ansysworkbench疲劳分析实例
(完整版)疲劳分析的数值计算方法及ANSYS疲劳分析实例
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
(完整版)疲劳分析的数值计算方法及ANSYS疲劳分析实例
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
(完整版)疲劳分析的数值计算方法及ANSYS疲劳分析实例
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
基于Ansys Workbench的钢丝绳应力和疲劳分析
全绳的卷绕缆绳最为合适。因此 ,研究 钢丝 绳的 相 关 性 能 和 提 高其 可靠 性 对 于整 个 可 伸 缩 太 空 安 全绳 的研 制具 有至 关重 要 的意义 。
1 有 限元模型设定
使 用 Siemens NX 对 钢 丝 绳 进 行 参 数 化 建 模 .3 J,获 得钢丝 绳 的三 维 模 型 ,将 模 型 导 入 An— sys Workbench L4 软 件 。利 用 Ansys Workbench白带 的材料 库 ,设 置 钢 丝绳 的 材 料 为 不 锈 钢 。 由于 钢 丝绳结构复杂 ,为减少计算时 间,在保证计算结 果 较为 精 确 的情 况 下 ,在 对 钢 丝 绳 三 维 模 型 进 行 网格划分 时,应尽 量减少 网格 的数量 ,尤其是对 于结构 较 为复杂 的 6×19IWS型 钢丝 绳 。设 置 Mes. hing为 自动 网格 划 分 ,Relevance为 0,Relevance Center为 Coarse。将 钢丝绳 一 端 (A端 ) 的所 有 钢
基 于 Ansys Workbench的钢 丝 绳 应 力和 疲 劳 分 析
褚文 敏 郑 刚 刘志 才 魏 书 林 北京 工业 大 学机 械 工程 与应 用 电子技 术 学院 北京 100124
摘 要 :为了研究钢丝绳直径 、结构 和环境温度对钢丝绳疲劳寿命的影响 ,选 择用于太空安 全绳 的钢丝 绳 , 通过 Ansys Workbench分析软件建立钢丝绳 多场耦合有 限元模 型 ,计算不 同因素对钢 丝绳应力 的影 响。根据应力 疲 劳理论 ,导 入不 锈钢 材料的应力 一寿命 曲线 ,对钢 丝绳 的疲 劳寿命 进行仿 真分析 ,通 过钢丝绳 的疲 劳寿命 云 图可以发 现 ,钢丝绳的直径 和结构对钢丝绳的疲 劳寿命影 响较 大 ,环境温度 对钢丝 绳的疲 劳寿命影 响较小 。根 据仿真结果和具体使用条件 ,遴选 出最适合用 于太空安全绳 的钢 丝绳 。
一个PPT让你搞懂AnsysWorkbench疲劳分析应用
一个PPT让你搞懂AnsysWorkbench疲劳分析应用
结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。
疲劳通常分为两类:
1)高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。
因此,应力通常比材料的极限强度低。
应力疲劳( Stress-based)用于高周疲劳。
2)低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算。
在ANSYS Workbench结构分析模块的后处理中的疲劳计算工具可以完成高周疲劳和低周疲劳的计算。
基于ANSYS Workbench的齿轮弯曲疲劳寿命分析
析模块对 18CrNiMo7—6直齿 圆柱齿 轮进行弯 曲疲 劳寿命分析 , 定接触类型齿轮与支撑头接触类型为不分离接触 。(5)网格的选取
Abstract:In order to get the fatigue z da ta ofthe straight spur gear,using the straight spur gear highfrequeney testing machine,the stra ight spur g ear which is used 18CrNiMo7-6 alloy steel is taken a bendingfatigue experiment.The oy steel gea r fa tig ue li fe has been simula ted by using SolidWorks and ANSYS Workbench Fatigue Tool and the related e simula tion resultis obtained.Compared simula tion resultwithtest data,itis showedthatwe can get relatedfatigue life result of the mecha ni cal part quickly by using ANSYS Workbench Fatigue Tool to meet certain precision engineering cases.It reduces the produ ct d e velopment cycles and development costs and it also has some engine ering reference.
