代入消元法解二元一次方程组
用代入消元法解二元一次方程组
用代入消元法解二元一次方程组
一、二元一次方程组
二元一次方程组是数学中的重要概念,它由两个一次方程组成,这两个一次方程的未知数的个数都是2个。
通俗地讲,它就是两个一次方程相互交织在一起构成的系统,而这两个方程的解恰好是同时满足两个方程的对应的元组。
往往二元一次方程组可以用来解决一些实际问题,例如工人问题,买卖问题,行走问题等等。
二、解二元一次方程组
一般来说,解决二元一次方程组涉及到三种方法:
1、图解法:将二元一次方程组画成二维的图表,在图表上进行图象分析,即可得到解。
2、代数法:根据二元一次方程的表达式,消去未知数,通过求解方程即可求出未知数的解。
3、代入消元法:先求解出一个方程的解,然后将此解代入另一方程,即可求得另一个未知数的解。
三、实例讲解
下面考虑一个实例:
已知二元一次方程组:
2x+y=9
x-y=1
解之:
首先,将等式化简:
2x+y=9
2x-2y=2
消去y,先求解出一个方程的解:
2x=11
x=11/2
由x的解代入另一个方程:
11/2-y=1
y=11/2-1
从而,最后得到未知数x,y的解:
x=11/2
y=11/2-1
四、总结
二元一次方程组是数学中的重要概念,它是很多综合性问题的理解和解决的出发点。
解决二元一次方程组涉及到三种方法:图解法,
代数法,代入消元法。
通常是先求得一个方程的解,然后将此解代入另一个方程,即可得到两个未知数的解。
代入消元法解二元一次方程组教案
代入消元法解二元一次方程组教学目标1、会用代入消元法解一些简单的二元一次方程组。
2、理解解二元一次方程组的思路是消元,体会化归思想。
教学重难点教学重点:会用代入消元法解一些简单的二元一次方程组,体会解二元一次方程组的思路是消元。
教学难点:把二元向一元的转化,掌握代入消元法解二元一次方程组的一般步骤。
体会代入消元法和化未知为已知的数学思想。
教学过程设计一、创设情境,提出问题问题1:篮球联赛中,每场都要分出胜负,每队胜1场得2分,负1场得1分,某队10场比赛中得到16分,那么这个队胜负场数分别是多少?你能用一元一次方程解决这个问题吗?师生活动:学生回答:能。
设胜x场,负(10-x)场。
根据题意,得2x+(10-x)=16x=6,则胜6场,负4场。
教师追问:你能根据问题中的等量关系列出二元一次方程组吗?师生活动:学生回答:能.设胜x场,负y场.根据题意,得我们在上节课,通过列表找公共解的方法得到了这个方程组的解,x=6,y=4显然这样的方法需要一个个尝试,有些麻烦,能不能像解一元一次方程那样来求出方程组的解呢?这节课我们就来探究如何解二元一次方程组.二、互动新授问题2:对比上面的方程和方程组,你能发现它们之间的关系吗?师生活动:通过对实际问题的分析,认识方程组中的两个y 都是这个队的负场数,由此可以由一个方程得到y 的表达式,并把它代入另一个方程,变二元为一元,把陌生知识转化为熟悉的知识。
师生活动:根据上面分析,你们会解这个方程组了吗?学生回答:会.⎩⎨⎧16 =y +2x 10 =y +x 由①,得y=10-x ③把③代入②,得2x+(10-x)=16x=6问题3:教师追问:你能把③代入①吗?试一试?师生活动:学生回答:不能,通过尝试,x 抵消了.设计意图:由于方程③是由方程①,得来的,它不能又代回到它本身。
让学生实际操作,得到体验,更好地认识这一点.教师追问:你能求y 的值吗?师生活动:学生回答:把x=6代入③得y=4教师追问:还能代入别的方程吗?学生回答:能,但是没有代入③简便教师追问:你能写出这个方程组的解,并给出问题的答案吗?学生回答:x=6,y=4,这个队胜6场,负4场设计意图:让学生考虑求另一个未知数的过程,并如何优化解法。
二元一次方程组解法:消元法
二元一次方程组解法:消元法代入消元法(1)基本思路:未知数又多变少。
(2)消元法的基本方法:将二元一次方程组转化为一元一次方程。
(3)代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。
这个方法叫做代入消元法,简称代入法。
(4)代入法解二元一次方程组的一般步骤:1、从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y)用含另一个未知数(例如x)的代数式表示出来,即写成y=ax+b的形式,即“变”2、将y=ax+b代入到另一个方程中,消去y,得到一个关于x的一元一次方程,即“代”。
3、解出这个一元一次方程,求出x的值,即“解”。
4、把求得的x值代入y=ax+b中求出y的值,即“回代”5、把x、y的值用{联立起来即“联”加减消元法1)两个二元一次方程中同一个未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
