转动惯量的测定实验报告

合集下载

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告转动惯量的测定实验报告引言:转动惯量是物体在转动过程中抵抗改变其转动状态的性质。

在物理学中,转动惯量是描述物体转动惯性大小的物理量。

本实验旨在通过测量不同物体的转动惯量,探究物体的形状、质量分布对转动惯量的影响,并验证转动惯量的计算公式。

实验装置和方法:1. 实验装置:转动惯量测量装置、计时器、质量秤、直尺、物体样品。

2. 实验方法:a. 将转动惯量测量装置固定在水平台上。

b. 选择不同形状的物体样品,如圆柱体、长方体和球体,并测量其质量和尺寸。

c. 将物体样品放置在转动惯量测量装置的转轴上,并使其旋转。

d. 通过计时器测量物体样品旋转一定圈数所需的时间。

e. 根据测量结果计算物体样品的转动惯量。

实验结果与分析:1. 圆柱体样品:a. 质量:m = 100gb. 高度:h = 10cmc. 半径:r = 3cmd. 转动惯量:I = 1/2 * m * r^2 = 1/2 * 0.1kg * (0.03m)^2 = 4.5 * 10^-5kg·m^22. 长方体样品:a. 质量:m = 150gb. 长度:l = 15cmc. 宽度:w = 5cmd. 高度:h = 2cme. 转动惯量:I = 1/12 * m * (l^2 + w^2) = 1/12 * 0.15kg * ((0.15m)^2 +(0.05m)^2) = 4.375 * 10^-4 kg·m^23. 球体样品:a. 质量:m = 200gb. 半径:r = 4cmc. 转动惯量:I = 2/5 * m * r^2 = 2/5 * 0.2kg * (0.04m)^2 = 2.56 * 10^-4 kg·m^2通过实验测量得到的转动惯量结果显示,不同形状的物体样品具有不同的转动惯量。

圆柱体样品的转动惯量最小,长方体样品的转动惯量次之,球体样品的转动惯量最大。

这是因为转动惯量与物体的质量分布和形状有关。

测转动惯量实验报告(共7篇)

测转动惯量实验报告(共7篇)

篇一:实验报告-用扭摆法测定物体的转动惯量扭摆法测定物体的转动惯量实验原理:1.扭摆运动——角简谐振动(1)此角谐振动的周期为(2)式中,2.弹簧的扭转系数实验中用一个几何形状规则的物体,它的转动惯量可以根据它的质量和几何尺寸用理论公式直接计算得到,再由实验数据算出本仪器弹簧的(1)测载物盘摆动周期值。

方法如下:的测定:为弹簧的扭转常数式中,为物体绕转轴的转动惯量。

,由(2)式其转动惯量为(2)塑料圆柱体放在载物盘上,测出摆动周期,由(2)式其总转动惯量为(3)塑料圆柱体的转动惯量理论值为则由,得(周期我们采用多次测量求平均值来计算)3.测任意物体的转动惯量:若要测定其它形状物体的转动惯量,只需将待测物体安放在本仪器顶部的各种夹具上,测定其摆动周期,即可算出该物体绕转动轴的转动惯量。

根据2内容,载物盘的转动惯量为待测物体的转动惯量为4.转动惯量的平行轴定理实验内容与要求:必做内容:1.熟悉扭摆的构造及使用方法,以及转动惯量测试仪的使用方法。

调整扭摆基座底脚螺丝,使水平仪的气泡位于中心。

(认真阅读仪器使用方法和实验注意事项)2.测定扭摆的弹簧的扭转常数3.测定塑料圆柱(金属圆筒)的转动惯量4.测定金属细杆+夹具的过质心轴的转动惯量。

并与理论值比较,求相对误差。

,写出。

5.滑块对称放置在细杆两边的凹槽内,改变滑块在金属细杆上的位置,验证转动惯量平行轴定理。

数据记录:一、测定弹簧的扭转系数及各种物体的转动惯量:;;0.01s表格一:二、验证平行轴定理:表格二:;;;;。

滑块的总转动惯量为:数据处理:(要求同学们写出详细的计算过程)1.计算弹簧的扭转系数;;;;;;;2.计算物体的转动惯量(公式见表格)3.验证平行轴定理(公式见表格);;拓展与设计内容:(实验方法步骤、数据表格自行设计)。

1.滑块不对称时平行轴定理的验证,并与滑块对称放置的结果进行对比。

2.测量某种不规则物体的转动惯量。

注意事项:1.由于弹簧的扭转系数不是固定常数,与摆角有关,所以在实验中测周期时摆角应相同(例如均取2.给扭摆初始摆角是应逆时针旋转磁柱,避免弹簧振动,且放手时尽量避免对磁柱施力。

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页

转动惯量测量实验报告(共7篇)20页实验名称:转动惯量测量实验实验目的:通过实验测量旋转物体的转动惯量,并了解柿子童的定理以及有效质量的概念。

实验仪器:旋转定量装置、摩擦转台、测高仪、微型计算机、数据采集卡实验原理:转动惯量是物体绕特定轴旋转时的惯性系数,表示物体的旋转固有性质。

旋转定量装置把物体固定在转轴上,悬挂一个对应于物体重量的质量,在物体减速旋转时通过计算得出物体的转动惯量。

设物体以角速度ω绕某一定轴转动。

质处于离该轴r处,质量为m,则质点的角动量L=mvr,转动惯量为I=mr 2,单位是kg·m2。

转动定量装置有相应的计算公式:I=C·m·(h+d/2)2/T2,其中I为物体的转动惯量,C为常数(由仪器提供),m为质量,h为重心高度,d为转轴的直径,T为物体1圈的时间。

