层析成像
层析成像法

层析成像法70年代中期,美国已故的测井学家R.J.Lyle 等人率先利用直射线理论,把医学CT 引入地学领域,把透射层析应用于跨孔电磁波探测的资料处理,推动了全球范围内地下物探层析技术的应用和研究。
电磁波在介质中近似为直线传播必须满足以下三个条件:首先射线的长度r (发射点与接收点之间的直线距离)必须大于πλ2,这里λ是电磁波在介质中的波长。
在目前的仪器和工作面几何条件下,经常使用的电磁波工作频率为0.3MHz ~1.5MHz ,其波长在70~200m 范围内,而综采工作面宽一般为150m ,其射线长度在140~180m 间,满足π2λ〉r 条件。
其次,电磁波在介质中传播的折射率随距离的变化应足够小,也就是折射率近似为一常数。
在实际中,当煤层和顶底板岩层较为均一时,顺层传播的电磁波基本满足这一条件。
最后一个条件是πδλ<<,这里δ是介质中的趋肤深度。
趋肤深度是电磁波能量的有效穿透深度,为δσμω=2。
煤是一种磁性极其微弱的物质,其相对导磁率近似等于1,很显然这个条件也能够满足。
由于综采工作面煤层的倾角都小于25°,发射天线与观测点方向近乎正交,即在090=θ时,式(1)变为:re E E rβ-=0 (4) 对(4)式两边取对数,经变换后可得:βr =0E -E -lg r (5)图2 层析成像剖分示意图如图2所示是一个工作面被网格化后的示意图。
把网格化后每个均匀的小块称为一个像素,在此区域内有一条射线y i 穿过了衰减系数分别为x x x n 12,,...,的诸像素,并在这些像素上的截距分别为d d d i i i n 12,,..., 。
这样在第i 条射线路径上则有:βr d x i j j j n==∑1 (6)把式(6)代入式(4)中可得到第i 条射线的方程:dx y i j j i j n ==∑1 (7)这里 i i i r E E y lg 100--= (8)式中: i E ── 第i 次观测的实测场强值。
地震层析成像原理

地震层析成像原理地震层析成像(Seismic Tomography)是利用地震波在地下传播的波速变化,通过对地震波数据的观测和处理,反演出地下介质的速度结构和构造特征的一种方法。
它是地球物理学中的一项重要研究领域,可以帮助我们深入了解地球内部的构造和演化过程。
地震层析成像的原理基于地震波在不同介质中传播速度不同的特性。
地震波在地下传播时,会受到地下结构的影响,传播速度会发生变化。
当地震波经过不同介质时,它们的传播速度会发生改变,这种改变可以通过对地震波的观测和分析来反演出地下介质的速度结构。
1.数据采集:首先需要在地表布置一定数量的地震台站,用于记录地震波的传播情况。
这些地震台站会同时记录到来的P波(纵波)和S波(横波)的到达时间。
2. 数据处理:利用地震波到达的时间信息,可以通过计算波传播路径的长度来估计地下介质的速度。
传统方法中常使用迭代法(如Gauss-Newton算法)来求解速度模型。
3.反演:根据数据处理得到的波速数据,通过数学反演的方法建立地下速度模型和构造特征。
其中常用的方法包括射线追踪、线性反演、全耦合反演等。
4.分辨率评价:为了评价反演结果的可靠性,需要进行分辨率评价,判断反演结果的可信程度。
常见的评价方法包括主分量分析、模拟能力谱等。
地震层析成像的应用范围非常广泛。
在地质勘探中,通过层析成像可以直接观测到地下的速度结构变化,识别地下的构造和岩性界面,并预测可能存在的矿床等重要资源;在地震地质学中,层析成像可以用来研究地壳的构造和演化过程,例如地震断层的产生和活动等;在地球科学中,利用层析成像可以研究地球内部的动力学过程,了解地球的内部结构和演化历史。
总结起来,地震层析成像通过对地震波传播速度的观测和处理,能够反演出地下介质的速度结构和构造特征。
它是地球物理学中的重要研究方法,对于深入了解地球内部的构造和演化过程具有重要的意义。
OCT(光学相干层析成像)原理

1993年,第一台商 用OCT系统上市。
2000年代以后, OCT技术逐渐拓展 到其他医学领域, 如皮肤科、妇科等。
