2017.6代数式经典练习题
代数式经典测试题及答案
代数式经典测试题及答案一、选择题1.若(x +1)(x +n )=x 2+mx ﹣2,则m 的值为( )A .﹣1B .1C .﹣2D .2【答案】A【解析】【分析】先将(x+1)(x+n)展开得出一个关于x 的多项式,再将它与x 2+mx-2作比较,即可分别求得m ,n 的值.【详解】解:∵(x+1)(x+n)=x 2+(1+n)x+n ,∴x 2+(1+n)x+n=x 2+mx-2, ∴12n m n +=⎧⎨=-⎩, ∴m=-1,n=-2.故选A .【点睛】本题考查了多项式乘多项式的法则以及类比法在解题中的运用.2.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.3.下列运算正确的是( )A .21ab ab -=B 3=±C .222()a b a b -=-D .326()a a =【答案】D【解析】【分析】主要考查实数的平方根、幂的乘方、同类项的概念、合并同类项以及完全平方公式.解:A 项,2ab ab ab -=,故A 项错误;B 3=,故B 项错误;C 项,222()2a b a ab b -=-+,故C 项错误;D 项,幂的乘方,底数不变,指数相乘,32236()a a a ⨯==.故选D【点睛】本题主要考查:(1)实数的平方根只有正数,而算术平方根才有正负.(2)完全平方公式:222()2a b a ab b +=++,222()2a b a ab b -=-+.4.已知:1+3=4=22,1+3+5=9=32,1+3+5+7=16=42,1+3+5+7+9=25=52,…,根据前面各式的规律可猜测:101+103+105+…+199=( )A .7500B .10000C .12500D .2500 【答案】A【解析】【分析】用1至199的奇数的和减去1至99的奇数和即可.【详解】解:101+103+10 5+107+…+195+197+199 =22119919922++⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭=1002﹣502,=10000﹣2500,=7500,故选A .【点睛】本题考查了规律型---数字类规律与探究,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.5.下列各式中,计算正确的是( )A .835a b ab -=B .352()a a =C .842a a a ÷=D .23a a a ⋅=【答案】D【解析】【分析】分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除法法则解答即可.解:A 、8a 与3b 不是同类项,故不能合并,故选项A 不合题意;B 、()326a a =,故选项B 不合题意;C 、844a a a ÷=,故选项C 不符合题意;D 、23a a a ⋅=,故选项D 符合题意.故选:D .【点睛】本题主要考查了幂的运算性质以及合并同类项的法则,熟练掌握运算法则是解答本题的关键.6.若352x y a b +与2425y x a b -是同类项.则( )A .1,2x y =⎧⎨=⎩B .2,1x y =⎧⎨=-⎩C .0,2x y =⎧⎨=⎩D .3,1x y =⎧⎨=⎩ 【答案】B【解析】【分析】根据同类项的定义列出关于m 和n 的二元一次方程组,再解方程组求出它们的值.【详解】 由同类项的定义,得:32425x y x y =-⎧⎨=+⎩,解得21x y =⎧⎨=-⎩:. 故选B .【点睛】同类项定义中的两个“相同”:(1)所含字母相同;(2)相同字母的指数相同,是易混点,因此成了中考的常考点.解题时注意运用二元一次方程组求字母的值.7.(x 2﹣mx +6)(3x ﹣2)的积中不含x 的二次项,则m 的值是( )A .0B .23C .﹣23D .﹣32 【答案】C【解析】试题解析:(x 2﹣mx+6)(3x ﹣2)=3x 3﹣(2+3m )x 2+(2m+18)x ﹣12,∵(x 2﹣mx+6)(3x ﹣2)的积中不含x 的二次项,∴2+3m=0,解得,m=23-, 故选C .8.下列运算正确的是( )A .a 5﹣a 3=a 2B .6x 3y 2÷(﹣3x )2=2xy 2C .2212a 2a -=D .(﹣2a )3=﹣8a 3 【答案】D【解析】 【分析】直接利用单项式除以单项式以及积的乘方运算法则、负指数幂的性质分别化简得出答案. 【详解】 A 、a 5﹣a 3,无法计算,故此选项错误;B 、6x 3y 2÷(﹣3x )2=6x 3y 2÷9x 2=23xy 2,故此选项错误; C 、2a ﹣2=22a ,故此选项错误; D 、(﹣2a )3=﹣8a 3,正确.故选D .【点睛】 此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运算法则是解题关键.9.在长方形内,若两张边长分别为和()的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为,图2中阴影部分的面积和为,则关于,的大小关系表述正确的是( )A .B .C .D .