有限差分法、有限单元和有限体积法简介
cfd控制方程的离散方法
cfd控制方程的离散方法
CFD(Computational Fluid Dynamics,计算流体力学)是一种利用数值方法解决流体力学问题的技术。
在CFD中,控制方程是描述流体运动的基本方程,包括质量守恒方程、动量守恒方程和能量守恒方程。
离散方法是将连续的物理方程转化为离散的代数方程,以便通过计算机进行求解。
离散方法常用的有有限差分法(Finite Difference Method)、有限体积法(Finite Volume Method)和有限元法(Finite Element Method)。
对于CFD中的控制方程,离散方法的选择取决于问题的性质和所需的精度。
以下是几种常用的离散方法:
1. 有限差分法:将微分算子近似为差分形式,通过在网格上进行逐点近似来离散化方程。
有限差分法简单易用,适用于规则网格和简单几何形状的问题。
2. 有限体积法:将控制方程应用到一个控制体积(Control Volume)上,使用积分形式得到离散化的方程。
有限体积法适用于复杂几何形状和非结构网格,能够保持物理量的守恒性。
3. 有限元法:将求解域划分为离散的有限元,使用基函数对方程进行近似。
有限元法适用于复杂几何形状和非结构网格,能够处理不规则网格以及局部自适应网格细化。
这些离散方法各有优缺点,需要根据具体问题的性质和要求选择合适的方法。
同时,为了保证数值解的准确性和稳定性,还
需要考虑网格的划分方式、边界条件的处理以及迭代求解算法等因素。
计算流体力学常用数值方法简介[1]
计算流体力学常用数值方法简介李志印 熊小辉 吴家鸣(华南理工大学交通学院)关键词 计算流体力学 数值计算一 前 言任何流体运动的动力学特征都是由质量守恒、动量守恒和能量守恒定律所确定的,这些基本定律可以由流体流动的控制方程组来描述。
利用数值方法通过计算机求解描述流体运动的控制方程,揭示流体运动的物理规律,研究流体运动的时一空物理特征,这样的学科称为计算流体力学。
计算流体力学是一门由多领域交叉而形成的一门应用基础学科,它涉及流体力学理论、计算机技术、偏微分方程的数学理论、数值方法等学科。
一般认为计算流体力学是从20世纪60年代中后期逐步发展起来的,大致经历了四个发展阶段:无粘性线性、无粘性非线性、雷诺平均的N-S方程以及完全的N-S方程。
随着计算机技术、网络技术、计算方法和后处理技术的迅速发展,利用计算流体力学解决流动问题的能力越来越高,现在许多复杂的流动问题可以通过数值计算手段进行分析并给出相应的结果。
经过40年来的发展,计算流体力学己经成为一种有力的数值实验与设计手段,在许多工业领域如航天航空、汽车、船舶等部门解决了大量的工程设计实际问题,其中在航天航空领域所取得的成绩尤为显著。
现在人们已经可以利用计算流体力学方法来设计飞机的外形,确定其气动载荷,从而有效地提高了设计效率,减少了风洞试验次数,大大地降低了设计成本。
此外,计算流体力学也己经大量应用于大气、生态环境、车辆工程、船舶工程、传热以及工业中的化学反应等各个领域,显示了计算流体力学强大的生命力。
随着计算机技术的发展和所需要解决的工程问题的复杂性的增加,计算流体力学也己经发展成为以数值手段求解流体力学物理模型、分析其流动机理为主线,包括计算机技术、计算方法、网格技术和可视化后处理技术等多种技术的综合体。
目前计算流体力学主要向二个方向发展:一方面是研究流动非定常稳定性以及湍流流动机理,开展高精度、高分辩率的计算方法和并行算法等的流动机理与算法研究;另一方面是将计算流体力学直接应用于模拟各种实际流动,解决工业生产中的各种问题。
有限元素法有限体积法有限差分法有限容积法的区别
1.1 概念有限差分方法(FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
1.2 差分格式(1)从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
(2)从差分的空间形式来考虑,可分为中心格式和逆风格式。
(3)考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
1.3 构造差分的方法构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2. FEM2.1 概述有限元方法的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
2.2 原理有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学、土力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分法、有限单元和有限体积法简介
有限差分法、有限单元法和有限体积法的简介1.有限差分方法有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2.有限元方法有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
CAE技术概述
目前,与CAD软件结合成为CAE(计算机辅助工程)
软件。
国内有限元法的形成与发展
1983年 梁教授开始研制FEPG 1993年 FEPG面世 1994年 获中科院科技进步二等奖 1995年 获国家科技进步二等奖 1996年 在数学家杨乐的建议下开始商品化 1999年 成立飞箭软件公司 2005年…… 已推出FEPG5.2 单机、网络、并行系列版本,国 内用户近200家 软件发明人
4. 其他
返回
无限元法
【定义】无限元方法是无限剖分的思想与有限元方法的结合, 它打破了“有限”的限制,因而比有限元方法更加灵活。 【特点】无限元是有限元方法中一种有限尺寸的无限单元, 可以有效的处理无限域与半无限域问题。
有限元法发展史
50年代,发展与萌生,单一功能程序,简单单元。
60年代,数学基础与证明,单一功能程序,多种单元。
1. 前处理 (有限元分析的主要步骤)
2. 模拟计算 3. 后处理
结束
CAE软件的前处理
1. 几何模型的建立或导入 2. 网格划分 3. 材料定义 4. 边界条件定义
5. 模拟参数的设定
返回
几何模型的建立与导入
1. 直接建立 2. 导入(IGES、STL等格式) 导入的几何模型可能存在缺陷,必要时 要进行修复
CAE技术概述
CAE简介
CAE技术是什么??? CAE技术有什么用???
