的关键.。
新鲁教版七年级下册数学一元一次不等式(组)综合练习含答案

一元一次不等式(组)综合能力检测题一、选择(共103⨯=30分)1.一罐饮料净重500克,商标上注明“蛋白质含量≥0.4%”,这句话的含义是( ) A .每500克内含有蛋白质不低于2克 B .每500克内含有蛋白质2克C .每500克内含有蛋白质高于2克D .每5 00克内含有蛋白质不超过2克2.明明同学粗心大意,根据不等式性质他将“a >b ”作如下变形,其中正确的是( ) A .由a >b ,得a -2<b -2 B .由a >b ,得-2a <-2b C .由a >b ,得a >b D .由a >b ,得a 2>b 23.把不等式2x -< 4的解集表示在数轴上,正确的是( )4.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是A . 1℃~3℃B . 3℃~5℃C . 5℃~8℃D . 1℃~8℃ 5.不等式组⎩⎨⎧-<++≤14242x x xx 的正整数解有( )解析:解不等式①,得x ≤4,解不等式②,得x >1,所以不等式组的解集为1<x ≤4,其中正整数解有2,3,4,合计3个.6在一次阅读课上,班长问老师分成几个学习小组,老师风趣的说:我有43本书,计划分给各小组,每组8本有剩余,每组9本却不足,猜猜分成几个组?( ) A .4 B .5 C .6 D .77.不等式组⎩⎨⎧<->-21312x x 的解集恰好是x ─ 1 >a 的解集,则a 的值是( )A .1B .4C .3D .8. 若不等式2->+b kx 的解集为3>x ,则直线b kx y +=图像大致是( )9. 5有数颗等重的糖果和数个大、小砝码,其中大砝码皆为5克、大砝码皆为1克,且图1A .B . D .C .D-1 2图2是将糖果与砝码放在等臂天平上的两种情形.判断情形( )是正确的?10.已知a ,b 为实数,则解可以为 – 2 < x < 2的不等式组是( )A .⎩⎨⎧>>11bx axB .⎩⎨⎧<>11bxax C . ⎩⎨⎧><11bx ax D . ⎩⎨⎧<<11bx ax 二、填空(共103⨯=30分)11.“80”后是近几年的新名词,是指介于1980--1989之间出生的人,是当今中国崛起的一代!同学们都是“90”后,用“x ”表示“90”后现在的年龄,“x ”范围是___________________. 12.请你写出一个解集如图2所示的一元一次不等式组___________________.13.(m -1)x >m -1的解集是x <1,m 的范围________________.14.下列说法:①5是y -1>6的解;②不等式m -1>2的解有无数个;③x >3是不等式x +3>的解集;④不等式x +1<2有无数个整数解,把其中正确的序号是________________. 15.按下列程序进行运算的取值范围是________________. 16.如图3,点B 表示的21x -3,则x 的范围是________________.图1B .A .C .D .2,图317.如图4,直线1l :1y x =+与直线2l :y mx n =+相交于点P (a ,2),则关于x 的不等式1x +≥mx n +的解集为 . .18.若不等式组0,122x a x x +⎧⎨->-⎩≥有解,则a 的取值范围是________________.19.我们定义a b c dad bc =-,例如2345=2×5-3×4=10-12=-2.若x 、y 均为整数,且满足1<14x y <3,则x y +的值是_________.20.当实数a 的取值范围是_________________时,使不等式组)(⎪⎪⎩⎪⎪⎨⎧++++++a x >a x >x x 1343450312恰有两个整数解.三、解答:(共103⨯=30分) 21.(5分)小马虎解不等式03121≥+-x 的过程如下:两边同乘以3得:0121≥+-x , 整理得:22-≥-x , 两边同除-2得 : 1≥x .解题过程有错误,请你指出来,并写出正确解答过程. 22.(5分)我们知道不等式的两边加(或减)同一个数(或式子)不等号的方向不变.不等式组是否也具有类似的性质?完成下列填空:图4一般地,如果⎩⎨⎧>>dc b a ,那么a +c b +d (用“>”或“<”填空).你能应用不等式的性质证明上述关系式吗?23. (7分)已知不等式①13263<-x ,②131223--≤-x x ,③1263-<+-x ,从中任意选取两个组成不等式组,解这个不等式组,并在这个不等式组解集内求出第三个不等式组整数解的个数. 24.(7分)已知整数x 满足-5≤x ≤5,y 1=x +1,y 2=-2x +4对任意一个x ,m 都取y 1,y 2中的较小值,结合函数图象,求m 的最大值. 25.(8分)近期以来,大蒜和绿豆的市场价格离奇攀升,网民戏称为“蒜你狠”、“豆你玩”.以绿豆为例,5月上旬某市绿豆的市场价已达16元/千克.市政府决定采取价格临时干预措施,调进绿豆以平抑市场价格.经市场调研预测,该市每调进100吨绿豆,市场价格就下降1元/千克.为了即能平抑绿豆的市场价格,又要保护豆农的生产积极性,绿豆的市场价格控制在8元/千克到10元/千克之间(含8元/千克和10元/千克).问调进绿豆的吨数应在什么范围内为宜?26.(8分)如图5:△ABC 是由直线x y =1、直线22+-=x y 和直线2213+=x y 围成的三角形,请用不等式的知识说明△ABC 内部点横坐标的范围.1 y 227. (10分) 对非负实数x “四舍五入”到个位的值记为<x >即:当n 为非负整数时,如果11,22nx n ≤<则<x >=n 如:<0>=<0.48>=0,<0.64>=<1.493>=1,<2>=2,<3.5>=<4.12>=4,… 试解决下列问题:(1)填空:①<π>= (π为圆周率);②如果<2x -1>=3,则实数x 的取值范围为 ; (2)求满足43xx 的所有非负实数x 的值. 28.(10分)如图6所示的矩形包书纸中,虚线是折痕,阴影是裁剪掉的部分,四个角均为大小相同的正方形,正方形的边长为折叠进去的宽度.(1)设课本的长为a cm ,宽为b cm ,厚为c cm ,如果按如图所示的包书方式,将封面和封底各折进去3cm ,用含a ,b ,c 的代数式,分别表示满足要求的矩形包书纸的长与宽;(2)现有一本长为19cm ,宽为16cm ,厚为6cm 的字典,你能用一张长为43cm ,宽为26cm 的矩形纸,按图所示的方法包好这本字典,并使折叠进去的宽度不小于3cm 吗?请说明理由.(图6)参考答案: 一、1.A . 2.B .3.A .解析:不等式的两边现时除以-2,得x >-2,在解集上表示应为A .4. B .解析:可将问题转化求不等式组15,38.x x ⎧⎨⎩≤≤≤≤的解集,可得解集为3≤x ≤5;也可将问题理解为:适宜两种蔬菜放在一起同时保鲜的温度是指同时满足“1℃~5℃”与“3℃~8℃”,因此需要取这两部分温度的共同部分(即两个集合的交集).5.C .解析:解不等式①,得x ≤4,解不等式②,得x >1,所以不等式组的解集为1<x ≤4,其中正整数解有2,3,4,合计3个. 6 B .解析:可将问题转化求不等式组⎩⎨⎧><439438x x 解集的整数解,可得解集为843943<<x ,其中整数解是5.7. A .1 解析:⎩⎨⎧<->-21312x x 的解集是2>x ,x ─ 1 >a 的解集是a x +>1,因为2>x 和a x +>1相同,所以21=+a ,a =1.8. C.解析: 2->+b kx 的解集为3>x ,则直线b kx y +=中的k >0,可排除A 、B 选项;D 选项3>x 时,0>+b kx ,也不符合题意,故选C. 9. D .解析:由图1知一颗糖果重量大于5克,小于316克,可排除A 选项;故两颗糖果重量大于10克,但小于332克可排除B 选项;故三颗糖果重量大于15克,可排除C 选项,故需D .10.D .