第一强度理论
第二讲 四种常见的强度理论
基本假说:最大正应力(拉应力)1是引起材料脆断的因素。 失效准则:最大拉应力1 脆断破坏的条件:1 = b 强度条件:1 [ 无论材料处于什么应力状态,只要微元内的最大拉应力1达 到了单向拉伸的强度极限b,就会发生断裂破坏。
4.2.2 四种常见的强度理论
4、最大畸变能密度理论(第四强度理论) 塑性材料
根据:无论材料处于什么应力状态,只要发生屈服,都是由 于微元的最大畸变能密度达到一个极限值。 基本假说:最大畸变能密度νds是引起材料屈服的因素。
失效准则:最大畸变能密度νds
单向拉伸下,1= s, 2= 3 = 0,材料畸变能密度的极限值
1、最大拉应力理论(第一强度理论) 脆性材料
例如,水管在寒冬低温条件下,由于管内水结冰引起体积膨胀,而 导致水管爆裂。由作用反作用定律可知,水管与冰块所受的压力相 等,试问为什么冰不破裂,而水管发生爆裂? 解答:水管在寒冬低温条件下,管内水结冰引起体积膨胀,水管承 受内压而使管壁处于双向拉伸的应力状态下,且在低温条件下材料 的塑性指标降低,因而易于发生爆裂;而冰处于三向压缩的应力状 态下,不易发生破裂。例如深海海底的石块,虽承受很大的静水压 力,但不易发生破裂。
4.2 四种常见的强度理论
4.2.1 概述
1、四种常见的强度理论 ➢ 第一类强度理论:以脆断作为破坏的标志。 包括:最大拉应力理论 最大伸长线应变理论 ➢ 第二类强度理论:以屈服作为破坏的标志。 包括:最大切应力理论 最大畸变能密度理论
4.2.2 四种常见的强度理论
1、最大拉应力理论(第一强度理论) 脆性材料
基本假说:最大切应力max是引起材料屈服的因素。 失效准则:最大切应力max
工程力学第5节 强度理论
max 0
1 3 max 13 2
第三强度理论 建立的强度条件
1 3 s
1 3 [ ]
4、形状改变比能理论(第四强度理论) 这一理论认为形状改变比能是引起材料屈服破 坏的主要因素。即无论什么应力状态,只要构件内 一点处的形状改变比能达到单向应力状态下的极限 值,材料就要发生屈服破坏。经推导可得危险点处 于复杂应力状态的构件发生塑性屈服破坏的条件为
二、四种强度理论 1、最大拉应力理论(第一强度理论) 该理论认为引起材料脆性断裂破坏的因素是最 大拉压力。即无论什么应力状态下,只要构件内一 点处的最大拉压力达到单向应力状态下的极限应力, 材料就要发生脆性断裂。于是危险点处于复杂应力 状态的构件发生脆性断裂破坏的条件为:
1 b
第一强度理论 建立的强度条件
1 b / E 1 1 [1 ( 2 3 )] E
第二强度理论 建立的强度条件
1 ( 2 3 ) b
1 ( 2 3 ) [ ]
3、最大切应力理论(第三强度理论) 这一理论认为最大切应力是引起屈服的主要因 素。即无论什么应力状态,只要最大切应力达到单 向应力状态下的极限切应力,材料就要发生屈服破 坏。于是危险点处于复杂应力状态的构件发生塑性 屈服破坏的条件为:
纵截面上的正应力
2)确定主应力 因t <<D,p 值比 和 小得多,工程计算常忽略。
pD 150106 Pa 2t
1 150MPa 2 75MPa 3 0
3)按照形状改变比能理论校核强度
r 4 1 2 2 3 3 1
2 1 2 2 2 3
四个经典的断裂准则
四个经典的断裂准则:
1最大正应力准则(第一强度理论)(最大拉应力理论)
400多年以前,伽利略(Galileo: 1564-1642)在研究砖、铸铁和石头的拉伸断裂时,发现当施加应力达到一临界值时材料发生断裂,这即是最大正应力准则或第一强度理论。
2莫尔-库仑(Mohr-Coulomb)准则(第二强度理论)(最大拉应变理论)
库仑(1737-1806)在研究土和砂岩的压缩强度后,于1773年提出:当材料的破坏沿着一定剪切平面进行时,所需的破坏力不但与剪切力有关,也与剪切面上的法向力有关。
1900年德国科学家莫尔(1835-1918)将最大主应力莫尔圆引入到库仑强度理论中,因而这个破坏准则现在被称为莫尔-库仑准则。
3屈特加(Tresca)准则(第三强度理论)(最大剪应力理论)
1864年,屈特加提出了最大剪切应力准则或称屈特加准则。
4范·米塞斯(van ·Mises)准则(第四强度理论)(最大形状改变比能理论)
1913年,范·米塞斯考虑了变形能的作用,提出材料的屈服条件为其变形能达到某一临界值,此即范·米塞斯准则或第四强度理论。
脆性断裂一般采用1或2理论;塑性屈服一般采用3或4理论。
除了上述四个最著名的强度理论或准则外,到目前为止,人们关于不同材料的破坏规律曾经提出了上百个模型或准则,但由于材料性质的复杂性,大多数模型或准则都不具有普适性。
1
1 =r ()
3212 + =r 3
13 =r []
2132322214)()()(21 + + =r。
强度理论 4个涉及破坏的强度理论
拉 伸 试 样 的 颈 缩 现 象
力—伸长曲线
F
塑 性 变 形 屈服
缩颈
强度理论
4个涉及破坏的强度理论
(一)最大拉应力(第一强度)理论:认为构件的断裂是由最 大拉应力引起的。当最大拉应力达到单向拉伸时的强度极限时 ,构件就断了。
1、破坏判据: 1 b ; ( 1 0)
2、强度准则: 1 ; ( 1 0)
3、适用范围:适用于破坏形式为脆断的构件。
3、适用范围:适用于破坏形式为屈服的构件。
(四)形状改变比能(第四强度)理论:认为构件的屈服是由
形状改变比能引起的。当形状改变比能达到单向拉伸试验屈服 时形状改变比能时,构件就破坏了。
ux max uxs
1 1 2 2 2 3 2 3 1 2 ux 6E
硬度
韧性 断裂韧度 疲劳
塑性(plasticity):是指材料在载荷作用下 产生塑性变形而不被破坏的能力。 (1)断面收缩率(percentage reduction in area): 是指试样拉断处横截面积S 1 的收缩量与原始横截面积S0之比。
S0 - S 1 ψ= S0 × 100%
(2)断后伸长率(延伸率) specific elongation: 是指试样拉断后的标距伸长量L 1与 原始标距L 0之比。
• (2)抗拉强度:从图2-1中CD曲线逐 步上升可以看出:试件在屈服阶段以后, 其抵抗塑性变形的能力又重新提高,称为 强化阶段。对应于最高点D的应力称为抗 拉强度,用σb表示。 • 设计中抗拉强度虽然不能利用,但屈 强比σs/σb有一定意义。屈强比愈小,反 映钢材受力超过屈服点工作时的可靠性愈 大,因而结构的安全性愈高。但屈强比太 小,则反映钢材不能有效地被利用。
四种强度理论
