有限元素法有限体积法有限差分法有限容积法的区别

合集下载

有限体积法介绍

有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。

在本章所要学习的有限体积法则采用了不同的离散形式。

首先,有限体积法离散的是积分形式的流体力学基本方程:•d q ds ds SS⎰⎰⎰ΩΩ+∇⋅Γ=⋅φφρφn n v(1)计算域用数值网格划分成若干小控制体。

和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。

有限体积法的计算节点定义在小控制体部。

一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。

第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。

积分形式的守恒方程在小控制体和计算域上都是成立的。

为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。

2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。

计算节点用大写字母表示,控制体边界和节点用小写字母表示。

为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。

控制体边界上的积分等于控制体个表面的积分的和:∑⎰⎰=kS Skfds fdS(2)上式中,f 可以表示n u ρφ或n∂∂Γφ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。

整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:e e e e S e Sf S f fds F e≈==⎰(3)上式中e f 为边界中点出的函数值。

有限元和有限体积

有限元和有限体积

有限元和有限体积引言有限元和有限体积方法是数值计算中常用的一种数值方法,用于求解连续介质力学问题。

有限元方法通过将连续介质分割为无数个小单元,通过对小单元进行分析,来近似求解整个问题。

而有限体积方法使用有限体积元胞对区域进行离散化,通过求解元胞边界上的通量和源项来逼近整体问题的解。

本文将详细讨论这两种方法的基本原理、应用领域和优缺点。

有限元方法基本原理有限元方法是将连续介质划分为一个个小的有限元,每个有限元都有自己的形状函数和自由度。

通过将连续问题离散化为有限个自由度上的代数方程,再通过求解代数方程组来近似求解连续问题的解。

具体步骤如下:1.将连续介质划分为有限个小的有限元;2.在每个有限元上选择适当的形状函数;3.建立有限元刚度矩阵和载荷向量;4.组装有限元刚度矩阵和载荷向量;5.边界条件的处理;6.求解代数方程组得到近似解。

有限体积方法基本原理有限体积方法是将连续介质划分为有限个的离散控制体积,通过对每个控制体积内部的平衡方程进行积分,得到离散控制方程。

以控制体积为基本单位,建立离散方程,通过对自由度进行遍历,求解整个问题。

具体步骤如下:1.将连续介质划分为有限个的离散控制体积;2.在每个控制体积内部建立平衡方程并进行积分;3.得到离散控制方程;4.边界条件的处理;5.求解离散方程组得到近似解。

有限元方法和有限体积方法的区别有限元方法和有限体积方法都是数值计算的重要方法,但在求解连续介质力学问题时有一些差异。

离散化方式不同有限元方法对连续介质进行的离散化是基于几何结构的,将连续域划分为小的有限元。

而有限体积方法则是基于控制体积划分,离散化程度相对较小。

近似程度不同有限元方法是在各个有限元上进行近似,通过调节有限元的数量和自由度的精度来改变近似程度。

有限体积方法是在每个控制体积上进行平衡方程的积分,通过选取不同大小的控制体积来改变近似程度。

单元法程度的力学意义不同有限元方法中的单元法是具有力学意义的,可以通过单元的应力、应变等物理量来反映力学本质。

06有限体积法、有限元法、边界元法.ppt [修复的]

06有限体积法、有限元法、边界元法.ppt [修复的]


t t

t
0 TP dt fTP 1 f TP dt


f 0,1 权系数

a PTP a E fTE 1 f

0 aP
1 f a E

a fT 1 f a T
0 TE W W 0 P
W
1 f
q wds
j j 1 j
n
引入记号
w n ds j H ij w ds c i n j

j i j i
Gij
j
wds

H u G q
ij j ij j 1 j 1
n
n
j
或写成矩阵形式
a.常数单元(1节点)
取单元中点为节点,则
u const q const
b.线性单元(2节点) 取单元两端点为节点,则
j 1 1 j1
2 j 1 1 j2 2 u j u1j1 u 2j 2
q j q1j1 q 2j 2