解析:由不等式组的解集是– 2 < x < 2,∴a =12或a =-12,b =12或b =-12;且a 、b 异号.当a =12或a =-12时,排除A 、B ;当b =12或b =-12时排除C ;只有当a =12,b =-12或a =-12,b =12时,选项D 中不等式组的解集是-2<x <2,故选D .二、11.1 ≤ x ≤ 21.12.答案不唯一,略.13.m<1.解析:不等号方向改编,故m -1<0,所以m<1.14.②④.15.x>2.解析:第五次输入数字:大于(244+2)÷ 3=82;第四次输入数字:大于(82+2)÷ 3=28;第三次输入数字:大于(28+2)÷ 3=10;第二次输入数字:大于(10+2)÷ 3=4;第一次输入数字:大于(4+2)÷ 3=2.16.6<x <10.0<21x -3<2,解得6<x <10. 17.1≥x .解析:根据函数图象可知,不等式1x +≥mx n +的解集即当直线1y x =+不低于直线y mx n =+时x 应满足的取值范围,即a x ≥.把P (a ,2)代入直线1y x =+解析式,21=+a ,所以1=a ,所以x 应满足1≥x .19.3.解析: 14xy =xy -⨯41,即1<xy -⨯41<3,故有⎩⎨⎧<->-3414xy xy ,所以31<<xy ,又因为x 、y 均为整数,所以2=xy ,故有2,1==y x 、2,1-=-=y x 或1,2==y x 、1,2-=-=y x ,所以x y +的值是.20.21<a ≤1.解析:由不等式0312>x x ++两边同乘以6得到3x +2(x +1)>0,可以求出x >-52,由不等式)(a x >a x ++++134345两边都乘以3得到3x +5a +4>4x +4+3a 可以解出x <2a ,所以不等式组的解集为a <x<252-,因为该不等式组恰有有两个整数解,所以1<2a ≤2,所以21<a ≤1.三、21.解:错误一:去分母漏乘整数项;错误二:去分母后12+x 未加括号;错误三:不等式两边同除以-2,不等号没改变. 正解:①两边同乘以3得:0123≥+-)(x ,②整理得:22-≥-x ,③两边同除-2得 : 1≤x . 22.解:>,>,<,>; 证明:∵a >b ,∴a+c >b+c .又∵c >d ,∴b +c >b +d ,∴a+c >b+d . .23. 解:以①②组成不等式组为例,可得解集131<≤-x ,再解得③的解集,6>x 故在131<≤-x 内,③的整数解有7、8、9、10、11、12六个.24.解析:易求y 1=x +1,y 2=-2x +4的交点为(1,2),结合二者图像(图像略),当x <1时,y 1<y 2,此时m 取y 1的值,都小于2;当x >1时,y 1>y 2,此时m 取y 2的值,也都小于2,只有当所以当x =1时,y 1=y 2,此时m 取值是2,当-5≤x ≤5时,m 的最大值是2. 25.解:设调进绿豆x 吨,根据题意,得1681001610.100x x -≥-≤⎧⎪⎪⎨⎪⎪⎩, 解得 600≤x ≤800. 答:调进绿豆的吨数应不少于600吨,并且不超过800吨.26.解:在三角形内部点满足⎩⎨⎧<<3231y y y y 即⎪⎪⎩⎪⎪⎨⎧+<+-+<2212221x x x x ,解得04<<x .27. (1)①3;②x 79≤<44; (2)[法一]作x y x y 34,=>=<的图象,如图y =<x >的图象与y =43x 图象交于点(0,0)、3(,1)4、3(,2)2,∴x =0,33,42; [法二]∵x ≥0,43x 为整数,设43x =k ,k 为整数,则x =34k ,∴<34k >=k ,∴131,0242k k k k -≤<+≥,∵0≤k ≤2,∴k =0,1,2,∴x =0,33,4228.解:(1)矩形包书纸的长为:(2b +c +6)cm ,矩形包书纸的宽为(a +6)cm . (2)设折叠进去的宽度为x cm , 分两种情况:①当字典的长与矩形纸的宽方向一致时,根据题意,得⎩⎨⎧++⨯+.4326216,26219x x解得x ≤2.5.所以不能包好这本字典.②当字典的长与矩形纸的长方向一致时,同理可得x ≤-6. 所以不能包好这本字典.综上,所给矩形纸不能包好这本字典.≤ ≤。
综合解析鲁教版(五四制)七年级数学下册第七章二元一次方程组章节测试试卷(无超纲带解析)

七年级数学下册第七章二元一次方程组章节测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在某场CBA 比赛中,某位运动员的技术统计如下表所示:注:①表中出手投篮次数和投中次数均不包括罚球; ②总得分=两分球得分+三分球得分+罚球得分.根据以上信息,本场比赛中该运动员投中两分球和三分球各( )个. A .5,6B .6,5C .4,7D .7,42、已知2x y m =⎧⎨=⎩是二元一次方程531x y +=的一组解,则m 的值是( )A .3-B .3C .311-D .3113、某宾馆准备正好用200元购买价格分别为50元和25元的两种换气扇(两种都要买),则可供宾馆选择的方案有( ) A .3种B .4种C .5种D .6种4、方程x +y =6的正整数解有( ) A .5个B .6个C .7个D .无数个5、下列方程组中,属于二元一次方程组的是( )A .31x y x z +=⎧⎨+=⎩B .2121x y x y ⎧+=⎨+=-⎩C .0235x y x y -=⎧⎨+=⎩D .212x y xy -=⎧⎨=⎩6、已知关于x ,y 的方程组111222a x b y c a x b y c +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组)()(111122222626a m b n c b a m b n c b ⎧--=+⎪⎨--=+⎪⎩的解是( ) A .52m n =⎧⎨=-⎩B .41m n =⎧⎨=⎩C .11m n =-⎧⎨=-⎩D .51m n =⎧⎨=-⎩7、下列各式中是二元一次方程的是( ) A .2327x y -=B .25x y +=C .123y x+=D .234x y -=8、在下列各组数中,是方程组23823x y x y -=-⎧⎨+=⎩的解的是( )A .24x y =⎧⎨=⎩B .31x y =-⎧⎨=⎩C .11x y =⎧⎨=⎩D .12x y =-⎧⎨=⎩9、已知23x y =⎧⎨=-⎩是二元一次方程510x my +-=的解,则m 的值为( ) A .3 B .-3 C .113D .113-10、已知一次函数y =k 1x +b 1和一次函数y 1=k 2x +b 2的自变量x 与因变量y 1,y 2的部分对应数值如表所示,则关于x 、y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为( )A .52x y =-⎧⎨=-⎩B .45x y =⎧⎨=⎩ C .23x y =⎧⎨=⎩ D .13x y =-⎧⎨=-⎩第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知21x y =-⎧⎨=⎩是二元一次方程233x ay +=的一个解,那么=a _______.2、请写出一个解为34x y =⎧⎨=-⎩,的二元一次方程组,这个方程组可以是_________.3、把二元一次方程组中一个方程的一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现____________,从而求得方程组的解,这种解方程组的方法叫做____________,简称代入法.4、解二元一次方程组有___________和___________. 用一元一次方程解应用题的步骤是什么?审题、___________、列方程、___________、检验并答.5、根据条件“比x 的一半大3的数等于y 的2倍”中的数量关系列出方程为 _____. 