运筹学整数规划
运筹学-第3章整数规划
2018/8/17
9
生产计划问题
某机器制造厂可生产四种产品,对于三种主要资源(钢, 人力,能源)的单位消耗及单位利润见表。问如何安排 生产,可使总利润最大?
消耗 产品1
1
产品2 产品3
10 6 0 7 3 4 2 8
产品4
0 1 5 4
资源量
5000 3000 3000
资源A(钢)
资源B(人力) 2 资源C(能源) 2 单位利润 1
这里取M=5000
2018/8/17
15
(2)批量生产
在前例中的基础上, 增加假设:产品4要求批量生 产,批量为不少于500件。 试建立最佳生产计划模型。
定义0-1变量y4
1 , x 4 500 y 4= 0 , x 4=0
500y4 x4 My4 y4 {0,1}
增加约束
2018/8/17 4
附加条件
项目1和项目3至少采纳一个; y1+y2 ≥1 项目2和项目5不能同时采纳; y2+y5 ≤1 项目1仅在项目2采纳后才可考虑是否采纳; y1≤ y2 项目1仅在项目2和3同时采纳后才可考虑是否采纳; 项目1,2,3不能同时采纳; y1+y2+y3 ≤2 或者选择项目1和2,或者选择项目3; y1= y2, y1+y3 =1; 或者 0.5(y1+y2) +y3 =1.
i 1 j 1 5 4
1, 采用Ai建厂 yi , i 3,4,5 0 ,不采用
s.t. x11 x12 x13 x14 400 x x x x 600 23 24 21 22 x31 x32 x33 x34 200y3 x41 x42 x43 x44 200y4 x x x x 200y 5 51 52 53 54 y3 y 4 y5 1 x11 x21 x31 x41 x51 300 x12 x22 x32 x42 x52 350 x13 x23 x33 x43 x53 400 x x x x x 150 24 34 44 54 14 xij 0, i 1,2,3,4,5, j 1,2,3,4 y3 , y4 , y5 {0,1}
运筹学CH4整数规划
使用整数规划求解器进行求解,得到最优的员工任务指派 方案。
05
整数规划软件实现
MATLAB实现整数规划
MATLAB优化工具箱
MATLAB提供了专门的优化工具箱,其中包含用于解决整 数规划问题的函数和算法。
intlinprog函数
该函数用于解决线性整数规划问题,可以处理大规模问题, 并提供多种求解选项。
CPLEX提供了多种建模方式,包括使 用API接口、编程语言(如Python、 Java)和交互式界面等。
CPLEX采用了先进的分支定界算法和启发式 算法,能够快速有效地求解大规模整数规划 问题。同时,CPLEX还提供了多种参数设置 和求解选项,以满足不同问题的需求。
06
整数规划总结与展望
整数规划研究现状
跨学科融合
整数规划与运筹学、计算机科学、数学等多个学 科密切相关,跨学科融合将为整数规划的研究和 应用带来更多机遇。
THANK YOU
感谢聆听
求解过程
在LINGO中,用户需要编写包含目标函数和约束条件的模型文件,然后调用 LINGO求解器进行求解。LINGO会自动选择合适的算法,并输出最优解和相关 信息。
CPLEX实现整数规划
CPLEX优化器
建模方式
求解算法
CPLEX是IBM提供的一款高性能数学 优化软件,支持线性规划、混合整数 规划和二次规划等多种问题类型。
在物流领域,整数规划可用于 优化运输路线和配送计划,以 减少运输时间和成本。
金融投资
在金融领域,整数规划可用于 投资组合优化,选择最佳的投 资组合以最大化收益并降低风 险。
城市规划
在城市规划中,整数规划可用 于优化城市布局和交通网络设 计,以提高城市运行效率和居 民生活质量。
运筹学中的整数规划问题分析
运筹学中的整数规划问题分析运筹学是运用数学和定量分析方法,通过对系统的建模和优化,来解决实际问题的学科。
其中整数规划是运筹学中的一个重要分支,它在许多实际情况中得到广泛应用。
本文将对整数规划问题进行分析,并探讨其解决方法与应用领域。