Ke Kw aE , aW x E x w a P a E aW , b S x

a PTP a E TE aW TW b d

aPTP
a
nbT
b d
足标nb表示相邻节点.
d 或d 标准形式
将分成j 1,2,..., n个直线段称为单元。 u 设待求函数u及导数q 的逼近函数为 n
u q x y
j j
ji ui
j j j

数值传热学

数值传热学

数值传热学数值传热学常用的数值方法1.有限差分法历史上最早采用的数值方法,对简单几何形状中的流动与换热问题最容易实施的数值方法。

其基本点是:将求解区域中用于坐标轴平行的一系列网格的交点所组成的点的集合来代替,在每个节点上,将控制方程中每一个导数用相应的差分表达式来代替,从而在每个节点上,形成一个代数方程,每个方程中包括了本节点及其附近一些节点上的未知值,求解这些代数方程就获得了所需的数值解。

2.有限容积法将所计算的区域划分成一系列控制容积划分为一系列控制容积,每个控制容积都有一个节点做代表。

通过将守恒型的控制方程对控制容积坐积分导出离散方程。

在导出过程中,需要对界面上的被求函数本身及其一阶导数的构成做出假定,是目前流动与换热问题的数值计算中应用最广的一种方法。

3.有限元法把计算区域划分为一系列原题(在二维情况下,元体多为三角形或四边形),由每个元体上去数个点作为节点,然后通过对控制方程做积分来获得离散方程。

有限元法最大的优点是对不规则区域的适应性较好。

但计算的工作量一般要比有限容积法大,而且在求解流动与换热问题是,对流项的离散处理方法及不可压缩流体原始变量法求解方面没有有限容积法成熟。

4.有限分析法由陈景仁教授在1981年提出。

在这种方法中,也像有限差分法那样,用一系列网格线将区域离散,所不同的是每一个节点与相邻4个网格(二维)问题组成计算单元,即一个计算单元由一个中心节点与8个l 邻点组成。

在计算单元中把控制方程中的非线性项局部线性化,并对该单元上未知函数的变化型线作出假设,把所选定型线表达式中系数和常数项用单元边界节点上位置的变量值来表示,找出其分析解。

然后利用其分析解,得到该单元中点及其边界上的位置值的代数方程,即单元中点的离散方程。

有限元法与有限体积法

有限元法与有限体积法

C1h2 ≤ SQ ≤ h2,
∀Q ∈ Ω∗h
(15)
C2h2 ≤ SP∗0 ≤ C3h2,
∀P0 ∈ Ω¯ h.
(16)
取试探函数空间 Uh 为相应于 Th 的一次有限元空间,即 Uh = {uh | uh ∈ C(Ω), uh |K∈ P1(K), ∀K ∈ Th, uh |∂Ω= 0} ⊂ H01(Ω). (17)
P0 ∈ Ω˙ h.
(34)
7
据定理2.1和上式有
uh − Πhu
2 1
=
1 C
a(uh

Πhu, Π∗h(uh

Πhu))
=
1 C
a(u

Πhu, Π∗h(uh

Πhu)),
从而
uh − Πhu 1

1 C
sup
u¯h∈Uh
|
a(u

Πhu, Π∗hu¯h) u¯h 1
|
(35)
其中
| a(u − Πhu, Π∗hu¯h) |≤ Ch | u |2 u¯h 1 .
(26) (27)
(28)
=
f dxdy
KP∗ij
(29)
5
三、误差估计
命题 2.1 对于求解问题(1)-(2)的有限体积法的双线性形式 a(·, ·) 有:
a(uh, Π∗hu¯h) =
∇uh · ∇u¯hdxdy = a(uh, u¯h), ∀uh ∈ Uh. (30)
K∈Th K
其中 a(uh, u¯h) 表示有限元法中的双线性形式 a(·, ·).
求解Poisson方程的有限体积法定义为:求 uh ∈ Uh,使得
a(uh, vh) = (f, vh), ∀vh ∈ Vh,