1、最大拉应力理论:这一理论又称为第一强度理论。
这一理论认为破坏主因是最大拉应力。
不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。
破坏形式:断裂。
破坏条件:σ1 =σb强度条件:σ1≤[σ]实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。
缺点:未考虑其他两主应力。
使用范围:适用脆性材料受拉。
如铸铁拉伸,扭转。
2、最大伸长线应变理论这一理论又称为第二强度理论。
这一理论认为破坏主因是最大伸长线应变。
不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。
破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。
破坏形式:断裂。
脆断破坏条件:ε1= εu=σb/Eε1=1/E[σ1−μ (σ2+σ3)]破坏条件:σ1−μ(σ2+σ3) = σb强度条件:σ1−μ(σ2+σ3)≤[σ]实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。
但是,其实验结果只与很少的材料吻合,因此已经很少使用。
缺点:不能广泛解释脆断破坏一般规律。
使用范围:适于石料、混凝土轴向受压的情况。
3、最大切应力理论:这一理论又称为第三强度理论。
这一理论认为破坏主因是最大切应力maxτ。
不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。
破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。
破坏形式:屈服。
破坏因素:最大切应力。
τmax=τu=σs/2屈服破坏条件:τmax=1/2(σ1−σ3 )破坏条件:σ1−σ3= σs强度条件:σ1−σ3≤[σ]实验证明,这一理论可以较好地解释塑性材料出现塑性变形的现象。
但是,由于没有考虑2σ的影响,故按这一理论设计的构件偏于安全。
缺点:无2σ影响。
使用范围:适于塑性材料的一般情况。
四种强度理论
四种强度理论 YUKI was compiled on the morning of December 16, 2020由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。
1、最大拉应力理论:这一理论又称为第一强度理论。
这一理论认为破坏主因是最大拉应力。
不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。
破坏形式:断裂。
破坏条件:σ1 =σb强度条件:σ1≤[σ]实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。
缺点:未考虑其他两主应力。
使用范围:适用脆性材料受拉。
如铸铁拉伸,扭转。
2、最大伸长线应变理论这一理论又称为第二强度理论。
这一理论认为破坏主因是最大伸长线应变。
不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。
破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。
破坏形式:断裂。
脆断破坏条件:ε1= εu=σb/Eε1=1/E[σ1−μ (σ2+σ3)]破坏条件:σ1−μ(σ2+σ3) = σb强度条件:σ1−μ(σ2+σ3)≤[σ]实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。
但是,其实验结果只与很少的材料吻合,因此已经很少使用。
缺点:不能广泛解释脆断破坏一般规律。
使用范围:适于石料、混凝土轴向受压的情况。
3、最大切应力理论:这一理论又称为第三强度理论。
这一理论认为破坏主因是最大切应力maxτ。
不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。
破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。
破坏形式:屈服。
破坏因素:最大切应力。
τmax=τu=σs/2屈服破坏条件:τmax=1/2(σ1−σ3 )破坏条件:σ1−σ3= σs强度条件:σ1−σ3≤[σ]实验证明,这一理论可以较好地解释塑性材料出现塑性变形的现象。
四大强度理论对比
四大强度理论1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:2、sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]四个强度理论的比较极限形状改变比能μd jx在简单拉伸条件下因σ1=σs,σ2 =σ3=0 μd jx =。
四个强度理论的相当应力表达式
aF
Fa
A
B
C
A
B
C
C
A
B
A
B 1
C1
1
3
3
B
C
对图示的纯剪切应力状态,试按强度理论建立纯剪切状
态下的强度条件,并导出剪切许用应力[τ]与拉伸许用
应力[σ]之间的关系。
1=, 2=0,3=
1 单元体纯剪切强度条件
KK
τ
第三强度理论 第四强度理论
第一强度理论 1
2
τ σ
3
[]为材料在单轴拉伸是的许用拉应力。
材料在纯剪切应力状态下的许用剪应力为
τ σ 0.577σ
3
(10-13)
已知铸铁构件上危险点处的应力状态,如图所示。若铸
铁拉伸许用应力为[σ]+=30MPa,试校核该点处的强度
是否安全。
第一强度理论
1 +
= 100MPa 。试按强度条件选择工字钢的号码。
(a)
200KN
200KN
A C
0.42
1.66
2.50
单位:m 例题 10-3 图
B D
0.42
解:作钢梁的内力图。 C , D 为危险截面
按正应力强度条件选择截面
200KN
A C
0.42
1.66 2.50
取 C 截面计算 Q c = Qmax = 200kN
( 2
3)2
( 3
1)2
rM
1
t
c
3
在大多数应力状态下,脆性材料将发生脆性断裂.因而应选用 第一强度理论;而在大多数应力状态下,塑性材料将发生屈服和剪 断.故应选用第三强度理论或第四强度理论.但材料的破坏形式不 仅取决于材料的力学行为,而且与所处的应力状态,温度和加载速 度有关.实验表明,塑性材料在一定的条件下低温和三向拉伸,会 表现为脆性断裂.脆性材料在三向受压表现为塑性屈服.