一、整数规划问题定义及特点整数规划是一类线性规划问题的扩展,其目标函数和约束条件中的变量取值限定为整数。
通常,整数规划问题可以形式化表示为:Max/Min Z = c₁x₁ + c₂x₂ + ... + cₙxₙs.t.a₁₁x₁ + a₁₂x₂ + ... + a₁ₙxₙ ≤ b₁a₂₁x₁ + a₂₂x₂ + ... + a₂ₙxₙ ≤ b₂...aₙ₁x₁ + a₂₂x₂ + ... + aₙₙxₙ ≤ bₙx₁, x₂, ..., xₙ ∈ Z其中,Z为目标函数值,x₁, x₂, ..., xₙ为待求解的整数变量,c₁, c₂, ..., cₙ为目标函数的系数,aᵢₙ为约束条件的系数,b₁, b₂, ..., bₙ为约束条件的右端常数。
整数规划问题的特点在于整数约束条件的引入,使其解空间变得有限,增加了问题的复杂性。
与线性规划问题相比,整数规划问题更接近实际情况,能够更准确地描述和解决很多实际问题。
二、整数规划问题的解决方法解决整数规划问题的方法主要有以下几种:穷举法、剪枝法、分支定界法、动态规划法等。
具体使用哪种方法需要根据问题的规模和特点来确定。
1. 穷举法是最简单直观的方法,通过枚举搜索整数解空间中的每一个可能解来寻找最优解。
然而,由于整数解空间往往非常大,这种方法在实际问题中往往是不可行的。
2. 剪枝法是一种通过对解空间进行剪枝操作,减少搜索空间的方法。
通过合理选择剪枝条件,可以避免对明显无解的解空间进行搜索,从而提高求解效率。
3. 分支定界法是一种将整数规划问题不断分解为子问题,并对子问题进行界定的方法。
通过不断缩小问题规模,并计算上下界确定最优解的位置,可以有效地求解整数规划问题。
运筹学第5章:整数规划
则问题可表示为:
max z c j x j
j 1 n
n a j x j B j 1 x1 x2 0 s.t. x3 x4 1 x x x 2 7 5 6 x j 0或1 j 1,2, , n 【例5-3】工厂A1和A2生产某种物资,由于该种物资供不应 求,故需要再建一家工厂,相应的建厂方案有A3和A4两个。这 种物资的需求地有B1、B2、B3、B4四个。各工厂年生产能力、各 地年需求量、各厂至各需求地的单位物资运费cij(j=1,2,3,4) 见表5-2。
三、割平面法的算法步骤
步骤1:将约束条件系数及右端项化为整数,用单纯形法求 解整数规划问题(ILP)的松弛问题(LP)。设得到最优基B,相应 的基最优解为X*。 步骤2:判别X*的所有分量是否全为整数?如是,则X*即为 (ILP)的最优解,算法终止;若否,则取X*中分数最大的分 量 x * ,引入割平面(5.7)。
表5-2
Ai cij A1 A2 Bj B1 2 8 B2 9 3 B3 3 5 B4 4 7 生产能力 (千吨/年) 400 600
A3
A4 需求量(千吨/年)
7
4 350
6
5 400
1
2 30025 150200200工厂A3或A4开工后,每年的生产费用估计分别为1200万元或 1500万元。现要决定应该建设工厂A3还是A4,才能使今后每年 的总费用(即全部物资运费和新工厂生产费用之和)最少。
一般来说,整数线性规划可分为以下几种类型:
1. 纯整数线性规划(Pure Integer Linear Programming): 指全部决策变量都必须取整数值的整数线性规划,也称为全整 数规划。 2. 混合整数线性规划(Mixed Integer Linear Programming):指决策变量中一部分必须取整数值,而另一部 分可以不取整数值的整数线性规划。 3. 0-1整数线性规划(Zero-one Integer Linear Programming):指决策变量只能取0或1两个值的整数线性规划。
割平面法-运筹学整数规划
第二节 分枝定界法(Branch and Bound method)
引言:穷举法对小规模的问题可以。大规模问题则不行。
一、基本思想和算法依据