OCT技术的应用领域
眼科
OCT技术广泛应用于眼科疾病 的诊断和治疗,如黄斑病变、
青光眼、白内障等。
皮肤科
OCT技术可以用于皮肤肿瘤、 皮肤炎症等疾病的诊断和治疗 。
妇科
OCT技术可以用于子宫颈癌、 卵巢癌等妇科疾病的诊断和治 疗。
感谢您的观看
OCT的层析原理
OCT通过测量反射光和透射光的干涉信号来获取样品的层 析结构。干涉信号的强度与参考光束和样品光束的光程差 有关,通过测量不同延迟时间下的干涉信号,可以重建样 品的层析结构。
OCT的层析过程通常采用频域OCT或时域OCT技术实现。 频域OCT通过快速扫描光学频率来获取干涉信号,而时域 OCT则通过快速扫描参考光束的延迟时间来获取干涉信号 。
03 OCT系统组成
光源模块
01
02
03
光源选择
OCT系统通常使用近红外 光波长的激光作为光源, 如800-1300nm波长范围。
光源输出功率
光源模块需要提供稳定的 输出功率,以保证OCT系 统的成像质量。
光谱特性
光源应具有较窄的光谱宽 度,以提高OCT系统的分 辨率。
扫描模块
扫描方式
扫描模块负责将光源发出 的光束扫描到待测样品上, 实现层析成像。
OCT图像的定量分析
厚度测量
OCT图像可以用于测量组织的厚度,通过对不同层次反射信号的 识别和测量,可以获得组织厚度的定量数据。
折射率计算
OCT设备通过测量光在组织中的传播速度,可以计算出组织的折射 率,这对于判断组织性质和生理状态具有重要意义。
地质层析成像技术的原理与应用

地质层析成像技术的原理与应用地质层析成像技术是一种通过分析地下地质情况的技术手段,它可以帮助我们了解地球的内部结构,探索地下水资源,以及寻找矿藏等。
本文将介绍地质层析成像技术的基本原理,并探讨其在实际应用中的价值。
地质层析成像技术是一种基于物理探测原理的方法,主要通过测量地下地质体的物理属性差异,以构建地下地质横切面。
它利用地下介质对电磁波、地震波、重力、磁力等的反射、折射、散射等现象,来获取地下结构的信息。
具体来说,地质层析成像技术主要包括以下几个步骤:首先是数据采集,通过地质勘查仪器对地下进行测量和记录,获得大量的数据。
其次是数据处理,利用计算机算法对采集到的数据进行处理和分析,以提取出有用的信息。
这一步骤需要编写复杂的算法和模型,以实现对地下地质结构的准确描绘。
最后是数据解释,将处理得到的数据进行可视化,以便地质学家和地质工程师进行进一步的解读和分析。
地质层析成像技术在实际应用中具有广泛的价值。
首先,它可以帮助我们了解地球的内部结构。
地球是一个复杂的系统,通过地质层析成像技术,我们可以观察到地壳、地幔、地核等不同层次的结构,从而更好地理解地球的演化历程和板块运动的规律。
其次,地质层析成像技术可以用于寻找地下水资源。
地下水是人类生活和工业生产的重要水源之一,通过地质层析成像技术,我们可以确定地下水的储量和分布,有助于科学合理地进行地下水资源的开发与利用。
此外,地质层析成像技术还可以应用于矿产资源勘探。
矿藏的寻找是一项重要的任务,利用地质层析成像技术,可以探测到地下金属矿床、石油气藏等矿藏的位置和规模,为矿产资源勘探提供重要的依据和指导。
除了上述应用领域外,地质层析成像技术也可以在地质灾害预测和防治中发挥重要作用。
例如,地震灾害是一种常见的地质灾害,地质层析成像技术可以帮助我们预测地震的发生和活动区域,提前采取措施保护人民生命财产安全。
总之,地质层析成像技术是一项重要的地质勘查方法,它通过测量地下地质体的物理属性差异,以构建地下地质横切面,为我们了解地球的内部结构、探索地下水资源以及寻找矿藏等提供了重要的手段。
HRT4(层析成像))

层析成像的目的是确定一个图像函数 f ( x, y) 观测数据可以表示为它 沿路径 L 的积分
其中 d ( , ) 称为投影函数,变量 与波的入射角有关, 与射线的路径有关。当 L 为直线时, 即入射角, i 为射线相对于坐标原点的法向距离,上式称为二维经典Radon变换; 当 L 为曲线时,称其为沿曲线积分的广义Radon变换。把图像划分 为 J 个互不重叠的象元,用象元内 f ( x, y) 的平均值 { f j } 代替 f ( x, y) ,即可得到图像的数字化版。则