(2)用加减消元法解二元一次方程组的解1、方程组的两个方程中,如果同一个未知数的系数既不互为相反数幼不相等,那么就用适当的数乘方程两边,使同一个未知数的系数互为相反数或相等,即"乘"。
2、把两个方程的两边分别相加或相减,消去一个未知数、得到一个一元一次方程,即"加减"。
3、解这个一元一次方程,求得一个未煮熟的值,即"解"。
4、将这个求得的未知数的值代入原方程组中任意一个方程中,求出另一个未知数的值即"回代"。
5、把求得的两个未知数的值用{联立起来,即"联"。
消元--解二元一次方程组知识点总结(含例题)
消元—解二元一次方程组知识点教案1.代入消元法解二元一次方程组(1)消元思想的概念二元一次方程组中有两个未知数,如果消去其中一个未知数,那么就把二元一次方程组转化为我们熟悉的一元一次方程,我们可以先求出一个未知数,然后再求另一个未知数,这种将未知数的个数由多化少、逐一解决的思想,叫做__________思想.(2)代入消元法把二元一次方程组中一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(3)代人法解二元一次方程组的一般步骤:①变形:从方程组中选一个未知数的系数比较简单的方程,将这个方程中的一个未知数用含有另一个未知数的代数式表示出来.②代入:将变形后的方程代入没变形的方程,得到一个一元一次方程.③解方程:解这个一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入变形后的方程,求出另一个未知数的值,从而得到方程组的解.2.加减消元法解二元一次方程组(1)加减消元法当二元一次方程组的两个方程中同一未知数的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称__________.(2)用加减法解二元一次方程组的一般步骤:①变形:先观察系数特点,将同一个未知数的系数化为相等的数或相反数.②加减:用加减法消去系数互为相反数或系数相等的同一未知数,把二元一次方程组转化为一元一次方程.③解方程:解一元一次方程,求出一个未知数的值.④求值:将求得的未知数的值代入原方程组中任意一个方程,求出另一个未知数的值,从而得到方程组的解.3.整体消元法解二元一次方程组根据方程组中各系数特点,可将方程组中的一个方程或方程的一部分看成一个整体,代入到另一个方程中,从而达到消去其中一个未知数的目的,求得方程组的解.K 知识参考答案:1.消元 2.加减法一、代入法解二元一次方程组①用代入法消元时,由方程组里的一个方程得出的关系式须代入到另一个方程中去,如果代入原方程,就不可能求出原方程组的解了.②方程组中各项系数不全是整数时,应先化简,即应用等式的性质,化分数系数为整数系数.③当求出一个未知数后,把它代入变形后的方程y =ax +b (或x =ay +b ),求出另一个未知数的值比较简单.④要想检验所求得的一对数值是否为原方程组的解,可以将这对数值代入原方程组的每个方程中,若各方程均成立,则这对数值就是原方程组的解,否则说明解题有误.【例1】用代入法解方程组124y x x y =-⎧⎨-=⎩时,代入正确的是 A .x -2-x =4B .x -2-2x =4C .x -2+2x =4D .x -2+x =4 【答案】C【解析】124y x x y =-⎧⎨-=⎩①②,把①代入②得:x -2(1-x )=4,整理得:x -2+2x =4.故选C . 二、加减法解二元一次方程组1.当两个方程中某一个未知数的系数互为相反数时,可将两个方程相加消元;当两个方程中某一个未知数的系数相等时,可将两个方程相减消元.2.当方程组中相同未知数的系数的绝对值既不相等,也没有倍数关系时,则消去系数绝对值较小的未知数较简单,确定要消去这个未知数后,先要找出两方程中该未知数系数的最小公倍数,再把这两个方程中准备消去的未知数的系数化成绝对值相等的数.【例2】用加减法解方程组231328x yx y+=⎧⎨-=⎩时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①691648x yx y+=⎧⎨-=⎩;②461968x yx y+=⎧⎨-=⎩;③6936416x yx y+=⎧⎨-+=-⎩;④4629624x yx y+=⎧⎨-=⎩.其中变形正确的是A.①②B.③④C.①③D.②④【答案】B【解析】如果将x的系数化成相反数,则方程组可变形为:6936416x yx y+=⎧⎨-+=-⎩,如果将y的系数化成相反数,则方程组可变形为4629624x yx y+=⎧⎨-=⎩,故选B.。
二元一次方程组的解法
二元一次方程组的解法二元一次方程组是指由两个未知数和两个方程组成的方程组。
解决这样的方程组可以使用多种方法,包括消元法、代入法和图解法等。
本文将介绍这些解法的步骤和应用示例。