基本思想是:先求出相应的线性规划最优解,若此解不 符合整数条件,则其目标函数的值就是整数规划问题最优值 的上界,而任意满足整数条件的可行解的目标函数值将是其 下界(定界),然后将相应的线性规划问题进行分枝,分别 求解后续的分枝问题。如果后续分枝问题的最优值小于上述 下界, 则剪掉此枝; 如果后续某一分枝问题的最优解满足整数 条件,且其最优值大于上述下界,则用其取代上述下界,继
s .t
2 x1 x1 , x 2
x2 0
6
x1 , x 2取整数
19
解: 1 求解相应的线性规划得
cj
4
CB
XB
b
x1
0
x3
20
4
0
x4
6
2
检验数
0
4
0
x3
8
0
4
x4
3
1
检验数
-12
0
3
x2
8 /3
0
4
x1
5 /3
1
检验数
-4 4 /3
0
3
0
0
x2
x3
x4
5
1
0
1
0
1
3
0
0
3
1
-2
1 /2
-3x3 - x4 -3 引 得入松弛变量x5,将其加入到原规划的约束条件中,利用上述最终1表5
cj
1
CB
XB
b
x1
0
x3
1
管理运筹学讲义整数规划
管理运筹学讲义整数规划整数规划是管理运筹学中一种重要的优化技术,它在实际问题中具有广泛的应用。
本文将介绍整数规划的基本概念、建模方法以及解决算法,并通过实例展示其在实际问题中的应用。
一、整数规划的基本概念整数规划是线性规划的一种扩展形式,其决策变量被限制为整数。
在实际问题中,往往存在某些变量只能取整数值的约束条件,这时就需要使用整数规划方法进行求解。
与线性规划相比,整数规划的求解难度更大,但可以提供更精确的结果。
二、整数规划的建模方法在进行整数规划建模时,需要确定决策变量、目标函数和约束条件。
1. 决策变量决策变量是问题中需要优化的变量,其取值决定了问题的解。
在整数规划中,决策变量通常表示为整数。
2. 目标函数目标函数是整数规划问题中需要最小化或最大化的目标。
它可以是线性函数或非线性函数,但在整数规划中,通常只考虑线性目标函数。
3. 约束条件约束条件是问题的限制条件,限制了决策变量的取值范围。
在整数规划中,约束条件可以是线性等式或线性不等式。
三、整数规划的解决算法解决整数规划问题的常见算法包括割平面法、分支定界法和动态规划法等。
这些算法通过不断对问题进行优化,逐步逼近最优解。
1. 割平面法割平面法是一种通过添加额外的约束条件来逼近最优解的方法。
它首先求解一个松弛问题,然后根据松弛问题的解加入新的约束条件,直到找到最优解。
2. 分支定界法分支定界法是一种将整数规划问题划分为多个子问题,并对每个子问题进行求解的方法。
它通过不断分支和剪枝来找到最优解。
3. 动态规划法动态规划法是一种通过将问题分解为多个子问题,并通过求解子问题的最优解来求解原始问题的方法。
它采用自底向上的求解方式,将所有可能的决策情况进行组合,得到最优解。
四、整数规划在实际问题中的应用整数规划在实际问题中有着广泛的应用。
以下是一个应用整数规划解决的实际问题示例:某公司生产两种产品A和B,每天的生产时间为8小时。
产品A每单位利润为100元,产品B每单位利润为150元。
运筹学经典课件-04.整数规划(胡运权)
整数规划: 要求决策变量取整数值的规划问题。
(线性整数规划、非线性整数规划等)
纯整数规划:在整数规划中,如果所有的变量都为非负整 数,则称为纯整数规划问题; 混合整数规划:如果有一部分变量为非负整数,则称之为 混合整数规划问题。 0-1变量:在整数规划中,如果变量的取值只限于0和1,这 样的变量我们称之为0-1变量。 0-1规划:在整数规划问题中,如果所有的变量都为0-1变 量,则称之为0-1规划。
资源 金属板(吨) 小号容器 2 中号容器 4 大号容器 8
劳动力(人月)
机器设备(台月)
2
1
3
2
4
3
2013-10-30
14
解:这显然是一个整数规划的问题。
设x1,x2, x3 分别为小号容器、中号容器和大号容器的生产数量。各 种容器的固定费用只有在生产该种容器时才投入,为了说明固定费用的这 种性质,设 yi = 1(当生产第 i种容器, 即 xi > 0 时) 或0(当不生产第 i种