ANSYSworkbench教程—疲劳分析
第一章简介1.1 疲劳概述结构失效的一个常见原因是疲劳,其造成破坏与重复加载有关。
疲劳通常分为两类:高周疲劳是当载荷的循环(重复)次数高(如1e4 -1e9)的情况下产生的。
因此,应力通常比材料的极限强度低,应力疲劳(Stress-based)用于高周疲劳;低周疲劳是在循环次数相对较低时发生的。
塑性变形常常伴随低周疲劳,其阐明了短疲劳寿命。
一般认为应变疲劳(strain-based)应该用于低周疲劳计算。
在设计仿真中,疲劳模块拓展程序(Fatigue Module add-on)采用的是基于应力疲劳(stress-based)理论,它适用于高周疲劳。
接下来,我们将对基于应力疲劳理论的处理方法进行讨论。
1.2 恒定振幅载荷在前面曾提到,疲劳是由于重复加载引起:当最大和最小的应力水平恒定时,称为恒定振幅载荷,我们将针对这种最简单的形式,首先进行讨论。
否则,则称为变化振幅或非恒定振幅载荷。
1.3 成比例载荷载荷可以是比例载荷,也可以非比例载荷:比例载荷,是指主应力的比例是恒定的,并且主应力的削减不随时间变化,这实质意味着由于载荷的增加或反作用的造成的响应很容易得到计算。
相反,非比例载荷没有隐含各应力之间相互的关系,典型情况包括:σ1/σ2=constant在两个不同载荷工况间的交替变化;交变载荷叠加在静载荷上;非线性边界条件。
1.4 应力定义考虑在最大最小应力值σmin和σmax作用下的比例载荷、恒定振幅的情况:应力范围Δσ定义为(σmax-σmin)平均应力σm定义为(σmax+σmin)/2应力幅或交变应力σa是Δσ/2应力比R是σmin/σmax当施加的是大小相等且方向相反的载荷时,发生的是对称循环载荷。
这就是σm=0,R=-1的情况。
当施加载荷后又撤除该载荷,将发生脉动循环载荷。
这就是σm=σmax/2,R=0的情况。
1.5 应力-寿命曲线载荷与疲劳失效的关系,采用的是应力-寿命曲线或S-N曲线来表示:(1)若某一部件在承受循环载荷, 经过一定的循环次数后,该部件裂纹或破坏将会发展,而且有可能导致失效;(2)如果同个部件作用在更高的载荷下,导致失效的载荷循环次数将减少;(3)应力-寿命曲线或S-N曲线,展示出应力幅与失效循环次数的关系。
基于ANSYS Workbench的扭转弹簧疲劳寿命分析
基于ANSYS Workbench的扭转弹簧疲劳寿命分析时宏森】,杨涛1,唐超】,蔡大静】,陈强2(1.贵州航天林泉电机有限公司,贵州贵阳550081$.国家精密微特电机工程技术研究中心,贵州贵阳550081)摘要:扭转弹簧是一种利用材料的弹性来工作的机械零件,一般用弹簧钢制成,是一种机械蓄力结构,用以控制机件的运动、缓和冲击或震动、存储和释放能量、测量力的大小等,广泛应用于坦克、汽车、摩托车、收割机等地面装备的传动扭力杆及减震结构。
扭转弹簧属于螺旋弹簧,扭转弹簧的端部被固定在其他组件上,当其他组件绕着弹簧中心旋转时,弹簧产生扭矩或旋转力,有将它们拉回到初始位置的趋势。
根据应用要求,可以设计扭转弹簧的旋向(顺时针或逆时针),弹簧的末端可绕成钩状或直扭转臂。
弹簧的工作寿命一般在104〜105以上,一般来说属于长寿命机械零件,失效模式属于高周疲劳。
基于有限元软件ANSYS Workbench仿真分析某扭转弹簧的疲劳寿命,并结合实物试验进行对比分析,验证理论计算的准确性,形成一套疲劳寿命计算方法。
关键词:疲劳;寿命;扭转弹簧;仿真;实物试验;ANSYS Workbench中图分类号:V19文献标志码:AFatigue Life Analysis of Torsion Spring based on ANSYS WorkbenchSHI Hongsen】,YANG Tao1,TANG Chao1,CAI Dajing1,CHEN Qiang2(1.Guizhou Aerospace Linquan Motor Co.,Ltd.,Guiyang550081,China; 2.National Engineering ResearchCenter for Small and Special Precision Motors,Guiyang550081,China) Abstract:Torsion spring was a kind of mechanical part which used the elasticity of material