有限差分及有限单元法的区别

有限差分及有限单元法的区别

1 有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

从差分的空间形式来考虑,可分为中心格式和逆风格式。

考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2 有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

有限体积法介绍

有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。

在本章所要学习的有限体积法则采用了不同的离散形式。

首先,有限体积法离散的是积分形式的流体力学基本方程:•d q ds ds SS⎰⎰⎰ΩΩ+∇⋅Γ=⋅φφρφn n v(1)计算域用数值网格划分成若干小控制体。

和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。

有限体积法的计算节点定义在小控制体内部。

一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。

第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。

积分形式的守恒方程在小控制体和计算域上都是成立的。

为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。

2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。

计算节点用大写字母表示,控制体边界和节点用小写字母表示。

为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。

控制体边界上的积分等于控制体个表面的积分的和:∑⎰⎰=kS Skfds fdS(2)上式中,f 可以表示n u ρφ或n∂∂Γφ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。

整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:e e e e S e Sf S f fds F e≈==⎰(3)上式中e f 为边界中点出的函数值。

物理计算中常用数值计算方法解析

物理计算中常用数值计算方法解析

物理计算中常用数值计算方法解析在物理学研究中,数值计算方法是解决复杂问题的重要工具。

它们通过将连续的物理过程离散化为离散的数值计算,从而使得问题变得更易于处理。

本文将介绍一些常用的数值计算方法,并探讨它们在物理计算中的应用。

一、有限差分法有限差分法是一种常见的数值计算方法,它将连续的物理过程离散化为离散的差分方程。

通过将空间和时间划分为离散的网格点,有限差分法可以将微分方程转化为差分方程,并通过迭代求解差分方程来获得数值解。

有限差分法在物理计算中有广泛的应用。

例如,在流体力学中,有限差分法可以用来模拟流体的运动和变形。

在电磁学中,有限差分法可以用来计算电场和磁场的分布。

此外,有限差分法还可以用于求解热传导方程、波动方程等。

二、有限元法有限元法是一种常用的数值计算方法,它将连续的物理过程离散化为离散的有限元。

通过将物理区域划分为有限个小区域,有限元法可以将偏微分方程转化为代数方程,并通过求解代数方程来获得数值解。

有限元法在物理计算中有广泛的应用。

例如,在结构力学中,有限元法可以用来计算结构的应力和变形。

在电磁学中,有限元法可以用来计算电场和磁场的分布。

此外,有限元法还可以用于求解热传导方程、流体力学方程等。

三、蒙特卡洛方法蒙特卡洛方法是一种基于统计的数值计算方法,它通过随机抽样和概率统计的方法来获得数值解。

蒙特卡洛方法的核心思想是通过大量的随机抽样来近似计算复杂的数学问题。

蒙特卡洛方法在物理计算中有广泛的应用。

例如,在统计物理学中,蒙特卡洛方法可以用来模拟粒子的随机运动和相互作用。

在量子力学中,蒙特卡洛方法可以用来计算量子系统的性质。

此外,蒙特卡洛方法还可以用于求解复杂的积分和优化问题。

四、快速傅里叶变换快速傅里叶变换(FFT)是一种高效的数值计算方法,它可以将一个信号从时域转换到频域。

FFT算法的核心思想是通过递归和分治的方法将一个大规模的离散傅里叶变换分解为多个小规模的离散傅里叶变换。

FFT在物理计算中有广泛的应用。

有限差分法和有限元法

有限差分法和有限元法

有限差分法和有限元法
有限差分法(Finite Difference Method)和有限元法(Finite Element Method)是两种常用的数值计算方法,用于求解偏微分方程的数值解。