2 x1 3x2 14
z 3x1 2 x2
2013-10-30
x1
5
§2 应用举例
一、 逻辑变量在数学模型中的应用
1、m个约束条件中只有k个起作用
设有m个约束条件
a
j 1
n
ij
bi ,
i 1,2,..., m
0 定义0-1整型变量: yi 1 M是任意大正数。
x j 0, j 1,... 6
2013-10-30
13
例3.(固定成本问题) 高压容器公司制造小、中、大三种尺寸的金属容器,所用资 源为金属板、劳动力和机器设备,制造一个容器所需的各种 资源的数量如表所示。每种容器售出一只所得的利润分别为 4万元、5万元、6万元,可使用的金属板有500吨,劳动力有 300人/月,机器有100台/月,此外不管每种容器制造的数量 是多少,都要支付一笔固定的费用:小号是l00万元,中号为 150 万元,大号为200万元。现在要制定一个生产计划,使获 得的利润为最大。
运筹学 第4章 整数规划与分配问题
匈牙利法思路:若能在 [Cij] 中找出 n 个位于
不同行不同列的0元素(称为独立0元素),则
令解矩阵[xij]中对应这n个独立0元素的元素
取值为 1 ,其他元素取值为 0 ,则它对应目
标函数zb=0是最小的。这就是以[Cij]为系数
矩阵分配问题的最优解,也得原问题的最
优解。
定理1 若从分配问题效率矩阵[cij]的每一行元素中分别减去 (或加上)一个常数ui(称为该行的位势),从每一列分别减去 (或加上)一个常数vj(称为该列的位势),得到一个新效率矩阵 [bij],若其中bij=cij-ui-vj,则[bij]的最优解等价于[cij]的最优解
第1步:找出效率矩阵每行的最小元素,并分别从每行
中减去。
第2步:再找出矩阵每列的最小元素,并分别从各列中 减去。
2 10 9 7 2 15 4 14 8 4 13 14 16 11 11 4 15 13 9 4
0 8 7 5 11 0 10 4 0 3 5 0 0 11 9 5
表明m个约束条件中有(m-k)个的右端项为( bi+M ),不起约 束作用,因而,只有k个约束条件起作用。 ② 约束条件的右端项可能是r个值b1 , b2 ,, br 中的某一个 即: 定义:
n
aij x j b1 或b2或或br
j 1
1 假定约束右端项为 bi yi 否则 0
现用下例来说明: max z=40x1+90x2 9x1+7x2≤56 7x1+20x2≤70 x1,x2≥0 x1,x2整数 ① ② ③ ④ ⑤
解:先不考虑条件⑤,即解相应的线性规划B,①~④(见图5-2), 得最优解x1=4.81,x2=1.82,z0=356
运筹学 整数规划( Integer Programming )
检查所有分枝的解及目标函数值,若某分枝的解是整数并且目标函数 值大于(max)等于其它分枝的目标值,则将其它分枝剪去不再计算,若 还存在非整数解并且目标值大于(max)整数解的目标值,需要继续分枝, 再检查,直到得到最优解。
割平面法的内涵:
Page 18
通过找适当的割平面,使得切割后最终得到这样的可行域( 不一定一次性得到), 它的一个有整数坐标的顶点恰好是 问题的最优解.
-Gomory割平面法
例: 求解
max z x1 x2 s.t. x1 x2 1
3x1 x2 4 x1 , x2 0, 整 数
1 x1 3/4 1 0 -1/4 1/4 0
1 x2 7/4 0 1 3/4 1/4 0
0 x5 -3 0 0 -3 -1 1
0 0 -1/2 -1/2 0
由对偶单纯形法, x5为换出变量, x3为换入变量, 得Page 29
cj CB XB b 1 x1 1 1 x2 1 0 x3 1
1 100 0 x1 x2 x3 x4 x5 1 0 0 1/3 1/12 0 1 0 0 1/4 0 0 1 -1 -1/3 0 0 0 -1/2 -1/6
收敛性很慢. 但若下其它方法(如分枝定界法)配合使用,
也是有效的.