for working.It was gener-aly madeofspringsteelandwasakindofmechanicalstoragestructure whichwasusedtocontrolthemovementofthema-chineparts mitigatetheimpactorvibration storeandreleaseenergy and measure the force Soitwaswidelyusedinthe transmissiontorsionbaranddampingstructureoftank automobile motorcycle harvesterandothergroundequipment Torsionspringbelongedtocoilspring andtheendoftorsionspring wasfixedtoothercomponents Whenothercompo-nentsrotatedaroundthespringcenter thespringproducedtorqueorrotationforce which tended to pul them back to the originalposition Accordingtotheapplicationrequirements therotationdirectionofthetorsionspringcouldbedesigned (clockwiseorcounterclockwise)andtheendofthespringcouldbewoundintoahookorastraighttorsionarm Generaly speaking,the working life of spring was more than104〜105.It belonged to long-life mechanical parts,and the failure modebelongedtohighcyclefatigue BasedonthefiniteelementsoftwareANSYS Workbench thefatiguelifeofatorsion spring wassimulatedandasetoffatiguelifecalculation method wasformedbycomparingandanalyzingtheactualtestto verifytheaccuracyoftheoreticalcalculationKeywords:fatigue life torsionspring simulation actualtest ANSYS Workbench疲劳寿命试验是一项耗时、耗资的大型试验,时间周期长、子样数量大、数据处理复杂是疲劳寿命试验的主要特点,对机械产品的每一个零件都开展疲劳寿命试验显然是不现实的’根据材料疲劳理论,结合电子计算机及有限元技术的发展,可以通过虚拟仿真试验确定产品零件的疲劳寿命。
疲劳分析的数值计算方法及ANSYS疲劳分析实例解读
第十四章疲劳分析的数值计算方法及实例第一节引言零件或构件由于交变载荷的反复作用,在它所承受的交变应力尚未达到静强度设计的许用应力情况下就会在零件或构件的局部位置产生疲劳裂纹并扩展、最后突然断裂。
这种现象称为疲劳破坏。
疲劳裂纹的形成和扩展具有很大的隐蔽性而在疲劳断裂时又具有瞬发性,因此疲劳破坏往往会造成极大的经济损失和灾难性后果。
金属的疲劳破坏形式和机理不同与静载破坏,所以零件疲劳强度的设计计算不能为经典的静强度设计计算所替代,属于动强度设计。
随着机车车辆向高速、大功率和轻量化方向的迅速发展,其疲劳强度及其可靠性的要求也越来越高。
近几年随着我国铁路的不断提速,机车、车辆和道轨等铁路设施的疲劳断裂事故不断发生,越来越引起人们的重视。
疲劳强度设计及其研究正在成为我国高速机车车辆设计制造中的一项不可缺少的和重要的工作。
金属疲劳的研究已有近150年的历史,有相当多的学者和工程技术人员进行了大量的研究,得到了许多关于金属疲劳损伤和断裂的理论及有关经验技术。
但是由于疲劳破坏的影响因素多而复杂并且这些因素互相影响又与构件的实际情况密切相关,使得其应用性成果尚远远不能满足工程设计和生产应用的需要。
据统计,至今有约90%的机械零部件的断裂破坏仍然是由直接于疲劳或者间接疲劳而引起的。