有效质量的概念是指在转动过程中受到外力作用的物体的质量是原来物体质量的一部分。

它的大小可以计算为(C+K)m。

其中,C是转动定量装置的常数,K是校正因数,m是物体的质量。

实验步骤:1.安装转动定量装置,将待测物体固定在转轴上2.测量转轴的直径d和质心的高度h3.测量悬挂质量的质量m和悬挂高度h’4.使物体绕转轴旋转1圈,记录用时T5.多次测量,求平均值,计算转动惯量I=C·m·(h+d/2)2/T26.重复以上实验,修改悬挂质量的质量或质心位置,测量I的变化,比较偏差7.探究有效质量的概念,计算(C+K)m的大小,并进行比较实验结果:将物体的质量m不变,改变质心高度h和转轴直径d大小,观察对转动惯量I的影响。

可以发现,两者对I的影响都是与大小成正比的,即h、d越大,I越大;越小,I越小。

误差主要来自于读数仪器和实验操作技巧。

有效质量的计算结果与实际质量相比,误差范围较小。

通过转动惯量的测量,我们可以对旋转物体的惯性的了解更加多样化,并深入理解惯性的作用与其应用场景。

同时,实验结论可以帮助我们在实际应用场景中更加科学地设计实验方案,并更加深入地理解转动相关的物理知识点。

转动惯量实验报告

转动惯量实验报告

篇一:转动惯量的实验分析报告转动惯量的测量实验分析报告一、数据处理(1)用游标卡尺、米尺、天平分别测出待测物体的质量和必要的几何尺寸。

如塑料圆柱的直径,金属圆筒的内、外径,木球的直径以及金属细杆的长度等。

(2)计算扭摆弹簧的扭转常数k,计算公式为:i1k?4?2?0.0411*******n?m 2t1?t22(3)测定塑料圆柱、金属圆筒、木球与金属细杆的转动周期,计算转动惯量的实验值,并与理论值相比较,求出百分比误差。

百分比误差=理论值-实验值?100理论值以上各测量值均记录在表3-2-1中,具体计算公式也包含在表格中。

表3-2-1 刚体转动惯量的测定(4)验证平行轴定理。

改变滑块在金属细杆上的位置,测定转动周期,测量数据记录在表3-2-2中。

计算滑块在不同位置出系统的转动惯量,并与理论值比较,计算百分比误差。

其中测得m滑块=0.2397kg。

表3-2-2 平行轴定理的验证从以上实验结果可知,实验结果与理论计算结果百分比误差在百分之十以内,理论值与实验值的拟合较为合理,可有效地验证测定刚体的转动惯量并验证平行轴定理。

其中,误差来源主要有以下几点:(1)圆盘转动的角度大于90度,致使弹簧的形变系数发生改变。

(2)没有对仪器进行水平调节。

(3)圆盘的固定螺丝没有拧紧。

(4)摆上圆台的物体有一定的倾斜角度。

三、思考题(一)预习思考题1、如何测量扭摆弹簧的扭转系数k?答:先测出小塑料圆柱的几何尺寸及质量,得到小塑料圆柱的转动惯量理21论值为i1?m1d1,再测量出金属载物盘的转动周期t0及小塑料圆柱的转动周8i1期为t1,利用计算公式k?4?2代入数据即可求出k。

2t1?t222.如何测定任意形状的物体绕特定轴转动的转动惯量?答:利用题1中测得的i1、t1和t0得到金属载物盘的转动惯量为i1t1i0?2,将待测物体放在金属载物盘上,测出其转动惯量周期为t2,再利2t1?t02kt2用计算公式i2=?i0即可得到该物体的转动惯量。

测量转动惯量实验报告

测量转动惯量实验报告

测量转动惯量实验报告实验名称:测量转动惯量实验报告实验目的:通过实验测量不同形状的物体的转动惯量,研究转动惯量与物体形状、质量、转动轴等因素的关系实验原理:物体的转动惯量是物体对于某一轴的旋转惯性,具体计算公式为I=Σm*r^2,其中Σm为物体质量分布的总和,r为质心到物体上任一质量微元的距离。

根据定理可得,同样质量的物体,转动惯量越大,它的旋转越不灵活。

实验步骤:1. 实验器材准备:串联式弹簧拉力传感器、电子天平、双轴陀螺仪、T型板、圆盘、圆环、长方体、测量卡尺等。

2. 断定转动轴:将物体由一端挂在串联式弹簧拉力传感器上,电子天平在下检测一个拉力数值,张力数值传入电脑软件,再连接T型板用来止住物体。

旋转后让串联式弹簧拉力传感器检测到一个相似的拉力数值即可。

3. 测量相关长度和重量:用测量卡尺测量各物体的相关距离,同时用电子天平测量各物体的质量。

4. 测量转动惯量:用双轴陀螺仪测量各物体在转动轴上的转动惯量。

5. 数据处理:根据测量到的数据计算出各物体的转动惯量。

6. 结论:整理数据,综合实验结果,得出各物体转动惯量与形状、质量、转动轴之间的关系,进一步验证转动惯量的计算公式。

实验结果:经过测量,我们得出了圆盘、圆环和长方体的转动惯量分别为4.38×10^-3kg·m^2,6.38×10^-3kg·m^2和9.37×10^-3kg·m^2。

由此可见,同样质量的物体,转动惯量越大,它的旋转越不灵活。

同时,不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。

实验结论:本实验通过测量不同形状的物体的转动惯量,深入研究了转动惯量与物体形状、质量、转动轴等因素的关系。

实验结果表明,同样质量的物体,转动惯量越大,它的旋转越不灵活;不同形状的物体的转动惯量也有所不同,具体数值也与转动轴的选择有关。

本次实验结果的有效验证了转动惯量的计算公式,对深入理解物体的旋转运动学具有重要意义。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量测量实验报告(共7篇)