CAE简介
CAE是Computer Aided Engineering(计算 机辅助工程)首字母的缩写。也称为计算机 辅助数值分析技术。
科学计算与数据分析
科学计算与数据分析科学计算与数据分析是现代科学和工程领域中不可或缺的基础工具之一。
随着计算机技术的发展,科学计算与数据分析的重要性也越来越体现出来。
本文将详细介绍科学计算与数据分析的概念、方法以及在各领域的应用。
一、科学计算的概念和方法科学计算是指利用计算机进行数值仿真、实验和计算的过程。
科学计算的主要方法包括有限元方法、有限差分法、有限体积法等。
有限元方法是一种数学方法,常用于求解各种工程问题。
有限差分法是求解偏微分方程的有效方法,适用于求解各种宏观和微观力学问题。
有限体积法是一种流场数值计算方法,适用于求解各种气动、水动力学问题。
科学计算的过程分为三个步骤:建模、计算和分析。
建模是指将实际问题抽象成数学模型的过程,计算是指使用计算机对建立的数学模型进行计算仿真,分析则是将计算结果与实际情况进行比较,验证计算结果的准确性。
科学计算的精度和准确性对于科学研究和工程设计非常重要。
近年来,机器学习和人工智能等新方法也为科学计算带来新的方向和发展。
二、数据分析的概念和方法数据分析是指通过计算机处理和分析数据,发现数据中的规律和趋势的过程。
数据分析的主要方法包括数据挖掘、机器学习、人工智能等。
数据挖掘是利用计算机处理海量数据,提取有用信息的过程。
机器学习是利用计算机对数据进行学习和预测的方法。
人工智能则是将计算机技术应用到人类智能领域,实现机器智能的过程。
数据分析的过程分为四个步骤:采集、清洗、分析和应用。
采集是指收集和整合数据的过程,清洗是指清除数据中的错误和噪声,分析则是对大量数据进行处理和分析,应用则是将分析结果应用于实际业务和决策中。
数据分析的应用范围非常广泛,包括金融、医疗、社交媒体等领域。
三、科学计算和数据分析在各领域的应用科学计算和数据分析是现代科技各领域中不可或缺的工具,在以下几个领域中得到广泛应用。
1. 工程设计:工程设计需要进行各种仿真计算,以及数据分析预测,如建筑工程的有限元分析、机械工程的动力学仿真、电子工程的电磁仿真等。
有限元法,有限差分法,有限体积法
有限元法,有限差分法,有限体积法
有限元法、有限差分法和有限体积法都是数值计算方法,用于求解偏微分方程的数值解。
有限元法是一种将连续问题离散化为有限个简单子问题的方法,将连续的物理问题转化为离散的数学问题,通过求解离散问题得到连续问题的近似解。
它将求解区域分割成有限个小区域,每个小区域内的解用一组基函数表示,通过求解基函数系数得到整个求解区域的解。
有限差分法是一种将偏微分方程中的导数用差分近似表示的方法,将求解区域离散化为有限个网格点,通过差分方程求解得到每个网格点的解,从而得到整个求解区域的解。
有限体积法是一种将偏微分方程中的积分用体积平均值表示的方法,将求解区域离散化为有限个体积元,通过求解体积元上的平衡方程得到每个体积元的解,从而得到整个求解区域的解。
这三种方法各有优缺点,适用于不同类型的问题。
在实际应用中,需要根据具体问题的特点选择合适的数值计算方法。
有限差分,有限元,有限体积等离散方法的区别介绍
有限差分,有限元,有限体积等等离散方法的区别介绍一、区域离散化所谓区域离散化,实质上就是用一组有限个离散的点来代替原来连续的空间。
实施过程是;把所计算的区域划分成许多互不重迭的子区域,确定每个子区域的节点位置及该节点所代表的控制容积。
节点:需要求解的未知物理量的几何位置;控制容积:应用控制方程或守恒定律的最小几何单位。
一般把节点看成是控制容积的代表。
控制容积和子区域并不总是重合的。
在区域离散化过程开始时,由一系列与坐标轴相应的直线或曲线簇所划分出来的小区域称为子区域。
网格是离散的基础,网格节点是离散化物理量的存储位置。
大家都知道,常用的离散化方法有:有限差分法,有限元法,有限体积法。
1. 有限差分法是数值解法中最经典的方法。
它是将求解区域划分为差分网格,用有限个网格节点代替连续的求解域,然后将偏微分方程(控制方程)的导数用差商代替,推导出含有离散点上有限个未知数的差分方程组。
这种方法发展比较早,比较成熟,较多用于求解双曲线和抛物线型问题。
用它求解边界条件复杂、尤其是椭圆型问题不如有限元法或有限体积法方便。