因此,在21世纪的今天,尤其是在高速和大功率化的新产品的开发制造中,其疲劳强度或疲劳寿命的设计十分重要,并且往往需要同时进行相应的试验研究和试验验证。
疲劳断裂是因为在零件或构件表层上的高应力或强度比较低弱的部位区域产生疲劳裂纹,并进一步扩展而造成的。
这些危险部位小到几个毫米甚至几十个微米的范围,零件或构件的几何缺口根部、表面缺陷、切削刀痕、碰磕伤痕及材料的内部缺陷等往往是这种危险部位。
因此,提高构件疲劳强度的基本途径主要有两种。
一种是机械设计的方法,主要有优化或改善缺口形状,改进加工工艺工程和质量等手段将危险点的峰值应力降下来;另一种是材料冶金的方法,即用热处理手段将危险点局部区域的疲劳强度提高,或者是提高冶金质量来减少金属基体中的非金属夹杂等材料缺陷等局部薄弱区域。
ANSYSWORKBENCH疲劳分析指南第三章
ANSYSWORKBENCH疲劳分析指南第三章发表时间:2009-2-21 作者: 安世亚太来源: e-works关键字: CAE ansys Workbench疲劳分析第三章不稳定振幅的疲劳在前面一章中,考察了恒定振幅和比例载荷的情况,并涉及到最大和最小振幅在保持恒定的情况下的循环或重复载荷。
在本章将针对不定振幅、比例载荷情况,尽管载荷仍是成比例的,但应力幅和平均应力却是随时间变化的。
3.1 不规律载荷的历程和循环(History and Cycles)对于不规律载荷历程,需要进行特殊处理:计算不规律载荷历程的循环所使用的是“雨流”rainflow循环计算,“雨流”循环计算(Rainflowcycle counting)是用于把不规律应力历程转化为用于疲劳计算的循环的一种技术(如右面例子),先计算不同的“平均”应力和应力幅(“range”)的循环,然后使用这组“雨流”循环完成疲劳计算。
损伤累加是通过Palmgren-Miner 法则完成的,Palmgren-Miner法则的基本思想是:在一个给定的平均应力和应力幅下,每次循环用到有效寿命占总和的百分之几。
对于在一个给定应力幅下的循环次数Ni,随着循环次数达到失效次数Nfi时,寿命用尽,达到失效。
“雨流”循环计算和Palmgren-Miner损伤累加都用于不定振幅情况。
因此,任何任意载荷历程都可以切分成一个不同的平均值和范围值的循环阵列(“多个竖条”),右图是“雨流”阵列,指出了在每个平均值和范围值下所计算的循环次数,较高值表示这些循环的将出现在载荷历程中。
在一个疲劳分析完成以后,每个“竖条”(即“循环”)造成的损伤量将被绘出,对于“雨流”阵列中的每个“竖条”(bin),显示的是对应的所用掉的寿命量的百分比。
在这个例子中,即使大多数循环发生在低范围/平均值,但高范围(range)循环仍会造成主要的损伤。
依据Per Miner法则,如果损伤累加到1(100%),那么将发生失效。
基于ANSYS Workbench的轮毂弯曲疲劳分析
10.16638/ki.1671-7988.2021.012.027基于ANSYS Workbench的轮毂弯曲疲劳分析胡裕超,杨辉(桂林理工大学机械与控制工程学院,广西桂林541006)摘要:轮毂是汽车运行时的主要承载部件,对于汽车安全行驶和可靠运行起着重要作用。
特别对于设计者而言,其各方面的性能都应得到重视。
文章以家用汽车轮胎的轮毂(18×7.5J)为研究对象,利用通用设计软件SolidWorks 建立轮毂仿真模型,而后将轮毂仿真模型导入ANSYS19.2中的geometry模块中进行分析,并且参考国标,在材料库输入铝合金A356的相关参数,得到铝合金A356的S-N曲线,最后求解得到轮毂在周期性弯曲载荷下的安全系数和使用寿命分布云图,根据以上仿真结果,判断轮毂是否符合使用要求,对设计人员具有指导作用。