1. 消元法消元法是一种常用的解二元一次方程组的方法。
它通过将其中一个方程的未知数系数倍乘以另一个方程的系数,使得两个方程中的一个未知数的系数相等或相差一个倍数,进而将自变量消去,从而求得另一个未知数的值。
具体步骤如下:步骤1:观察两个方程,确定哪个未知数系数的倍数可以使得两个未知数的系数相等或相差一个倍数。
步骤2:将两个方程相加或相减,消去其中一个未知数。
步骤3:解得一个未知数的值。
步骤4:将求得的未知数代入任意一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:2x + 3y = 7方程2:3x - 4y = 8解答过程:步骤1:由观察可知,方程1的横坐标系数的倍数可以使得两个方程中y的系数相等,因此我们将方程1的系数倍乘以方程2的系数,得到6x + 9y = 21和3x - 4y = 8。
步骤2:将两个方程相减,得到(6x + 9y) - (3x - 4y) = (21 - 8)。
化简得到3x + 13y = 13。
步骤3:解得x = 1。
步骤4:将x = 1代入方程1中,得到2(1) + 3y = 7。
化简得到3y = 5,解得y = 5/3。
因此,方程组的解为x = 1,y = 5/3。
2. 代入法代入法是另一种解二元一次方程组的常用方法。
它通过将其中一个方程的解代入到另一个方程中,从而求得另一个未知数的值。
具体步骤如下:步骤1:解其中一个方程,得到一个未知数的值。
步骤2:将求得的未知数的值代入到另一个方程中,求得另一个未知数的值。
下面是一个示例:例题:解方程组方程1:3x - 4y = 2方程2:2x + y = 7解答过程:步骤1:解方程1,得到x = (2 + 4y)/3。
步骤2:将x = (2 + 4y)/3代入方程2,得到2(2 + 4y)/3 + y = 7。
消元法解二元一次方程组的概念、步骤与方法
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等. 二、化归思想 所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为则21x y =⎧⎨=-⎩,,这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
代入消元法——解二元一次方程组教学设计
代入消元法——解二元一次方程组教学设计《代入消元法——解二元一次方程组》教学设计安顺市普定县补郎中学杨兴一、教材依据人民教育出版社七年级数学下册第八章第二节第一课时二、设计思想代入消元法解二元一次方程组是在学生理解二元一次方程组的概念及会解一元一次方程的基础上进行的,求二元一次方程组的解关键是化二元方程为一元方程,因而在教学中首先复习二元一次方程组的相关概念及解一元一次方程,再随势引入新课。
教学中通过观察、比较、分析给学生的材料,逐步引入,层层推进,符合学生的认知规律,培养了学生的观察、概括等能力。
同时整节课遵照“坚持启发式,反对注入式”的原则,让学生自觉动手动脑,积极参与学习活动,尊重学生的意见,让学生成为课堂的主体,在愉悦的氛围中发现和掌握消元的化归思想。
三、教学目标知识与能力:通过探索,领会并总结解二元一次方程组的方法。
根据方程组的情况,能恰当地运用“代入消元法”解方程组。
过程与方法:通过观察,分析和归纳给出的感性材料,发现并掌握消元的化归思想,培养学生的观察、分析、概括等能力;培养用二元一次方程组解决实际生活中的问题的能力和口头表达能力。
情感态度与价值观:培养学生合作意识和勇于探索的精神,让学生在探索的过程中,发现并掌握化归思想,获得成功的喜悦,感受化归思想的广泛应用,增强学生学习数学的信心。
四、教学重点根据二元一次方程组的情况,能恰当地运用“代入消元法”解方程组。
五、教学难点用代入的方法实现对消元思想的理解,用恰当的方法将二元方程组转化成一元方程。
六、教学方法引导发现法、谈话讨论法、练习法、尝试指导法。
七、教学具准备电脑、投影仪。
八、教学过程(一)复习教师展示:温故而知新1、什么叫二元一次方程、二元一次方程组、二元一次方程组的解?2、下列方程中是二元一次方程的有()A.xy-7=1B.2x-1=3y+1C.4x-5y=3x-5yD.2x+3z+4y=63、二元一次方程3X-5Y=9中,当X=0时,Y的值为_______。
《代入法解二元一次方程组》教学设计(推荐五篇)[修改版]
第一篇:《代入法解二元一次方程组》教学设计消元——二元一次方程组的解法(代入消元法)学情分析: 因为学生已经学过一元一次方程的解法,求二元一次方程组的解关键是化二元方程为一元方程,故在求解过程中始终应抓住消元的思想方法。
讲解时以学生为主体,创设恰当的问题情境和铺设合适的台阶,尽可能激发学生通过自己的观察、比较、思考和归纳概括,发现和总结出消元化归的思想方法。