转动惯量测量实验报告(共7篇)

篇一:大学物理实验报告测量刚体的转动惯量测量刚体的转动惯量实验目的:1.用实验方法验证刚体转动定律,并求其转动惯量;2.观察刚体的转动惯量与质量分布的关系3.学习作图的曲线改直法,并由作图法处理实验数据。

二.实验原理:1.刚体的转动定律具有确定转轴的刚体,在外力矩的作用下,将获得角加速度β,其值与外力矩成正比,与刚体的转动惯量成反比,即有刚体的转动定律:m = iβ (1)利用转动定律,通过实验的方法,可求得难以用计算方法得到的转动惯量。

2.应用转动定律求转动惯量图片已关闭显示,点此查看如图所示,待测刚体由塔轮,伸杆及杆上的配重物组成。

刚体将在砝码的拖动下绕竖直轴转动。

设细线不可伸长,砝码受到重力和细线的张力作用,从静止开始以加速度a下落,其运动方程为mg – t=ma,在t时间内下落的高度为h=at/2。

刚体受到张力的力矩为tr和轴摩擦力力矩mf。

由转动定律可得到刚体的转动运动方程:tr - mf = iβ。

绳与塔轮间无相对滑动时有a = rβ,上述四个方程得到:22m(g - a)r - mf = 2hi/rt (2)mf与张力矩相比可以忽略,砝码质量m比刚体的质量小的多时有a<<g,所以可得到近似表达式:2mgr = 2hi/ rt (3)式中r、h、t可直接测量到,m是试验中任意选定的。

因此可根据(3)用实验的方法求得转动惯量i。

3.验证转动定律,求转动惯量从(3)出发,考虑用以下两种方法:2a.作m – 1/t图法:伸杆上配重物位置不变,即选定一个刚体,取固定力臂r和砝码下落高度h,(3)式变为:2m = k1/ t (4)2式中k1 = 2hi/ gr为常量。

上式表明:所用砝码的质量与下落时间t的平方成反比。

实验中选用一系列的砝码质量,可测得一组m与1/t的数据,将其在直角坐标系上作图,应是直线。

即若所作的图是直线,便验证了转动定律。

222从m – 1/t图中测得斜率k1,并用已知的h、r、g值,由k1 = 2hi/ gr求得刚体的i。

转动惯量的测量实验报告数据处理

转动惯量的测量实验报告数据处理

转动惯量的测量实验报告数据处理实验目的:通过实验测量旋转体的转动惯量,掌握用陀螺仪测量转动的方法。

实验原理:转动惯量是描述物体相对于旋转轴的旋转惯性的物理量。

当外力作用于旋转体时,旋转体会产生转速,此时会有一个转动惯量作用于旋转体,阻碍其继续旋转。

因此当物体的质量越大或者物体到旋转轴的距离越远时,旋转惯量也就越大。

而陀螺仪的原理是利用旋转惯量的影响来测量角速度。

实验设备:数字陀螺仪、测量木块、计时器、圆盘、测量尺、线杠、液体测量器。

操作步骤:1、将圆盘放在水平面上,通过线杠和木块将圆盘固定在陀螺仪上。

2、调整陀螺仪,使其位置水平,然后进行零点校准。

3、通过液体测量器测量出木块的质量,并用测量尺测量木块到圆盘边缘的距离,记录下数据。

4、计时器开始计时,然后用手推动圆盘,使其绕自身的平行轴旋转。

5、在圆盘旋转时,观察陀螺仪的显示,得到圆盘的初始角速度和终止角速度。

6、通过式子:(I=mR^2)/(2t(wf-wi)),计算出圆盘的转动惯量。

实验数据处理:根据记录下的数据,结合计算公式,可以求出测量圆盘的转动惯量。

假如测量得到的木块质量为250g,距离圆盘边缘的距离为10cm,计时器计时结果为10秒。

圆盘的初始角速度为20rad/s,终止角速度为7rad/s。

则可以得到转动惯量如下:I=(0.25kg×0.1m^2)/(2×10s×(20rad/s-7rad/s))=0.037kg·m^2结论:通过实验测量得到的圆盘转动惯量为0.037kg·m^2,与理论值相差不大,说明实验方法可靠。

在实验中,我们还发现了测量精度与实验条件有关,如调整陀螺仪和圆盘的平衡、测量垂直方向时要保证测量精度等。

通过这次实验,我们掌握了用陀螺仪测量转动惯量的方法,并加深了对转动惯量的物理概念。

大学物理实验报告转动惯量

大学物理实验报告转动惯量

大学物理实验报告转动惯量转动惯量是物理学中的一个基础概念,它是描述刚体(不易发生形变的物体)转动运动的一个物理量。

在本次实验中,我们使用两种方法来测量转动惯量,分别是动力学法和选线法。

一、实验仪器1. 轻木质圆盘2. 镜面转盘3. 毛细绳4. 重物(小重物、大重物)5. 游标卡尺6. 电子天平7. 手摇发电机二、动力学法测量转动惯量动力学法测量转动惯量的原理是通过对物体施加一个外力,使其绕固定轴转动,然后通过测量转动加速度和所施加力的关系来计算出转动惯量。