关键词:轮毂;铝合金;弯曲疲劳;ANSYS workbench中图分类号:U463.343 文献标志码:A 文章编号:1671-7988(2021)12-90-03Bending Fatigue Analysis of Wheel Hub Based on ANSYS WorkbenchHU Yuchao, YANG Hui( College of Mechanical and Control Engineering, Guilin University of Technology, Guangxi Guilin 541006 )Abstract: As an important part of the car wheel, the wheel hub has a significant impact on the safety and reliability of the car. Especially for designers, all aspects of its performance should be paid attention to. This paper takes the wheel hub (18×7.5J ) of the family car tire as the research object, establishes the 3D model of the wheel hub through the 3D software SolidWorks, imports it into the simulation software for simulation analysis, and establishes the fatigue life curve (S-N curve) of aluminum alloy (A356), through the analysis to obtain the safety factor and fatigue life cloud diagram of the hub, according to the above simulation results, determine whether the hub meets the requirements of use, which has a guiding role for the designer. Keywords: Wheel hub; Aluminum alloy; Bending fatigue; ANSYS workbenchCLC NO.: U463.343 Document Code: A Article ID: 1671-7988(2021)12-90-03引言传统的轮毂设计必须要通过实验法测定轮毂的各项结构性能以及疲劳使用寿命,极其耗费成本[1]。
基于ansys workbench的曲轴疲劳寿命分析
作者简介:李飞(1990~),男,安徽阜阳人,硕士,助教,研究方向:流体机械设计。
收稿日期:2019-10-21基于ANSYS Workbench 的曲轴疲劳寿命分析李飞安徽信息工程学院机械工程学院,安徽芜湖241000摘要:曲轴是隔膜泵动力端的关键部件,在传动过程中,曲轴承受复杂的交变载荷,易发生疲劳损坏现象。
在样机制造前,为预测结构件的疲劳寿命,可先对曲轴做力学分析,然后使用ANSYS Workbench 软件虚拟模拟,依次划分网格、施加边界条件、添加随机载荷,仿真求解后,提取曲轴的安全系数云图。
结果表明:曲轴满足疲劳强度要求。
关键词:曲轴;疲劳寿命;随机载荷;疲劳强度中图分类号:TG305文献标识码:A文章编号:2095-7734(2019)06-0045-032019年12月普洱学院学报Dec.2019第35卷第6期Journal of Puer University Vol.35No.60引言原动机的旋转运动通过曲轴连杆机构传递[1-2],转化为橡胶隔膜的往复鼓动,从而改变腔室大小实现隔膜泵的吸、排液。
隔膜泵动力端工作时,曲轴受力复杂,主要有原动机作用在曲轴上驱动力、运动时曲拐部分相对于旋转中心不平衡产生的惯性力、曲轴与连杆运动副间的摩擦力,以及连杆对曲拐部位的法向力与切向力等。
在承受复杂的交变载荷作用下,曲轴在运作中,易出现弯曲与扭转变形,是隔膜泵动力端的易损件,曲轴寿命影响隔膜泵的正常工作。
在曲轴设计阶段,利用有限元方法计算疲劳损伤,预测曲轴的使用寿命,并对结构改进,有利于提高产品质量[3-6]。
1曲轴受力分析1.1曲轴旋转惯性力计算对隔膜泵传动机构动力学进行分析,确定曲轴受力规律,为曲轴的强度校核与疲劳分析提供合理的参数。
原动件带动主轴绕中心线旋转,而曲轴绕中心旋转,中心距为,曲轴的曲拐部分相对于旋转中心是不平衡的质量,在旋转的过程中会产生惯性力。
图1中,把曲轴质量分为质量三部分。
疲劳分析实例
培训手册
ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation
•
确认材料设置为结构钢 “Structural Steel”.