有限差分法是通过将求解区域离散化为网格,然后在各个网格节点处用差分逼近偏微分方程中的导数项,将偏微分方程转化为代数方程组。

通过求解这个方程组,可以得到离散节点上的数值解。

有限差分法适用于一维、二维或三维的问题,可用来处理线性或非线性、稳定或非稳定的偏微分方程。

有限差分法的优点是简单易实现,容易理解和计算,但是对于复杂的几何形状和边界条件,离散网格的选择可能会对精度和计算结果产生较大的影响。

有限元法则是通过将求解区域划分为互不重叠的有限元,每个有限元内部采用局部函数近似原方程,然后将所有有限元的近似解拼接在一起,形成整个求解区域上的近似解。

有限元法通常在每个有限元上构造基函数,通过求解代数方程组确定基函数的系数,从而得到整个求解区域上的数值解。

有限元法适用于一维、二维或三维的问题,能够处理各种几何形状和边界条件,适用范围更广。

有限元法的优点是对复杂几何形状的适应性好,精度高,但是相对于有限差分法而言,复杂度较高,需要更多的计算量和计算时间。

总体来说,有限差分法更适用于简单的几何形状和边界条件,而有限元法更适用于复杂的几何形状和边界条件。

两种方法在
实际的工程和科学计算中都有广泛的应用,选择哪种方法取决于具体问题的性质和求解的要求。

有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等离散方法的区别介绍

有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。

实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。

节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。

一般把节点看成是控制容积的代表。

控制容积和子区域并不总是重合的。

在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。

网格是离散的基础,网格节点是离散化物理量的存储位置。

大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。

1. 有限差分法是数值解法中最经典的方法。

它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。

这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。

用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。

2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。

对椭圆型问题有更好的适应性。

有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。

目前的商用CFD软件中,FIDAP采用的是有限元法。

3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。

其中的未知数十网格节点上的因变量。

子域法加离散,就是有限体积法的基本方法。

就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。

有限体积法 有限差分法 有限元法

有限体积法 有限差分法 有限元法

有限体积法有限差分法有限元法
有限体积法、有限差分法和有限元法是数值计算中常用的三种方法。

它们都是通过将连续的物理问题离散化为离散的数值问题来求解的。

有限体积法是一种基于控制体积的方法,它将物理问题离散化为一系列控制体积,并在每个控制体积内求解平均值。

这种方法适用于求解守恒方程,如流体力学中的Navier-Stokes方程。

有限体积法的优点是可以处理复杂的几何形状和非结构化网格,但需要更多的计算资源。

有限差分法是一种基于差分近似的方法,它将物理问题离散化为一系列网格点,并在每个网格点上求解函数值。

这种方法适用于求解偏微分方程,如热传导方程和波动方程。

有限差分法的优点是计算速度快,但需要规则的网格。

有限元法是一种基于变分原理的方法,它将物理问题离散化为一系列有限元,并在每个有限元内求解函数值。

这种方法适用于求解复杂的几何形状和非线性问题,如结构力学和电磁学。

有限元法的优点是可以处理复杂的几何形状和非线性问题,但需要更多的计算资源。

有限体积法、有限差分法和有限元法都是数值计算中常用的方法,它们各有优缺点,适用于不同的物理问题。

在实际应用中,需要根据具体问题选择合适的方法来求解。

有限容积、有限元、有限差分区别

有限容积、有限元、有限差分区别

有限容积法
简介
有限容积法(Finite Volume Method)又称为控制体积法。
基本思路
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
五部分
有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通 对流项的离散化