2. 有限元法是将一个连续的求解域任意分成适当形状的许多微小单元,并于各小单元分片构造插值函数,然后根据极值原理(变分或加权余量法),将问题的控制方程转化为所有单元上的有限元方程,把总体的极值作为各单元极值之和,即将局部单元总体合成,形成嵌入了指定边界条件的代数方程组,求解该方程组就得到各节点上待求的函数值。
对椭圆型问题有更好的适应性。
有限元法求解的速度较有限差分法和有限体积法慢,在商用CFD软件中应用并不广泛。
目前的商用CFD软件中,FIDAP采用的是有限元法。
3. 有限体积法又称为控制体积法,是将计算区域划分为网格,并使每个网格点周围有一个互不重复的控制体积,将待解的微分方程对每个控制体积积分,从而得到一组离散方程。
其中的未知数十网格节点上的因变量。
子域法加离散,就是有限体积法的基本方法。
就离散方法而言,有限体积法可视作有限元法和有限差分法的中间产物。
数学中的波动方程数值求解
数学中的波动方程数值求解波动方程是数学中的重要方程之一,它描述了许多自然界中的现象,例如声波、电磁波、地震波等等。
对于这些波动现象,我们通常要求能够对其进行预测和模拟,以方便实际应用。
求解波动方程通常需要使用数值方法,因为波动方程并不一定有解析解,即使有解析解,也常常很难求出。
因此,数值方法是波动方程求解中非常重要的一部分。
本文将介绍波动方程数值求解的一些常见方法,并分析其优缺点,帮助读者更好地理解和应用这些方法。
一、有限差分法有限差分法是一种最基础的数值求解方法,它的思想很简单:用差商来近似导数,然后用差分来近似微分方程。
对于波动方程,可以将其离散化为$$u_{i,j+1}=2u_{i,j}-u_{i,j-1}+c^2\Delta t^2(u_{i+1,j}+u_{i-1,j}-2u_{i,j})$$其中,$u_{i,j}$表示波动方程在第$i$个空间点和第$j$个时间点的值,$c$是波速,$\Delta t$是时间步长。
这个式子就是有限差分法的核心部分。
有限差分法的主要优点是简单易懂,容易实现。
缺点是精度比较低,需要使用较小的时间步长和空间步长才能得到较好的数值解。
二、有限体积法有限体积法是一种比有限差分法更高级的数值求解方法。
它的主要思想是将物理区域划分成许多小的体积单元,并在每个单元中求解方程,然后将各个单元的解连接起来得到整个物理区域的数值解。
对于波动方程,有限体积法的离散化形式为$$\frac{1}{V_i}\int_{V_i}\frac{\partial^2u}{\partialt^2}dV=c^2\frac{1}{S_i}\int_{S_i}(\nabla u)\cdot ndS$$其中,$V_i$和$S_i$分别表示第$i$个体积单元的体积和表面积,$n$是表面上的法向量。
有限体积法的优点是精度较高,在一定条件下可以得到较为准确的数值解。
缺点是实现比较复杂,需要大量的计算和存储,而且算法的收敛性需要仔细分析。
有限元法 有限差分法 有限体积法的区别
三者各有所长:有限差分法:直观,理论成熟,精度可选。
但是不规则区域处理繁琐,虽然网格生成可以使FDM应用于不规则区域,但是对区域的连续性等要求较严。
使用FDM的好处在于易于编程,易于并行。
有限元方法:适合处理复杂区域,精度可选。
缺憾在于内存和计算量巨大。
并行不如FDM和FVM直观。
不过FEM的并行是当前和将来应用的一个不错的方向。
有限容积法:适于流体计算,可以应用于不规则网格,适于并行。
但是精度基本上只能是二阶了。
FVM的优势正逐渐显现出来,FVM在应力应变,高频电磁场方面的特殊的优点正在被人重视。
比较一下:有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
至于有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
有限差分和有限体积法
有限差分和有限体积法
有限差分和有限体积法是数值计算中常用的两种方法,它们在解决偏微分方程数值解时有广泛应用。
有限差分法是一种离散化方法,将偏微分方程中的连续变量转化为离散形式,然后利用差商的概念,将微分方程转化为差分方程,进而得到数值解。
有限差分法适用于解决一维和二维的偏微分方程问题,且具有计算简单、易于实现和易于理解等优点。
有限体积法是一种基于守恒律的数值解法,将偏微分方程中的守恒量表示为一个控制体积中的平均值,然后利用守恒律对控制体积进行积分,从而得到数值解。
有限体积法适用于解决守恒律方程,如流体力学、气体动力学等问题,具有保守性、精度高、通用性强等特点。
无论是有限差分法还是有限体积法,都是将连续性问题转化为离散性问题,从而得到数值解。