分支定界法
Page 33
分支定界法的解题步骤:
1)求整数规划的松弛问题最优解; 若松弛问题的最优解满足整数要求,得到整数规划的最优解,否则转下
一步; 2)分支与定界:
任意选一个非整数解的变量xi,在松弛问题中加上约束: xi≤[xi] 和 xi≥[xi]+1
运筹学-第三章-整数规划
于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56
和
s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)
甲
5
2
20
乙
4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。
工学运筹学整数规划
第3节 0-1型整数规划
2、部分枚举法 ✓ 定义:只检查2n个可能的变量组合的
一部分,确定问题的最优解
第3节 0-1型整数规划
✓ 解题思路 (1)某个变量组合不满足其中一个约
束条件时,就不必再去检验其他约束 条件是否可行 (2)确定一个可行解的目标函数值: 对于目标函数值比它差的变量组合就 不必再去检验它的可行性;对于目标 函数值比它好的变量组合再去检验它 的可行性
一、0-1型变量的含义 变量只能取值0或1。
第3节 0-1型整数规划
二、0-1型变量的特点 ✓ 表示是或否 ✓ 表示系统是否处于某个特定状态 ✓ 表示决策时是否取某个特定方案 ✓ 当问题含有多项要素,每项要素都有
两种选择 ✓ 表示二进制变量
第3节 0-1型整数规划
例: 令 1,当决策取方案P时
x 0,当决策不取方案P时(即取P时)
第3节 0-1型整数规划
要求:用部分枚举法求解下列0-1型整 数规划。
44
min z
cij xij 1200 y 15001 y
i1 j1
x11 x21 x31 x41 350
x12
x22
x32
x42
400
x13
x23
x33
x43
300
x14 x24 x34 x44 150
x11 x12 x13 x14 400
x21
x22
x23
第2节 分支定界法
第二步:分支。 在松弛问题的最优解中任选一个不符合整数条
件的变量xi,其值为bi,用[bi]表示小于bi的 最大整数,构造以下两个约束条件:
xi bi 和xi bi +1
将这两个约束条件分别加入整数规划问题,形 成两个子问题,再求解这两个子问题的松弛 问题。
运筹学01整数规划
第四节 0-1整数规划
• 问题的提出:
0-1整数规划是线性规划及整数规划的一种特殊形式。 模型结构和形式是线性规划,只是决策变量取0或1。 例1:投资场所的选定——相互排斥的计划 某公司拟在城市的东、西、南三区建立分公司,拟议中有七 个位置Ai(i=1, 2,…,7), 规定在东区A1,A2,A3个点中至多选二个; 在 西区A4,A5两点中至少选一个; 在南区A6,A7中至少选一个, 如选用Ai 点,设备投资估计为bi元, 每年可获利润估计为ci元, 但投资总额不能 超过B元, 问应选择哪几个点可年利润最大?
解:求解过程见下表
(x1,x2,x3) (0,0,0)
(0,0,1) (0,1,0) (0,1,1) (1,0,0) (1,0,1) (1,1,0) (1,1,1)
Z值 0 5 -2 3 3 8 1 6
约束条件
过滤条件 Z0 Z5
Z8
所以,最优解为(x1,x2,x3)T=(1,0,1)T, 最优值为8.
令
xi
1
0
当Ai点被选用 当Ai点未被选用
i=1, …,7
7
max Z c i x i
i1
7
bixi
B
i1
x1 x 2 x 3 2
s .t
x
4
x5
1
x
0 or 1
例2: 相互排斥的约束条件
运筹学实验6整数规划
实验六、用EXCEL 求解整数规划用单纯形法求解线性规划问题,最优解可能是整数,也可能不是整数,但在很多实际问题中,要求全部或部分变量的取值必须是整数,如所求的解是安排上班的人数,按某个方案裁剪钢材的根数,生产设备的台数等等。
对于整数解的线性规划问题,不是用四舍五入或去尾法对线性规划的非整数解加以处理都能解决的,而要用整数规划的方法加以解决,如分枝定界法和割平面算法。
这些算法比单纯形法更为复杂,因此,一般的学习者要想掌握整数规划的数学算法有一定的困难。
然而事实上,由于Excel 的[工具][规划求解]可以求解整数规划问题,所以,对于一个真正有志于运用运筹学方法解决生产经营中问题的管理者来说,算法将不是障碍因素。
一、实验目的1、 掌握如何建立整数线性规划模型,特别是0~1逻辑变量在模型中的应用。
2、 掌握用Excel 求解整数线性规划模型的方法。
3、 掌握如何借助于Excel 对整数线性规划模型进行灵敏度分析,以判断各种可能的变化对最优方案产生的影响。
4、 读懂Excel 求解整数线性规划问题输出的运算结果报告和敏感性报告。