无法确定 【答案】A【解析】【分析】 利用面积的和差分别表示出,,利用整式的混合运算计算他们的差即可比较.【详解】 =(AB-a )·a+(CD-b )(AD-a )=(AB-a )·a+(AD-a )(AB-b )=(AB-a )(AD-b )+(CD-b )(AD-a )=(AB-a )(AD-b )+(AB-b )(AD-a )∴-=(AB-a )(AD-b )+(AB-b )(AD-a )-(AB-a )·a-(AD-a )(AB-b )=(AB-a )(AD-a-b)∵AD <a+b , ∴-<0, 故选A.【点睛】此题主要考查此题主要考查整式的运算,解题的关键是熟知整式的乘法法则.10.如果长方形的长为2(421)a a -+,宽为(21)a +,那么这个长方形的面积为( ) A .228421a a a -++B .328421a a a +--C .381a -D .381a +【答案】D【解析】【分析】利用长方形的面积等于长乘宽,然后再根据多项式乘多项式的法则计算即可.【详解】解:根据题意,得:S 长方形=(4a 2−2a +1)(2a +1)= 322814422-++-+a a a a a =8a 3+1,故选:D .【点睛】本题考查了多项式乘多项式,熟练掌握其运算方法:()()++=+++a b p q ap aq bp bq 是解题的关键.11.如图,将图1中阴影部分拼成图2,根据两个图形中阴影部分的关系,可以验证下列哪个计算公式( )A .(a+b )(a ﹣b )=a 2﹣b 2B .(a ﹣b )2=a 2﹣2ab+b 2C .(a+b )2=a 2+2ab+b 2D .(a+b )2=(a ﹣b )2+4ab【答案】B【解析】【分析】根据图形确定出图1与图2中阴影部分的面积,由此即可解答.【详解】∵图1中阴影部分的面积为:(a ﹣b )2;图2中阴影部分的面积为:a 2﹣2ab+b 2; ∴(a ﹣b )2=a 2﹣2ab+b 2,故选B .【点睛】本题考查了完全平方公式的几何背景,用不同的方法表示出阴影部分的面积是解题的关键.12.多项式2a 2b ﹣ab 2﹣ab 的项数及次数分别是( )A .2,3B .2,2C .3,3D .3,2【答案】C【解析】【分析】多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,根据这个定义即可判定.【详解】2a 2b ﹣ab 2﹣ab 是三次三项式,故次数是3,项数是3.故选:C.【点睛】此题考查的是多项式的定义,多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.13.若多项式x 2+mx +4能用完全平方公式分解因式,则m 的值可以是( ) A .4B .﹣4C .±2D .±4【答案】D【解析】【分析】利用完全平方公式因式分解2222=()a ab b a b ±+±计算即可.【详解】解:∵x 2+mx +4=(x ±2)2,即x 2+mx +4=x 2±4x +4,∴m =±4.故选:D .【点睛】本题要熟记完全平方公式,尤其是两种情况的分类讨论.14.下列运算正确的是( )A .2352x x x +=B .()-=23524x x xC .()222x y x y +=-D .3223x y x y xy ÷=【答案】B【解析】【分析】A 不是同类项,不能合并,B 、D 运用单项式之间的乘法和除法计算即可,C 运用了完全平方公式.【详解】A 、应为x 2+x 3=(1+x )x 2;B 、(-2x )2•x 3=4x 5,正确;C 、应为(x+y )2= x 2+2xy+y 2;D 、应为x 3y 2÷x 2y 3=xy -1.故选:B .【点睛】本题考查合并同类项,同底数幂的乘法,完全平方公式,单项式除单项式,熟练掌握运算法则和性质是解题的关键.15.下列运算正确的是( )A .236(2)8x x -=-B .()22122x x x x -+=-+C .222()x y x y +=+D .()()22224x y x y x y -+--=-- 【答案】A【解析】解:A . (-2x 2)3=-8x 6,正确;B . -2x (x +1)=-2x 2-2x ,故B 错误;C . (x +y )2=x 2+2xy +y 2,故C 错误;D . (-x +2y )(-x -2y )=x 2-4y 2,故D 错误;故选A .16.如图,从边长为(4a )cm 的正方形纸片中剪去一个边长为(1a +)cm 的正方形(0a >),剩余部分沿虚线又剪拼成一个矩形(不重叠无缝隙),则矩形的面积为( )A .22(25)a a cm +B .2(315)a cm +C .2(69)a cm +D .2(615)a cm +【答案】D【解析】【分析】 利用大正方形的面积减去小正方形的面积即可,注意完全平方公式的计算.【详解】矩形的面积为:(a+4)2-(a+1)2=(a 2+8a+16)-(a 2+2a+1)=a 2+8a+16-a 2-2a-1=6a+15.故选D .17.