三维目标知识与技能1、会用代入法解二元一次方程组2、初步体会二元一次方程组的基本思想---“消元”过程与方法: 通过对方程组中的未知数特点的观察和分析,明确解二元一次方程组的主要思路是“消元”,从而促成未知向已知的转化,培养学生观察能力,体会化归思想。
情感态度与价值观:通过研究解决问题的方法,培养学生合作交流意识和探究精神。
教学重点:用加减消元法解二元一次方程组。
教学难点:理解加减消元思想和选择适当的消元方法解二元一次方程组。
教学过程(一)创设情境,激趣导入在8.1中我们已经看到,直接设两个未知数(设胜x场,负y场),x y22可以列方程组2x y40 表示本章引言中问题的数量关系。
如果只设一个未知数(设胜x场),这个问题也可以用一元一次方程________________________[1]来解。
分析:[1]2x+(22-x)=40。
观察上面的二元一次方程组和一元一次方程有什么关系?[2] [2]通过观察对照,可以发现,把方程组中第一个方程变形后代入第二个方程,二元一次方程组就转化为一元一次方程。
这正是下面要讨论的内容。
(二)新课教学可以发现,二元一次方程组中第1个方程x+y=22说明y=22-x,将第2个方程2x+y=40的y换为22-x,这个方程就化为一元一次方程2x+(22-x)=40。
解这个方程,得x=18。
把x=18代入y=22-x,得y=4。
从而得到这个方程组的解。
二元一次方程组中有两个未知数,如果消去其中一个未知数,将二元一次方程组转化为我们熟悉的一元一次方程,我们就可以先解出一个未知数,然后再设法求另一未知数。
代入消元法解二元一次方程组图文课件
THANKS
感谢观看
熟练掌握代数运算,是正确代入消元法的扩大和 总结
代入消元法的扩大
扩大到三元一次方程组
代入消元法可以进一步扩大到三元一 次方程组,通过逐个消元,将三元一 次方程组转化为二元一次方程组或一 元一次方程进行求解。
扩大到高次方程
虽然代入消元法主要适用于二元一次 方程组,但理论上可以将其扩大到高 次方程,通过代入和消元逐步简化方 程,直至得到可解的一元一次方程。
课程背景
二元一次方程组是数学中的基 础知识点,广泛应用于日常生 活和科学研究中。
代入消元法是一种常用的解二 元一次方程组的方法,具有简 单易懂的优点。
通过本课程的学习,学生可以 更好地理解和掌握代入消元法 ,提高解决实际问题的能力。
02
二元一次方程组的基 本概念
二元一次方程组的定义
二元一次方程组:由两个或两个 以上的二元一次方程组成的方程
解出方程后,需要进行检验,确保解的公 道性。
技能
使用等式变形
在代入前,可以通过等式变形,使代 入后的方程更易于计算。
视察方程特点
在选择代入的方程时,可以视察方程 的特点,选择具有较大系数或易于计 算的方程进行代入。
利用已知条件简化计算
在解题过程中,可以利用已知条件简 化计算,减少计算量。
熟练掌握代数运算
实例三:解二元一次方程组
总结词
通过代入消元法解二元一次方程组,得到解集。
详细描述
再选取一个二元一次方程组,例如$4x + 3y = 10$和 $5x - y = 7$。第一,将其中一个方程中的变量代入 另一个方程中,以消去一个变量。在这个例子中,我 们将$4x + 3y = 10$代入$5x - y = 7$中,得到$5x (10/4) + (10/4) = 7 + (10/4)$,进一步化简得到$5x = frac{35}{4}$,解得$x = frac{7}{4}$。然后,将$x = frac{7}{4}$代入原方程$4x + 3y = 10$中,解得$y = frac{9}{4}$。因此,该二元一次方程组的解集为$(x = frac{7}{4}, y = frac{9}{4})$。
代入消元法解二元一次方程组教学设计
代入消元法解二元一次方程组》教学设计安宁市第一中学 邹敏、教学目标: 知识目标(1)通过探索,领会并总结解二元一次方程组的方法 .根据方程组的情况, 能恰当地应用“代入消元法”解方程组;(2)会借助二元一次方程组解简单的实际问题;(3)提高逻辑思维能力、计算能力、解决实际问题的能力 . 能力目标通过大量练习来学习和巩固这种解二元一次方程组的方法 情感目标体会解二元一次方程组中的 “消元” 思想,即通过消元把解二元一次方程组 转化成解两个一元一次方程 .由此感受“化归”思想的广泛应用 .二、教学重难点教学重点:熟练地用代入法解二元一次方程组三、教学流程 (一)旧知回顾,引出新课 问题 1:解一元一次方程的基本步骤是什么? 答:去分母;去括号;移项;合并同类项;系数化为 问题 2:二元一次方程组的概念是什么? 答:把具有相同未知数的两个二元一次方程合在一起, 次方程组。
问题 3:什么叫做二元一次方程组的解? 答:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。