二、 实验内容1、 整数规划问题模型该问题来自于《运筹学基础及应用》(第四版)胡运权主编P126习题4.13,题目如下: 需生产2000件某种产品,该种产品可利用A 、B 、C 、D 设备中的任意一种加工,已知每种设备的生产准备结束费用、生产该产品时的单件成本以及每种设备限定的最大加工数量(件)如表1所示,问企业应该如何安排设备生产该产品才能使得总的生产成本最少,试建立该问题的数学模型并求解。
该产品可以利用四种不同的设备加工,由于采用不同的设备加工需要支付不同的准备结束费用,而如果不采用某种设备加工,是不需要支付使用该设备的准备结束费用的,所以必须借助于逻辑变量来鉴定准备结束费用的支付。
再设,种设备加工的产品数量为利用第设;4,3,2,1=j j x j⎪⎩⎪⎨⎧=>=)种设备生产(即,若不使用第)种设备生产(即若使用第000,1j j i x j x j y 4,3,2,1=j则问题的整数规划模型为:43214321281624207008009801000min x x x x y y y y z +++++++=⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧==≥≤≤≤≤=+++4,3,2,110,01600120010009002000..443322114321j y x y x y x y x y x x x x x t s j j,或2、 [工具][规划求解]命令求解下面我们用Excel 中的[工具][规划求解]对该问题进行求解。
运筹学课程06-整数规划(胡运权 清华大学)
NEUQ
全整数规划:除了所有决策变量要求取非负整数外,系数 和常数也要求取整数(这时引进的松弛变量和剩余变量也必须 是整数)。
混合整数规划:只有一部分的决策变量要求取非负整数, 另一部分可以取非负实数。 0-1整数规划:所有决策变量只能取 0 或 1 两个整数。
14
NEUQ
3、IP与LP关系:
设整数规划问题如下
c1n c2n cin b c nn
min Z Z b
min Z Z b
,则X 0也是 min Z的最优解 若X 0是 min Z的最优解
24
NEUQ
指派问题的最优解: 若 C中有n 个位于不同行不同列的零元素,则令这
些零元素对应的变量取1,其余变量取零,即得指派问 题的最优解 匈牙利算法:
B1 B2 L Bn A1 c11 c12 L c1n a1 f1 A2 c21 c22 L c2 n a2 f 2 M M M M M M Am cm1 cm 2 L cmn am f m b1 b2 L bn
6
NEUQ
设: xij 表示从工厂运往销地的运量(i=1.2…m; j=1.2…n), 1 在Ai建厂 又设 yi= (i=1.2…m) 0 不在Ai建厂 m 模型: min Z cij xij f i yi
NEUQ
整数规划 Integer Linear Programming
整数规划的难度远大于一般线性规划
1
NEUQ
本章主要内容
整数规划的模型 0-1 整数规划
指派问题
分支定界法 割平面法
2
NEUQ
一、整数规划的模型
1、案例: 某财团有 B万元的资金,经初期考察选中 n个 投资项目,每个项目只能投资一个。其中第 j 个项目需投资金额为 b j ( j 1, 2,L , n) 万元, 预计5年后获利 c j 万元,问应如何选择项目使 得5年后总收益最大?
运筹学整数规划
2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3。重复。依行,不考虑划去的0,只有一个0的 对0打圈,划去列 2
1
5 2 0 9 0
0 3 10 8 6
2 0 5 0 3
0 0 7 0 6
2 0 2 4 5
3
4。重复。依列,不考虑划去的0,只有一个0的 对0打圈,划去行 2
7 8 11
任务 人员
分派情况
甲 乙 丙
E J G R
丁
4
15
所需时间
13
9
甲 1 1 乙 1 丙 1 丁
对应每个指派问题, 都有类似的表格,我们称之 为效率矩阵或系数矩阵,某元素 cij ( i , j = 1,2, · · · · · · , n ) 表示指派第 i 个人去完成 第 j 项任务时的效率(或
整数规划问题的求解要比一般的线性规划困难
本章将着重讨论 1。一类特殊的整数规划——指派问题,它的数 学模型和求解。 2。求解整数规划方法——分枝定界法。
一、指派问题的数学模型
1。数学模型
某单位需要指派 n 个人去完成 n 项任务,每个人 只做一项工作,同时,每项工作只由一个人完成。由 于各人的专长不同,每个人完成各项任务的效率也不 同。于是产生了应指派哪一个人去完成哪一项任务, 使完成 n 项任务的总效率最高(如所用的时间为最 少)。我们把这类问题称之为指派问题或分派问题 (Assignment Problem)。
二、匈牙利法
指派问题的效率矩阵的每一个元素aij≥0
解矩阵是每行或每列只能有一个元素为1,其余 均为 0 的 n 阶方阵。如:
0 0 ( xij ) 1 0 1 0 0 0 0 1 0 0 0 0 0 1
运筹学 整数规划
问应如何选择使年利润最大?