三、解答题(5小题,每小题10分,共计50分) 1、解方程: (1)4321x x +=+;(2)233 5318x yx y-=⎧⎨+=⎩.2、已知方程组228x yax by+=-⎧⎨-=-⎩和方程组4312bx ayx y+=-⎧⎨-=⎩的解相同,求(2a+b)2021的值.3、解方程组21 327x yx y-=⎧⎨+=⎩.4、为了响应“足球进校园”的号召,某校计划为学校足球队购买一批足球,已知购买6个A品牌的足球和4个B品牌的足球共需960元;购买5个A品牌的足球和2个B品牌的足球共需640元.(1)求A,B两种品牌的足球的单价.(2)该校打算通过“京东商城”网购20个足球共花w元,若购买A品牌的足球x个,求w与x的函数关系式.如果购买A品牌的足球不少于3个且不多于7个,则学校最多需要花多少钱?5、疫情期间为保护学生和教师的健康,某学校储备“抗疫物资”用29000元购进甲、乙两种医用口罩共计900盒,甲,乙两种口罩的售价分别是30元/盒,35元/盒.(1)求甲、乙两种口罩各购进了多少盒?(2)现已知甲,乙两种口罩的数量分别是20个/盒,25个/盒,按照市教育局要求,学校必须储备足够使用10天的口罩,该校师生共计900人,每人每天2个口罩,问购买的口罩数量是否能满足市教育局的要求?-参考答案-一、单选题1、B【分析】设本场比赛中该运动员投中两分球x个,三分球y个,根据投中次数结合总分,即可得出关于x、y 的二元一次方程组,解之即可得出结论.【详解】解:设本场比赛中该运动员投中两分球x个,三分球y个,根据题意得:2363311x yx y++=⎧⎨+=⎩,解得:65xy=⎧⎨=⎩.答:设本场比赛中该运动员投中两分球6个,三分球5个.故选:B.【点睛】本题考查统计表和了二元一次方程组的应用,找准等量关系,列出二元一次方程组是解题的关键.2、A【解析】【分析】把2xy m=⎧⎨=⎩代入5x+3y=1即可求出m的值.【详解】把2xy m=⎧⎨=⎩代入5x+3y=1,得10+3m=1,故选A . 【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解. 3、A 【解析】 【分析】设购买50元和25元的两种换气扇的数量分别为x ,y ,然后根据用200元购买价格分别为50元和25元的两种换气扇,列出方程求解即可. 【详解】解:设购买50元和25元的两种换气扇的数量分别为x ,y 由题意得:5025200x y +=,即28x y +=, ∵x 、y 都是正整数, ∴当x =1时,y =6,当x =2时,y =4,当x =3时,y =2, ∴一共有3种方案, 故选A . 【点睛】本题主要考查了二元一次方程的应用,解题的关键在于能够准确理解题意,列出方程求解. 4、A 【解析】 【分析】根据题意求二元一次方程的特殊解,根据解为正整数,分别令1,2,3,4,5x=进而求得对应y的值即可【详解】解:方程的正整数解有15xy=⎧⎨=⎩,24xy=⎧⎨=⎩,33xy=⎧⎨=⎩,42xy=⎧⎨=⎩,51xy=⎧⎨=⎩共5个,故选:A.【点睛】本题考查了求二元一次方程的特殊解,理解解为正整数是解题的关键.5、C【解析】【分析】根据二元一次方程组的基本形式及特点进行判断,即:①方程组中的两个方程都是整式方程.②方程组中共含有两个未知数.③每个方程都是一次方程.【详解】解:A、该方程组中含有3个未知数,不是二元一次方程组,故本选项不符合题意B、该方程组中的第一个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;C、该方程组符合二元一次方程组的定义,故本选项符合题意;D、该方程组中的第二个方程的最高次数为2,不是二元一次方程组,故本选项不符合题意;故选:C.【点睛】本题主要考查二元一次方程组的判定,解题的关键是熟练掌握二元一次方程组的基本形式及特点.6、A【解析】【分析】先将关于,m n 的方程组变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,再根据关于,x y 的方程组的解可得26411m n -=⎧⎨+=-⎩,由此即可得出答案. 【详解】解:关于,m n 的方程组可变形为)(())(()111222261261a m b n c a m b n c ⎧--+=⎪⎨--+=⎪⎩,由题意得:26411m n -=⎧⎨+=-⎩,解得52m n =⎧⎨=-⎩,故选:A . 【点睛】本题考查了求二元一次方程组的解,正确发现两个方程组之间的联系是解题关键. 7、B 【解析】 【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可; 【详解】2327x y -=中x 的次数为2,故A 不符合题意;25x y +=是二元一次方程,故B 符合题意; 123y x +=中1x不是整式,故C 不符合题意;234x y-=中y的次数为2,故D不符合题意;故选B.【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键.8、D【解析】【分析】根据二元一次方程组的解可把选项逐一代入求解即可.【详解】解:∵23823x yx y-=-⎧⎨+=⎩①②∴把24xy=⎧⎨=⎩代入方程①得:22348⨯-⨯=-,代入②得:224103+⨯=≠,所以该解不是方程组的解,故A选项不符合题意;把31xy=-⎧⎨=⎩代入方程①得:()233198⨯--⨯=-≠-,代入②得:32113-+⨯=-≠,所以该解不是方程组的解,故B选项不符合题意;把11xy=⎧⎨=⎩代入方程①得:213118⨯-⨯=-≠-,代入②得:1213+⨯=,所以该解不是方程组的解,故C选项不符合题意;把12xy=-⎧⎨=⎩代入方程①得:()21328⨯--⨯=-,代入②得:1223-+⨯=,所以该解是方程组的解,故D选项符合题意;故选D.【点睛】本题主要考查二元一次方程组的解,熟练掌握二元一次方程组的解是解题的关键.9、A【解析】【分析】知道了方程的解,可以把这对数值代入方程,得到一个含有未知数m的一元一次方程,从而可以求出m的值.【详解】解:把23xy=⎧⎨=-⎩代入二元一次方程5x+my-1=0,得10-3m-1=0,解得m=3.故选:A.【点睛】本题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.10、C【解析】【分析】利用方程组的解就是两个相应的一次函数图象的交点坐标解决问题.【详解】解:由表格可知,一次函数y1=k1x+b1和一次函数y2=k2x+b2的图象都经过点(2,3),∴一次函数y1=k1x与y=k2x+b的图象的交点坐标为(2,3),∴关于x ,y 的二元一次方程组1122y k x b y k x b =+⎧⎨=+⎩的解为23x y =⎧⎨=⎩. 故选:C .【点睛】本题考查了一次函数图像交点坐标与方程组解的关系:对于函数y 1=k 1x +b 1,y 2=k 2x +b 2,其图象的交点坐标(x ,y )中x ,y 的值是方程组1122y k x b y k x b +⎧⎨+⎩==的解. 二、填空题1、203##263【解析】【分析】把21x y =-⎧⎨=⎩代入233x ay +=,即可求出a 的值. 【详解】解:由题意可得:()2323a ⨯-+=, 263a -+=, 解得:203a =, 故答案为:203. 【点睛】本题考查了求二元一次方程的解,能使二元一次方程左右两边相等的未知数的值叫做二元一次方程的解.2、17x y x y +=-⎧⎨-=⎩ 【解析】【分析】由题意知,可组的二元一次方程组不唯一,加减是最简单的,所以可给出17x y x y +=-⎧⎨-=⎩的形式. 【详解】解:∵1x y +=-,7x y -=∴最简单的二元一次方程组可为17x y x y +=-⎧⎨-=⎩故答案为:17x y x y +=-⎧⎨-=⎩. 【点睛】本题考查了二元一次方程组.解题的关键在于按照方程组的解给出正确的方程组的形式.3、 消元 代入消元法【解析】略4、 代入消元法 加减消元法 设未知数 解方程【解析】略5、12x +3=2y【解析】【分析】根据题中比x的一半大3的数表示为:132x+,y的2倍表示为:2y,列出方程即可得.