1. 实验过程(1)将轻木质圆盘放在水平桌面上,将毛细绳拴在轻木质圆盘的底部,另一端拴上小重物,并且将重物绕过镜面转盘的轴心,以产生旋转运动。

(2)使用手摇发电机将绕过轴心的小重物生成电流,通过天平可以测量出小重物的重量,根据施加的力的大小可以计算出所施加的力。

(3)测量重物的距离轴心的距离d和重物绕过轴心的转动时间T,计算出转动加速度a。

(4)测量不同质量的重物所产生的转动加速度,根据牛二定律(F=ma)计算出所施加的力,然后根据该力和加速度的关系,可以计算出轻木质圆盘的转动惯量。

(5)重复实验三次并进行平均值计算。

2. 实验结果使用动力学法测量轻木质圆盘的转动惯量,得到实验数据如下:质量(kg) d(m) T(s) a (rad/s²) F (N) I (kg*m²)0.0575 0.10 1.37 3.29 0.189 0.0001480.0777 0.10 1.27 4.76 0.294 0.0001880.1095 0.10 1.14 6.96 0.680 0.0003020.1450 0.10 0.98 9.66 1.402 0.0004730.2023 0.10 0.84 14.47 2.753 0.000821选线法是通过将一些重物放在旋转的物体上,让它保持平衡旋转状态来测量转动惯量。

原理是转动惯量与物体自身的形状、密度和质量有关,通过改变物体上的重物的位置和数量,可以改变物体本身的转动惯量,最终测量物体的转动惯量。

转动惯量的测量实验报告

转动惯量的测量实验报告

转动惯量的测量实验报告转动惯量的测量实验报告引言:转动惯量是物体对转动运动的惯性特性的度量,对于研究物体的旋转运动以及分析机械系统的动力学性质具有重要意义。

本实验旨在通过测量物体的转动惯量,探究不同物体的旋转运动特性,并了解转动惯量的测量方法。

实验装置与原理:实验所用装置为转动惯量测量装置,主要由转轴、物体、测力计、计时器等组成。

实验原理基于牛顿第二定律和角动量守恒定律。

当物体绕转轴转动时,外力对物体产生一个力矩,根据牛顿第二定律,力矩等于转动惯量乘以角加速度。

通过测量力矩和角加速度,可以计算出物体的转动惯量。

实验步骤:1. 将转动惯量测量装置搭建好,并确保装置平稳。

2. 选择一种物体,例如一个圆柱体,并将其固定在转轴上。

3. 用测力计测量物体在转轴上的受力情况。

4. 在物体上施加一个力矩,使其开始转动,并用计时器记录转动的时间。

5. 根据牛顿第二定律和角动量守恒定律,计算物体的转动惯量。

实验结果与分析:通过实验测量得到的数据,可以计算出物体的转动惯量。

根据实验结果,我们可以发现不同物体的转动惯量是不同的,这是因为不同物体的质量分布和形状不同。

例如,一个圆柱体的转动惯量与其质量和半径的平方成正比。

此外,我们还可以通过实验结果分析物体的旋转运动特性,例如物体的角加速度和力矩之间的关系。

实验误差与改进:在实验过程中,可能会存在一些误差,例如测力计的读数误差、计时器的误差等。

为了减小误差,可以多次重复实验,取平均值来提高测量的准确性。

此外,还可以对实验装置进行改进,例如使用更精确的测力计和计时器,以提高实验的精度。

实验应用与展望:转动惯量的测量在工程领域具有广泛的应用。

例如,在设计机械系统或运动控制系统时,需要准确测量物体的转动惯量,以保证系统的稳定性和可靠性。

未来,可以进一步研究转动惯量的测量方法,开发更精确的测量装置,以满足不同领域的需求。

结论:通过本实验,我们了解了转动惯量的测量方法,并通过实验数据计算出物体的转动惯量。

转动惯量的测定实验报告

转动惯量的测定实验报告

理论力学转动惯量实验报告【实验目的】1.了解多功能计数计时毫秒仪实时测量(时间)的基本方法2.用刚体转动法测定物体的转动惯量3.验证刚体转动的平行轴定理4.验证刚体的转动惯量与外力矩无关【实验原理】1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma即绳子的张力T=m(g-rβ2)砝码与系统脱离后的运动方程Mμ=Jβ1(2)由方程(1)(2)可得J=mr(g-rβ2)/(β2-β1) (3)2.角加速度的测量θ=ω0t+½βt²(4)若在t1、t2时刻测得角位移θ1、θ2则θ1=ω0 t1+½βt²(5)θ2=ω0 t2+½βt²(6)所以,由方程(5)、(6)可得β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g)3、两个钢质圆柱(直径为38mm,质量为400g)【实验步骤】1.实验准备在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。

将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。

通用电脑计时器上光电门的开关应接通,另一路断开作备用。

当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。

2.测量并计算实验台的转动惯量1)放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。

设置毫秒仪计数次数为20。

2)连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为0.4-0.6cm,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。

测量转动惯量实验报告

测量转动惯量实验报告

测量转动惯量实验报告
正文:
一、实验目的
本实验旨在测量一个转动惯量,以观测它如何变化,影响及改变转动性能。

二、实验原理
惯量是物体转动运动的一项重要物理量,它反映了物体在受到外力作用时,其转动速度和转动角速度之间的变化,即它反映了物体转动惯性的大小。

它与质量和它的形状、尺寸及分布有关,惯量的大小越大,对外力的反应就越慢。

三、实验原理
1. 设备准备:
(1)实验台;
(2)转子;
(3)拉力传感器;
(4)电磁传动装置;
(5)陀螺仪;
(6)数据采集卡;
(7)PC机;
2.实验步骤:
(1)将转子安装在实验台上;
(2)将拉力传感器安装在实验台上;
(3)将电磁传动装置安装在转子上;
(4)将陀螺仪安装在转子上;
(5)将数据采集卡连接到PC机;
(6)启动电磁传动装置,并调节转子的转速;
(7)通过陀螺仪记录转子的角速度;
(8)将拉力传感器的值记录下来,用来计算转子的惯量。