按如图所示的运算程序,能使输出y 的值为1的是( )A .a =3,b =2B .a =﹣3,b =﹣1C .a =1,b =3D .a =4,b =2【答案】A【解析】【分析】 根据题意,每个选项进行计算,即可判断.【详解】解:A 、当a =3,b =2时,y =12a -=132-=1,符合题意; B 、当a =﹣3,b =﹣1时,y =b 2﹣3=1﹣3=﹣2,不符合题意;C 、当a =1,b =3时,y =b 2﹣3=9﹣3=6,不符合题意;D 、当a =4,b =2时,y =12a -=142-=12,不符合题意.故选:A .【点睛】本题考查有理数的混合运算,代数式求值等知识,解题的关键是理解题意,属于中考常考题型.18.若x +y =,x ﹣y =3﹣的值为( )A .B .1C .6D .3﹣【答案】B【解析】【分析】根据二次根式的性质解答.【详解】解:∵x+y =,x ﹣y =3﹣,==1.故选:B .【点睛】本题考查了二次根式的混合运算,以及平方差公式的运用,解题的关键是熟练掌握平方差公式进行解题.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.通过计算大正方形的面积,可以验证的公式是( )A.B.C.D.【答案】C【解析】【分析】根据大正方形的面积=3个小正方形的面积+6个矩形的面积,分别计算长结果,即可得答案.【详解】∵大正方形的面积=3个小正方形的面积+6个矩形的面积,∴(a+b+c)2=a2+b2+c2+2ab+2bc+2ac,故选C.【点睛】本题考查了完全平方公式的几何背景,明确大正方形的面积=3个小正方形的面积+6个矩形的面积是解题关键.。
代数式练习题(打印版)
代数式练习题(打印版)### 代数式练习题(打印版)#### 一、基础代数式运算1. 代入法求解代数式给定代数式:\( ax + b \),若 \( a = 2 \),\( b = 3 \),求代数式的值。
2. 合并同类项合并下列代数式中的同类项:\( 5x^2 + 3x - 2x^2 + x \)。
3. 代数式的简化简化代数式:\( 4y^2 - 3y + 2 - y^2 + 5y \)。
4. 多项式乘法计算多项式 \( (x + 2)(x - 3) \) 的乘积。
5. 多项式除法将多项式 \( 3x^3 - 6x^2 + 5x - 2 \) 除以 \( x - 1 \)。
#### 二、代数式的应用6. 平均数问题某班级有 25 名学生,平均分是 82 分,求总分。
7. 增长率问题如果某产品的初始价格是 100 元,每年增长 5%,求两年后的售价。
8. 速度与时间问题如果某人以 5 公里/小时的速度行走,求他 3 小时后走了多远。
9. 面积与周长问题一个矩形的长是 10 米,宽是 5 米,求其面积和周长。
10. 利润与成本问题某商品的成本是 50 元,售价是 80 元,求利润率。
#### 三、代数式的扩展11. 因式分解将代数式 \( x^2 - 9 \) 进行因式分解。
12. 配方法使用配方法将代数式 \( x^2 + 6x + 5 \) 转化为完全平方形式。
13. 代数式的不等式解不等式 \( 3x + 2 > 11 \)。
14. 代数式的方程解方程 \( 2x^2 - 5x + 1 = 0 \)。
15. 代数式的函数图像描述函数 \( y = x^2 \) 在 \( x = 0 \) 时的图像特征。
#### 四、综合应用题16. 代数式在几何中的应用一个直角三角形的两条直角边分别为 \( a \) 和 \( b \),求斜边的长度。
17. 代数式在物理中的应用如果一个物体从静止开始以匀加速运动,加速度是 \( 2 \) 米/秒²,求 3 秒后的速度。
代数式经典测试题含答案
内,若两张边长分别为 和 ( )的正方形纸片按图 1,图 2 两种
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸
片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为 ,图 2 中阴影部分的面积和为
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
D.无法确定
6.下列运算正确的是( )
A. 2x2 y 3xy 5x3 y2
B. 2ab2 3 6a3b6
C. 3a b2 9a2 b2
D. 3a b3a b 9a2 b2
【答案】D 【解析】 【分析】 根据合并同类项的法则、积的乘方,完全平方公式以及平方差公式分别化简即可. 【详解】
A. 2x2 y 和 3xy 不是同类项,不能合并,故该选项计算错误,不符合题意;
则 p=-5,q=-3, 故答案选 D. 【点睛】 本题考查了多项式乘多项式的法则,根据对应项系数相等求解是关键.
2.计算 3x2﹣x2 的结果是( ) A.2 B.2x2 C.2x D.4x2 【答案】B 【解析】【分析】根据合并同类项的法则进行计算即可得. 【详解】3x2﹣x2 =(3-1)x2 =2x2, 故选 B. 【点睛】本题考查合并同类项,解题的关键是熟练掌握合并同类项法则.