设计意图】让学生复习已有知识,为新知识的学习打好基础。
二)探索新知,解决问题1. 消元思想的引入问题 1:引言问题用二元一次方程组如何解决?引言问题:篮球联赛中,每场比赛都要分出胜负,每队胜 1场得2分,负 1 场得 1 分,某队为了争取较好名次, 想在全部 22场比赛中得到 40 分,那么这个 队胜负场数应分别是多少?解:设该队胜 x 场,负 y 场,根据题意,可得x y 222x y 40教学难点:探索如何用代入法将“二元”转化为“一元的消元过程1. 就组成了一个二元问题2:上述问题能否用一元一次方程解决?若能,如何列方程?解:设该队胜x 场,根据题意,可得2x (22 x) 44问题3:上面的二元一次方程组和一元一次方程有什么联系?答:二元一次方程组中方程①变形可得到:y 22 x③,把方程②的y替换为22 x,方程②就化为了一元一次方程2x (22 x) 44 .解这个方程可得,x 18,把x 18代入变形方程式③中,得y 4 .由此得到方程组的解.问题4:方程①变形为方程③的目的是什么?答:用x表示y,消去一个未知数,减少未知数个数.【设计意图】该环节通过一个实际问题的两种不同解法,让学生对比观察后发现其中的联系,由此引出消元的思想,初步让学生认识到解二元一次方程组的基本方法是消元后转化为已学过的一元一次方程.引入新概念:消元思想:将未知数的个数由多化少、逐一解决的思想,叫做消元思想代入消元法:把二元一次方程组中的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.实例讲解例:用代入法解方程组2xx23yy810思考:(1)变形时是将方程①变形好,还是将方程②变形好,为什么? 答:方程①变形好,未知数系数较简单.(2)变形时,是用含x的代数式表示y好,还是用y表示x好,为什么? 答:用含y的代数式表示x好,x的系数较简单.(3)如何检验所得的结果是否正确?答:将所得的x、y 的值代入方程组,看是否同时满足两个方程,若是,则是方程组的解,若不是,则不是方程组的解.引导学生思考,边讲解边进行板书书写,规范书写格式.】解答过程:解这个方程,得 把y 6代入③, 所以这个方程组的解是结合第3个思考题,带着学生一起验证解的正确性, 以验证结果说明方法 本环节通过例题讲解,让学生进一步清楚的认识到如何解决二元一次方程 组求解问题,同时教师的规范板书,也为学生的书写规范了格式 •其中思考题的设置,引导学生独立思考,自己摸索解决问题的方法,再由教师讲解,可以加深学生的理解.(三)巩固训练,熟练技巧1•把下列方程改写成用含x 的式子表示y 的形式:(1)2x-y=3; (3)x-2y+5=0;解:【表格填完之后,提出思考,两种不同的表示方法,各在什么类型的题目中 更为简洁•】 【设计意图】该练习的训练,可以让学生快速地对方程进行变形,同时用 x 表示y 和用y 表示x ,两种不同的方法以表格的形式陈列,能让学生轻易地比较 出哪一种表示方法更简洁更便于之后的计算•解: 由①,得x 82y ③把③代入②,得2(8 2y ) 3y 10【得出解后, 的正确性•】【设计意图】 把下列方程改写成用含y 的式子表示x 的形式: 3x+y-1=0; 5y-x+3=0.2.用代入法解下列方程组:(1)x y 10; (2)2x y 34x y 203x 2y 8思考:(1)变形时是将方程①变形好,还是将方程②变形好?答:方程①变形好,未知数系数较简单.(2)变形时,是用含 x 的代数式表示 y 好,还是用 y 表示 x 好?答:(1)中用含x 的代数式表示y 好,y 的系数较简单.(2)中用含x 的代 数式表示 y 好,y 的系数较简单 .【引导学生进行思考之后,请两位同学到黑板上做题,然后再统一订正讲 解.】解答过程:⑴解:由①,得y 10解这个方程, 把x 6代入③,得所以这个方程组的解是⑵解:由①,得y 2x 3③解这个方程,得 x 2 把x 2代入③,得y 所以这个方程组的解是【设计意图】 本题通过实际训练增强学生解二元一次方程组的能力, 思考题的设置也给 学生做题时提供了解题的思路和方向, 由学生到黑板上做题再由教师订正, 既给了学生展示 自我的机会,同时也可以在当堂课上解决一些学生暴露出来的问题 .四) 合作交流,归纳方法【提出问题:通过刚才的例题和练习,我们知道了怎么解二元一次方程组, 请同学们思考, 刚才的解题过程中, 我们是根据怎样的步骤做出来的?请大家按 四人小组进行讨论,然后回答 .】代入消元法解二元一次方程组的基本步骤:把③代入②, 得 4x (10 x) 20把③代入②,得3x 2(2x 3) 81.消元:从方程组中选择系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.把所得方程代入另一方程中,消去一个未知数,变为一元一次方程;2.求解:解所得的一元一次方程,求得一个未知数的值;3 .回代:把所求得的一个未知数的值代入第一步中所得方程,求出另一个未知数的值,从而确定方程组的解.【设计意图】本环节由教师引导提示,学生讨论总结之后,再由教师修正补充,充分让学生自己体会到知识的形成过程,由自己探讨得出的结论,也让学生记忆更深刻.五)课堂小结1.什么是消元思想?2.什么是代入消元法?3.用代入消元法解二元一次方程组的基本步骤是什么?【设计意图】本环节在课程结束后,由学生回答小结的内容,当堂复习回顾本节所学内容,加深学生对新知识的印象.六)布置作业书P98 练习2书P103 2训练案P108 1.2.3.4。