四种强度准则
1 3
理论能够很好的解释钢材 等塑性材料的屈服,形式 简单,机械工程中运用得 很广泛。
max
1 ( 1 3 ) u 2
选用单向拉伸实验来确定。
1
1 s max
2 3 0
2 3 0 s 1 ( 1 3 )
r3 1 3
1 r 4 [ (1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 ] 2
强度理论的运用
• 温度、静载作用下,通常的脆性材料选用第一、二强 度理论;塑性材料选用第三、四强度理论。 • 破坏形式和应力状态有关,在特殊情况下要作特殊处
1) 最大拉应力是引起脆性断裂的主要因素。 2) 不管材料处于何种应力状态,只要最大拉应力达到 极限值,就会引起脆性断裂。 max u
1 u
无论什么应力状态,上述条件都成立。 选用单向拉伸实验来确定u:
1
1 b u b
2 3 0
2 3 0
选用单向拉伸实验的(uf)u来确定
1
2 3 0
(1 2 ) 2 ( 2 3 ) 2 ( 3 1 ) 2 2 s2
1 [( s ) 2 ( s ) 2 ] (u f ) u 1 6E [( 1 2 )2 ( 2 3 ) 2 ( 3 1 )2 ] [ ] 2 1 (u f ) u [2( s ) 2 ] 这种理论能够很好的解释钢材 6E
§9-10常用的四种强度理论
第一强度理论──最大拉应力理论(17世纪,伽利略) 第二强度理论──最大伸长线应变理论(17世纪,马里奥特)
第三强度理论──最大剪应力理论(1773年,库仑)
工程力学中四大强度理论
为了探讨导致材料破坏的规律,对材料破坏或失效进行了假设即为强度理论,简述工程力学中四大强度理论的基本内容。
一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
工程力学四大强度理论的基本内容
工程力学中四大强度理论的基本内容一、四大强度理论基本内容介绍:1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ] ,所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E 所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
二、四大强度理论适用的范围1、各种强度理论的适用范围及其应用(1)、第一理论的应用和局限应用:材料无裂纹脆性断裂失效形势(脆性材料二向或三向受拉状态;最大压应力值不超过最大拉应力值或超过不多)。
局限:没考虑σ2、σ3对材料的破坏影响,对无拉应力的应力状态无法应用。
(2)、第二理论的应用和局限应用:脆性材料的二向应力状态且压应力很大的情况。
四种强度准则
第一强度理论──最大拉应力理论(17世纪,伽利略) 第二强度理论──最大伸长线应变理论(17世纪,马里奥特) 第三强度理论──最大剪应力理论(1773年,库仑) 第四强度理论──形状改变比能理论(1904年,胡勃) 强度理论的统一表达式
-
第一强度理论──最大拉应力理论(17世纪,伽利略)
这种理论能够很好解释脆性材料的 拉伸和扭转时的破坏原因,它没有 考虑2 和3 ,对于没有拉应力的 情况无法运用。
-
第二强度理论──最大伸长线应变理论(17世纪,马里奥特)
不管材料处于何种应力状 态,只要最大伸长线应变 达到极限值,就会引起脆 性断裂。
max u
1 u
1b 230 uE 1[1(23)]E b
13s
-
第四强度理论──形状改变比能理论(1904年,胡勃)
不管材料处于何种应力状态,只要形状改变比能达到极限值, 就会引起塑性流动。
u f (u f)u
1 6 E[(12)2 (23)2 (31)2] (u f)u
选用单向拉伸实验的(uf)u来确定 (1 2 ) 2 (2 3 ) 2 (3 1 ) 2 2 s 2
-
其中的r称为相当应力,对于不同的理论,r的表达式不一样
第一强度理论 r1 1
第二强度理论 r21(23 )
第三强度理论 第四强度理论
r313
r42 1[(12-)2(23)2(31)2]
强度理论的运用
• 温度、静载作用下,通常的脆性材料选用第一、二强 度理论;塑性材料选用第三、四强度理论。
• 破坏形式和应力状态有关,在特殊情况下要作特殊处 理。例如,三向等应力拉伸的塑性材料发生脆性断裂。
1 2 3 0
四种强度理论
四种强度理论Corporation standardization office #QS8QHH-HHGX8Q8-GNHHJ8由于材料的破坏按其物理本质分为脆断和屈服两类形式,所以,强度理论也就相应地分为两类,下面就来介绍目前常用的四个强度理论。
1、最大拉应力理论:这一理论又称为第一强度理论。
这一理论认为破坏主因是最大拉应力。
不论复杂、简单的应力状态,只要第一主应力达到单向拉伸时的强度极限,即断裂。
破坏形式:断裂。
破坏条件:σ1 =σb强度条件:σ1≤[σ]实验证明,该强度理论较好地解释了石料、铸铁等脆性材料沿最大拉应力所在截面发生断裂的现象;而对于单向受压或三向受压等没有拉应力的情况则不适合。
缺点:未考虑其他两主应力。
使用范围:适用脆性材料受拉。
如铸铁拉伸,扭转。
2、最大伸长线应变理论这一理论又称为第二强度理论。
这一理论认为破坏主因是最大伸长线应变。
不论复杂、简单的应力状态,只要第一主应变达到单向拉伸时的极限值,即断裂。
破坏假设:最大伸长应变达到简单拉伸的极限(假定直到发生断裂仍可用胡克定律计算)。
破坏形式:断裂。
脆断破坏条件:ε1= εu=σb/Eε1=1/E[σ1?μ (σ2+σ3)]破坏条件:σ1?μ(σ2+σ3) = σb强度条件:σ1?μ(σ2+σ3)≤[σ]实验证明,该强度理论较好地解释了石料、混凝土等脆性材料受轴向拉伸时,沿横截面发生断裂的现象。
但是,其实验结果只与很少的材料吻合,因此已经很少使用。
缺点:不能广泛解释脆断破坏一般规律。
使用范围:适于石料、混凝土轴向受压的情况。
3、最大切应力理论:这一理论又称为第三强度理论。
这一理论认为破坏主因是最大切应力maxτ。
不论复杂、简单的应力状态,只要最大切应力达到单向拉伸时的极限切应力值,即屈服。
破坏假设:复杂应力状态危险标志最大切应力达到该材料简单拉、压时切应力极限。
破坏形式:屈服。
破坏因素:最大切应力。
τmax=τu=σs/2屈服破坏条件:τmax=1/2(σ1?σ3 )破坏条件:σ1?σ3= σs强度条件:σ1?σ3≤[σ]实验证明,这一理论可以较好地解释塑性材料出现塑性变形的现象。