B.a=﹣3,b=﹣1 C.a=1,b=3
D.a=4,b=2
【解析】 【分析】 根据题意,每个选项进行计算,即可判断. 【详解】
解:A、当 a=3,b=2 时,y= 1 = 1 =1,符合题意; a2 32
B、当 a=﹣3,b=﹣1 时,y=b2﹣3=1﹣3=﹣2,不符合题意; C、当 a=1,b=3 时,y=b2﹣3=9﹣3=6,不符合题意;
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究数和运算的关系。
代数式是代数中的基本概念之一,它由数、字母和运算符号组成。
通过解答代数式练习题,我们可以提高我们的代数运算能力,培养我们的逻辑思维和解决问题的能力。
下面我将给大家提供一些代数式练习题及答案,希望能对大家的学习有所帮助。
一、简单代数式练习题1. 计算下列代数式的值:(1) 2x + 3y,当x = 4,y = 5时;(2) 3a - 2b,当a = 7,b = 2时;(3) 5m^2 + 2mn,当m = 3,n = 2时。
答案:(1) 2x + 3y = 2 * 4 + 3 * 5 = 8 + 15 = 23;(2) 3a - 2b = 3 * 7 - 2 * 2 = 21 - 4 = 17;(3) 5m^2 + 2mn = 5 * 3^2 + 2 * 3 * 2 = 5 * 9 + 12 = 45 + 12 = 57。
2. 化简下列代数式:(1) 2x + 3x;(2) 4y - 2y;(3) 5a^2 - 3a^2。
答案:(1) 2x + 3x = 5x;(2) 4y - 2y = 2y;(3) 5a^2 - 3a^2 = 2a^2。
二、复杂代数式练习题1. 计算下列代数式的值:(1) 3(x + 2) - 2(3x - 4),当x = 2时;(2) 2(3a + 4b) - 5(2a - 3b),当a = 1,b = 2时;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn),当m = 2,n = 1时。
答案:(1) 3(x + 2) - 2(3x - 4) = 3(2 + 2) - 2(3 * 2 - 4) = 3 * 4 - 2(6 - 4) = 12 - 2(2) = 12 - 4 = 8;(2) 2(3a + 4b) - 5(2a - 3b) = 2(3 * 1 + 4 * 2) - 5(2 * 1 - 3 * 2) = 2(3 + 8) - 5(2 - 6) = 2 * 11 - 5(-4) = 22 + 20 = 42;(3) 4(2m^2 + 3mn) - 3(4m^2 - 5mn) = 4(2 * 2^2 + 3 * 2 * 1) - 3(4 * 2^2 - 5 * 2 * 1) = 4(2 * 4 + 6) - 3(4 * 4 - 10) = 4(8 + 6) - 3(16 - 10) = 4 * 14 - 3 * 6 = 56 - 18 = 38。
代数式求值经典题型(含详细答案).doc
代数式求值经典题型(含详细答案).doc代数式求值经典题型【编著】黄勇权经典题型:1、x+-二3,求代数式亍-■的值。
X X7、若}; = 2,求代数式:壬M的值。
8、已知VT5=4y-4-y2,则代数式2用+4"的值是多少?x -1 9 -—9、化简求值,尸后基顼-土),其中x=10、X2-4X+1=0,求代数式:x2+p-的值。
X【答案】1、x+- =3,求代数式:x2-■的值。
X X解:x2--4X二(x+-) (X--)X X=(x+-) J<x--)2< p="">x V x二(x+-) J X2-2+-VX V x~二(x+-) J X'+2+4—4x V x-=(X+-) J(X +-)2-4x V x将x+L =3代入式中[Xx+!的值。
=3x A /32— 4=3A /52、已知a+b 二3ab,求代数式:解:Ma +b 二 ab将a+b 二3ab 代入式中|=3 3、已知X 2-5X +1=0,求代数式:解:因 X 2-5X +1=0,等式两边同时除以x或― x 25x 1 0 则有: ---- + —=-X X X X化简得:X-5+?二0 把-5移到等号的右边,得:1x +检4、已知x~y=V3 ,求代数式:(x+1) 2-2x+y (y-2x)的值。
解:(x+1) J2x+y (y-2x)去括号,展开得=x2+2x+l~2x+y2-2xy合并同类项,+2x与-2x抵消=x2+l+y2-2xy把+1移到最后,此三项结合=(x2-2xy+y2) +1二(x-y) 2+1[将x-y=V3合代入式中二(V3 ) 2+1 =3+1=45、已知x-y=V2 , xy=V3 ,求代数式x2-^;+y2 A y 的值。