在实际应用中,需要根据具体问题的特点选择合适的数值解法,并进行数值模拟和验证。
- 1 -。
有限容积有限元有限差分区别
有限容积法简介有限容积法(Finite Volume Method)又称为控制体积法。
基本思路其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
五部分有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。
它通常包括如下五个部分:1. 网格生成2. 对流项的离散化3. 边界条件的离散化4. 压力速度耦合5. 离散方程的求解对以上五个部分的处理将直接影响到最准结果的有限差分法微分方程和积分微分方程数值解的方法。
非线性偏微分方程数值解法
非线性偏微分方程数值解法非线性偏微分方程是研究自然界中许多现象的重要数学模型,其解析解往往难以获得。
因此,数值解法成为解决非线性偏微分方程问题的一种有效手段。
本文将介绍几种常用的非线性偏微分方程的数值解法。
一、有限差分法有限差分法是求解偏微分方程的一种常见数值方法。
其核心思想是将求解区域离散化为有限个网格点,并利用中心差分公式来近似替代微分运算。
对于非线性偏微分方程,可以采用迭代的方法进行求解。
具体步骤如下:1. 将求解区域离散化为有限个网格点,确定网格的步长。
2. 利用中心差分公式将偏微分方程离散化为差分方程。
3. 将差分方程转化为非线性代数方程组,采用迭代方法求解。
二、有限元法有限元法是求解偏微分方程的一种重要数值方法。
其核心思想是将求解区域划分为无重叠的小单元,通过在每个单元内构造适当的试探函数和加权函数,将问题转化为求解代数方程组。
对于非线性偏微分方程,可以采用Newton-Raphson迭代方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定单元的形状和大小。
2. 构造试探函数和加权函数,并利用加权残差法将偏微分方程离散化为代数方程组。
3. 对于非线性方程组,采用Newton-Raphson迭代方法求解。
三、有限体积法有限体积法是求解偏微分方程的一种常用数值方法。
其核心思想是将求解区域划分为有限个体积单元,通过对单元内偏微分方程进行积分,将方程转化为守恒形式。
对于非线性偏微分方程,可以采用显式或隐式方法进行求解。
具体步骤如下:1. 将求解区域进行网格剖分,确定体积单元的大小和形状。
2. 对体积单元内的偏微分方程进行积分,建立守恒形式的方程。
3. 将方程离散化为代数方程组,采用显式或隐式方法进行时间步进求解。
四、谱方法谱方法是求解偏微分方程的一种高效数值方法。
其核心思想是采用特定的基函数展开待求解的函数,通过选取合适的基函数,可以有效地提高求解效率。
对于非线性偏微分方程,可以采用谱方法进行求解。
流体动力学中激波的数值计算分析
流体动力学中激波的数值计算分析流体动力学(fluid dynamics)是研究流体运动规律和流体力学基本原理的学科。
在流体动力学中,激波是一个重要而常见的现象。
它主要是由于在介质中传播的涡旋状扰动引起流体的瞬间压缩和加速所产生的。
激波的产生和传播过程具有复杂的动力学特征和现象,因此对其数值计算分析很具有研究价值,也对日常工程实践和科学研究具有非常重要的参考意义。
基本理论流体动力学中的激波通常采用守恒律方程组表示,主要包括质量、动量、能量等方程。
对于一维定常流动而言,常用的守恒律方程组包括Euler方程和Navier-Stokes方程等。
Euler方程是在假设流体为完全无黏的情况下得到的:$\frac{\partial \rho}{\partial t}+\frac{\partial (\rho u)}{\partial x}=0$$\frac{\partial (\rho u)}{\partial t}+\frac{\partial (\rho u^{2}+p)}{\partial x}=0$$\frac{\partial (\rho E)}{\partial t}+\frac{\partial (\rho uE+p u)}{\partial x}=0$其中,$\rho$是流体的密度,$u$是流体的速度,$p$是流体的压力,$E$是总能量(包括动能和内能),$x$是坐标。
数值计算分析为了研究和分析激波的产生和传播,需要对激波进行数值计算模拟。
数值计算分析的一般方法是将流动区域离散化成网格,并在每个网格上求解守恒律方程组。