四大强度理论
四大强度理论1、最大拉应力理论(第一强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]压力容器设计应力强度(Stress intensity) :某处的应力若系三向或二向应力时,其组合应力基于第三强度理论的当量强度.规定为给定点处最大剪应力的两倍,即给定点处最大主应力与最小主应力的代数值(拉应力为正值,压应力为负值)之差??容器的应力分类一次应力P(Primary stress)一次应力P也称基本应力,是为平衡压力和其他机械载荷所必需的法向应力或剪应力,可由与外载荷的平衡关系求得,由此一次应力必然直接随外载荷的增加而增加.对于理想塑性材料,载荷达到极限状态时即使载荷不再增加,仍会产生不可限制的塑性流动,直至破坏.这就是一次应力的"非自限性"特征.二次应力Q (Secondary stress)二次应力Q是指由相邻部件的约束或结构的自身约束所引起的法向应力或切应力,基本特征是具有自限性.筒体与端盖的连接部位存在"相邻部件"的约束,厚壁容器内外壁存在温差时就形成"自身约束".二次应力不是由外载荷直接产生的,不是为平衡外载荷所必需的,而是在受载时在变形协调中产生的.当约束部位发生局部的屈服和小量的塑性流动使变形得到协调,产生这种应力的原因(变形差)便得到满足与缓和.亦即应力和变形也受到结构自身的抑制而不发展,这就是自限性.峰值应力F (Peak stress峰值应力F是由局部结构不连续和局部热应力的影响而叠加到一次加二次应力之上的应力增量.峰值应力最主要的特点是高度的局部性,因而不引起任何明显的变形.其有害性仅是可能引起疲劳裂纹或脆性断裂.局部结构不连续是指几何形状或材料在很小区域内的不连续,只在很小范围内引起应力和应变增大,即应力集中,但对结构总体应力分布和变形没有重大影响.压力容器设计复习潘家祯华东理工大学机械与动力工程学院基本概念(下)第四章外压容器设计压力容器设计复习(1) 了解外压容器失稳破坏特点,掌握弹性失稳,非弹性失稳,临界压力,圆筒计算长度,临界长度等概念及外压容器稳定性条件.(2) 掌握典型受载条件下(侧向均布外压,侧向与轴向同时受均布外压,仅轴向受压)圆筒临界压力(或应力)计算公式及其用作设计时相应稳定性系数m的取值.(3) 理解外压圆筒图算法原理,正确选择设计参数,并熟练运用图算法对外压圆筒和封头进行稳定性设计.(4) 掌握外压圆筒加强圈设计计算方法,了解加强圈结构和制造要求.4.1 基本要求第四章外压容器设计(1) 外压容器处于压缩应力状态,可能出现的两种失效形式是压缩屈服破坏和失稳破坏(即壳体在压应力下的突然皱折变形),失稳破坏是外压薄壁容器的主要失效形式.容器失稳时器壁中的压应力低于材料比例极限pt,则称为弹性失稳,反之为非弹性失稳,因容器用钢pt与yt相近,故可近似认为Lcr则约束件作用对筒体pcr无影响,称为长圆筒,失稳皱折波数n=2. 如L≤Lcr则约束件作用对筒体pcr有影响,称为短圆筒,失稳皱折波数n>2.一圆筒上有多个刚性约束件(如封头,法兰,加强圈,夹套封闭件等)即为多段圆筒,其中凸形封头所在圆筒段的计算长度L应包括封头直边段及1/3的封头深度.4.2 内容提要第四章外压容器设计(4) 外压容器稳定性设计目的是防止发生失稳破坏,条件是设计外压力p不得高于稳定性计算确定的许用外压[p],即满足稳定性条件p≤[p]=pcr/m;其中,设计外压力p定义与内压时定义相同,具体取值方法可查表.许用外压[p]由临界压力除以相应稳定性系数m确定;稳定性系数m是考虑公式准确性和制造所能控制的容器形状偏差等因素后所取的安全系数. 稳定性设计的核心问题是计算pcr并确定相应的m,即可计算作用外压[p].4.2 内容提要第四章外压容器设计(5) 圆筒临界压力pcr(或应力cr)计算( =0.3)①受侧向均布外压的圆筒:其pcr为可得圆筒临界长度为:失稳皱折波数n可近似计算4.2 内容提要第四章外压容器设计(4-2)(4-3)(4-4)(4-5)4.2 内容提要第四章外压容器设计②侧向和轴向同时受均布外压时,因轴向外压对圆筒稳定性影响不大,失稳变形及临界压力与情况①相近,故工程上仍按受侧向均布外压情况计算.③轴向受压圆筒:因产生均匀轴向压应力的轴向外载可有多种形式,故以轴向临界应力来表征临界载荷.线弹性条件下的经验式为:④非弹性失稳圆筒临界压力或应力可采用相应弹性失稳公式并以切线模量代替弹性模式量E作近似计算.(4-6)(6) 外压圆筒设计(包括侧向均布外压或侧向与轴向同时受均布外压)①稳定性系数m:目前制造技术水平下GB150规定外压圆筒m=3,相应要求圆筒直径偏差e=Dmax-Dmin不得大于规定值.②解析法设计:一般p,m,E,L,Di可一次性给定或计算,所以设计过程核心是根据假定的tn计算pcr(或[p]),直到满足稳定性条件p≤[p]=pcr/m 式.但解析法选用公式时要先假设长圆筒或短圆筒,弹性或非弹性失稳,并由结果对假设进行校核,所以应用不方便,尤其不便于解非弹性问题,因此工程设计一般用图算法.4.2 内容提要第四章外压容器设计4.2 内容提要第四章外压容器设计③图算法原理:因为周向临界应力所以将长,短圆筒Pcr统一写成长圆筒短圆筒于是根据许用外压可得(4-7)解析法求[p]核心是计算上式右边项,而图算法则将该项计算分成两步:第一步先计算应变cr,因cr与E无关,且仅需D0/te,L/D0两个独立变量,故将其作图以便由从D0/te,L/D0直接查取cr.该图称为外压圆筒几何参数计算图,图中cr用A表示,长短圆筒,弹性或非弹性失稳均适用.4.2 内容提要第四章外压容器设计第二步再由cr计算2/3E cr,将应力一应变曲线纵坐标乘以2/3便可作出cr计算2/3E cr之关系曲线图,称为壁厚计算图.4.2 内容提要第四章外压容器设计横坐标:A= cr,纵坐标:2/3E cr=[P]D0/te用B表示,由A查B即得[p].因塑性范围使用了Et,故对非弹性失稳亦适用.④图算法设计步骤:确定p,T,L,Di,C及材料→假定tn计算te,D0,D0/te,L/D0 →由L/D0 , D0/te查几何参数计算图得A →(根据材料及温度T)由A查壁厚计算图得B或对弹性失稳B=2/3AE →计算[p]=B/(D0/te) →校核p≤[p]是否满足,若满足且接近则tn合理,反之重设tn 再次计算,直至满足稳定性条件.4.2 内容提要第四章外压容器设计(7) D0/te10%,可能发生塑性失稳或屈服,应同时考虑稳定性和强度校核.