有限元分析离散方法

有限元分析离散方法
基本思想:由解给定的泊松方程化为求解泛函的极值问题。
方法运用的基本步骤:
步骤1:剖分:
将待解区域进行分割,离散成有限个元素的集合.元素(单元)的形状原则上是任意的.二维问题一般采用三角形单元或矩形单元,三维空间可采用四面体或多面体等.每个单元的顶点称为节点(或结点).
步骤2:单元分析:
进行分片插值,即将分割单元中任意点的未知函数用该分割单元中形状函数及离散网格点上的函数值展开,即建立一个线性插值函数
步骤3:求解近似变分方程
用有限个单元将连续体离散化,通过对有限个单元作分片插值求解各种力学、物理问题的一种数值方法。有限元法把连续体离散成有限个单元:杆系结构的单元是每一个杆件;连续体的单元是各种形状(如三角形、四边形、六面体等)的单元体。每个单元的场函数是只包含有限个待定节点参量的简单场函数,这些单元场函数的集合就能近似代表整个连续体的场函数。根据能量方程或加权残量方程可建立有限个待定参量的代数方程组,求解此离散方程组就得到有限元法的数值解。有限元法已被用于求解线性和非线性问题,并建立了各种有限元模型,如协调、不协调、混合、杂交、拟协调元等。有限元法十分有效、通用性强、应用广泛,已有许多大型或专用程序系统供工程设计使用。结合计算机辅助设计技术,有限元法也被用于计算机辅助制造中。
4.有限分析法:同有限差分法一样,用一系列网格线将区域离散,所不同的是每个节点与相邻8个邻点组成。在计算单元中把控制方程中的非线形项局部线形化,并对该单元上未知函数的变化型线作出假设,把所选定型线表达式中的系数和常数项用单元边界节点上未知的变量值来表示,这样该单元内的被求问题就转化为第一类边界条件下的一个定解问题,可以找出分析解;然后利用这一分析解,得出该单元中点及边界上8个邻点上未知值间的代数方程,此即为单元中点的离散方程。两种离散方法外节点法:节点在子域的四角,先定节点位置而计算相应的界面内节点法:节点在子域中心,子域与控制容积重合。 计算时先定界面后算出节点位置。

有限差分和有限体积法

有限差分和有限体积法

有限差分和有限体积法
有限差分法和有限体积法是计算数学中常用的两种数值方法,主要用于求解微分方程或积分方程的数值近似解。

有限差分法是一种离散化方法,其核心思想是将微分方程中的连续函数用有限个点的函数值去逼近。

具体地,将求解区域离散化为有限的网格点,将连续函数在网格点处的函数值作为离散后的点值,再借助差分运算将微分方程中的导数转化为点值之差,从而得到含有点值的代数方程组,用解代数方程组的数值方法求解得到近似解。

有限差分法常用于求解常微分方程、偏微分方程和积分方程,比如泊松方程、热传导方程、对流扩散方程等。

需要注意的是,有限差分法和有限体积法的数值差分误差与网格大小、边界条件、时空离散化方式有关,因此在应用中需要对参数进行适当选择和优化,从而减小数值误差,增加数值精度。

总的来说,有限差分法和有限体积法虽然是两种不同的数值方法,但其都是以离散化为核心思想,将微分方程转化为代数方程组进行数值求解。

它们在数值计算领域中应用广泛,常常用于科学计算、数值模拟等方面,具有较广泛的应用前景。

对有限元法有限差分法边界元法和模拟电荷法的粗略总结

对有限元法有限差分法边界元法和模拟电荷法的粗略总结

对有限元法、有限差分法、边界元法和模拟电荷法的粗略总结:有限元法( finiteelementmethod ):将连续的求解域离散为一组单元的组合体,用在每个单元内假设的近似函数来分片的表示求解域上待求的未知场函数,近似函数通常由未知场函数及其导数在单元各节点的数值插值函数来表达。

从而使一个连续的无限自由度问题变成离散的有限自由度问题。

缺点是有限元必须同时对所有域内节点和边界节点联立求解,待求未知数多,要求解的方程规模大,导致输入数据多,计算的准备工作量大。

有限差分法( finite difference method ):直接从微分方程出发,将求解区域划分为网格,近似地用差分、差商代替微分、微商,于是无限度的问题化成有限自由度的问题。

这种方法在解决规则边界的问题时极为方便,但是正是由于这种限制而增加了它的局限性,即对于非规则边界的问题适用性较差。

边界元法( boundaryelementmethod ):边界元法是在有限元法之后发展起来的一种较精确有效的工程数值分析方法。

它以定义在边界上的边界积分方程为控制方程,通过对边界分元插值离散,化为代数方程组求解。

它与基于偏微分方程的区域解法相比,由于降低了问题的维数,而显著降低了自由度数,边界的离散也比区域的离散方便得多,可用较简单的单元准确地模拟边界形状,最终得到阶数较低的线性代数方程组。