灌浆前、后都作了地震波层析成像测试。井间距为10~12米,井 深为15~18米。采用了全程激发接收观测系统。激发、接收点距为 0.5米。测试剖面基本上顺岩层走向。其地震波层析成像图如下:
JK25号 孔 与 JK24号 孔 间 地 震 影 像 图
(灌 后 )
0
M 22右 05号 孔 与 M 26右 05号 地 震 影 像 图
高程(米) 2500
地震影像布置示意图
地表 2500
地震影
段 像激发
2400
地震影像带
2300
地震影像接收段 2200 湖水面
6号平硐
1号平硐
点距(米) 100 200 300 400 500 600
工程区位于松潘—甘孜褶皱带的巴颜喀拉冒地槽褶皱带内、南邻 后龙门山冒地槽褶皱带,东北邻杨子准地台的摩天岭台隆,靠近青 藏高原东边界的岷江断裂。边坡岩体为志留系浅变质砂岩,结晶灰 岩和碎屑岩。因多次构造错动,边坡十分破碎。为探测边坡岩体卸 荷情况,在勘探平硐与山顶间作地震波层析成像测试工作。 6号平硐长为 146 米,而它与山顶距离为 350 米,采用了全程激发 接收观测系统,激发、接收点距为 4米。地表激发,平硐内接收。 采用仪器为吉林工业大学工程地质研究所ES2404E型地震仪,软件 为成都理工大学井间地震波层析成象程序。其地震波层析成像图如 下:
光学相干层析成像技术原理及应用

光学相干层析成像技术原理及应用近年来,随着光学相干层析成像(Optical Coherence Tomography,OCT)技术的广泛应用,它在医学、生物学和材料科学等领域展现出了巨大的发展前景。
本文将从原理和应用两个方面来介绍光学相干层析成像技术。
一、原理光学相干层析成像技术是一种基于干涉的非侵入性成像技术。
其原理类似于医学领域中的超声波层析成像技术,通过测量光波在不同深度处反射或散射的亮度信息,可以重建出被测物体的三维图像。
光学相干层析成像技术利用了光的干涉性质,使用一束高度相干的光源照射被测物体,并通过与参考光束发生干涉来测量光的相位变化。
这种相位变化信息可以用来推导出被测物体各个深度处的反射或散射信号强度,从而实现三维成像。
为了实现高分辨率的成像,光学相干层析成像技术采用了低相干光源和光学干涉仪。
光源通常使用半导体激光器,其光谱宽度较窄,能够提供高度相干的光波。
而光学干涉仪则用来测量光的相位变化,其中包括Michelson干涉仪、Mach-Zehnder干涉仪等。
二、应用1. 医学领域光学相干层析成像技术在医学领域的应用非常广泛,特别是在眼科领域。
它可以实现对眼球各层次的显微观察,提供高分辨率的眼底图像,帮助医生进行疾病诊断和治疗方案制定。
此外,光学相干层析成像技术还可以用于皮肤病的早期诊断、心血管病变的评估等。
2. 生物学领域在生物学研究中,光学相干层析成像技术被广泛应用于组织结构的显微成像。
通过该技术,可以实现对活体组织的非侵入性成像观察,研究组织的形态、结构和功能等。
比如,可以观察到胚胎发育过程中各个器官的形成,探索神经系统的功能连接等。
3. 材料科学领域光学相干层析成像技术在材料科学领域的应用也十分广泛。
它可以实现对材料内部结构和缺陷的观察,用于材料的质量控制和缺陷检测。
此外,也可以通过该技术来研究材料的光学性质和电子结构等。
总结:光学相干层析成像技术作为一种非侵入性成像技术,在医学、生物学和材料科学等领域具有广泛的应用前景。
层析成像原理及应用

层析成像原理及应用一、引言层析成像(Tomography)是一种通过对物体进行多次扫描,然后利用计算机重建出物体内部结构的技术。
它可以提供高分辨率的三维图像,广泛应用于医学、工业检测等领域。
本文将介绍层析成像的原理及其在医学诊断、材料检测等方面的应用。
二、层析成像原理层析成像的原理基于射线投影的思想,通过对物体进行多个角度的射线投影扫描,然后通过计算机对这些投影数据进行重建,得到物体的三维结构。