此时许用外压[p]为: 其中,B的计算与上相同,但当D0/te60 按平板设计;α≤60 看成当量圆筒,按外压圆筒方法设计.4.2 内容提要第四章外压容器设计(11) 外压容器按内压容器进行耐压试验,液压试验压力的确定见下表.4.2 内容提要第四章外压容器设计第五章高压容器设计压力容器设计复习5.1 厚壁圆筒的应力5.2 高压容器的设计本章主要研究厚壁圆筒在内外压力和温差载荷作用下的应力和变形等方面的概念和理论,及其计算方法.目的是解决高压容器的结构和强度设计问题.第五章高压容器设计(1) 理解厚壁圆筒应力,变形的特点.(2) 了解拉美公式的推导过程,熟悉厚壁圆筒内外压力作用下应力和位移的计算,掌握应力的基本特征.(3) 掌握厚壁圆筒温差应力的分布规律,正确判断在与压力产生的弹性应力组合时危险点的位置.(4) 了解组合厚壁圆筒提高筒体承载能力的原理及应力计算的方法.(5) 理解厚壁圆筒弹性应力的概念及自增强计算的基本原理5.1 厚壁圆筒的应力5.1.2 基本要求第五章高压容器设计(1) 工程上通常将外径与内径之比Do/Di>1.2的高压圆筒形容器或管道等统称为"厚壁圆筒".在许多应用场合,圆筒为等壁厚,并承受均匀的内压pi,外压po和沿径向分布不均的温度变化T(从均匀基准温度起计),且T通常仅为径向坐标r之函数.在这样条件下,圆筒的变形对称于圆筒轴.此外,在离开圆筒与端盖连接处足够远时,变形与轴向坐标z亦无关.由于只考虑轴对称载荷和轴对称约束,因此其位移,应力,应变均仅为r之函数(轴对称).5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计(2)厚壁圆筒与薄壁圆筒的根本差别在于必须考虑径向应力r,且这一应力在其数量上足以与周向应力,轴向应力z相较量;此外,厚壁圆筒没有薄壁圆筒中关于沿全壁厚是常数的基本假定,即厚壁圆筒中的应力是三向的,其分布也非全均匀性,因此也是静不定性的,要从几何,物理和静力等三方面进行综合分析.5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计(3)对于具有端盖的厚壁圆筒(下称闭式圆筒),承受内外压作用时的三个主应力分别为式中: .对于开式圆筒,下表示出仅受内压或外压作用时厚壁闭式圆筒内外壁面处的应力及开式圆筒之径向位移. (5-1)5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计4 在稳定温度变化和轴对称条件下,单层厚壁圆筒中的温差应力为:式中α为材料的线膨胀系数;△t=ti-to;ti内壁面温度,to外壁面温度,C.5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计筒体外壁面筒体内壁面应力表5-2 单层厚壁圆筒内外壁面处的温差应力多层圆筒温差应力内外壁面上的近似值为0t≈ it=2.0△t在内压内加热情况下,当△t≤1.1p或保温良好,△t极小或高温作业已达到发生蠕变变形可不予考虑温差应力.(5) 当内压与温差同时存在时,呈线弹性厚壁圆筒中的综合应力可由上述3,4的结果叠加,其内外壁面处的综合应力如下表所示.5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计厚壁圆筒内压下的应力分布单层厚壁圆筒的温差应力分布5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计就周向应力而言,当内压内加热时,最大应力在外壁处,外加热时最大应力在内壁处;当外压内加热时,最大应力在内壁处,外加热时最大应力在外壁外.厚壁筒内的综合应力(6) 厚壁圆筒可以靠在最大应力区域产生与工作应力符号相反的残余应力分布——"预应力法"来提高承载能力:一是由两个或更多个开口圆筒靠过盈配合而组成一个组合圆筒,因过盈量在圆筒的接触表面之间产生装配压力,由这种压力在圆筒上产生了残余应力;另一种是对单个圆筒在一开始承受很高内压使圆筒发生非弹性变形,卸去高压后在圆筒中留下了有利的残余应力分布——"自增强技术".前者应力分析的关键在于确定适当的过盈量,以及过盈量与筒体之间套合压力的关系;后者要合理确定自增强压力以及残余应力的计算.5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计5.1 厚壁圆筒的应力5.1.2 内容提要第五章高压容器设计第五章高压容器设计压力容器设计复习5.1 厚壁圆筒的应力5.2 高压容器的设计(1) 理解高压圆筒三种设计准则的基本观点及相应的最大承载能力.(2) 掌握单层和多层圆筒壁厚的工程设计方法.(3) 了解几种高压容器密封结构的原理与特点,学会对金属平垫和双锥垫的密封计算和被联接件的强度核算.5.2 高压容器的设计5.2.1 基本要求第五章高压容器设计(1) 高压容器一般处在高压高温和化学性介质条件下工作,作为工程设计的核心问题首先是形成强度必需的厚壁,其次是密封所需的结构,因此高压容器的设计以结构型式的多样性,制造要求的严格性,密封结构的复杂性而有别于中低压容器.(2) 高压圆筒按其丧失功能的可能方式或形式建立了三种设计准则,即弹性失效,塑性失效和爆破失效设计准则,它们的基本概念及最大承载能力(计算压力)的比较如表5-5所示.5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计(3) 工程上,当设计压力小于35MPa或K≤1.2时,高压圆筒的计算壁厚仍按照弹性夫效设计准则中的中径公式计算,即当器壁在操作压力和温差同时作用下,应作如下当量组合应力校核①内压内加热筒体:②内压外加热筒体:5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计对于多层组合圆筒,在不计筒体预应力下,除热应力计算以及材料[σ]t取法不同外,其余跟单层圆筒计算相同.(4) 高压容器密封按其工作原理分为强制式密封与自紧式密封两大类.强制密封完全依靠紧固件的预紧力压紧密元件使之密封;自紧密封主要依靠工作内压压紧密封元件实现工作密封.前者结构简单,连接件(如主螺栓)尺寸大,压力温度波动时密封性差;后者结构较复杂,但密封可靠.