常用的数值方法包括有限差分法,有限元法和有限体积法等。
有限差分法是一种将连续的微分方程转化为差分方程的数值计算方法。
在离散化过程中,需要将流动区域分成若干个网格,每个网格的参数通过有限差分来求取。
这种方法的优点主要有计算简单、过程易懂。
但是其精度受到网格大小和步长限制,精度难以提高。
流体力学中的计算流体力学方法
流体力学中的计算流体力学方法在流体力学领域,计算流体力学(Computational Fluid Dynamics,简称CFD)是一种重要的数值模拟方法。
它结合了数学、物理和计算机科学,用于分析和预测气体和液体在流动过程中的行为。
本文将介绍流体力学中常用的计算流体力学方法,包括数值离散化、网格生成和求解算法。
1. 数值离散化数值离散化是计算流体力学的基础,其目的是将连续域中的流动问题转化为离散化的数学模型。
最常用的数值离散化方法包括有限差分法(Finite Difference Method,简称FDM)、有限体积法(Finite Volume Method,简称FVM)和有限元法(Finite Element Method,简称FEM)。
在有限差分法中,流动域被划分为离散的网格单元,运用差分近似替代微分操作,对控制方程进行离散化求解。
有限体积法则将流动域划分为有限体积,对控制方程进行积分求解。
而有限元法则将流动域划分为有限元,通过建立形函数和权函数的关系对控制方程进行近似求解。
2. 网格生成网格生成是计算流体力学中至关重要的一步,它决定了数值模拟的精度和计算效率。
网格生成的目标是将流动域离散成适合数值计算的网格单元。
常见的网格类型包括结构化网格和非结构化网格。
在结构化网格中,每个网格单元的几何形状和大小都相同,可以使用简单的坐标表示。
结构化网格具有计算精度高、数值稳定性好的优点,适用于简单流动情况。
非结构化网格则具有处理复杂几何形状的能力,适用于复杂流动情况。
3. 求解算法求解算法用于计算流体力学中的控制方程,其中包括连续方程和动量方程。
常用的求解算法包括显式方法和隐式方法,以及基于时间步进的迭代求解方法。
在显式方法中,时间步长通过稳定性条件限制,将未知量的时间导数用已知量的空间导数逼近。
隐式方法则以更大的时间步长进行迭代,通过求解非线性代数方程组来得到近似解。
基于时间步进的迭代求解方法则将隐式方法与迭代求解方法相结合,提高了求解的效率和稳定性。
有限元和有限体积
有限元和有限体积有限元和有限体积是数值计算领域中常用的两种方法,用于求解偏微分方程组。
它们的应用范围非常广泛,包括结构力学、流体力学、电磁学等领域。
下面我将分别介绍有限元和有限体积的基本原理和应用。
一、有限元有限元方法是一种将连续问题离散化为有限个小元素的方法,然后在每个小元素内部求解方程组,最后将所有小元素的解组合起来得到整个问题的解。
这种方法的基本思想是将一个复杂的结构分割为若干个简单的几何单元,如三角形、四边形、六面体等,然后在每个单元内部建立局部方程组,再将所有单元的方程组组合成整体方程组,最终求解得到问题的解。
有限元方法的优点是适用于各种不规则的几何形状,可以处理非线性和动态问题,但是需要对问题进行网格划分,计算量较大。
有限元方法的应用非常广泛,例如在结构力学中,可以用有限元方法计算各种结构的应力、应变、变形等;在流体力学中,可以用有限元方法求解各种流动问题;在电磁学中,可以用有限元方法计算电场、磁场等。
有限元方法已经成为了工程计算中不可或缺的一种方法。
二、有限体积有限体积方法是一种将连续问题离散化为有限个小体积的方法,然后在每个小体积内部求解方程组,最后将所有小体积的解组合起来得到整个问题的解。
这种方法的基本思想是将一个区域分割为若干个小体积,然后在每个小体积内部建立局部方程组,再将所有小体积的方程组组合成整体方程组,最终求解得到问题的解。
有限体积方法的优点是不需要进行网格划分,适用于各种不规则的几何形状,计算量相对较小,但是对于非线性和动态问题的处理能力较弱。
有限体积方法的应用也非常广泛,例如在流体力学中,可以用有限体积方法求解各种流动问题,如自由表面流、湍流等;在热传导中,可以用有限体积方法计算温度场、热流等。
有限体积方法也已经成为了工程计算中不可或缺的一种方法。
总之,有限元和有限体积是两种常用的数值计算方法,它们在各自的领域内都有着广泛的应用。
偏微分方程的数值解法
偏微分方程的数值解法在科学和工程领域中,偏微分方程(Partial Differential Equations,简称PDEs)被广泛应用于描述自然现象和工程问题。