具体来说,层析成像主要包括以下几个步骤:1. 射线投影:在不同的角度上,通过物体的不同位置进行射线投影,得到一系列的投影图像。
2. 数据采集:将投影图像转化为数字信号,并存储在计算机中。
3. 重建算法:对采集的数据进行处理,使用重建算法恢复出物体的内部结构。
4. 图像显示:将重建后的数据以图像形式显示出来,供观察和分析。
三、层析成像的应用1. 医学诊断层析成像在医学领域被广泛应用于疾病的诊断和治疗。
其中最常见的应用就是X射线计算机断层扫描(CT)。
CT扫描可以提供人体内部器官的高分辨率图像,用于检测和诊断各种疾病,如肿瘤、骨折、脑出血等。
同时,CT还可以辅助手术规划,提高手术成功率。
2. 工业检测层析成像在工业领域也有重要应用。
例如,金属材料的缺陷检测。
通过对金属材料进行层析成像扫描,可以检测出内部的裂纹、气孔等缺陷,帮助判断材料的质量和可靠性。
此外,层析成像还可以用于材料的密度分布分析、形状重建等方面,对提高工业产品的质量和效率具有重要意义。
3. 资源勘探层析成像在石油、矿产等资源勘探中也有广泛应用。
通过对地下岩石和矿石进行层析成像扫描,可以获取地下结构的信息,识别石油、矿石等资源的分布情况,为勘探和开采提供重要依据。
层析成像在资源勘探领域的应用,不仅提高了勘探效率,还减少了勘探成本和环境影响。
4. 环境监测层析成像在环境监测中也有一定的应用。
例如,地下水资源的调查和管理。
通过对地下水进行层析成像扫描,可以获得地下水的分布情况、流动方向等信息,帮助科学家和决策者制定合理的水资源管理策略。
层析成像_实验报告(3篇)

第1篇一、实验目的1. 了解层析成像的基本原理和操作方法。
2. 掌握层析成像在物质成分分析中的应用。
3. 通过实验,提高动手操作能力和分析问题、解决问题的能力。
二、实验原理层析成像是一种利用不同物质在固定相和流动相中溶解度差异,将混合物中的组分分离、分析的技术。
根据层析技术原理,可分为以下几种类型:薄层层析(TLC)、气相层析(GC)、高效液相层析(HPLC)和凝胶渗透层析(GPC)等。
本实验采用薄层层析(TLC)技术,利用不同物质在固定相和流动相中的溶解度差异,将混合物中的组分分离。
通过观察和比较不同组分在固定相上的迁移距离,可以分析出混合物中各组分的含量。
三、实验材料与仪器1. 仪器:薄层层析板、微量注射器、展开槽、铅笔、尺子、紫外灯、显色剂等。
2. 材料:待分离的混合物、固定相(硅胶)、流动相(正己烷)、显色剂(碘蒸气)等。
四、实验步骤1. 准备薄层层析板:取一张薄层层析板,用铅笔在距离一端1cm处划一条起始线。
2. 点样:用微量注射器吸取待分离的混合物,滴加在起始线上,每次滴加量约为1μl,重复3-5次,每次间隔2-3cm。
3. 展开层析:将薄层层析板放入展开槽中,加入适量流动相,使液面距离薄层层析板表面约1cm。
静置一段时间,待流动相自然展开至适当位置(约2-3cm)。
4. 显色:取出薄层层析板,用铅笔在流动相前沿处划一条线,将薄层层析板放入紫外灯下观察,观察各组分的迁移距离。
5. 分析结果:根据各组分的迁移距离,计算各组分的相对含量。
五、实验结果与分析1. 结果:通过实验,观察到混合物中各组分的迁移距离,并计算出各组分的相对含量。
2. 分析:根据实验结果,分析各组分的性质,推测混合物的成分。
六、实验讨论1. 实验过程中,应注意控制滴加量,避免过多或过少。
2. 展开层析过程中,应确保薄层层析板与展开槽内壁垂直,以防止流动相沿壁面上升。
3. 显色时,应在紫外灯下观察,以确保观察结果准确。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层析成像
姓名:李文忠
学号:200805060102
班级:勘查技术与工程(一)班
前言
层析成象是在物体外部发射物理信号,接收穿过物体且携带物体内部信息,利用计算机图象重建方法,重现物体内部一维或三维清晰图象。
层析成象技术最大的特点是在不损坏物体的条件下,探知物体内部结构的几何形态与物理参数(如密度等)的分布。