表5-6比较了分别为其代表的金属平垫和双锥环垫密封的结构牲及密封载荷的计算方法.5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计(5) 高压容器的主要零部件包括筒体端部或端部法兰,端盖或底盖,及连接件(如主螺栓)等.设计计算的任务是分析受载情况建立简化的力学模型,确定初步尺寸和危险截面的应力计算公式,进行应力强度校核,反复对尺寸进行修正,直到满足强度要求为止.学习时应注意力学模型如何从实际中抽象出来,怎样进行简化与假定,以及由此建立的计算公式应用时的条件限制,这也是对任何承压部件解题的基本方法之一.5.2 高压容器的设计5.2.2 内容提要第五章高压容器设计压力容器设计复习第六章压力容器设计技术进展6.1 近代压力容器设计技术进展6.2 压力容器的分析设计(1) 了解压力容器的失效模式(2) 了解压力容器设计准则的发展(3) 了解压力容器设计规范的主要进展(4) 了解近代压力设计方法的应用第六章压力容器设计技术进展6.1 压力容器设计进展6.1.1 基本要求第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(1) 容器的韧性爆破过程一台受压容器,如果材料塑性韧性正常,设计正确,制造中未留下严重的缺陷,加压直至爆破的全过程一般属于韧性爆破过程.韧性爆破的全过程可以用图示容器液压爆破曲线OABCD来说明,加压的几个阶段如下:整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(1) 容器的韧性爆破过程①OA段:弹性变形阶段内压与容器变形量成正比,呈现出弹性行为.A点表示内壁应力开始屈服,或表示容器的局部区域出现屈服,容器的整体弹性行为到此终止.整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(1) 容器的韧性爆破过程②AB段:屈服变形阶段容器从局部屈服到整体屈服的阶段,以内壁屈服到外壁也进入屈服的阶段.B点表示容器已进入整体屈服状态.如果容器的钢材具有屈服平台,这阶段包含塑性变形越过屈服平台的阶段,这是一个包含复杂过程的阶段,不同的容器,不同的材料,这一阶段的形状与长短不同.整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(1) 容器的韧性爆破过程③BC段:变形强化阶段材料发生塑性变形强化,容器承载能力提高.但体积膨胀使壁厚减薄,承载能力下降.两者中强化影响大于减薄影响,强化提高承载能力的行为变成主要因素.强化的变化率逐渐降低,到C点时两种影响相等,达到总体"塑性失稳"状态,承载能力达到最大即将爆破.整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(1) 容器的韧性爆破过程④CD段:爆破阶段,减薄的影响大于强化的影响,容器的承载能力随着容器的大量膨胀而明显下降,壁厚迅速减薄,直至D点而爆裂.整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要整体屈服压力爆破压力(A)弹性变形阶段(OA段) (B)屈服阶段(AB段)(C)强化阶段(BC段) (D)爆破阶段(CD段)脆性爆破过程韧性爆破过程(2) 容器的脆性爆破过程容器的脆性爆破过程如图中OA',(或OA")曲线.这种爆破指容器在加压过程中没有发生充分的塑性变形鼓胀,甚至未达到屈服的时候就发生爆破.爆破时容器尚在弹性变形阶段或少量屈服变形阶段.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式①过度变形容器的总体或局部发生过度变形,包括过量的弹性变形,过量的塑性变形,塑性失稳(增量垮坍),例如总体上大范围鼓胀,或局部鼓胀,应认为容器已失效,不能保障使用安全.过度变形说明容器在总体上或局部区域发生了塑性失效,处于十分危险的状态.例如法兰的设计稍薄,强度上尚可满足要求,但由于刚度不足产生永久变形,导致介质泄漏,这是由于塑性失效的过度变形而导致的失效.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式②韧性爆破容器发生了塑性大变形的破裂失效,相当于图中曲线BCD阶段情况下的破裂,这属于超载下的爆破,一种可能是超压,另一种可能是本身大面积的壁厚较薄.这是一种经过塑性大变形的塑性失效之后再发展为爆破的失效,亦称为"塑性失稳"(Plastic collapse),爆破后易引起灾难性的后果.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式③脆性爆破这是一种没有经过充分塑性大变形的容器破裂失效.材料的脆性和严重的超标缺陷均会导致这种破裂,或者两种原因兼有.脆性爆破时容器可能裂成碎片飞出,也可能仅沿纵向裂开一条缝;材料愈脆,特别是总体上愈脆则愈易形成碎片.如果仅是焊缝或热影响较脆,则易裂开一条缝.形成碎片的脆性爆破特别容易引起灾难性后果.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式④疲劳失效交变载荷容易使容器的应力集中部位材料发生疲劳损伤,萌生疲劳裂纹并扩展导致疲劳失效.疲劳失效包括材料的疲劳损伤(形成宏观裂纹)并疲劳扩展和结构的疲劳断裂等情况.容器疲劳断裂的最终失效方式一种是发生泄漏,称为"未爆先漏"(LBB, Leak Before Break),另一种是爆破,可称为"未漏先爆".爆裂的方式取决于结构的厚度,材料的韧性,并与缺陷的大小有关.疲劳裂纹的断口上一般会留下肉眼可见的贝壳状的疲劳条纹.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式⑤蠕变失效容器长期在高温下运行和受载,金属材料随时间不断发生蠕变损伤,逐步出现明显的鼓胀与减薄,破裂而成事故.即使载荷恒定和应力低于屈服点也会发生蠕变失效,不同材料在高温下的蠕变行为有所不同.材料高温下的蠕变损伤是晶界的弱化和在应力作用下的沿晶界的滑移,晶界上形成蠕变空洞.时间愈长空洞则愈多愈大,宏观上出现蠕变变形.当空洞连成片并扩展时即形成蠕变裂纹,最终发生蠕变断裂的事故.材料经受蠕变损伤后在性能上表现出强度下降和韧性降低,即蠕变脆化.蠕变失效的宏观表现是过度变形(蠕胀),最终是由蠕变裂纹扩展而断裂(爆破或泄漏).第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式⑥腐蚀失效这是与环境介质有关的失效形式.