由于许多复杂的PDE难以找到解析解,数值方法成为了求解这些方程的重要途径之一。
本文将介绍几种常见的偏微分方程数值解法,并探讨其应用。
一、有限差分法有限差分法是求解偏微分方程最常用的数值方法之一。
其基本思想是将空间和时间连续区域离散化成有限个点,通过差分逼近偏微分方程中的导数,将偏微分方程转化为差分方程。
然后,利用差分方程的迭代计算方法,求解近似解。
以一维热传导方程为例,其数值解可通过有限差分法得到。
将空间区域离散化为若干个网格点,时间区域离散化为若干个时间步长。
通过差分逼近热传导方程中的导数项,得到差分方程。
然后,利用迭代方法,逐步更新每个网格点的数值,直到达到收敛条件。
最终得到近似解。
二、有限元法有限元法是另一种常用于求解偏微分方程的数值方法。
它将连续的空间区域离散化为有限个单元,将PDE转化为每个单元内的局部方程。
然后,通过将各个单元的局部方程组合起来,构成整个区域的方程组。
最后,通过求解这个方程组来获得PDE的数值解。
有限元法的优势在于可以适应复杂的几何形状和边界条件。
对于二维或三维的PDE问题,有限元法可以更好地处理。
同时,有限元法还可以用于非线性和时变问题的数值求解。
三、谱方法谱方法是利用一组基函数来表示PDE的解,并将其代入PDE中得到一组代数方程的数值方法。
谱方法具有高精度和快速收敛的特点,在某些问题上比其他数值方法更具优势。
谱方法的核心是选择合适的基函数,常用的基函数包括Legendre多项式、Chebyshev多项式等。
通过将基函数展开系数与PDE的解相匹配,可以得到代数方程组。
通过求解这个方程组,可以得到PDE的数值解。
四、有限体积法有限体积法是将空间域划分为有限个小体积单元,将PDE在每个小体积单元上进行积分,通过适当的数值通量计算来近似描述流体在边界上的净流量。
有限容积、有限元、有限差分区别
有限容积法
简介
有限容积法(Finite Volume Method)又称为控制体积法。
基本思路
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。其中的未知数是网格点上的因变量的数值。为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。简言之,子区域法属于有限体积发的基本方法。有限体积法的基本思路易于理解,并能得出直接的物理解释。离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。这是有限体积法吸引人的优点。有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
五部分
有限容积法(FVM)是计算流体力学(CFD)和计算传热学(NHT)中应用最广泛的数值离散方法。它通 对流项的离散化
有限差分和有限体积法
有限差分和有限体积法
有限差分法和有限体积法是计算数学中常用的两种数值方法,主要用于求解微分方程或积分方程的数值近似解。
有限差分法是一种离散化方法,其核心思想是将微分方程中的连续函数用有限个点的函数值去逼近。
具体地,将求解区域离散化为有限的网格点,将连续函数在网格点处的函数值作为离散后的点值,再借助差分运算将微分方程中的导数转化为点值之差,从而得到含有点值的代数方程组,用解代数方程组的数值方法求解得到近似解。
有限差分法常用于求解常微分方程、偏微分方程和积分方程,比如泊松方程、热传导方程、对流扩散方程等。
需要注意的是,有限差分法和有限体积法的数值差分误差与网格大小、边界条件、时空离散化方式有关,因此在应用中需要对参数进行适当选择和优化,从而减小数值误差,增加数值精度。
总的来说,有限差分法和有限体积法虽然是两种不同的数值方法,但其都是以离散化为核心思想,将微分方程转化为代数方程组进行数值求解。
它们在数值计算领域中应用广泛,常常用于科学计算、数值模拟等方面,具有较广泛的应用前景。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有限差分法、有限单元法和有限体积法的简介1.有限差分方法有限差分方法(Finite Difference Method,FDM)是计算机数值模拟最早采用的方法,至今仍被广泛运用。
该方法将求解域划分为差分网格,用有限个网格节点代替连续的求解域。