解:因为X-y二扼等号两边同时乘方即:(x-y) 2= ( 72 ) 2两边开展:X2-2xy+y2=2把xy=代入上式X-2*V3+y2=2X2+y2=2+2V3 ----- ①代数式x?-;+/=E 4把xv二后、X2+y2=2+2 V3代入上式二2+2丸寿=2+2小誓=2+2 V3-2 V3=2八x - y6、巳知7=2,则匚"的值是多少?J AX解:因为§二2(等式两边同时取倒数,得到下式)y 1即有:7=2x-y所以匚"=1-^ (把普二!代入)1二Ip £=27、若?+; = 2,求代数式:日卷的值解:因为《+ : = 2 A J(左边通分,得到下式)2S±I = 2xy即:X+y=2xyx-3xy+y3x-xy+3y(x + y)-3xy= 3(x + y)-xy(把X+y=2xy代入)2xy-3xy_ 3*2xy-xy-xy二5xy8、已知M3二4y-4-y2,则代数式此+平的值是多少?解:Jx-5 =4y-4_y2Jx-5 二—(y2-4y+4)Jx-5二-(y-2) 2(将等号右边移到等号的左边,得到下式) Jx-5 + (y_2) 2=0 几个非负数之和为零,只要当他们分别为零时,等式才成立。
代数式典型例题专项练习30题(有答案)
.代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b 的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .10.m个数的平均数为a,n个数的平均数为b,这m+n个数的平均数为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.(4)在第10个图中,共有白色瓷砖_________ 块.(5)在第n个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣=27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
代数式典型例题专项练习30题(有答案)
代数式专项练习30题(有答案)一.选择题(共5小题)1.在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有()A .3个B.4个C.5个D.6个2.下列各式:﹣x+1,π+3,9>2,,,其中代数式的个数是()A .5 B.4 C.3 D.23.下列各式:①1x;②2•3;③20%x;④a﹣b÷c;⑤;⑥x﹣5;其中,不符合代数式书写要求的有()A .5个B.4个C.3个D.2个4.在下列的代数式的写法中,表示正确的一个是()A.“负x的平方”记作﹣x2B.“a除以2b的商”记作C.“x的3倍”记作x3 D.“y与的积”记作5.下列说法正确的是()A.x是代数式,0不是代数式B.表示a与b的积的代数式为a+bC.a、b两数和的平方与a、b两数积的2倍的和为(a+b)2+2abD.意义是:a与b的积除y的商二.填空题(共13小题)6.代数式“5x”,可解释为:“小明以5千米/时的速度走了x小时,他一共走了5x千米”.请你对“5x”再给出一个身边生活中的解释:_________ .7.叙述下列代数式的意义.(1)(x+2)2可以解释为_________ .(2)某商品的价格为n元.则80%n可以解释为_________ .8.一个三位数的百位数字是2,十位数字与个位数字组成的两位数为x,用代数式表示这个三位数为_________ .9.x表示一个两位数,y表示一个三位数,把x放在y的右边组成一个五位数,则这个五位数可以表示为_________ .11.一本书共n页,小华第一天读了全书的,第二天读了剩下的,则未读完的页数是_________ .(用含n的式子表示)12.(1)已知a﹣b=3,则3a﹣3b= _________ ,5﹣4a+4b= _________ .(2)已知x+5y﹣2=0,则2x+3+10y= _________ .(3)已知3x2﹣6x+8=0,则x2﹣2x+8= _________ .13.若a,b互为倒数,c,d互为相反数,则3c+3d﹣9ab= _________ .14.已知代数式ax3+bx,当x=﹣1时,代数式的值为5;则当x=1时,ax3+bx的值是_________ .15.任意写出x3y的3个同类项:_________ ,_________ ,_________ .16.已知7x m y3和﹣是同类项,则(﹣n)m= _________ .17.若单项式3x4y n与﹣2x2m+3y3的和仍是单项式,则(4m﹣n)n= _________ .18.已知x5y n与﹣3x2m+1y3n﹣2是同类项,则m+n= _________ .三.解答题(共12小题)19.如图,池塘边有一块长为18米,宽为10米的长方形土地,现在将其余三面留出宽都是x米的小路,中间余下的长方形部分做菜地,用代数式表示:(1)菜地的长a= _________ 米,宽b= _________ 米;(2)菜地的面积S= _________ 平方米;(3)求当x=1米时,菜地的面积.20.已知﹣3x4+m y与x4y3n是同类项,求代数式m100+(﹣3n)99﹣mn的值.21.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.22.