化工容器接触的腐蚀性介质十分复杂,腐蚀机理属于两大类:化学腐蚀与电化学腐蚀.区别在于形成腐蚀化合物过程中是否在原子间有电荷的转移.就腐蚀失效的形态可分为如下几种典型情况:①全面腐蚀(亦称均匀腐蚀);②局部腐蚀;③集中腐蚀(即点腐蚀);④晶间腐蚀;⑤应力腐蚀;⑥缝隙腐蚀;⑦氢腐蚀;⑧选择性腐蚀.腐蚀发展到总体强度不足(由全面腐蚀,晶间腐蚀或氢腐蚀引起)或局部强度不足时,可认为已腐蚀失效.腐蚀发展轻者造成泄漏,局部塑性失稳或总体塑性失稳,严重时可导致爆破.由应力腐蚀形成宏观裂纹,扩展后也会导致泄漏或低应力脆断.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式⑦失稳失效容器在外压(包括真空)的压应力作用下丧失稳定性而发生的皱折变形称为失稳失效.皱折可以是局部的也可以是总体的.高塔在过大的轴向压力(风载,地震载荷)作用下也会皱折而引起倒塌.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(2) 容器的失效模式⑧泄漏失效容器及管道可拆密封部位的密封系统中每一个零部件的失效都会引起泄漏失效.例如法兰的刚性不足导致法兰的过度变形而影响对垫片的压紧,紧固螺栓因设计不当或锈蚀而过度伸长也会导致泄漏,垫片的密封比压不足,垫片老化缺少反弹能力都会引起泄漏失效.系统中每一零部件均会导致泄漏失效,所以密封失效不是一个独立的失效模式,而是综合性的.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(3) 容器的交互失效模式①腐蚀疲劳在交变载荷和腐蚀介质交互作用下形成裂纹并扩展的交互失效.由于腐蚀介质的作用而引起抗疲劳性能的降低,在交变载荷作用下首先在表面有应力集中的地方发生疲劳损伤,在连续的腐蚀环境作用下发展为裂纹,最终发生泄漏或断裂.对应力腐蚀敏感与不敏感的材料都可能发生腐蚀疲劳,交变应力和腐蚀介质均加速了这一损伤过程的进程,使容器寿命大为降低.第六章压力容器设计技术进展6.1 压力容器设计进展6.1.2 内容提要(3) 容器的交互失效模式。
应力强度理论及Von mise应力
应力强度理论及Von mise应力四大强度理论1、最大拉应力理论(第一强度理论)(材料脆性断裂的强度理论):这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论)(材料塑性屈服的强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论)(最大歪形能理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Von mise应力Von Mises 应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5 其中a1,a2,a3分别指第一、二、三主应力,^2表示平方,^0.5表示开方。
四大强度理论
四大强度理论1、最大拉应力理论(第一强度理论)(材料脆性断裂的强度理论):()这一理论认为引起材料脆性断裂破坏的因素是最大拉应力,无论什么应力状态,只要构件内一点处的最大拉应力σ1达到单向应力状态下的极限应力σb,材料就要发生脆性断裂。
于是危险点处于复杂应力状态的构件发生脆性断裂破坏的条件是:σ1=σb。
σb/s=[σ]所以按第一强度理论建立的强度条件为:σ1≤[σ]。
2、最大伸长线应变理论(第二强度理论)(材料塑性屈服的强度理论):这一理论认为最大伸长线应变是引起断裂的主要因素,无论什么应力状态,只要最大伸长线应变ε1达到单向应力状态下的极限值εu,材料就要发生脆性断裂破坏。
εu=σb/E;ε1=σb/E。
由广义虎克定律得:ε1=[σ1-u(σ2+σ3)]/E所以σ1-u(σ2+σ3)=σb。
按第二强度理论建立的强度条件为:σ1-u(σ2+σ3)≤[σ]。
3、最大切应力理论(第三强度理论):这一理论认为最大切应力是引起屈服的主要因素,无论什么应力状态,只要最大切应力τmax 达到单向应力状态下的极限切应力τ0,材料就要发生屈服破坏。
τmax=τ0。
依轴向拉伸斜截面上的应力公式可知τ0=σs/2(σs——横截面上的正应力)由公式得:τmax=τ1s=(σ1-σ3)/2。
所以破坏条件改写为σ1-σ3=σs。
按第三强度理论的强度条件为:σ1-σ3≤[σ]。
4、形状改变比能理论(第四强度理论)(最大歪形能理论):这一理论认为形状改变比能是引起材料屈服破坏的主要因素,无论什么应力状态,只要构件内一点处的形状改变比能达到单向应力状态下的极限值,材料就要发生屈服破坏。
发生塑性破坏的条件为:所以按第四强度理论的强度条件为:sqrt(σ1^2+σ2^2+σ3^2-σ1σ2-σ2σ3-σ3σ1)<[σ]Von mise应力Von Mises 应力是基于剪切应变能的一种等效应力其值为(((a1-a2)^2+(a2-a3)^2+(a3-a1)^2)/2)^0.5 其中a1,a2,a3分别指第一、二、三主应力。
四个强度理论的相当应力表达式
pD ≈ = 90 MPa 4t
( 因为 t «D , 所以 A Dt )
包含直径的纵向截面上的应力
用两个横截面 mm , nn 从圆筒部分 取出
单位长的圆筒研究。
m n
p
m
1
n
由截面法,假想地用 直径平面将取出的单 位长度的圆筒分成两 部分。取下半部分为 研究对象。 包含直径 直径平面
的纵向平
23
11 10
x y
22 2 x yFra bibliotek 2 2 x
29.8MPa 3.72 MPa
(单位 MPa)
1 29.28MPa, 2 3.72MPa, 3 0
1 29.28MPa 30MPa
某结构上危险点处的应力状态如图所示,其中σ= 116.7MPa,τ=46.3MPa。材料为钢,许用应力[σ]= 160MPa。试校核此结构是否安全。
1
r3 1 3
rM
c
t
3
在大多数应力状态下,脆性材料将发生脆性断裂.因而应选用 第一强度理论;而在大多数应力状态下,塑性材料将发生屈服和剪 断.故应选用第三强度理论或第四强度理论.但材料的破坏形式不 仅取决于材料的力学行为,而且与所处的应力状态,温度和加载速 度有关.实验表明,塑性材料在一定的条件下低温和三向拉伸,会 表现为脆性断裂.脆性材料在三向受压表现为塑性屈服.