有限差分法以Taylor级数展开等方法,把控制方程中的导数用网格节点上的函数值的差商代替进行离散,从而建立以网格节点上的值为未知数的代数方程组。
该方法是一种直接将微分问题变为代数问题的近似数值解法,数学概念直观,表达简单,是发展较早且比较成熟的数值方法。
对于有限差分格式,从格式的精度来划分,有一阶格式、二阶格式和高阶格式。
从差分的空间形式来考虑,可分为中心格式和逆风格式。
考虑时间因子的影响,差分格式还可以分为显格式、隐格式、显隐交替格式等。
目前常见的差分格式,主要是上述几种形式的组合,不同的组合构成不同的差分格式。
差分方法主要适用于有结构网格,网格的步长一般根据实际地形的情况和柯朗稳定条件来决定。
构造差分的方法有多种形式,目前主要采用的是泰勒级数展开方法。
其基本的差分表达式主要有三种形式:一阶向前差分、一阶向后差分、一阶中心差分和二阶中心差分等,其中前两种格式为一阶计算精度,后两种格式为二阶计算精度。
通过对时间和空间这几种不同差分格式的组合,可以组合成不同的差分计算格式。
2.有限元方法有限元方法(Finite Element Method,FEM)的基础是变分原理和加权余量法,其基本求解思想是把计算域划分为有限个互不重叠的单元,在每个单元内,选择一些合适的节点作为求解函数的插值点,将微分方程中的变量改写成由各变量或其导数的节点值与所选用的插值函数组成的线性表达式,借助于变分原理或加权余量法,将微分方程离散求解。
采用不同的权函数和插值函数形式,便构成不同的有限元方法。
有限元方法最早应用于结构力学,后来随着计算机的发展慢慢用于流体力学的数值模拟。
在有限元方法中,把计算域离散剖分为有限个互不重叠且相互连接的单元,在每个单元内选择基函数,用单元基函数的线形组合来逼近单元中的真解,整个计算域上总体的基函数可以看为由每个单元基函数组成的,则整个计算域内的解可以看作是由所有单元上的近似解构成。
在数值模拟中,常见的有限元计算方法是由变分法和加权余量法发展而来的里兹法和伽辽金法、最小二乘法等。
根据所采用的权函数和插值函数的不同,有限元方法也分为多种计算格式:1)从权函数的选择来说,有配置法、矩量法、最小二乘法和伽辽金法;2)从计算单元网格的形状来划分,有三角形网格、四边形网格和多边形网格;3)从插值函数的精度来划分,又分为线性插值函数和高次插值函数等。
不同的组合同样构成不同的有限元计算格式。
对于权函数,伽辽金(Galerkin)法是将权函数取为逼近函数中的基函数;最小二乘法是令权函数等于余量本身,而内积的极小值则为对代求系数的平方误差最小;在配置法中,先在计算域内选取N个配置点。
令近似解在选定的N个配置点上严格满足微分方程,即在配置点上令方程余量为0。
插值函数一般由不同次幂的多项式组成,但也有采用三角函数或指数函数组成的乘积表示,但最常用的多项式插值函数。
有限元插值函数分为两大类,一类只要求插值多项式本身在插值点取已知值,称为拉格朗日(Lagrange)多项式插值;另一种不仅要求插值多项式本身,还要求它的导数值在插值点取已知值,称为哈密特(Hermite)多项式插值。
单元坐标有笛卡尔直角坐标系和无因次自然坐标,有对称和不对称等。
常采用的无因次坐标是一种局部坐标系,它的定义取决于单元的几何形状,一维看作长度比,二维看作面积比,三维看作体积比。
在二维有限元中,三角形单元应用的最早,近来四边形等参元的应用也越来越广。
对于二维三角形和四边形电源单元,常采用的插值函数为有Lagrange插值直角坐标系中的线性插值函数及二阶或更高阶插值函数、面积坐标系中的线性插值函数、二阶或更高阶插值函数等。
对于有限元方法,其基本思路和解题步骤可归纳为:(1)建立积分方程,根据变分原理或方程余量与权函数正交化原理,建立与微分方程初边值问题等价的积分表达式,这是有限元法的出发点。
(2)区域单元剖分,根据求解区域的形状及实际问题的物理特点,将区域剖分为若干相互连接、不重叠的单元。
区域单元划分是采用有限元方法的前期准备工作,这部分工作量比较大,除了给计算单元和节点进行编号和确定相互之间的关系之外,还要表示节点的位置坐标,同时还需要列出自然边界和本质边界的节点序号和相应的边界值。
(3)确定单元基函数,根据单元中节点数目及对近似解精度的要求,选择满足一定插值条件的插值函数作为单元基函数。
有限元方法中的基函数是在单元中选取的,由于各单元具有规则的几何形状,在选取基函数时可遵循一定的法则。
(4)单元分析:将各个单元中的求解函数用单元基函数的线性组合表达式进行逼近;再将近似函数代入积分方程,并对单元区域进行积分,可获得含有待定系数(即单元中各节点的参数值)的代数方程组,称为单元有限元方程。