层析成象与空间技术、遗传工程、新粒子发现等同列为70年代国际上重大科技进展。
层析成像应用非常广泛,如医学层析的核磁共振成像技术、工业方面的无损探伤、在军事工业中,层析成象用于对炮弹、火炮等做质量检查、在石油开发中被用于岩心分析和油管损伤检测等,层析成象是在物体外部发射物理信号,接收穿过物体且携带物体内部信息,利用计算机图象重建方法,重现物体内部一维或三维清晰图象。
声波层析成像技术
声波层析成像方法所研究的主要内容,一个是正演问题,即射线的追踪问题,是根据已知速度模型求波的初至时间的问题;另一个问题就是反演问题,即根据波的初至时间反求介质内部速度或者慢度分布的问题。
层析成像效果的好坏与解正演问题的正演算法和解反演问题的反演算法都有直接的关系。
论文详细研究声波层析成像的射线追踪算法,重点探讨了基于Dijkstra算法的Moser曲射线追踪算法,并用均匀介质模型、空洞模型、低速斜断层等模型使用Moser曲射线追踪时的计算精度与计算效率,发现了内插节点是影响Moser曲射线追踪效果的主要因素,得到了内插节点数为5~7之间,计算速度较快,计算精度较高。
模型试算的结果表明,正演采用内插10个节点,
反演过程中采用内插5个节点,效果最佳。
在层析成像正演算法的基础上,详细研究了误差反投影算法(BPT)、代数重建法(ART)、联合迭代法(SIRT);研究了非线性问题线性化迭代的最速下降法、共轭梯度法(CG);重点推导和建立了层析成像的高斯—牛顿反演法(GN);详细研究了非线性最优化的蒙特卡洛法(MC)、模拟退火法(SA)、遗传算法(GA);研究了将非线性全局最优化和线性局部最优化方法相结合的混合优化方法,探讨了基于高斯牛顿和模拟退火相结合(GN-SA)混合优化算法。
在此基础上,以速度差为10%的低速斜断层模型为例,详细探讨了线性化算法SIRT、GN;非线性最优化算法SA、GA以及混合优化算法GN-SA五种算法对该模型的计算结果,并探讨了直射线和Moser曲射线追踪的反演效果。
数值试验表明,基于Moser曲射线追踪的高斯—牛顿反演法的层析成像效果最佳,计算效率最高。
采用基于Moser曲射线追踪的高斯—牛顿法,对速度差为25%的等轴状空洞构造、速度差为33%的不连通空洞模型、速度差为33%的高速岩脉进行了反演试算,对于这些理论模型,高斯—牛顿法均取得了较好的成像效果。
为进一步验证各种层析成像法,在实验室制作了水泥台和石膏板实物模型,并分别在水泥台中央制作一个方形空洞,在石膏板中央制作一个倒“L”形空洞。
对这两个实物模型进行了实测,对测量的数据,用高斯—牛顿法进行层析成像反演,均取得了较好的成像效果。
通过本文的研究和数值试验,得到了以下结论:(1)基于直射线追踪方法,适用较为简单的地质体,亦或是测量精度要求不高的问题。
由于直射线追踪方法在成像过程中,只需要追踪一次就可以
求得距离矩阵,这样它的成像速度比较快,而基于Moser曲射线追踪的SIRT成像反演法,在迭代过程中,需要不断地进行距离矩阵的更新,计算速度相当慢。
因此,当实际地质情况比较简单时候,可以考虑先采用直射线方法进行成像,然后采用曲射线追踪进行构造精细解释。
(2)基于Moser曲射线的射线追踪方法,追踪效果与内插节点的数目有较大的关系。
(3)在Moser曲射线追踪基础上,结合SIRT层析成像反演方法,对正演模拟的旅行时间进行了成像反演。
当速度差异小于15%时,基于曲射线的SIRT层析成像反演结果与直射线情况下差异不大;当速度差高达33%时,基于直射线的SIRT层析成像方法对高速异常区的成像效果仍然比较好。
但当速度差异大于67%时,基于直射线的SIRT成像效果比较差,但是基于Moser曲射线的追踪方法,仍然可以给出比较好的成像效果。
(4)基于Moser曲射线的高斯—牛顿反演层析成像方法,进行了反演。
(5)通过方法的比较,高斯牛顿法一般只需要迭代2~3次,就可以得到比较好的成像效果。
而一般的SIRT成像方法,需要迭代10次左右才能得到比较好的成像效果。
(6)理论模型的数值试验表明,尽管非线性最优化方法在理论上可以收敛到全局最优解,但是在实践过程中,非线性最优化算法SA、GA以及混合最优化方法,目前仍然存在搜索次数太大,搜索时间过长等弊病而无法实用。