8.2 代入消元法解二元一次方程组
8.2.1 代入消元法-----二元一次方程组的解法1. 会用代入消元法解二元一次方程组.2. 尝试运用代入消元法解二元一次方程组,并借此体会消元思想.3. 理解消元思想、敢于面对数学活动中的困难,积累独立解决问题的经验..一.情景创设 引出课题问题:在篮球联赛中,每场比赛都要分出胜负,每队胜一场得2分,负1场得1分,某队为了争取较好的名次,想在全部20场比赛中得到38分,那么这个队胜负场数分别是多少? 方法1:解:设这个队胜了x 场,则该队负了(22-x)场,可列出方程 .方法2:解:设这个队胜了x 场,负了y 场,可列出方程组20________x y ì+=ïïíïïîx+y=20可以写成y= ,此时把第二个方程 中的y 换成 ,这个方程就化为一元一次方程 .解这个方程,得x= .从而可以求出y= .上面的解法,是把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,再代入另一个方程,实现 ,进而求得二元一次方程组的解,这种方法叫做 ,简称 . 二.解决新知:1.你能把下列方程写成用含x 的式子表示y 的形式吗?(1)2x-y=3 ____________Þ (2)3x+y-1=0 ____________Þ (3)4x+5y=8 ____________Þ 2.用代入法解方程组33814x y x y ì-=ïïíï-=ïî 解:由①,得:③把③代入②,得:解这个方程,得: y= . 把y= 代入③,得: x= . 所以这个方程组的解是______x y ì=ïïíï=ïî1.把下列方程改写成用含x 的式子表示y 的形式: (1)2x-y=3 (2)3x+y-1=0(3)4x+0.5y=3 (4)13324x y -=2.用代入法解下列方程组:(1)23328y x x y ì=-ïïíï+=ïî (2)25342x y x y ì-=ïïíï+=ïî三.课后作业:1.由132x y-=,可以得到用x 表示y 的式子( )A. 223x y -=B. 2133x y =-C. 223x y =-D. 223xy =- 2.把方程2x-y-5=0化成用含y 的代数式表示x 的形式:x= . 3.在3x+4y=9中,如果2y=6,那么x= .4.已知18x y ì=ïïíï=-ïî是方程3mx-y= -1的解,则m= . 5.若方程mx+ny=6的两个解是11x y ì=ïïíï=ïî;21x y ì=ïïíï=-ïî,则m= ,n= .6.若方程组431(1)3x y ax a y ì+=ïïíï+-=ïî的解x 和y 相等,则a 的值等于 7.方程组31x y x y ì+=ïïíï-=ïî的解为 . 8.当x= -1时,方程2x-y=3与mx+2y= -1的解相同,则m= . 9.用代入法解下列方程组:(1)23842x y x y ì+=ïïíï-=ïî (2)21437x y x y ì+=ïïíï-=ïî(3)2524x y x y ì+=ïïíï+=ïî(4)7317x y x y ì+=ïïíï+=ïî(5)223210x y x y ì+=ïïíï-=ïî (6)2143321x y x y ì++ïï=ïíïï-=ïî。
代入消元法解二元一次方程组教案详解
代入消元法解二元一次方程组教案详解。
一、基本原理解二元一次方程组的目的是求出未知数 x 和 y 的值,使得该方程组的两个方程均成立。
一般而言,我们将某个未知数(例如 x)表示成另一个未知数(例如 y)的函数形式,然后将其代入另一个方程中,从而使方程中只下一个未知数,于是就可以很方便地求解出该未知数,再用代入的方式求出另一个未知数的值,进而得到方程组的解。
例如:解方程组$\begin{cases}x + y = 5\\x - y = 1\end{cases}$我们将第一个方程改写为 $y = 5 - x$,再将其代入第二个方程中,得到 $x - (5 - x) = 1$,即 $x = 3$,代入 $y = 5 - x$ 得$y = 2$。
因此方程组的解为 $(x, y) = (3, 2)$。
这就是代入消元法的基本原理。