【详解】解:比x的一半大3的数表示为:132x+,y的2倍表示为:2y,综合可得:1322x y+=,故答案为:1322x y+=.【点睛】题目主要考查二元一次方程的应用,理解题意,列出方程是解题关键.三、解答题1、(1)x=﹣1;(2)31 xy=⎧⎨=⎩【解析】【分析】(1)根据一元一次方程的性质,通过移项并合并同类项,即可完成求解;(2)根据二元一次方程组的性质,通过加减消元法求解,即可得到答案.【详解】(1)4x+3=2x+1,移项,得4x﹣2x=1﹣3合并同类项,得2x=﹣2解得:x=﹣1;.(2)233 5318 x yx y-=⎧⎨+=⎩①②①+②得:7x=21解得x=3把x=3代入②得15+3y=18,解得:y=1∴方程组的解为:31xy=⎧⎨=⎩.【点睛】本题考查了一元一次方程、二元一次方程组的知识;解题的关键是熟练掌握一元一次方程、二元一次方程组的性质,从而完成求解.2、1-【解析】【分析】根据方程组解相同,可得新方程组22312x yx y+=-⎧⎨-=⎩,求解得到方程组的解,根据方程组的解满足方程,把解代入可得到关于a、b的方程组268624a ba b+=-⎧⎨-+=-⎩,求解即可得到a、b的值,再代入求解,根据-1的奇数次方都等于-1,即可得到答案;【详解】解:由题意得,方程组22 312 x yx y+=-⎧⎨-=⎩∴方程组的解为26 xy=⎧⎨=-⎩把26x y =⎧⎨=-⎩代入得,268624a b a b +=-⎧⎨-+=-⎩ ∴方程组的解为1575a b ⎧=⎪⎪⎨⎪=-⎪⎩∴()202120212021172215)5(1a b ⎛⎫+=⨯- ⎝=⎭-=-⎪;【点睛】本题主要考查了二元一次方程组的解以及乘方,先组合新的方程,分别求出两个方程组的解是解题的关键.3、212x y =⎧⎪⎨=⎪⎩. 【解析】【分析】应用加减消元法,求出方程组的解是多少即可.【详解】解:21327x y x y -=⎧⎨+=⎩①②, ①+②,可得4x =8,解得x =2,把x =2代入①,解得y =12, ∴原方程组的解是212x y =⎧⎪⎨=⎪⎩.【点睛】本题主要考查了解二元一次方程组的方法,要熟练掌握,注意代入消元法和加减消元法的应用.4、 (1)A 品牌足球的单价为80元,B 品牌足球的单价为120元;(2)402400w x =-+,2280元【解析】【分析】(1)设A ,B 两种品牌的足球的单价分别为y 元,z 元,由等量关系:买6个A 品牌足球的钱+买4个B 品牌足球的钱=960元;买5个A 品牌足球的钱+买2个B 品牌足球的钱=640,即可列出方程组,解方程组即可;(2)根据w =买x 个A 品牌足球的钱+买(20-x )个B 品牌足球的钱,即可求得w 与x 的函数关系式;由3≤x ≤7,根据所求函数的性质即可求得w 的最大值.(1)设A ,B 两种品牌的足球的单价分别为y 元,z 元由题意得:6496052640y z y z +=⎧⎨+=⎩ 解方程组得:80120y z =⎧⎨=⎩ 即A 品牌足球的单价为80元,B 品牌足球的单价为120元(2)80120(20)402400w x x x =+-=-+当3≤x ≤7时,由于-40<0,所以w 随x 的增大而减小所以当x =3时,w 有最大值40324002280-⨯+=(元)即如果购买A 品牌的足球不少于3个且不多于7个,则学校最多需要花2280元.【点睛】本题考查了二元一次方程组及一次函数的应用,找到等量关系并列出方程组、掌握一次函数的性质是解答本题的关键.5、 (1)甲种口罩购进了500盒,乙种口罩购进了400盒(2)能满足【解析】【分析】(1)设甲种口罩购进了x盒,乙种口罩购进了y盒,根据总价=单价×数量,结合用29000元购进甲、乙两种医用口罩共计900盒,即可得出关于x、y的二元一次方程组,解之即可得出甲、乙两种口罩购进数量;(2)利用购进口罩的总数量=每盒的个数×购进数量,可求出购进口罩的总数量,利用市教育局的要求数=2×该校师生人数×10,可求出学校需要口罩的总数量,比较后即可得出购买的口罩数量能满足市教育局的要求.(1)解:设甲种口罩购进了x盒,乙种口罩购进了y盒,依题意得:900 303529000x yx y+=⎧⎨+=⎩,解得:500400xy=⎧⎨=⎩.答:甲种口罩购进了500盒,乙种口罩购进了400盒.(2)解:20×500+25×400=10000+10000=20000(个),2×900×10=18000(个).∵20000>18000,∴购买的口罩数量能满足市教育局的要求.【点睛】本题考查了二元一次方程组的应用以及有理数的混合运算,找准等量关系,正确列出二元一次方程组是解答此题的关键..。
【鲁教版】七年级数学下期末试卷(附答案)

一、选择题1.已知关于x 的不等式组3x 05m x +⎧⎨-⎩<>的所有整数解的和为-9,则m 的取值范围( ) A .3≤m <6B .4≤m <8C .3≤m <6或-6≤m <-3D .3≤m <6或-8≤m <-42.某工厂现有95个工人,一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套,现在要求工人每天做的螺杆和螺母完整配套而没有剩余,若设安排x 个工人做螺杆,y 个工人做螺母,则列出正确的二元一次方程组为( )A .958220x y x y +=⎧⎨-=⎩B .954220x y x y +=⎧⎨-=⎩ C .9516220x y x y +=⎧⎨-=⎩ D .9516110x y x y +=⎧⎨-=⎩ 3.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )A .x y 66 x 2y 3+=⎧⎨=-⎩B .x y 66 x 2y 3+=⎧⎨=+⎩C .x y 66 y 2x 3+=⎧⎨=-⎩D .x y 66 y 2x 3+=⎧⎨=+⎩ 4.如果a 、b 表示两个负数,且a b >,则( ) A .1a b > B .1b a > C .11a b > D .1ab <5.下列四组值中,不是二元一次方程21x y -=的解的是( )A .11x y =-⎧⎨=-⎩B .00.5x y =⎧⎨=-⎩C .10=⎧⎨=⎩x yD .11x y =⎧⎨=⎩6.如图,由33⨯组成的方格中每个方格内均有代数式(图中只列出了部分代数式),方格中每一行(横)、每一列(竖)以及每一条对角线(斜)上的三个代数式的和均相等,则方格中“a ”的数是( )B .7C .8D .9 7.已知点A (0,-6),点B (0,3),则A ,B 两点间的距离是( )A .-9B .9C .-3D .3 8.过点A (﹣2,3)且垂直于y 轴的直线交y 轴于点B ,则点B 的坐标为( )A .(0,﹣2)B .(3,0)C .(0,3)D .(﹣2,0) 9.16的算术平方根是( )A .2B .4C .2±D .-410.如图,在Rt ABC △中,90,BAC ︒∠=3,AB cm =4AC cm =,把ABC 沿着直线BC 的方向平移2.5cm 后得到DEF ,连接AE ,AD ,有以下结论:①//AC DF ;②//AD BE ;③ 2.5CF cm =;④DE AC ⊥.其中正确的结论有( )A .1个B .2个C .3个D .4个11.已知关于x 的方程9314x kx -=+有整数解,且关于x 的不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩有且只有4个整数解,则不满足条件的整数k 为( ).A .8-B .8C .10D .2612.若关于x 的不等式组132(2)x a x x ≥-⎧⎨≤+⎩仅有四个整数解,则a 的取值范围是( ) A .12a ≤≤ B .12a ≤< C .12a <≤ D .12a <<二、填空题13.若关于x 的不等式x a ≥的负整数解是1,2,3---,则实数a 满足的条件是________. 14.已知37m m n x y +-与653x y 是同类项,则m n -=_______.15.