又由于它利用微分算子的解析的基本解作为边界积分方程的核函数,而具有解析与数值相结合的特点,通常具有较高的精度。

特别是对于边界变量变化梯度较大的问题,如应力集中问题,或边界变量出现奇异性的裂纹问题,边界元法被公认为比有限元法更加精确高效。

由于边界元法所利用的微分算子基本解能自动满足无限远处的条件,因而边界元法特别便于处理无限域以及半无限域问题。

边界元法的主要缺点是它的应用范围以存在相应微分算子的基本解为前提,对于非均匀介质等问题难以应用,故其适用范围远不如有限元法广泛,而且通常由它建立的求解代数方程组的系数阵是非对称满阵,对解题规模产生较大限制。

什么是有限元法?

什么是有限元法?

什么是有限元法?通俗地说,有限元法就是一种计算机模拟技术,使人们能够在计算机上用软件模拟一个工程问题的发生过程而无需把东西真的做出来。

这项技术带来的好处就是,在图纸设计阶段就能够让人们在计算机上观察到设计出的产品将来在使用中可能会出现什么问题,不用把样机做出来在实验中检验会出现什么问题,可以有效降低产品开发的成本,缩短产品设计的周期。

有限元法也叫有限单元法(finite element method, FEM),是随着电子计算机的发展而迅速发展起来的一种弹性力学问题的数值求解方法。

五十年代初,它首先应用于连续体力学领域—飞机结构静、动态特性分析中,用以求得结构的变形、应力、固有频率以及振型。

由于这种方法的有效性,有限单元法的应用已从线性问题扩展到非线性问题,分析的对象从弹性材料扩展到塑性、粘弹性、粘塑性和复合材料,从连续体扩展到非连续体。

有限元法最初的思想是把一个大的结构划分为有限个称为单元的小区域,在每一个小区域里,假定结构的变形和应力都是简单的,小区域内的变形和应力都容易通过计算机求解出来,进而可以获得整个结构的变形和应力。

事实上,当划分的区域足够小,每个区域内的变形和应力总是趋于简单,计算的结果也就越接近真实情况。

理论上可以证明,当单元数目足够多时,有限单元解将收敛于问题的精确解,但是计算量相应增大。

为此,实际工作中总是要在计算量和计算精度之间找到一个平衡点。

有限元法中的相邻的小区域通过边界上的结点联接起来,可以用一个简单的插值函数描述每个小区域内的变形和应力,求解过程只需要计算出结点处的应力或者变形,非结点处的应力或者变形是通过函数插值获得的,换句话说,有限元法并不求解区域内任意一点的变形或者应力。

大多数有限元程序都是以结点位移作为基本变量,求出结点位移后再计算单元内的应力,这种方法称为位移法。

有限元法本质上是一种微分方程的数值求解方法,认识到这一点以后,从70年代开始,有限元法的应用领域逐渐从固体力学领域扩展到其它需要求解微分方程的领域,如流体力学、传热学、电磁学、声学等。

有限体积法介绍

有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE 的近似。

在本章所要学习的有限体积法则采用了不同的离散形式。

首先,有限体积法离散的是积分形式的流体力学基本方程:•d q ds ds SS⎰⎰⎰ΩΩ+∇⋅Γ=⋅φφρφn n v(1)计算域用数值网格划分成若干小控制体。

和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。

有限体积法的计算节点定义在小控制体部。

一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。

第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。

积分形式的守恒方程在小控制体和计算域上都是成立的。

为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。

2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。

计算节点用大写字母表示,控制体边界和节点用小写字母表示。

为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。

控制体边界上的积分等于控制体个表面的积分的和:∑⎰⎰=kS Skfds fdS(2)上式中,f 可以表示n u ρφ或n∂∂Γφ。

显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。

整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:e e e e S e Sf S f fds F e≈==⎰(3)上式中e f 为边界中点出的函数值。