这些理论模型和实测资料的反演结果,为建筑物构件等的无损检测提供了理论依据。
一.井间地震层析成像技术
井间地震层析成像技术是利用地震波在不同方向投射的波场信
息, 对地下介质内部精细结构(速度、衰减系数、反射系数等的分布)进行成像, 以其分辨率高、解析成果直观等特点, 广泛应用于工业及民用建筑、公路、铁路、环境等方面工程地质勘察中。
井间层析成像可分为基于射线理论的走时层析成像和波动理论的绕射层析成像两类。
井间地震波场信息丰富复杂, 波场识别和分离比较困难, 而直达波至相对简单, 故工程勘察中常常采用基于射线理论的直达波至走
时层析成像。
井间地震层析成像的核心问题是: 至波走时和线路径计算, 即正演问题; 过不同的重建算法进行成像、解释即反演问题。
笔者正演采用最短路径法射线追踪, 反演采用基于正交分解最小二乘法(简称LSQR 算法)的反演算法。
1、最短路径法射线追踪
它是基于Fermat最小旅行时原理和网络理论中的最短路径算法
来实现。
把地下介质离散成若干小单元体, 并在各单元边界上设置一些节点, 地下速度模型就可表示成由这些节点以及它们之间的连线
所形成的网络。
网络中的每一个节点只能与彼此相邻的节点连接。
相邻节点之间的连接权等于地震波沿其连线传播的旅行时。
一条路径是由相互连接的节点序列组成的, 沿着该路径的旅行时为该路径上所
有连接权之和。
从一个节点到另一个可能有无数条路径, 按照Fermat 原理, 把旅行时最小的路径近似为地震波传播通过的射线。
网络中, 速度场分布在离散的节点上。
相邻节点之间的旅行时为他们之间欧氏距离与其平均慢度之积。
将波阵面看成是由有限个离散点次级源组成, 对于某个次级源(即某个网格节点) , 选取与其所有相邻的点(邻域
点)组成计算网格点; 由一个源点出发, 计算出从源点到计算网格点的透射走时、射线路径和射线长度; 然后把除震源之外的所有网格点相继当作次级源, 选取该源点相应的计算网格点,计算出从次级源点到计算网格点的透射走时、射线路径和射线长度; 将每次计算出来的走时加上从震源到次级源的走时, 作为震源点到该网格节点的走时, 记录下相应射线路径位置及射线长度(如下图)。
最短路径射线追踪原理示意图
2、层析成像的反演LSQR 算法
LSQR 方法是Pa ige 和Sanders在1982 年提出的, 它是利用Lanczos迭代法求解最小二乘问题的一种方法。
LSQR 方法具有计算量小的优点, 并且能很容易地利用矩阵的稀疏性简化计算, 因而适合求解大型稀疏问题。
LSQR 是目前层析成像中常用的方法, 在迭代过程中, 它只涉及
到非零元素, 占有用存储空间少,运算速度快, 运算稳定, 迭代次数少。
3、结论
(1)井间地震可以把震源和检波器的排列直接布置在钻孔中, 这可以使接收到的地震信号能保留更高频率的有效成分, 为提高分辨率打下物理基础。
但是, 也正是由于震源和检波器位置分布相对固定,且数目有限, 故获得的不同角度的数据量有限, 不能够像医学CT 那样获得全方位的数据, 这使得层析成像的解不唯一, 故进行图像解释时, 必须通过钻孔资料加以约束。
(2)对规模较小的破碎带、节理裂隙发育等结构缺陷的低速异常体的探测, 由于对地震波的走时影响较小, 不足以改变地震波的射线路径, 则层析成像的分辨率依然达不到, 不能够将这些低速异常体分辨出来。
(3)层析成像质量不仅与异常体大小有关, 还与孔间距及孔深与孔间距之比有关, 外业数据采集质量、拾取初至波走时误差、反演算法亦对反演图像解释产生直接影响。
(4)为提高探测精度, 可尝试利用VSP和井间CT数据采集方式的相似性, 设置科学的野外观测系统, 同时开展工程VSP 与地震CT 联合探测方法研究, 进行联合反演, 这也将是我们今后努力的方向。
结束语
层析成像方法在地球物理探测方面还有许多广泛的应用,这里我们就不一一讨论。
如何利用层析成像技术为地球物理探测技术的发展
做出贡献,是每个物探人应该努力的方向。