相互排斥的约束条件
某厂用车运和船运两种方式运送甲乙两种 货物,每箱体积、重量、利润及限制条件 如下表:
加入约束: 3 x1-2 x2+5 x3 ≥5
x1 . x 2. x3 ( 0. ( 0. ( 0. ( 1. ( 0. ( 1. ( 1. ( 1. 0. 0. 1. 0. 1. 0. 1. 1. 0 ) 1) 0) 0) 1) 1) 0) 1) (0) 0 5 -2 3 3 8 1 4 0 2 (1) 0 -1 0 1
注:划分不影响原(IP)问题的最优解
LP1 的解
x2
先求(LP1),如图所示。 此时B 在点取得最优解。
3 ⑵ ⑴
B ⑶
x1=1, x2 =3, Z(1)=16 找到整数解,问题已探 明,此支停止计算
3
x1
LP2 的解
再求(LP2),如图所示。 此时C 在点取得最优解。 x1=2, x2 =10/3, Z(2) =56/3≈18.7 Z(2) > Z(1) x2 不是整数,加入条 件x2≤3,x2≥4 将(LP2)继续划分为 (LP3) ,(LP4)
1
C (1,1)
计算步骤
1.
用单纯形法求解(IP)对应的松弛问题(LP):
⑴.若(LP)没有可行解,则(IP)也没有可行解, 停止计算。 ⑵.若(LP)有最优解,并符合(IP)的整数条件,则 即为(IP)的最优解,停止计算。 ⑶.若(LP)有最优解,但不符合(IP)的整数条件, 转入下一步。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
运筹学整数规划
运筹学是研究在资源有限的条件下,如何进行决策和优化的一门学科。
整数规划是运筹学中的一个重要分支,它解决的是决策变量必须为整数的问题。
整数规划在实际问题中具有广泛的应用,如生产计划、设备配置、选址问题等。
整数规划问题的数学模型可以表示为:
max/min c^T x
s.t. Ax ≤ b
x ≥ 0
x ∈ Z
其中,c是目标函数的系数矩阵,x是决策变量的向量,A是
约束条件的系数矩阵,b是约束条件的向量,Z表示整数集合。
整数规划问题与线性规划问题相似,但整数规划问题的约束条件多了一个整数限制,使得问题的解空间变得更为复杂。
由于整数规划问题的NP-hard性质,求解整数规划问题是一项困难
的任务。
求解整数规划问题的常用方法有分支定界法、割平面法和启发式算法等。
分支定界法是一种穷举搜索的方法,它通过将整数规划问题不断分割成更小的子问题,从而逐步搜索解空间,直到找到最优解。
分支定界法对于规模较小的问题比较有效,但对于大规模复杂问题,效率较低。
割平面法是一种通过添加新的约束条件来减少解空间的方法。
它利用线性松弛问题(将整数约束条件放宽为线性约束条件)的解来构造有效的割平面,从而逐步缩小解空间,找到最优解。
割平面法通常比分支定界法更有效,但对于某些问题,可能需要添加大量的割平面才能收敛到最优解。
启发式算法是一种基于经验和启发式搜索的方法。
它通过设置初始解、搜索策略和邻域搜索等步骤,来快速找到近似最优解。
常见的启发式算法有遗传算法、模拟退火算法和禁忌搜索算法等。
启发式算法虽然不能保证找到全局最优解,但能够在可接受的时间内找到较优解。
综上所述,整数规划作为运筹学中的重要分支,解决的是决策变量必须为整数的问题。
整数规划问题具有广泛的应用,但由于其NP-hard性质,求解过程较为困难。
常用的求解方法包括
分支定界法、割平面法和启发式算法等。
这些方法各有优劣,根据具体问题的特点选择合适的方法进行求解。