需要注意的是,该方法只适用于二元一次方程组,即方程中每个未知数的最高次数都为 1,并且方程个数恰好为 2。
二、应用范围代入消元法是解二元一次方程组的一种常见方法,适用于绝大部分的二元一次方程组。
但是,需要注意到以下几种特殊情形:1.方程组不是二元一次方程组如果方程中未知数的最高次数不为 1,或者方程个数大于 2,那么代入消元法就没法使用了。
此时需要采用其他方法求解。
2.方程组无解或有无数解有些二元一次方程组并没有解,或者有无数解。
此时也不能使用代入消元法,而需要采用更为复杂的方法求解。
不过,这种情形很少出现在初中数学中,大部分情况下都可以使用代入消元法求解。
三、解题步骤代入消元法的解题步骤并不复杂,以下以一个具体的例子进行讲解。
例:解方程组$\begin{cases}2x + 3y = 7\\x - 2y = -2\end{cases}$步骤 1:将第一个方程改写为 $x = \frac{7 - 3y}{2}$,或将第二个方程改写为 $x = 2y - 2$,选其中一个式子作为代入式。
消元法解二元一次方程组的概念、步骤与方法
消元法解二元一次方程组的概念、步骤与方法湖南李琳高明生一、概念步骤与方法:1.由二元一次方程组中一个方程,将一个未知数用含另一未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解.这种方法叫做代入消元法,简称代入法.2.用代入消元法解二元一次方程组的步骤:(1)从方程组中选取一个系数比较简单的方程,把其中的某一个未知数用含另一个未知数的式子表示出来.(2)把(1)中所得的方程代入另一个方程,消去一个未知数.(3)解所得到的一元一次方程,求得一个未知数的值.(4)把所求得的一个未知数的值代入(1)中求得的方程,求出另一个未知数的值,从而确定方程组的解.注意:⑴运用代入法时,将一个方程变形后,必须代入另一个方程,否则就会得出“0=0”的形式,求不出未知数的值.⑵当方程组中有一个方程的一个未知数的系数是1或-1时,用代入法较简便.3.两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
用加减消元法解二元一次方程组的基本思路仍然是“消元”.4.用加减法解二元一次方程组的一般步骤:第一步:在所解的方程组中的两个方程,如果某个未知数的系数互为相反数,•可以把这两个方程的两边分别相加,消去这个未知数;如果未知数的系数相等,•可以直接把两个方程的两边相减,消去这个未知数.第二步:如果方程组中不存在某个未知数的系数绝对值相等,那么应选出一组系数(选最小公倍数较小的一组系数),求出它们的最小公倍数(如果一个系数是另一个系数的整数倍,该系数即为最小公倍数),然后将原方程组变形,使新方程组的这组系数的绝对值相等(都等于原系数的最小公倍数),再加减消元.第三步:对于较复杂的二元一次方程组,应先化简(去分母,去括号,•合并同类项等),通常要把每个方程整理成含未知数的项在方程的左边,•常数项在方程的右边的形式,再作如上加减消元的考虑.注意:⑴当两个方程中同一未知数的系数的绝对值相等或成整数倍时,用加减法较简便.⑵如果所给(列)方程组较复杂,不易观察,就先变形(去分母、去括号、移项、合并等),再判断用哪种方法消元好.5.列方程组解简单的实际问题.解实际问题的关键在于理解题意,找出数量之间的相等关系,这里的相等关系应是两个或三个,正确的列出一个(或几个)方程,再组成方程组.6.列二元一次方程组解应用题的一般步骤:⑴设出题中的两个未知数;⑵找出题中的两个等量关系;⑶根据等量关系列出需要的代数式,进而列出两个方程,并组成方程组;⑷解这个方程组,求出未知数的值.⑸检验所得结果的正确性及合理性并写出答案.注意:对于可解的应用题,一般来说,有几个未知数,就应找出几个等量关系,从而列出几个方程.即未知数的个数应与方程组中方程的个数相等.二、化归思想所谓转化思想一般是指将新问题向旧问题转化、复杂问题向简单问题转化、未知问题向已知问题转化等等.在解二元一次方程中主要体现在运用“加减”和“代入”等消元的方法,把新问题“二元”或“三元”通过消去一个未知数转化为旧问题“一元”,化“未知”为“已知”,化“复杂”为“简单”,从而实现问题的解决,它也是解二元一次方程最基本的思想.三、典型例题解析:类型一:基本概念:例1、(2005年盐城大纲)若一个二元一次方程的一个解为21xy=⎧⎨=-⎩,,则这个方程可以是________.(只要写出一个)分析:本题是一道开放型问题,考查方程的概念,满足题意的答案不惟一,解此类题目时,可以先设出系数在代入算出另一边的值。
代入消元法解二元一次方程组》教案设计
3x+y=17 y-2x=32
分组来完成,并且各组派代表上黑板板演,在讲评时我设置了以下三个问题:(1)这位同学的答案对吗?(2)对错你们怎么知道?(3)如何检验?