有限体积法介绍

有限体积法介绍

有限体积法1 有限体积法基本原理上一章讲到的有限差分法将数值网格的节点上定义为计算节点,并在网格节点上对微分形式的流体基本方程进行离散,用网格节点上的物理量的代数方程作为原PDE的近似。

在本章所要学习的有限体积法则采用了不同的离散形式。

首先,有限体积法离散的是积分形式的流体力学基本方程:(1)计算域用数值网格划分成若干小控制体。

和有限差分法不同的是,有限体积法的网格定义了控制体的边界,而不是计算节点。

有限体积法的计算节点定义在小控制体内部。

一般有限体积法的计算节点有两种定义方法,一种是将网格节点定义在控制体的中心,另一种方法中,相邻两个控制体的计算节点到公共边界的距离相等。

第一种方法的优点在于用计算节点的值作为控制体上物理量的平均值具有二阶的精度;第二种方法的好处是在控制体边界上的中心差分格式具有较高的精度。

积分形式的守恒方程在小控制体和计算域上都是成立的。

为了获得每一个控制体上的代数方程,面积分和体积分需要用求面积公式来近似。

2 面积分的近似采用结构化网格,在二维情况下,每一个控制体有4个面,二维情况,每一个控制体有6个表面。

计算节点用大写字母表示,控制体边界和节点用小写字母表示。

为了保证守恒性,控制体不能重叠,每一个面都是相邻两个控制体的唯一公共边界。

控制体边界上的积分等于控制体个表面的积分的和:(2)上式中,f显然,为了获得边界上的积分,必须知道f 在边界上的详细分布情况,这是不可能实现的,由于只是计算节点上的函数值,因此必须采用近似的方法来计算积分。

整个近似过程分成两步第一步:用边界上几个点的近似积分公式第二步:边界点上的函数值用计算节点函数值的插值函数近似 面积分可采用以下不同精度的积分公式: 二阶精度积分:(3)近似为方格中心点的值乘以方格的面积。

三阶精度积分:(4)四阶精度积分:(5)应该注意的是,采用不同精度的积分公式,在相应的边界点的插值时也应采用相应精度的插值函数。

积分公式的精度越高,近似公式就越复杂。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。

该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。

有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。

该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。

1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。

(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。

(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。

目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。

差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。

1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。

其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。

通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。

2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。

采用不同的权函数和插值函数形式,便构成不同的有限元方法。

2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。

在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。

在河道数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。

根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式。

(1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;(2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;(3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。

不同的组合同样构成不同的有限元计算格式。

对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。

令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。

插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。

有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。

单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。

常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。

在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。

对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。

2.3 基本原理与解题步骤对于有限元方法,其基本思路和解题步骤可归纳为:(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。

(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。

区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。

(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。

有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。

(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。

(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。

(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。

对于自然边界条件,一般在积分表达式中可自动得到满足。

对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。

(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。

3. 有限体积法有限体积法(FiniteVolumeMethod)又称为控制体积法。

其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。

其中的未知数是网格点上的因变量的数值。

为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。

从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。

简言之,子区域法属于有限体积发的基本方法。

有限体积法的基本思路易于理解,并能得出直接的物理解释。

离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。

限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。

这是有限体积法吸引人的优点。

有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。

就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。

有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。

有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。

有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。

在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。

4. 比较分析有限差分法(FDM):直观,理论成熟,精度可眩但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。

使用FDM的好处在于易于编程,易于并行。

有限元方法(FEM):适合处理复杂区域,精度可眩缺憾在于内存和计算量巨大。

并行不如FDM和FVM直观。

不过FEM的并行是当前和将来应用的一个不错的方向。

有限容积法:适于流体计算,可以应用于不规则网格,适于并行。

但是精度基本上只能是二阶了。

FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。

比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。

有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助T aylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。

当然二者有联系,有时导出的形式一样,但是概念上是不一样的。

至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。

目前有限容积在精度方面与有限元法有些差距。

有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。

对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。

相关文档
最新文档