培训手册
Shape Finder
. . .作业A12 –过程
5. 点击环境 Environment 栏. 6. 点击连杆表面显示…
6. 5.
培训手册
ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation
– “RMB > Insert > Cylindrical Support” 10. 9.
培训手册
ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation
ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation ANSYS Workbench - Simulation
16.
17. RMB > Insert > Stress > Equivalent (von Mises).
培训手册
作业A12 – 结果
Shape Finder
ansys疲劳分析例子
/solu ! 筒体端部施加轴向约束
dl,3,,uy ! 筒体端部施加轴向约束
dl,6,,symm ! 平板封头对称面施加对称约束
ansys疲劳分析例子
/units,si
/title, Fatigue analysis of cylinder with flat head
! ***************参数设定***************
Di=1000 ! 筒体内径
r2=10 ! 平板封头内侧应力释放槽圆弧半径
exx=2e5 ! 材料弹性模量
mu=0.3 ! 材料泊松比
FP,39, ,
! ****** 水压试验循环 ******
fs,4760,1,1,1,0,0,0,0,0,0 ! 储存节点4760对应其第一载荷的应力
set,1,last ! 读入第一载荷步数据
FSNODE,4760,1,2 ! 储存节点4760对应其第二载荷的应力
! ***************后处理***************
/post1 ! 进入后处理
FTSIZE,1,2,2, ! 设定疲劳评定的位置数、事件数及载荷数
FP,1,1e1,2e1,5e1,1e2,2e2,5e2 ! 根据疲劳曲线输入S-N数据
FP,7,1e3,2e3,5e3,1e4,2e4,5e4
FP,13,1e5,2e5,5e5,1e6, ,
FP,19, ,
FP,21,4000,2828,1897,1414,1069,724
FP,27,572,441,331,262,214,159
ANSYS Workbench在球阀疲劳磨损分析中的应用
V01.31No.09ANSYSWorkbench在球阀疲劳磨损分析中的应用——马边际,等第31卷第09期单位面上施加1.6MPa的压力.根据球阀的密封结构.设置密封座外侧面沿X轴方向的位移为0.沿l,轴、Z轴方向的位移不受限制:设置密封座外端面沿X轴方向的位移不受限制,沿y轴、Z轴方向的位移为0。
设置好的环境变量如图3所示。
对密封模型进行网格划分时在密封座内侧设置比其他处大的网格精度.这样可以得jl;更多的节点应力值.使结果更加精确而又爷省时间,系统对球阀密封模型进行自动网格划分,划分好的网格精度如图4所示。
图2球阀密封模型的简化图图3球阀密封模型约束与载荷的设置图4网格划分3.2设置求解参数出现的位置。
选择Insert/Fatigue/FatigueTool选项设置疲劳强度削弱系数为0.8:考虑到阀体内侧压力由0变化到丁作压力。
再由T作压力变化到0的循环过程,选择“Zero—Based”、尺=0的脉动循环载荷来模拟“启动一停止”时的疲劳:在分析类型中选择StressLife选项来评定高周疲劳:在主应力理论选项中Soderberg关系对疲劳寿命的估计比较保守.因此选择适合于多数T程合金的Soderberg应力。
在FatigueTool中,选择Insert/life、Damage、SafetyFac.tor选项,设置阀体的疲劳寿命、疲劳累积损伤系数和安全系数.设定设计寿命(DesignLife)均为2000次循环.3.3求解分析在ANSYSWorkbench有限元分析软件中.按照以上简化模型和参数的设置.对球阀密封座密封面的疲劳磨损失效分析进行求解.(1)在StressIntensitv中查看阀体的应力云图。