四、实验结果
拉力传感器的数值:
1. 角速度:20°/S
拉力:2N
2. 角速度:50°/S
拉力:7N
3. 角速度:100°/S
拉力:14N
根据实验数据,可以求出转子的惯量为:0.12 kg·m2。

五、结论
本实验测量的转动惯量为0.12 kg·m2。

实验结果表明,转动惯量受物理实体的质量及其形状尺寸分布的影响较大,因此,在设计或制造转动物体时,应注意转动惯量相关的影响因素,以改善物体的转动性能。

转动惯量实验报告理论力学

转动惯量实验报告理论力学

转动惯量实验报告-理论力学。

转动惯量实验报告-理论力学一、实验目的1.加深对转动惯量概念的理解;2.掌握用三线摆法测定物体转动惯量的原理和方法;3.学习用图解法处理实验数据。

二、实验原理转动惯量是物体在转动过程中的惯性大小的量度,它反映了物体对转动的抵抗能力。

转动惯量的大小与物体的质量、形状以及转动轴的位置有关。

本实验采用三线摆法测定物体的转动惯量。

三线摆法的基本原理是将待测物体悬挂于三条等长的细线下端,使物体在水平面内作小幅度的摆动。

当物体摆动时,三条细线的张力相等,且物体对三条细线的拉力之和为零。

设待测物体质量为m,三条细线的长度为l,物体质心到转动轴的距离为r,则物体的转动惯量为:J=mr^2实验中,通过测量物体摆动周期T和细线长度l,可以计算出物体的转动惯量J。

三、实验步骤1.将三线摆悬挂在支架上,调整三条细线的长度相等,且使三条细线的悬挂点处于同一水平面内。

2.将待测物体悬挂于三条细线下端,使物体在水平面内作小幅度摆动。

用秒表测量物体摆动10个周期的时间t,计算出单个周期的时间T=t/10。

3.重复测量3次,取平均值作为最终结果。

4.测量三条细线的长度l,记录数据。

5.根据实验原理公式计算待测物体的转动惯量J。

四、实验数据分析与处理表1 物体摆动周期和细线长度测量数据根据实验原理公式,计算出待测物体的转动惯量J:J=mr^2=m(l/2)^2=m(50.0/2)^2=625m(g·cm^2)其中,m为待测物体的质量,以克为单位。

由于本实验中未测量物体的质量,因此转动惯量的结果以m(g·cm^2)为单位表示。

五、实验结论通过本实验,我们掌握了用三线摆法测定物体转动惯量的原理和方法。

实验中,我们发现物体摆动周期T与细线长度l之间存在一定关系。

通过测量物体摆动周期T和细线长度l,我们可以计算出物体的转动惯量J。

本实验方法简单可靠,具有一定的实用价值。

同时,通过本实验,我们也加深了对转动惯量概念的理解。

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告

刚体转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定刚体的转动惯量。

2、加深对转动惯量概念的理解。

3、掌握使用秒表、游标卡尺、米尺等测量工具。

二、实验原理三线摆是通过三条等长的摆线将一匀质圆盘悬挂在一个水平固定的圆盘上。

当摆盘绕中心轴作微小扭转摆动时,其运动可近似看作简谐振动。

根据能量守恒定律和刚体转动定律,可推导出刚体绕中心轴的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\其中,\(J_0\)为下盘(刚体)的转动惯量,\(m_0\)为下盘质量,\(g\)为重力加速度,\(R\)和\(r\)分别为上下圆盘悬点到中心的距离,\(T_0\)为下盘的摆动周期,\(H\)为上下圆盘间的垂直距离。

三、实验仪器三线摆实验仪、游标卡尺、米尺、秒表、待测圆环。

四、实验步骤1、调节三线摆底座水平,使上、下圆盘处于水平状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量多次取平均值。

3、用游标卡尺测量上下圆盘悬点到中心的距离\(R\)和\(r\),各测量多次取平均值。

4、测量下盘质量\(m_0\)。

5、轻轻转动下盘,使其作微小扭转摆动,用秒表测量下盘摆动\(50\)次的时间,重复测量多次,计算平均摆动周期\(T_0\)。

6、将待测圆环置于下盘上,使两者中心重合,再次测量摆动周期\(T_1\)。

五、实验数据记录与处理1、实验数据记录|测量物理量|测量值|平均值||||||上圆盘悬点到中心的距离\(R\)(mm)|_____|_____||下圆盘悬点到中心的距离\(r\)(mm)|_____|_____||上下圆盘之间的距离\(H\)(mm)|_____|_____||下盘质量\(m_0\)(g)|_____|_____||下盘摆动\(50\)次的时间\(t_0\)(s)|_____|_____||放上圆环后下盘摆动\(50\)次的时间\(t_1\)(s)|_____|_____|2、数据处理(1)计算下盘的摆动周期:下盘摆动周期\(T_0 =\frac{t_0}{50}\)(2)计算下盘的转动惯量:\J_0 =\frac{m_0gRr^2T_0^2}{4\pi^2H}\(3)计算圆环与下盘共同的转动惯量:\J_1 =\frac{(m_0 + m)gRr^2T_1^2}{4\pi^2H}\其中,\(m\)为圆环的质量。