已知关于,x y 的方程组343x y a x y a +=-⎧⎨-=⎩,给出以下结论:①51x y =⎧⎨=-⎩,是方程组的一个解;②当2a =-时,,x y 的值互为相反数;③当1a =时,方程组的解也是方程4x y a +=-的解;④,x y 之间的数量关系是23,x y -=其中正确的是__________ (填序号).16.如图,一个机器人从0点出发,向正东方向走3米到达1A 点,记为()3,0;再向正北方向走6米到达2A 点,记为()3,6:再向正西方向走9米到达3A 点,记为()6,6-;再向正南方向走12米到达4A 点,再向正东方向走15米到达5A 点,按如此规律走下去,当机器人走到99A 点时,则99A 的坐标为________.17.若点M(a-2,a+3)在y 轴上,则点N(a+2,a-3)在第________象限.18.已知213a -=,31a b -+的平方根是4±,c 是43的整数部分,求3a b c ++的平方根.19.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B 到C 的方向平移到△DEF 的位置,AB=10,DO =4,平移距离为6,则阴影部分面积为__20.关于x 的不等式132x a x -≤⎧⎨-<⎩有5个整数解,则a 的取值范围是______. 三、解答题21.用一张面积为2400cm 的正方形纸片,沿着边的方向裁出一个长宽之比为3:2的长方形纸片(裁剪方式见示意图)该长方形纸片的面积可能是2300cm 吗?请通过计算说明.22.不等式组3(2)4,21152x x x x --≥⎧⎪-+⎨<⎪⎩的解集为_______. 23.关于,x y 的二元一次方程组325x y k x y k+=⎧⎨-=⎩的解也是二元一次方程211x y +=的解,求k 的值.24.如图,一只甲虫在55⨯的方格(每小格边长为1)上沿着网格线运动,它从A 处出发去看望B 、C 、D 处的其它甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B 记为:(1,4)A B →++,从B 到A 记为:(1,4)B A →--,其中第一个数表示左右方向,第二个数表示上下方向,那么图中:(1)A C →(________,________),B C →(________,________),C D→(________,________);(2)若这只甲虫从A 处去甲虫P 处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出P 的位置.25.阅读下面的文字,解答问题:无理数是无限不循环小数,因此无理数的小数部分我们不可能全部地写出来,比如π、2等,而常用“……”或者“≈”的表示方法都不够百分百准确;于是小刚用21-来表示2的小数部分,你同意小刚的表示方法吗?事实上,小刚的表示方法是有道理的,因为2的整数部分是1,将这个数减去其整数部分,差就是小数部分.又例如:因为459<<,即253<<,所以,5的整数部分为2,小数部分为52-也就是说,任何一个无理数,都可以夹在两个相邻的整数之间.根据上述信息,请回答下列问题:(1)13的整数部分是______,小数部分是_______;(2)107+也是夹在两个整数之间的,可以表示为107a b <+<,则a b +=_____; (3)若404x y -=+,其中x 是整数,且01y <<.求:x y -的相反数. 26.如图,已知点E 、F 在直线AB 上,点G 在线段CD 上,ED 与FG 交于点H ,C EFG ∠=∠,CED GHD ∠=∠,试判断AED ∠与D ∠之间的数量关系,并说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先求解不等式组,再根据条件判断出含参代数式的范围,从而求得参数的范围即可.【详解】 解原不等式得:35m x x ⎧<-⎪⎨⎪>-⎩,即53m x -≤<-, 由所有整数解的和为-9,可知原不等式包含的整数为-4,-3,-2或-4,-3,-2,-1,0,1, 当整数为-4,-3,-2时,则13m -2<-≤-,解得:36m ≤<, 当整数为-4,-3,-2,-1,0,1时,则23m 1<-≤,解得:63m -≤<-, 故选:C .【点睛】本题考查含参不等式组求解问题,熟练掌握对含参代数式范围的确定是解题关键. 2.C解析:C【分析】设安排x 个工人做螺杆,y 个工人做螺母,根据“工厂现有95个工人”和“一个工人每天可做8个螺杆或22个螺母,两个螺母和一个螺杆为一套”列出方程组即可.【详解】设安排x 个工人做螺杆,y 个工人做螺母,由题意得:952822x y x y +=⎧⎨⨯=⎩,即9516220x y x y +=⎧⎨-=⎩, 故选:C .【点睛】本题主要考查了由实际问题抽象出二元一次方程组,关键是弄清题意,找出合适的等量关系,列出方程组.3.B解析:B【分析】根据题中的等量关系列方程组即可【详解】解:依题意,得:x y 66x 2y 3+=⎧⎨=+⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.4.B解析:B【分析】根据不等式的性质,两边都除以b 判断出A 、B ,两边都除以ab ,判断出C 即可得解.【详解】∵a 、b 表示两个负数,∴a b >两边都除以b 得,1a b<,故选项A 错误,不符合题意; a b >两边都除以a 得,1b a >,故选项B 正确,符合题意; ∵a 、b 表示两个负数,∴0ab >,∴a b >都除以ab 得,11b a>,故选项C 错误,不符合题意; 只能判断出0ab >,但无法说明1ab <,故选项D 错误,不符合题意.故选:B .【点睛】本题考查了不等式的基本性质,(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.D解析:D【分析】将各项中x 与y 的值代入方程检验即可.【详解】解:x-2y=1,解得:x=2y+1,当y=-1时,x=-1,所以11x y =-⎧⎨=-⎩是方程21x y -=的解,选项A 不合题意, 当y=-0.5时,x=-1+1=0,所以00.5x y =⎧⎨=-⎩是方程21x y -=的解,选项B 不合题意; 当y=0时,x=1,所以10x y =⎧⎨=⎩是方程21x y -=的解,选项C 不合题意; 当y=1时,x=2+1=3,所以11x y =⎧⎨=⎩不是方程21x y -=的解,选项D 符合题意; 故选:D .【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值. 6.B解析:B【分析】根据第一列、第三行、对角线建立关于x 、y 的方程组,解方程组求出x 、y 的值,由此即可得.【详解】由题意得:29411299211y y y x y y x ++=-+⎧⎨++=-+⎩, 整理得:4222311x y x y +=⎧⎨+=⎩, 解得25x y =-⎧⎨=⎩, 则2949y y a x ++=-+,即()5259429a +⨯+=-⨯-+,解得7a =,故选:B .【点睛】本题考查了二元一次方程组的应用,依据题意,正确建立方程组是解题关键. 7.B解析:B【分析】由于A 、B 点都在y 轴上,然后用B 点的纵坐标减去A 点的纵坐标可得到两点之间的距离.【详解】解:∵A (0,-6),点B (0,3),∴A ,B 两点间的距离()369=--=.故选:B .【点睛】本题考查了两点间的距离公式,熟练掌握两点间的距离公式是解题的关键.8.C解析:C【分析】直接利用点的坐标特点进而画出图形得出答案.【详解】解:如图所示:,过点A(﹣2,3)且垂直于y轴的直线交y轴于点B,故点B的坐标为:(0,3).故选C.【点睛】此题主要考查了点的坐标,正确画出图形是解题关键.9.A解析:A【分析】16【详解】解:∵16,∴164=2.故选:A.