选择适当变形方式,使运算简便。
其目的是让学生意识到代入消元法有时可消去x有时可消去y。
目的是为了培养学生良好的检验习惯。
归
纳
小
结
引导:(1)这节课我们学到了什么知识?(2)你是怎么用代入法解二元一次方程组的。用代入法解二元一次方程组有什么技巧?先由小组讨论,再推荐一位同学总结本节课的知识点。
通过小结可帮助学生构建新知识同时可培养学生的归纳能力和口头表达能力,也能培养学生良好的学习习惯。
作
业
布
置
7、作业(1)必做题:P111 1,2题
这样归纳后,学生对解方程组的思路就会较清晰,能够顺利地实现目标,同时也会对这种方法表现极大兴趣
典
例
分
析
例1:已知方程X-2Y=4,先用含X的代数式表示Y,再用含Y的代数式表示X,并比较哪一种形式比较简便
例2:用代入法解方程组
x+y=3
3x-8y=14
由学生试着完成并发现不同解法让他们上黑板板演
例3:用代入法解方程组
课题
代入消元法解二元一次方程组(一)
学校
宁阳第二十五中学
姓名
卢建
项目
内容
设计意图及依据
教
材
分
析
所处地位及前后联系
本课内容是在学生掌握了二元一次方程组的有关概念之后讲授的,用代入消元法解二元一次方程组是学生接触到的解方程组的第一种方法,是解二元一次方程组的方法之一,消元体现了“化未知为已知”的重要思想,它是学习本章的重点和难点。学完之后可以帮我们解决一些实际问题,也是为了今后学习函数、线性方程组及高次方程组奠定了基础
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 2x 3 (1) 3x 2 y 8
x 2 y 4 (2) 2x 3y 13
7x 2y 3
2x 5y 3
(3) x 2 y 12 (4) 4x 11y 5
联谊可怜
• 练一练
联谊可怜
• 练一练
联谊可怜
• 练一练
联谊可怜
• 练一练
知识回顾 Knowledge Review
把代入,得
2x (45 x) 60
2x 45 x 60
代入
2,用这个式子代替另一个方程 中相应的未知数,得到一个一元 一次方程;
x 15
把x=15代入,得
y 30
求解
3,求出这个未知数的值,再将其 代入上面的式子,求出另一个未 知数的值;
x 15
所以方程组的解是
y
30
总结
4,写出方程组的解。
祝您成功!
4总结:写出方程组的解。
小总结结::
代入消元法的基本思路: 消元、转化。
想一想:
ax by 13
x 3
已知二元一次方程组 (a b)x ay
9
的解为
y
4
求 a ,b 的值.
想一想:
若 3a b 5 (a b 1)2 0,则2a2 3ab的值是多少?
联谊可怜
• 练一练(课堂作业)
如那何么求二解元二一次元方一程次组方如程何组求?解?
两个未知数,麻烦!
去掉一个 未知数
消元
转
化
一元一次方程,简单!
用一个未知数表示另一个未知数
1.用含 x 的代数式表示 y :
x y 22
y 22 x
2.用含y 的代数式表示x :
x7y 8 x 87y
练习1.把下列方程写成用含x的代数式表示y 的形式;
•
例2
解方程组:2xx
3y 2y
7 3
解:
做一做:课本101面练习 第2题(1)、(3)
选那么择我哪们一选个择哪方一程个变未形知?数消元呢?
1,当方程当中含有一个未知数表示另一个未知数的 代数式时,可以直接利用代入消元法求解
2将,该方未程例知组如数中:用的xx另方一yy程个31有0未00未知知数数表的示系,数然为后1代(入或另-1一)方,程 求解
——代入消元法
花凉初中 尹健
• 一、复习巩固 • 什么是一元一次方程? • 那什么是二元一次方程?
例如 x y 10
9 1 10
x 9
y
1
x y 10 x y 6
8 2 10
82 6
x 8
y
2
7.5 2.5 10
x 7.5
y
2.5
• 使二元一次方程组中每个方程都成立的两 个未知数的值,叫做 二元一次方程组的解
(1) 3x 2 y 4
(1) y 3x 4 2
(2) 5x y 5
(2) y 5x 5
(3) 5x 2 y 1 0
(3) y 5x 1 2
• 例1 解方程组:2xxyy4650
1,将方程组里的一个方程变形,
解:由,得:y 45 x 变形 用含有一个未知数的代数式来 表示另一个未知数;
3数,的若系例所数如有绝:方对程值2x未x较知yy小系的57数方均程不较为简3xx1便(22。y或y-517),选未知
例如
3x 4y 7 9x 10y 23 0
小总结结::
代入消元法一般步骤:
1变形:将方程组里的一个方程变形,用含x的 代数式来表示y;(或者用含y的代数式来表示x) 2代入:将变形后的式子代入另一个方程中, 得到一个一元一次方程; 3求解:求解一元一次方程,再将其解代入上面 的式子,求出另一个未知数的值;