由应力云图可看出.最大应力值出现在阀体中腔与出口的交界面最顶端.与工程实际经验结论相符合。
因此该处的疲劳分析是正确的。
(2)在FatigueTool/Life中查看阀体最小寿命分布.得出最小寿命为100000次循环。
Workbench中文讲义——疲劳分析
恒定振幅载荷
在前面曾提到,疲劳是由于重复加载引起: 当最大和最小的应力水平恒定时,称为恒定振幅载荷,
我们将针对这种最简单的形式,首先进行讨论。 否则,则称为变化振幅或非恒定振幅载荷。
成比例载荷
载荷可以是比例载荷,也可以非比例载荷: 比例载荷,是指主应力的比例是恒定的,并且主应力的削减
不随时间变化,这实质意味着由于载荷的ห้องสมุดไป่ตู้加或反作用的造成的 响应很容易得到计算。
几何模型
指定材料特性,包括S-N曲线;
定义接触区域(若采用的话); 定义网格控制(可选的); 包括载荷和支撑;
(设定)需要的结果,包括Fatigue tool;
求解模型; 查看结果。
Workbench中S-N曲线 在WB中可以通过打开材料编辑器
来定义S-N曲线。(一般每种材料 都有软件设置好的S-N曲线)
课堂实例1
对如图所示的简单钢梁进行疲劳分析 钢梁尺寸:10*50*3mm 边界条件:底面固支,侧面受力200N
求解步骤——开启DM建模工具
首先启动ANSYS Workbench并开启DM建模 器
求解步骤——几何建模
首先在DM建模器中创建如 图所示的长方体结构
求解步骤——开启DS求解器
建模结束后退回到主窗口并 打开DS求解器
平均应力修正理论,感兴 趣的同学可课下参阅软件 帮助中的相关内容
Fatigue Tool
当Fatigue Tool在求 解子菜单下插入以后 ,就可以在细节栏中 输入疲劳说明:载荷 类型可以在“ZeroBased”、“Fully Reversed”和给定的 “Ratio”之间定义; 也可以输入一个比例 因子,来按比例缩放 所有的应力结果。
应力-寿命曲线
ANSYS疲劳分析过程与实例(资料摘编)(续2)(精)
ANSYS 疲劳分析 (资料摘编) (续 2)2011-10-21 08:49:43| 分类: ANSYS 一般 | 标签:ansys 疲劳分析事件结果 |字号订阅2.3.1.2 从结果文件中提取应力该方法把包含有 6 个分量的节点应力向量直接储存在结果的数据库内。
随后可以用 FS 命令修正存入的应力分量。
注意 - 在执行 FSNODE 命令之前,必须使用 SET 命令,可能还有 SHELL 命令。
SET 命令从数据库的 Jobname.RST 文件中读取某一特殊载荷子步下的结果,SHELL 命令可选择从壳单元的顶面、中面或底面读取结果 (缺省是从顶面读取结果)。
命令:FSNODEGUI:Main Menu > General Postproc > Fatigue > -Store Stresses-From rst File 下面给出用 FSNODE 命令在一个事件的一个节点位置输入应力结果的例子: SET,1 ! Define data set for load step 1FSNODE,123,1,1 ! Stress vector at node 123 assigned to event 1, ! loading 1.SET,2 ! Define data set for load step 2FSNODE,123,1,2 ! ...event 1, loading 2SET,3 ! ...load step 3FSNODE,123,1,3 ! ...event 1, loading 32.3.1.3 横截面应力本选项计算和存储截面路径 (它是由以前的 PATH 和 PPATH 命令定义的) 端点的线性化应力。
因为通常线性化应力计算是在能代表两个表面的最短距离的线段上进行的,因此,只需在两个表面上各取一个点来描述 PPATH 命令中的路径。
这一步骤将从计算结果的数据库中获得应力;因此必须在 SET 命令之前使用 FSSECT 命令。