若关于x、y的方程6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,求R的值.23.k为何值时,多项式x2﹣2kxy﹣3y2+6xy﹣x﹣y中,不含x,y的乘积项.24.去括号,合并同类项(1)﹣3(2s﹣5)+6s;(2)3x﹣[5x﹣(x﹣4)];(3)6a2﹣4ab﹣4(2a2+ab);(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)25.先去括号,后合并同类项:(1)x+[﹣x﹣2(x﹣2y)];(2);(3)2a﹣(5a﹣3b)+3(2a﹣b);(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]}.26.观察下列各等式,并回答问题:;;;;…(1)填空:= _________ (n是正整数);(2)计算:….27.观察下面一列数,探求其规律:(1)请问第7个,第8个,第9个数分别是什么数?(2)第2004个数是什么如果这列数无限排列下去,与哪个数越来越接近?28.如图,每个正方形点阵均被一直线分成两个三角形点阵,根据图中提供的信息,用含n的等式表示第n个正方形点阵中的规律_________ .29.下列是幼儿园小朋友用火柴棒拼出的一列图形.仔细观察,找出规律,解答下列各题:(1)第4个图中共有_________ 根火柴,第6个图中有_________ 根火柴;(2)第n个图形中共有_________ 根火柴(用含n的式子表示);(3)请计算第2008个图形中共有多少根火柴.30.如图,用同样规格的黑白两色正方形瓷砖铺设矩形地面,请观察下列图形,探究并解答下列问题.(1)在第1个图中,共有白色瓷砖_________ 块.(2)在第2个图中,共有白色瓷砖_________ 块.(3)在第3个图中,共有白色瓷砖_________ 块.代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:3(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,2(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
代数式经典练习题(供参考)
知识点1代数式1、用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
单独的一个数或字母也是代数式。
2、代数式求值的一般步骤:(1)代数式化简(2)代入计算(3)对于某些特殊的代数式,可采用“整体代入”进行计算。
知识点2、单项式的概念式子x 3,m t xy a ---,6.2,,32它们都是数或字母的积,象这样的式子叫做单项式,单独的一个数或一个字母也是单项式。
注意:单项式是一种特殊的式子,它包含一种运算、三种类型。
一种运算是指数与字母、字母与字母之间只能是乘法的一种运算,不能有加、减、除等运算符号;三种类型是指:一是数字与字母相乘组成的式子,如ab 2;二是字母与字母组成的式子,如3xy ;三是单独的一个数或字母,如m a ,2-,。
知识点3、单项式的系数单项式中的数字因数叫做这个单项式的系数。
注意:(1)单项式的系数可以是整数,也可能是分数或小数。
如42x 的系数是2;3ab 的系数是31,的系数是。
(2)单项式的系数有正有负,确定一个单项式的系数,要注意包含在它前面的符号,如-()xy 2的系数是-2(3)对于只含有字母因素的单项式,其系数是1或-1,不能认为是0,如-2xy 的系数是-1;2xy 的系数是1。
(4)表示圆周率的π,在数学中是一个固定的常数,当它出现在单项式中时,应将其作为系数的一部分,而不能当成字母。
如2πxy 的系数就是2π知识点4、单项式的次数一个单项式中,所有字母的指数和叫做这个单项式的次数。
注意:(1)计算单项式的次数时,应注意是所有字母的指数和,不要漏掉字母指数是1的情况。
如单项式z y x 342的次数是字母z y x ,,的指数和,即4+3+1=8,而不是7次,应注意字母Z 的指数是1而不是0.(2)单项式是一个单独字母时,它的指数是1,如单项式m 的指数是1,单项式是单独的一个常数时,一般不讨论它的次数。
(3)单项式的指数只和字母的指数有关,与系数的指数无关。
代数式练习题及答案
代数式练习题及答案代数式练习题及答案代数是数学中的一个重要分支,它研究的是数的运算和代数式的性质。
代数式是由数、字母和运算符号组成的表达式,它可以用来表示数的关系和运算。
在学习代数的过程中,练习题是必不可少的一环,通过解答练习题,可以帮助我们巩固知识,提高解题能力。
本文将介绍一些常见的代数式练习题及其答案。
一、简单的代数式求值题1. 求代数式a + b + c,其中a = 2,b = 3,c = 4。
答案:a + b + c = 2 + 3 + 4 = 9。
2. 求代数式3a - 2b,其中a = 5,b = 7。
答案:3a - 2b = 3 × 5 - 2 × 7 = 15 - 14 = 1。