【点睛】16.10.D解析:D【分析】根据平移是某图形沿某一直线方向移动一定的距离,平移不改变图形的形状和大小可对①②③进行判断;根据∠BAC=90°及平移的性质可对④进行判断,综上即可得答案.【详解】∵△ABC沿着直线BC的方向平移2.5cm后得到△DEF,∴AB//DE,AC//DF,AD//CF,CF=AD=2.5cm,故①②③正确.∵∠BAC=90°,∴AB⊥AC,∵AB//DE∴⊥,故④正确.DE AC综上所述:之前的结论有:①②③④,共4个,故选D.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转.11.A解析:A【分析】解不等式组和方程得出关于x 的范围及x 的值,根据不等式组有4个整数解和方程的解为整数得出k 的范围,继而可得整数k 的取值.【详解】解:解关于x 的方程9x-3=kx+14得:179x k=-, ∵方程有整数解,∴9-k=±1或9-k=±17,解得:k=8或10或-8或26, 解不等式组155222228x x x k x +⎧>+⎪⎪⎨-⎪≥-⎪⎩得不等式组的解集为2528k x -≤<, ∵不等式组有且只有四个整数解, ∴20128k -<≤, 解得:2<k≤30; 所以满足条件的整数k 的值为8、10、26,故选:A .【点睛】本题主要考查方程的解和一元一次不等式组的解,熟练掌握解方程和不等式组的能力,并根据题意得到关于k 的范围是解题的关键.12.C解析:C【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a 的不等式组,求解即可.【详解】解:132(2)x a x x ≥-⎧⎨≤+⎩①②, 解不等式①,得1x a ≥-,解不等式②,得:4x ≤,∵不等式组仅有四个整数解,∴011a <-≤,解得12a <≤,故选:C .【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.二、填空题13.【分析】首先解不等式求得不等式的解集然后根据不等式的负整数解得到关于a 的不等式组从而求得a 的范围【详解】根据题意得:故答案为【点睛】本题考查了不等式的整数解在解不等式时要根据不等式的基本性质解析:43a -<≤-【分析】首先解不等式求得不等式的解集,然后根据不等式的负整数解得到关于a 的不等式组,从而求得a 的范围.【详解】根据题意得:43a -<≤-,故答案为43a -<≤-.【点睛】本题考查了不等式的整数解.在解不等式时要根据不等式的基本性质.14.【分析】先根据同类项的定义可得mn 的值再代入计算即可得【详解】由题意得:解得则故答案为:【点睛】本题考查了同类项二元一次方程组的应用熟练掌握同类项的定义是解题关键解析:1-【分析】先根据同类项的定义可得m 、n 的值,再代入计算即可得.【详解】由题意得:365m m n =⎧⎨+=⎩, 解得23m n =⎧⎨=⎩, 则231m n -=-=-,故答案为:1-.【点睛】本题考查了同类项、二元一次方程组的应用,熟练掌握同类项的定义是解题关键. 15.①②③【分析】①将x=5y=-1代入检验即可做出判断;②将a=-2代入方程组求出方程组的解即可做出判断;③将a=1代入方程组求出方程组的解代入方程中检验即可;④消去a 得到关于x 与y 的方程即可做出判断 解析:①②③【分析】①将x=5,y=-1代入检验即可做出判断;②将a=-2代入方程组求出方程组的解即可做出判断;③将a=1代入方程组求出方程组的解,代入方程中检验即可;④消去a 得到关于x 与y 的方程,即可做出判断.【详解】解:①将x=5,y=-1代入方程组得:5345(1)3a a-=-⎧⎨--=⎩ 解得:a=2, 所以51x y =⎧⎨=-⎩,是方程组的一个解,本选项正确; ②将a=-2代入方程组得:36?6?x y x y +=⎧⎨-=-⎩得:4y=12,即y=3,将y=3代入得:x=-3,则x 与y 互为相反数,本选项正确;③将a=1代入方程组得:33?3?x y x y +=⎧⎨-=⎩解得:30x y =⎧⎨=⎩将x=3,y=0代入方程43x y a +=-=的左边得:3+0=3,所以当1a =时,方程组的解也是方程4x y a +=-的解,本选项正确;④34?3?x y a x y a +=-⎧⎨-=⎩由第一个方程得:a=4-x-3y ,代入第二个方程得:x-y=3(4-x-3y ),整理得:x+2y=3,本选项错误,故答案是:①②③.【点睛】此题考查了二元一次方程组的解及解二元一次方程组,方程组的解即为能使方程组中两方程成立的未知数的值.16.【分析】先找到所在的象限然后由该象限内点的规律特点求解即可【详解】解:根据题意得由可知在第二象限通过题中点的变化观察可知第二象限内点横纵坐标互为相反数且都为6的倍数由可知故答案为:【点睛】本题考查规 解析:()150,150-【分析】先找到99A 所在的象限,然后由该象限内点的规律特点求解即可.【详解】解:根据题意得,()46,6A --,()59,6A -,()69,12A ,()712,12A -,由994243=⨯+,可知99A 在第二象限,通过题中点的变化,观察可知第二象限内点()36,6A -、()712,12A -横纵坐标互为相反数且都为6的倍数, 由99161504+⨯=,可知()99150,150A - 故答案为:()150,150-.【点睛】本题考查规律型:点的坐标问题,解题的关键是发现规律,利用规律解决问题. 17.四【详解】解:∵点M(a-2a+3)在y 轴上∴a-2=0∴a=2∴点N 的坐标为N(2+22-3)即(4-1)∴点N 在第四象限故答案为:四【点睛】本题考查了各象限内点的坐标的符号特征记住各象限内点的坐解析:四【详解】解:∵点M(a-2,a+3)在y 轴上,∴a-2=0,∴a=2,∴点N 的坐标为N(2+2,2-3),即(4,-1),∴点N 在第四象限,故答案为:四.【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).18.【分析】根据求出a 的值根据3a+b-1的平方根是±4求出b 的值根据c 是的整数部分求出c 的值把求得的值代入a+b+3c 然后求出入a+b+3c 的平方根即可【详解】∵∴解得:∵的平方根是∴解得:∵是的整数解析:5±【分析】3=求出a 的值,根据3a +b -1的平方根是±4求出b 的值,根据c 数部分求出c 的值,把求得的值代入a +b +3c ,然后求出入a +b +3c 的平方根即可.【详解】 ∵3=,∴219a -=,解得:5a =,∵31a b +-的平方根是4±,∴15116b +-=,解得:2b =,∵c67<<∴6c =,∴3521825a b c ++=++=∴3a b c ++的平方根是5±【点睛】本题考查了算术平方根的意义,平方根的意义,无理数的估算,熟练掌握算术平方根的意义、平方根的意义、夹逼法估算无理数的值是解答本题的关键.19.【分析】根据平移的性质得出BE=6DE=AB=10则OE=6则阴影部分面积=S 四边形ODFC=S 梯形ABEO 根据梯形的面积公式即可求解【详解】解:由平移的性质知BE =6DE =AB =10∴OE =DE ﹣解析:【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S 四边形ODFC =S 梯形ABEO ,根据梯形的面积公式即可求解.【详解】解:由平移的性质知,BE =6,DE =AB =10,∴OE =DE ﹣DO =10﹣4=6,∴S 四边形ODFC =S 梯形ABEO 12=(AB+OE )•BE 12=×(10+6)×6=48. 故答案为48.【点睛】本题主要考查了平移的性质及梯形的面积公式,得出阴影部分和梯形ABEO 的面积相等是解题的关键. 20.【分析】首先解每个不等式两个不等式的解集的公共部分就是不等式组的解集确定整数解据此即可写出a 的范围【详解】解:解不等式①得;解不等式②得:则不等式的解集为∵不等式有5个整数解∴一定是01234∴即故 解析:12a ≤<【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集,确定整数解,据此即可写出a 的范围.