§ 10 - 5 各种强度理论的适用范围及其应用
1、 在三向拉伸应力状态下,会脆断破坏,无论是
脆性或塑性材料,均宜采用最大拉应力理论。 2、对于塑性材料如低C钢,除三轴拉应力状态以外的
复杂应力状态下,都会发生屈服现象,可采用第三、 第四强度理论。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一强度理论--看一下它的强度条件的取得
第一强度理论又称为最大拉应力理论,其表述是材料发生断裂是由最大拉应力引起,即最大拉应力达到某一极限值时材料发生断裂。
在简单拉伸试验中,三个主应力有两个是零,最大主应力就是试件横截面上该点的应力,当这个应力达到材料的极限强度σb时,试件就断裂。
因此,根据此强度理论,通过简单拉伸试验,可知材料的极限应力就是σb。
于是在复杂应力状态下,材料的破坏条件是
σ1=σb(a)
考虑安全系数以后的强度条件是
σ1≤[σ](1-59)
需指出的是:上式中的σ1必须为拉应力。
在没有拉应力的三向压缩应力状态下,显然是不能采用第一强度理论来建立强度条件的。
第二强度理论--看看它的强度条件的取得
此理论下的脆断破坏条件是
ε1=εjx =σjx /E (b)
sjx是指极限应力或者说是强度极限。
由式(1-58)
可知,在复杂应力状态下一点处的最大线应变为
ε1=[σ1-m(σ2+σ3)]/E
此处m是泊松比。
代入(b)可得
[σ1-m(σ2+σ3)]/E =σjx /E 或[σ1-m(σ2+σ3)]=σjx
将上式右边的σjx 除以安全系数及得到材料的容许拉应力[σ]。
故对危险点处于复杂应力状态的构件,按
第二强度理论所建立的强度条件
第二强度理论又称为最大拉应变理论,其表述是材料发生断裂是由最大拉应变引起。
强度理论条件是:
[σ1-m(σ2+σ3)]≤[σ] (1-60)
第三强度理论--也来看看它的强度条件的取得
第三强度理论又称为最大切应力理论,其表述是材料发生屈服是由最大切应力引起的。
对于像低碳钢这一类的塑性材料,在单向拉伸试验时材料就是沿斜截面发生滑移而出现明显的屈服现象的。
这时试件在横截面上的正应力就是材料的屈服极限ss,而在试件斜截面上的最大剪应力(即45°斜截面上的
剪应力)等于横截面上正应力的一半。
于是,对于这一类材料,就可以从单向拉伸试验中得到材料的极限值txy
txy =σs/2
txy是指剪应力。
按此理论的观点,屈服破坏条件是
tmax =txy =σs/2(c)
由公式(1-56)可知,在复杂应力状态下下一点处的最大剪应力为
tmax =(σ1-σ3)/2
破坏的条件
其中的s1、s3分别为该应力状态中的最大和最小主应力。
故式(c)又可改写为
(σ1-σ3)/2=σs/2 或(σ1-σ3)=σs
将上式右边的ss除以安全系数及的材料的容许拉应力[s],故对危险点处于复杂应力状态的构件,按第三强度理论所建立的强度条件是:(σ1-σ3)≤[σ](1-61)
第四强度理论--首先介绍一下形状改变比能
第四强度理论又称为畸变能理论,其表述是材料发生屈服是畸变能密度引起的。
然后看看强度条件的推导。
物体在外力作用下会发生变形,这里所说的变形,既包括有体积改变也包括有形状改变。
当物体因外力作用而产生弹性变形时,外力在相应的位移上就作了功,同时在物体内部也就积蓄了能量。
例如钟表的发条(弹性体)被用力拧紧(发生变形),此外力所作的功就转变为发条所积蓄的能。
在放松过程中,发条靠它所积蓄的能使齿轮系统和指针持续转动,这时发条又对外作了功。
这种随着弹性体发生变形而积蓄在其内部的能量称为变形能。
在单位变形体体积内所积蓄的变形能称为变形比能。
由于物体在外力作用下所发生的弹性变形既包括物体的体积改变,也包括物体的形状改变,所以可推断,弹性体内所积蓄的变形比能也应该分成两部分:一部分是形状改变比能md ,一部分是体积改变比能mq 。
它们的值可分别按下面的公式计算
md = (1-62)
mq = (1-63)
这两个公式表明,在复杂应力状态下,物体形状的改变及所积蓄的形状改变比能是和三个主应力的差值有关;而物体体积的改变及所积蓄的体积改变比能是和三个主应力的代数和有关。
上面几个强度理论只适用于抗拉伸破坏和抗压缩破坏的性能相同或相近的材料。
但是,有些材料(如岩石、铸铁、混凝土以及土壤)对于拉伸和压缩破坏的抵抗能力存在很大差别,抗压强度远远地大于抗拉强度。
为了校核这类材料在二向应力状态下的强度,德国的O.莫尔于1900年提出一个理论,对最大拉应力理论作了修正,后被称为莫尔强度理论。
莫尔强度理论
莫尔用应力圆(即莫尔圆)表达他的理论,方法是对材料作
莫尔强度理论
三个破坏试验,即单向拉伸破坏试验、单向压缩破坏试验和薄壁圆管的扭转(纯剪应力状态)破坏试验。
根据试验测得的破坏时的极限应力,在以正应力σ为横坐标、剪应力τ为纵坐标的坐标系中绘出莫尔圆,例如图2是根据拉伸和压缩破坏性能相同的材料作出的,其中圆Ⅰ、圆Ⅱ和圆Ⅲ分别由单向拉伸破坏、单向压缩破坏和纯剪破坏的极限应力作出,这些圆称为极限应力圆,而最大的极限应力圆(即圆Ⅲ)称为极限主圆。
当校核用被试材料制成的构件的强度时,若危险点的应力状态是单向拉伸,则只要其工作应力圆不超出极限应力圆Ⅰ,材料就不破坏。
若是单向压缩或一般二向应力状态,则看材料中的应力是否超出极限应力圆Ⅱ或Ⅲ而判断是否发生破坏。
对于拉伸和压缩破坏性能有明显差异的材料,压缩破坏的极限应力远大于拉伸时的极限应力,所以圆Ⅱ的半径比圆Ⅰ的半径大得多(图3)。
在二向应力状态下,只要再作一个纯剪应力状态下破坏的极限应力圆Ⅲ,则三个极限应力圆的包络线就是极限应力曲线。
和图2相比,此处圆Ⅲ已不是极限主圆;而图2中的极限主圆在这里变成了对称于σ轴的包络曲线。
当判断由给定的材料(拉压强度性能不同者)制成的构件在工作应力下是否会发生破坏时,将构件危险点的工作应力圆同极限应力圆图进行比较,若工作应力圆不超出包络线范围,就表明构件不会破坏。
有时为了省去一个纯剪应力状态(薄壁圆管扭转)破坏试验,也可以用圆Ⅰ和圆Ⅱ的外公切线近似地代替包络曲线段。
为了考查上述各种强度理论的适用范围,自17世纪以来,不少学者进行了一系列的试验。
结果表明,想建立一种统一的、适用于各种工程材料和各种不同的应力状态的强度理论是不可能的。
在使用上述强度理论时,还应知道它们是对各向同性的均匀连续材料而言的。
所有这些理论都只侧重可能破坏点本身的应力状态,在应力分布不均匀的情况下,对可能破坏点附近的应力梯度未予考虑。
20世纪40年代中期,苏联的Н.Н.达维坚科夫和Я.Б.弗里德曼提出一个联合强度理论,其要点是根据材料的性质,按照危险点的不同应力状态,有区别地选用已有的最大剪应力理论或最大伸长应变理论,所以它实质上只是提供一个选用现成强度理论的方法。
弹性力学法,分层总和法,应力面积法,考虑历史应力的沉降计算法。