3. 求代数式(a + b) × c,其中a = 2,b = 3,c = 4。
答案:(a + b) × c = (2 + 3) × 4 = 5 × 4 = 20。
二、代数式的展开和化简题1. 展开代数式(x + y)^2。
答案:(x + y)^2 = x^2 + 2xy + y^2。
2. 化简代数式2x + 3x - 4x。
答案:2x + 3x - 4x = x。
3. 展开代数式(a - b)^2。
答案:(a - b)^2 = a^2 - 2ab + b^2。
三、代数式的因式分解题1. 将代数式x^2 - 4x + 4分解因式。
答案:x^2 - 4x + 4 = (x - 2)^2。
2. 将代数式x^2 - 9分解因式。
答案:x^2 - 9 = (x - 3)(x + 3)。
3. 将代数式x^2 + 4x + 4分解因式。
答案:x^2 + 4x + 4 = (x + 2)^2。
四、代数式的方程求解题1. 解方程2x + 3 = 7。
答案:2x + 3 = 7,化简得2x = 4,再除以2得x = 2。
2. 解方程3(x - 4) = 15。
答案:3(x - 4) = 15,化简得3x - 12 = 15,再加上12得3x = 27,最后除以3得x = 9。
代数式的练习题
代数式的练习题代数式的练习题代数是数学中的一个重要分支,它研究的是数与数之间的关系和运算规律。
而代数式则是代数的基础,它是由数、字母和运算符号组成的表达式,用来表示数与数之间的关系。
在学习代数式的过程中,练习题是必不可少的一环。
通过解答练习题,我们可以巩固对代数式的理解,培养逻辑思维能力,提高解决问题的能力。
一、简单的代数式练习题首先,我们先来看一些简单的代数式练习题。
比如,求下列代数式的值:1. 若 a=2,b=3,求 a+b 的值。
解答:将 a 和 b 的值代入 a+b,得到 2+3=5。
2. 若 x=4,y=2,求 3x-2y 的值。
解答:将 x 和 y 的值代入 3x-2y,得到 3*4-2*2=12-4=8。
通过这些简单的练习题,我们可以巩固对代数式的基本运算规律的理解,培养对代数式的计算能力。
二、复杂的代数式练习题除了简单的代数式练习题外,还有一些复杂的代数式练习题,需要我们运用更多的代数知识和技巧来解答。
1. 求解方程:2x+5=13。
解答:首先,我们需要将方程化简为一元一次方程的形式。
将方程中的常数项移至等号右边,得到 2x=13-5=8。
然后,将方程两边同时除以系数 2,得到x=8/2=4。
所以,方程的解为 x=4。
2. 求解方程组:{ 2x+y=5{ 3x-2y=1解答:我们可以采用消元法来解决这个方程组。
首先,将第二个方程的两边乘以 2,得到 6x-4y=2。
然后,将第一个方程的两边乘以 3,得到 6x+3y=15。
接下来,将第一个方程乘以 2,得到 4x+2y=10。
现在,我们可以将第一个方程和第二个方程相减,得到 6x-4x+3y-2y=15-10,化简得到 2x+y=5。
所以,这个方程组的解为 x=2,y=1。
通过解答这些复杂的代数式练习题,我们可以提高对代数知识的运用能力,培养解决实际问题的能力。
三、代数式的应用除了练习题,代数式在实际生活中也有广泛的应用。
比如,在几何学中,我们可以利用代数式来表达几何图形的属性和关系;在物理学中,我们可以利用代数式来表示物理量之间的关系和运算规律。
代数式计算题及答案
代数式计算题及答案题一:计算代数式的值1. 当x=3时,求2x+5的值。
解:将x=3代入2x+5,得:2(3)+5=6+5=11。
故当x=3时,2x+5的值为11。
2. 当a=-2,b=4时,求3a-b的值。
解:将a=-2,b=4代入3a-b,得:3(-2)-4=-6-4=-10。
故当a=-2,b=4时,3a-b的值为-10。
题二:多项式的运算1. 计算(x+2)(x-3)的结果。
解:根据乘法公式,展开(x+2)(x-3)得:x^2 - 3x + 2x - 6 = x^2 - x - 6。
故(x+2)(x-3)的结果为x^2 - x - 6。
2. 计算(2x^2 + 3x - 5) + (4x^2 - x + 1)的结果。
解:按照相同项的系数相加,得:(2x^2 + 4x^2) + (3x - x) + (-5 + 1)= 6x^2 + 2x - 4。
故(2x^2 + 3x - 5) + (4x^2 - x + 1)的结果为6x^2 + 2x - 4。
题三:分式的简化和运算1. 简化分式(4x^2 - 9) / (2x^2 - 5x -3)。
解:对分子和分母进行因式分解,得到:(2x + 3)(2x - 3) / (2x + 1)(x - 3)。
相同因式化简后,可得简化分式:(2x - 3) / (x - 3)。
2. 计算(3/x) * (2x/5)的结果。
解:将分式相乘,得:(3*2x) / (x*5) = 6x / 5x = 6/5。
题四:根式的运算1. 化简根式√8。
解:利用乘法法则,√8 = √(4*2) = √4 * √2 = 2√2。
故根式√8的简化结果为2√2。