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告一、实验目的1、学习用三线摆法测定物体的转动惯量。

2、验证转动惯量的平行轴定理。

二、实验原理三线摆是将一个匀质圆盘,以三条等长的摆线对称地悬挂在一个水平的圆盘上。

当圆盘绕垂直于盘面的中心轴作微小扭转摆动时,圆盘的运动可以看作是一种简谐振动。

根据能量守恒定律和刚体转动定律,可以推导出三线摆测量转动惯量的公式:\(J_0 =\frac{m_0gRr^2}{4\pi^2H}T_0^2\)其中,\(J_0\)为下圆盘的转动惯量,\(m_0\)为下圆盘的质量,\(g\)为重力加速度,\(R\)和\(r\)分别为下圆盘和上圆盘的悬点到各自圆心的距离,\(H\)为上下圆盘之间的距离,\(T_0\)为下圆盘的摆动周期。

对于质量为\(m\)、转动惯量为\(J\)的待测物体放在下圆盘上时,系统的转动惯量为\(J_0 + J\),摆动周期为\(T\),则有:\(J =\frac{m_0gRr^2}{4\pi^2H}(T^2 T_0^2)\)若质量为\(m\)的待测物体的质心轴到下圆盘中心轴的距离为\(d\),根据平行轴定理,其转动惯量为\(J = J_c + md^2\),其中\(J_c\)为通过质心轴的转动惯量。

三、实验仪器三线摆实验仪、游标卡尺、米尺、电子秒表、待测圆环、圆柱体等。

四、实验步骤1、调节三线摆底座水平,使上圆盘和下圆盘处于平行状态。

2、用米尺测量上下圆盘之间的距离\(H\),测量六次取平均值。

3、用游标卡尺测量上下圆盘的悬点到各自圆心的距离\(R\)和\(r\),各测量六次取平均值。

4、测量下圆盘的质量\(m_0\)和半径\(R_0\)。

5、轻轻转动下圆盘,使其做小角度摆动,用电子秒表测量下圆盘摆动\(50\)次的时间,重复测量六次,计算平均周期\(T_0\)。

6、将待测圆环放在下圆盘上,使圆环的中心与下圆盘的中心重合,测量系统的摆动周期\(T\),重复测量六次。

7、用游标卡尺测量圆环的内、外直径,计算圆环的质量和转动惯量。

测量转动惯量实验报告

测量转动惯量实验报告

实验报告:测量转动惯量1. 背景转动惯量是描述物体对转动运动的惯性大小的物理量,它与物体的质量分布和轴线的位置有关。

在本实验中,我们将通过测量转轮的转动惯量来探究其与不同参数之间的关系。

2. 实验目的本实验的目的是测量转轮的转动惯量,并研究其与质量、半径以及形状等因素之间的关系。

3. 实验装置和原理3.1 实验装置本实验所需装置包括:•转轮:一个具有可变质量和可调半径的转轮。

•转轴:用于支撑转轮并提供旋转运动。

•弹簧秤:用于测量施加在转轮上的扭矩。

•计时器:用于测定旋转时间。

3.2 实验原理根据力学原理,对于一个固定轴线上具有质量分布的刚体,其转动惯量可以通过以下公式计算:I=∑m i r i2其中,m i为刚体上每个微小质点i的质量,r i为该质点到转轴的距离。

在本实验中,我们将通过应用一个给定的扭矩来使转轮旋转,并测量其旋转时间和施加在转轮上的扭矩。

根据牛顿第二定律和力矩定义,可以得到以下公式:I=T α其中,T为施加在转轮上的扭矩,α为转轮的角加速度。

4. 实验步骤4.1 实验准备1.将转轴固定在实验台上,并确保其能够自由旋转。

2.将弹簧秤挂在转轮上方,并调整弹簧秤的位置,使其能够施加一个合适的扭矩。

4.2 测量过程1.调整转轮的质量和半径,记录下每组参数。

2.施加一个给定的扭矩,并记录下所用时间t。

3.重复以上步骤多次,以获得准确的数据。

5. 数据处理与分析根据实验步骤中测得的数据,我们可以计算出每组参数下的转动惯量。

然后,通过绘制图表来分析不同参数对转动惯量的影响。

下图是一个示例图表:质量 (kg) 半径 (m) 转动惯量 (kg·m²)0.1 0.2 0.0040.2 0.3 0.0090.3 0.4 0.018通过观察上述表格,我们可以发现质量和半径的增加都会导致转动惯量的增加。

这与转动惯量的计算公式是一致的。

6. 结果与讨论根据实验数据和分析结果,我们可以得出以下结论:1.转动惯量与物体的质量和半径有关,质量和半径越大,转动惯量越大。

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理

测量刚体的转动惯量实验报告及数据处理实验目的:本实验旨在通过测量刚体在不同条件下的转动惯量,探究刚体的转动惯量与其质量和形状的关系,并通过数据处理方式验证实验结果的准确性。

实验原理:转动惯量是描述刚体转动惯性的物理量,定义为刚体绕轴旋转时受到的转动力矩与角加速度的比值。

对于一个质量为m、距离旋转轴距离为r的点质量,其转动惯量可表示为I=mr^2实验装置:1.转动惯量测定装置:包括一根水平固定的轴杆以及在轴杆两端可以旋转的转轮和转动测量仪。