【详解】解:132x a x -≤⎧⎨-<⎩①②, 解不等式①得,4x ≤;解不等式②得:2x a >-,则不等式的解集为24a x -<≤,∵不等式132x a x -≤⎧⎨-<⎩有5个整数解, ∴一定是0,1,2,3,4.∴120a ,即12a ≤<,故答案为:12a ≤<.【点睛】此题考查的是一元一次不等式组的解法,根据x 的取值范围,得出x 的整数解,然后代入方程即可解出a 的值.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.三、解答题21.不可能,理由见解析【分析】设出长方形的长和宽,根据长方形的面积列不等式组确定x 的取值范围,再确定长方形面积的取值范围即可得出答案.【详解】设长方形长和宽分别为3x cm 、2x cm ,∵正方形的面积为2400cm ,∴正方形边长为20cm ,3202200x x x ≤⎧⎪∴≤⎨⎪>⎩, 解得2003x <≤, 22202400236630039S x x x ⎛⎫∴=⋅=≤⨯=< ⎪⎝⎭长方形, ∴不可能.【点睛】本题考查矩形面积的计算方法,不等式组的应用,确定长方形边长及面积的取值范围是得出答案的关键.22.71x -<≤【分析】首先分别解出两个不等式的解集,再根据:同大取大;同小取小;大小小大中间找;大大小小找不到,写出不等式组的解集即可.【详解】 解:3(2)4211 52x x x x --≥⎧⎪⎨-+<⎪⎩①② 由①得,x≤1由②得,x >-7∴不等式组的解集为:-7<x≤1.故答案为:-7<x≤1.【点睛】此题主要考查了不等式组的解法,关键是熟练掌握不等式解集的取法.23.4k =【分析】先根据二元一次方程的两个式子作差,消去k ,得3170x y +=,再把它与211x y +=联立解出x 和y 的值,再代回原方程,即可求出k 的值.【详解】解:325x y k x y k +=⎧⎨-=⎩①②, 5⨯①-2⨯②,得515221010x y x y k k +-+=-,即3170x y +=, 则解方程组2113170x y x y +=⎧⎨+=⎩,解得173x y =⎧⎨=-⎩, 把它代入①,得1792k -=,解得4k =.【点睛】本题考查二元一次方程,解题的关键是掌握消元的思想,根据二元一次方程解的定义去进行求解.24.(1)+3,+4;+2,0;+1,-2;(2)见解析【分析】(1)根据规定及实例可知A→C 记为(+3,+4),B→C 记为(+2,0),C→D 记为(+1,-2);(2)按题目所示平移规律分别向右向上平移2个格点,再向右平移2个格点,向下平移1个格点;向左平移2个格点,向上平移3个格点;向左平移1个向下平移两个格点即可得到点P 的坐标,在图中标出即可.【详解】(1)∵规定:向上向右走为正,向下向左走为负,∴A→C 记为(+3,+4);B→C 记为(+2,0);C→D 记为(+1,-2);故答案为:+3,+4;+2,0;+1,-2;(2)P 点位置如图所示..【点睛】本题主要考查了用有序实数对表示路线.读懂题目信息,正确理解行走路线的记录方法是解题的关键.25.(1)3 3;(2)25;(3)()8x y --=.【分析】(1)由34可得答案;(2)由2<3知12<<13,可求出a ,b 的值,据此求解可得;(3)得出243<-<,即可得出x ,y ,从而得出结论. 【详解】解:(1)∵9<13<16∴34,∴3;故答案为:3.(2)∵4<7<9,∴2<3∴12<<13∴a=12,b=13∴a+b=12+13=25,故答案为:25;(3<<67<<所以64474-<<-即243<-<4的整数部分为2,即2x =,426y =-=()26x y x y --=-+=-+=8=【点睛】本题考查了估算无理数的大小,解决本题的关键是熟记估算无理数的大小.26.∠AED+∠D=180°,理由见解析【分析】根据平行线的判定定理得出CE ∥FG ,根据平行线的性质得出∠C=∠FGD ,求出∠FGD=∠EFG ,根据平行线的判定得出AB ∥CD ,再根据平行线的性质得出即可.【详解】解:∠AED+∠D=180°,理由是:∵∠CED=∠GHD ,∴CE ∥FG ,∴∠C=∠FGD ,∵∠C=∠EFG ,∴∠FGD=∠EFG ,∴AB∥CD,∴∠AED+∠D=180°.【点睛】本题考查了平行线的性质和判定定理,能灵活运用平行线的性质和判定定理进行推理是解此题的关键.。
鲁教版初中数学七年级下期末测试真题(含答案)

鲁教版初中数学七年级下期末测试真题(含答案)一、选择题1.下面的运算正确的是()A.a3•a2=a6B.m4+m4=2m4C.(b3)2=b5D.(﹣x)4÷(﹣x)2=﹣x22.下列事件是必然事件的是()A.今年8月8日漳州的天气一定是晴天 B.2010年世博会在北京召开C.正常情况下,当室外温度低于﹣10摄氏度时,将一碗清水放在室外会结冰D.打开电视,正在播广告3.小明与小颖在做掷硬币游戏,假如投在黑色方砖上,小明获胜,则小明获胜的概率为()A.B.C.D.4.最大的鲸鱼的体重可达150吨,它的百万分之一是相当于下列哪种动物的体重()A.大象 B.肥猪 C.小鸟 D.蜜蜂5.下列各组线段中,能组成三角形的一组是()A.1,2,3 B.2,3,4 C.2,2,4 D.3,7,116.一辆汽车的牌号在水中的倒影如图所示,则这辆汽车的牌号应为()A.W17609 B.W17906 C.M17609 D.M179067.若16x2+mxy+25y2是一个完全平方式,那么m的值是()A.20 B.﹣20 C.40 D.±408.如图所示,O为直线AB上一点,OM平分∠AOC,ON平分∠BOC,则图中互余的角有()A.1对B.2对C.3对D.4对9.如图,已知∠A=∠D,∠1=∠2,那么要得到△ABC≌△DEF,还应给出的条件是()A.∠E=∠B B.ED=BC C.AB=EF D.AF=CD10.(2010•孝感)均匀地向如图所示的一个容器注水,最后把容器注满,在注水过程中,能大致反映水面高度h随时间t变化的图象是()二、填空题11.(2003•福州)请你写出一个二次三项式:_________ .12.今年我国西南地区发生重大旱情,据新华网统计,截止3月30日,全国耕地受旱面积1.16亿亩.这个数字精确到千万位,用科学记数法可记为_________ 亩.13.(2007•深圳)若单项式2x2y m与x n y3是同类项,则m+n的值是_________ .14.青岛市出租车价格是这样规定的:不超过2公里,付车费5元,超过的部分按每千米1.6元收费,已知李老师乘出租车行驶了x(x>2)千米,付车费y元,则所付车费y元与出租车行驶的路程x千米之间的函数关系为_________ .15.如图所示,在△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为_________ cm.16.等腰三角形的一个角80°,它的另外两个角的度数分别为_________ .17.如图,直线a、b被直线c所截(即直线c与直线a、b都相交),且a∥b,若∠1=118°,则∠2的度数= _________ 度.18.(2﹣1)(2+1)(22+1)(24+1)…(216+1)+1的个位数字是_________ .三、解答题(共56分)19.(1)16÷(﹣2)3+20100﹣()-2(2)(3a2b)2•(﹣15ab3)÷(﹣9a4b2)(3)化简﹣2y2,再选取两个你喜欢的数代替x和y,求代数式的值.20.如图:画出下列各图中的格点三角形关于直线l的对称图形.22.世博会期间,某高级酒店为了吸引顾客,设立了一个可以自由转动的转盘,如图所示,并规定:顾客消费100元以上(不包括100元),就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准九折、八折、七折、五折区域顾客就可以获得相应的打折优惠(转盘等分成16份,指针停在每个区域的机会相等).若甲顾客消费150元,获得打折优惠的概率是多少?