(5)总体合成:在得出单元有限元方程之后,将区域中所有单元有限元方程按一定法则进行累加,形成总体有限元方程。
(6)边界条件的处理:一般边界条件有三种形式,分为本质边界条件(狄里克雷边界条件)、自然边界条件(黎曼边界条件)、混合边界条件(柯西边界条件)。
对于自然边界条件,一般在积分表达式中可自动得到满足。
对于本质边界条件和混合边界条件,需按一定法则对总体有限元方程进行修正满足。
(7)解有限元方程:根据边界条件修正的总体有限元方程组,是含所有待定未知量的封闭方程组,采用适当的数值计算方法求解,可求得各节点的函数值。
3.有限体积法有限体积法(Finite V olume Method,FVM)又称为控制体积法。
其基本思路是:将计算区域划分为一系列不重复的控制体积,并使每个网格点周围有一个控制体积;将待解的微分方程对每一个控制体积积分,便得出一组离散方程。
其中的未知数是网格点上的因变量的数值。
为了求出控制体积的积分,必须假定值在网格点之间的变化规律,即假设值的分段的分布的分布剖面。
从积分区域的选取方法看来,有限体积法属于加权剩余法中的子区域法;从未知解的近似方法看来,有限体积法属于采用局部近似的离散方法。
简言之,子区域法属于有限体积发的基本方法。
有限体积法的基本思路易于理解,并能得出直接的物理解释。
离散方程的物理意义,就是因变量在有限大小的控制体积中的守恒原理,如同微分方程表示因变量在无限小的控制体积中的守恒原理一样。
有限体积法得出的离散方程,要求因变量的积分守恒对任意一组控制体积都得到满足,对整个计算区域,自然也得到满足。
这是有限体积法吸引人的优点。
有一些离散方法,例如有限差分法,仅当网格极其细密时,离散方程才满足积分守恒;而有限体积法即使在粗网格情况下,也显示出准确的积分守恒。
就离散方法而言,有限体积法可视作有限单元法和有限差分法的中间物。
有限单元法必须假定值在网格点之间的变化规律(既插值函数),并将其作为近似解。
有限差分法只考虑网格点上的数值而不考虑值在网格点之间如何变化。
有限体积法只寻求的结点值,这与有限差分法相类似;但有限体积法在寻求控制体积的积分时,必须假定值在网格点之间的分布,这又与有限单元法相类似。
在有限体积法中,插值函数只用于计算控制体积的积分,得出离散方程之后,便可忘掉插值函数;如果需要的话,可以对微分方程中不同的项采取不同的插值函数。
4.比较分析有限差分法(FDM):直观,理论成熟,精度可眩但是不规则区域处理繁琐,虽然网格生成可以使FDM 应用于不规则区域,但是对区域的连续性等要求较严。
使用FDM 的好处在于易于编程,易于并行。
有限元方法(FEM):适合处理复杂区域,精度可缺憾在于内存和计算量巨大。
并行不如FDM 和FVM 直观。
不过FEM 的并行是当前和将来应用的一个不错的方向。
有限容积法(FVM):适于流体计算,可以应用于不规则网格,适于并行。
但是精度基本上只能是二阶了。
FVM 的优势正逐渐显现出来,FVM 在应力应变,高频电磁场方面的特殊的优点正在被人重视。
有限元方法比有限差分优越的方面主要在能适应不规则区域,但是这只是指的是传统意义上的有限差分,现在发展的一些有限差分已经能适应不规则区域。
对于椭圆型方程,如果区域规则,传统有限差分和有限元都能解,在求解效率,这里主要指编程负责度和收敛快慢、内存需要,肯定有限差分有优势。
有限容积法和有限差分法:一个区别就是有限容积法的截差是不定的(跟取的相邻点有关,积分方法离散方程),而有限差分就可以直接知道截差(微分方法离散方程)。
有限容积法和有限差分法最本质的区别是,前者是根据积分方程推导出来的(即对每个控制体积分),后者直接根据微分方程推导出来,所以前者的精度不但取决于积分时的精度,还取决与对导数处理的精度,一般有限容积法总体的精度为二阶,因为积分的精度限制,当然有限容积法对于守恒型方程导出的离散方程可以保持守恒型;而后者直接由微分方程导出,不涉及积分过程,各种导数的微分借助Taylor 展开,直接写出离散方程,当然不一定有守恒性,精度也和有限容积法不一样,一般有限差分法可以使精度更高一些。
当然二者有联系,有时导出的形式一样,但是概念上是不一样的。
有限容积法和有限元相比,有限元在复杂区域的适应性对有限容积是毫无优势可言的,至于有限容积的守恒性,物理概念明显的这些特点,有限元是没有的。
目前有限容积在精度方面与有限元法有些差距。