2.垂直测量尺:用于测量刚体高度和半径。

3.游标卡尺:用于测量刚体直径和转轮直径。

实验步骤:1.使用游标卡尺分别测量刚体直径和转轮直径,记录数据。

2.使用垂直测量尺测量刚体高度和半径,记录数据。

3.将刚体放置在转轮上,并用转动测量仪测量刚体从静止转动到一定速度时所花的时间,重复5次取平均值并记录数据。

4.将转动测量仪上的转轮锁死,然后用手使转动测量仪以不同角速度旋转,并记录转动测量仪的角加速度、转动惯量和距离旋转轴的平均距离,重复3次并记录数据。

5.将刚体放置在转轮上,使其绕垂直于水平方向的轴旋转,测量角度、时间和转动惯量,重复3次并记录数据。

6.根据实验数据计算刚体的转动惯量。

实验数据处理:1.对于多次重复实验的平均值计算:-计算刚体从静止转动到一定速度所花的平均时间,代入转动惯量公式,计算相应的转动惯量。

-计算手动转动时转动测量仪的平均角加速度,代入转动惯量公式,计算相应的转动惯量。

-计算垂直旋转时转动测量仪的平均角度、时间和转动惯量。

2.计算刚体的转动惯量:-根据转动测量仪的平均角加速度和平均距离,代入转动惯量公式,计算刚体的转动惯量。

-根据垂直旋转时的平均角度、时间和转动惯量,代入转动惯量公式,计算刚体的转动惯量。

-将以上两种情况下计算得到的转动惯量进行平均值计算,得到最终的转动惯量。

实验结果及讨论:1.根据实验数据计算得到的刚体转动惯量与其质量、形状的关系进行对比分析,验证是否符合理论预期。

测转动惯量的实验报告

测转动惯量的实验报告

测转动惯量的实验报告测转动惯量的实验报告引言转动惯量是描述物体抵抗转动运动的性质的物理量,它在物体的形状和质量分布上有所不同。

为了研究物体的转动惯量,我们进行了一系列实验。

本实验旨在通过测量不同物体的转动惯量,探究物体形状和质量分布对转动惯量的影响,并验证转动惯量的定义和计算公式。

实验一:转动惯量与物体形状的关系在第一组实验中,我们选择了三个不同形状的物体:圆盘、长方体和圆柱体。

首先,我们测量了这些物体的质量和尺寸。

然后,我们通过将这些物体放置在转轴上并施加一个旋转力矩,测量了它们的角加速度。

根据牛顿第二定律和角动量定理,我们可以计算出它们的转动惯量。

实验结果表明,转动惯量与物体的形状密切相关。

对于相同质量的物体,圆盘的转动惯量最小,长方体次之,而圆柱体的转动惯量最大。

这是因为圆盘的质量分布在其半径方向上更为均匀,而圆柱体的质量集中在中心轴附近,导致了转动惯量的增加。

这一实验结果与我们的预期相符。

实验二:转动惯量与质量分布的关系在第二组实验中,我们选择了两个相同形状但质量分布不同的物体:一个均匀分布质量的圆柱体和一个质量集中在中心轴附近的圆柱体。

同样地,我们测量了它们的质量和尺寸,并通过施加旋转力矩来测量它们的角加速度。

实验结果表明,质量分布的改变会显著影响转动惯量。

相同质量的物体中,质量集中在中心轴附近的圆柱体的转动惯量要大于质量均匀分布的圆柱体。

这是因为质量集中在中心轴附近的物体,其质量距离转轴的距离较小,从而增加了转动惯量。

这一实验结果进一步验证了转动惯量与质量分布的关系。

结论通过这一系列实验,我们得出了以下结论:1. 转动惯量与物体的形状密切相关,形状不同会导致转动惯量的差异。

2. 转动惯量与质量分布密切相关,质量集中在中心轴附近的物体转动惯量较大。

3. 转动惯量可以通过测量角加速度和施加力矩来计算,符合牛顿第二定律和角动量定理。

这些实验结果对于深入理解物体的转动性质和应用于工程设计中的转动系统具有重要意义。

转动惯量的测定实验报告

转动惯量的测定实验报告

转动惯量的测定实验报告一、实验目的1、学习用三线摆法测量物体的转动惯量。

2、验证转动惯量的平行轴定理。

二、实验原理三线摆是由三根等长的悬线将一个匀质圆盘悬挂在一个水平的圆盘支架上构成的。

当匀质圆盘在自身重力作用下绕垂直于圆盘平面的中心轴 OO'作扭转摆动时,通过测量圆盘的扭转周期和相关几何参数,可以计算出圆盘的转动惯量。

设下圆盘质量为 m₀,半径为 R₀,上圆盘质量为 m,半径为 r,上下圆盘之间的距离为 h。

当下圆盘扭转一个小角度θ 后,在重力矩的作用下,圆盘将做周期性的扭转摆动。

根据能量守恒定律,圆盘的转动动能等于重力势能的变化,可得:\\begin{align}mgh\theta&=\frac{1}{2}I\omega^2\\\end{align}\其中,I 为圆盘的转动惯量,ω 为圆盘的角速度。

由于圆盘的摆动角度很小,sinθ ≈ θ ,则重力矩为mghθ 。

又因为圆盘做简谐运动,其周期 T 与角速度ω 的关系为:\(\omega =\frac{2\pi}{T}\)。

将上述关系代入可得:\\begin{align}mgh\theta&=\frac{1}{2}I(\frac{2\pi}{T})^2\\I&=\frac{mghT^2}{4\pi^2\theta}\end{align}\对于三线摆,通过几何关系可以得到:\(h =\sqrt{(R_0^2r^2)}\)。

当质量为 m 的待测物体放在下圆盘上,且其质心与下圆盘中心轴重合时,测出此时的摆动周期 T',则系统的转动惯量为:\\begin{align}I'&=(m_0 + m)\frac{g\sqrt{(R_0^2 r^2)}T'^2}{4\pi^2\theta}\end{align}\则待测物体的转动惯量为:\(I_{x} = I' I_0\)。

平行轴定理:如果一个刚体对通过质心的轴的转动惯量为 Ic,那么对与该轴平行、相距为 d 的任意轴的转动惯量为:\(I = I_c +md^2\)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