他获得九折、低于九折优惠的概率分别是多少?23.小明在学习三角形内角和定理时,自己做了如下推理过程,请你帮他补充完整.已知:如图,△ABC中,∠A、∠B、∠C是它的三个内角,那么这三个内角的和等于多少?为什么?解:∠A+∠B+∠C=180°理由:作∠ACD=∠A,并延长BC到E∠1=∠A(已作)∴AB∥CD (_________ )∴∠B=_________ (_________ )而∠ACB+∠1+∠2=180°∴∠ACB+_________ + _________ =180°(等量代换)24.如图,要测量池塘A、B两点间的距离,可以在AB的垂线BF上取两点C、D,使CD=BC,再过D点作出BF的垂线DG,并在DG上找一点E,使A、C、E在一条直线上,这时,测量DE的长就是AB的长,为什么?25.如图,是著名的艾宾浩斯遗忘曲线,观察图象并回答下列问题(1)在这个图形所表示的变化过程中自变量、因变量各是什么?2小时后,记忆大约保持了多少?(2)图中点A表示的意义是什么?(3)图中的遗忘曲线还告诉你什么相关信息?请写出其中一条信息.26.如图,等边△ABC中,在顶点A、C处各有一只蚂蚁,他们同时出发,分别以同样速度由A向B和由C 向A爬行,经过t秒后,他们分别到达D、E处.请问两只蚂蚁在爬行过程中,(1)BE与CD有何数量关系,为什么?(2)DC与BE所成的∠BFC的大小是否发生变化?若有变化,请说明理由;若没有变化,求出∠BFC.参考答案与试题解析一、选择题1.下面的运算正确的是()A.a3•a2=a6B.m4+m4=2m4C.(b3)2=b5D.(﹣x)4÷(﹣x)2=﹣x2考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲁教版七年级下册月测题
一、选择题(每小题3分,共30分) 1.下列方程组中是二元一次方程组的是( ) A.⎩⎨⎧
xy =1x +y =2
B.⎩⎨⎧
5x -2y =3
1
x +y =3
C.⎩⎨
⎧
2x +z =0
3x -y =15
D.⎩⎨⎧
x =5x 2+y
3=7
2.下列语句不是命题的是( )
A .两点之间线段最短 B.同一平面内不平行的两条直线有一个交点 C. x 与y 的和等于0吗 D.对顶角不相等
3.已知方程组5354x y ax y +=⎧⎨+=⎩和25
51x y x by -=⎧⎨+=⎩有相同的解,则a ,b 的值为 ( )
A .1
2a b =⎧⎨=⎩
B .4
6a b =-⎧⎨=-⎩
C .62a b =-⎧⎨=⎩
D .14
2a b =⎧⎨=⎩
4.如图所示,AB ∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个
B.4个
C.3个
D.2个
D
C
B
A 1
E
D
C
B
A
4题图 5题图
5.如图所示,已知DE ∥BC,CD 是∠ACB 的角平分线,∠B=72°,∠ACB=40°,•那么∠BDC 等于( )
A.78°
B. 88°
C. 90°
D.92°
6. 由123=-y
x ,可以得到用x 表示y 的式子( )
A .322-=x y B. 232-=x y C. 3132-=x y D.3
22x
y -
= 7. 方程组⎩⎨⎧=+=-521
y x y x 的解是( )
A .⎩
⎨⎧==12y x B.
⎩
⎨⎧-==12
y x C. ⎩
⎨⎧==21
y x D. ⎩
⎨⎧=-=21
y x 8. 在一个不透明的口袋中,装有3个红球,2个白球,除颜色不同外其余都相
同,则随机从口袋中摸出一个球为红色的概率是( )
A .3
1
B .
5
2
C .5
1
D .5
3
9. 已知一个布袋里装有2个红球,3个白球和a 个黄球,这些球除颜色外其余都相同.若从该布袋里任意摸出1个球,是红球的概率为,则a 等于( ) A.1 B.2 C.3 D.4
10.雅西高速公路于2012年4月29日正式通车,西昌到成都全长420千米,一辆小汽车和一辆客车同时从西昌、成都两地相向开出,经过2.5小时相遇.相遇时,小汽车比客车多行驶70千米,设小汽车和客车的平均速度分别为x 千米/时和y 千米/时,则下列方程组正确的是( ). A.⎩⎨
⎧ x +y =702.5x +2.5y =420 B.⎩⎨
⎧ x -y =70
2.5x +2.5y =420
C.⎩⎨
⎧
2.5x +2.5y =4202.5x -2.5y =70
D. ⎩⎨
⎧
x +y =70
2.5x -2.5y =420
二、填空题(每小题3分,共24分)
11.如图,若AB ∥CD ,∠1的度数是∠2的2倍,则∠1=________,∠2=________,∠3=________.
11题图 13题图 15题图
12.若方程6=+ny mx 的两个解是⎩⎨⎧==11y x ,⎩⎨⎧-==12
y x 则=m _______,=n _______。
13.一只自由飞行的小鸟,将随意地落在如上图所示方格地面上(每个小方格都是
边长相等的正方形),则小鸟落在阴影方格地面上的概率为________. 14.如果0512=-+=+-y x y x ,那么=x _________,=y _________。
15.如图所示,已知AB ∥CD ,直线EF 分别交AB 、CD 于点E 、F ,EG 平分∠BEF ,若∠1=50°,则∠2的度数为 。
16.若⎩⎨⎧==12y x 是方程⎩⎨⎧=+=-+12)1(2y nx m x 的解,则(m +n )2008的值是__________。
17.方程组⎩⎨⎧
4x +3y =1,(k -1)x +ky =3
的解中x 与y 值相等,则k =________。
18.有五张分别写有数字0,3,2,1
2
,-1的卡片,它们除了数字不同外其它
均形同,从中任抽一张,那么抽到比0小的数的概率是 。
三、计算题(共46分)
19.(8分)解方程组:
(1) ⎩⎨⎧=+=-82302y x y x (2)()()
⎪⎩⎪
⎨⎧=-++=--+162
4
43y x y x y x y x
20. (8分)在一个不透明的袋中装有2个黄球、3个黑球和5个红球,它们除颜色外其他都相同.
(1)将袋中的球摇均匀后,求从袋中随机摸出一个球是黄球的概率;
(2)现在再将若干个红球放入袋中,与原来的10个球均匀混合在一起,使从袋中随机摸出一个球是红球的概率是,请求出后来放入袋中的红球的个数.
21. (8分)如图所示,∠1=72°,∠2=72°,∠3=60°,(1)试判断直线a 和直线b 的位置关系,并说明理由?(2)求∠4的度数。
22. (6分)为了提高学生书写汉字的能力,增强保护汉字的意识,我市举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
请结合图表完成下列各题:
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
组别成绩x分频数(人数)
第1组25≤x<30 4
第2组30≤x<35 8
第3组35≤x<40 16
第4组40≤x<45 a
第5组45≤x<50 10
23. (8分)如图,点E在AB上,且CE 平分∠BCD,DE 平分∠ADC,∠EDC+∠DCE =90°,求证:AD∥BC
24. (8分)某超市举行店庆,打折前,购买60件A商品和30件B商品共用了1080元,购买50件A商品和10件B商品共用了840元;但打折后,小明购买500件A商品和500件B商品用了9600元。
问:(1)A商品和B商品原价是多少?(2)与不打折时比较,小明少花了多少钱?
七下月测题答案
1.D
2.C
3.D
4.C
5.B
6.B
7.A
8.D
9.A
10.C
11.120°,60°,120°
12.4,2
13.
14.3,2
15.65°
16.1
17.11
18.
19.(1)x=2,y=1;(2)x=,y=
20.(1)(2)5
21.(1)a∥b;(2)120°
22.(1)12;(3)0.44
24.(1)A商品原价16元,B 商品原价4元;(2)400元。