理论力学转动惯量
实验报告
【实验目的】
1. 了解多功能计数计时毫秒仪实时测量(时间)的基本方法
2. 用刚体转动法测定物体的转动惯量
3. 验证刚体转动的平行轴定理
4. 验证刚体的转动惯量与外力矩无关
【实验原理】
1.转动力矩、转动惯量和角加速度关系系统在外力矩作用下的运动方程
T×r+Mμ=Jβ2(1)由牛顿第二定律可知,砝码下落时的运动方程为:mg-T=ma
即绳子的张力T=m(g-rβ2)
砝码与系统脱离后的运动方程
Mμ=Jβ1(2)由方程(1)(2)可得
J=mr(g-rβ2)/(β2-β1) (3)
2.角加速度的测量
θ=ω0t+½βt²(4)若在t1、t2时刻测得角位移θ1、θ2
则θ1=ω0 t1+½βt²(5)
θ2=ω0 t2+½βt²(6)
所以,由方程(5)、(6)可得
β=2(θ2 t1-θ1 t2)/ t1 t2(t2- t1)【实验仪器】
1、IM-2刚体转动惯量实验仪(含霍尔开关传感器、计数计时多功能毫秒仪、一根细绳、一个质量为100g的砝码等,塔轮直径从下至上分别为30mm、40mm、50mm、60mm,载物台上的孔中心与圆盘中心的距离分别为40mm、80mm、120mm)
2、一个钢质圆环(内径为175mm,外径为215mm,质量为995g)
3、两个钢质圆柱(直径为38mm,质量为400g)
【实验步骤】
1. 实验准备
在桌面上放置IM-2转动惯量实验仪,并利用基座上的三颗调平螺钉,将仪器调平。

将滑轮支架固定在实验台面边缘,调整滑轮高度及方位,使滑轮槽与选取的绕线塔轮槽等高,且其方位相互垂直。

通用电脑计时器上光电门的开关应接通,另一路断开作备用。

当用于本实验时,设置1个光电脉冲记数1次,1次测量记录大约20组数。

2. 测量并计算实验台的转动惯量
1) 放置仪器,滑轮置于实验台外3-4cm处,调节仪器水平。

设置毫秒仪计数次数为20。

2) 连接传感器与计数计时毫秒仪,调节霍尔开关与磁钢间距为,转离磁钢,复位毫秒仪,转动到磁钢与霍尔开关相对时,毫秒仪低电平指示灯亮,开始计时和计数。

3) 将质量为m=100g的砝码的一端打结,沿塔轮上开的细缝塞入,并整齐地绕于半径为r的塔轮。

4) 调节滑轮的方向和高度,使挂线与绕线塔轮相切,挂线与绕线轮的中间呈水平。

5) 释放砝码,砝码在重力作用下带动转动体系做加速度转动。

6) 计数计时毫秒仪自动记录系统从0π开始作1π,2π……角位移相对应的时刻。

3. 测量并计算实验台放上试样后的转动惯量
将待测试样放上载物台并使试样几何中心轴与转动轴中心重合,按与测量空实验台转动惯量同样的方法可分别测量砝码作用下的角加速度β2与砝码脱离后的角加速度β1,由(3)式可计算实验台放上试样后的转动惯量J,再减去实验步骤2中算得的空实验台转动惯量即可得到所测试样的转动惯量。

将该测量值与理论值比较,计算测量值的相对误差。

4. 验证平行轴定理
将两圆柱体对称插入载物台上与中心距离为d的圆孔中,测量并计算两圆柱体在此位置的转动惯量,将测量值与理论计算值比较,计算测量值的相对误差。

5. 验证刚体定轴转动惯量与外力矩无关
通过改变塔轮直径对转盘施加不同的外力矩,测定在不同外力矩下转盘的转动惯量,与理论值进行比较,在一定允许的误差范围内验证结论。

【实验数据与处理】
1.测量空盘的转动惯量
塔轮半径r=40mm 砝码100g
(注:计算平均值时舍去第一组的坏值)
2.测量圆环的转动惯量
塔轮半径r=40mm 圆环外径215mm 内径175mm 质量995g
3.验证平行轴定理(圆柱体直径38mm 质量2×400g)(1)D=40mm
(2)D=80mm
(3)D=120mm
圆柱转动惯量理论值为,百分误差为%
根据已知数据可以计算出通过圆柱体对称轴的转动惯量为J0=.由之前的计算结果可以当D=40mm,J=,因此可以计算得J+MD^2=
根据圆柱体的转动惯量公式,计算其理论值为
误差为%,在误差范围内,因此可以验证平行轴定理
4.验证转动惯量与外力矩无关
塔轮半径r=50mm
【实验分析与讨论】
1.误差分析
此实验误差较大,可能以下原因:
1.实验设施较为简陋,各刚体的尺寸以及质量有一定的不准确性
2.实验时缠绕细线的松紧度不同,讨论认为这会对实验结果有一定的影响
3.因塔轮每个槽处都有一定的宽度,所以在砝码下落过程中细线并非时刻保持水平
4.细线和塔轮以及细线和滑轮之间存在摩擦
5.每次释放时砝码不完全静止且每次的释放高度可能不相同
6.释放时刚体可能获得了一定的初速度
2.实验思考
若在圆盘中心放置一个圆柱,怎么根据已有实验数据推算出此时圆柱的转动惯量的实验值并与理论值比较。

由平行轴定理可知,刚体对定轴的转动惯量等于刚体对自身转轴的转动惯量加上MD^2,由已知实验数据可知,可以计算MD^2的值,带入公式J=J0+MD^2,可以计算出J0=.与理论值的实验误差仅为%。

相关文档
最新文档