2. 计算√18 + √32的结果。
解:分别化简根式,得√18 = √(9*2) = 3√2,√32 = √(16*2) = 4√2。
相加后,结果为3√2 + 4√2 = 7√2。
题五:方程的解1. 解方程2x + 5 = 17。
代数式的练习题及答案
代数式的练习题及答案代数式的练习题及答案一、选择题1、下列代数式x不能取2的是()A、B、C、D、2、如果甲数为x,甲数是乙数的2倍,则乙数是()A、B、2xC、x+2D、3、一批电脑按原价的85%出售,每台售价为y元,则这批电脑原价为()A、元B、元C、元D、元4、一个长方形的周长为30cm,若长方形的一边长用字母a(cm)表示,则长方形的面积是()A、a(15-a)cm2B、a(30-a)cm2C、a(30-2a)cm2D、a(15+a)cm25、甲种糖果每千克a元,乙种糖果每千克b元,若买甲种糖果m千克,乙种糖果n千克,混合后的糖果每千克()A、元B、元C、元D、元二、填空题1、一枚古币的正面是一个半经为r的圆形,中间有一边长为a 厘米的正方形孔,则这枚古币正面的面积为2、某校共有a名学生,其中男生人数占55%,则女生人数为3、当a=2,b=-3时,代数式的值为4、若则4a+b=5、如果不论x取什么数,代数式的值都是一个定值,那么,代数式的`值为三、做一做1、2只猴子发现山坡上有一堆熟透的红果子共有m个,第一只猴子吃掉了其中的,又扔掉了一个果子,第二只猴子吃掉了其中的,也扔掉了一个果子,最后还剩多个果子?2、一台电视机成本价为a元,销售价比成本价增长25%,因库存积压,所以就接销售价的70%出售,问每台电视机的实际售价是多少元?3、找规律(用n表示第n个数)(1)1,4,9,16,25,…,请写出第n个数,(2)2,5,10,17,26,…,请写出第n个数,(3)3,6,9,12,15,18,…,请写出第n个数,(4)2,4,8,16,32,64,…,请写出第n个数,4、(1)分别求出代数式和值其中(1)(2)a=5,b=3(2)观察(1)中的(1)(2)你发现了什幺?5、治理沙漠的植树活动中,某县今年派出的青年志愿者为100人,每人完成植树任务50棵,计划明年派出人数增加p%,每人植树任务增加q%(1)写出明年计划的总植树的代数式(2)并求出当p=10,q=20时的植树总数参考答案[一、1、D2、A3、B4、A5、C二、1、2、45%a3、-12三、1、2、70%(1+25%)a3、(1)(2)+1(3)3n(4)2n4、(1)(2)=5、(1)50(1+q%)100(1+p%)(2)6600[。
代数式典型训练题
代数式典型训练题1一、用代数式表示:(1)比x y与的和的平方小x的数。
(2)比a b与的积的2倍大5的数。
(3)甲乙两数平方的和(差)。
(4)甲数与乙数的差的平方。
(5)甲、乙两数和的平方与甲乙两数平方和的商。
(6)甲、乙两数和的2倍与甲乙两数积的一半的差。
(7)比a的平方的2倍小1的数。
(8)任意一个偶数(奇数)(9)能被5整除的数。
(10)任意一个三位数。
二、代数式的求值:1、已知25a ba b-=+,求代数式2(2)3()2a b a ba b a b-+++-的值。
2、已知225x y ++的值是7,求代数式2364x y ++的值。
3、已知2a b =;5c a =,求624a b ca b c+--+的值(0)c ≠4、已知113b a -=,求222a b aba b ab---+的值。
5、已知:当1x =时,代数式31Px qx ++的值为2007,求当1x =-时,代数式31Px qx ++的值。
6、已知等式(27)(38)810A B x A B x -+-=+对一切x 都成立,求A 、B 的值。
7、已知223(1)(1)x x a bx cx dx +-=+++,求a b c d +++的值。
8、当多项式210m m +-=时,求多项式3222006m m ++的值。
三、找规律:Ⅰ.(1)22(12)14(11)+-=+; (2)22(22)24(21)+-=+ (3)22(32)34(31)+-=+ (4)22(42)44(41)+-=+ 第N 个式子呢?Ⅱ.已知 2222233+=⨯; 2333388+=⨯; 244441515+=⨯; 若21010a ab b+=⨯(a 、b 为正整数),求?a b +=Ⅲ. 32332333211;123;1236;=+=++=33332123410;+++=猜想: 333331234?n +++++=4(如右图)三个圆的面积为K ,两个阴影部分面积相等,l 以下的面积是9,三个圆覆盖的面积是2K+2,求K 的值。
代数式经典测试题及答案解析
代数式经典测试题及答案解析一、选择题1.如果(x 2+px +q )(x 2-5x +7)的展开式中不含x 2与x 3项,那么p 与q 的值是( ) A .p =5,q =18B .p =-5,q =18C .p =-5,q =-18D .p =5,q =-18【答案】A【解析】试题解析:∵(x 2+px+q )(x 2-5x+7)=x 4+(p-5)x 3+(7-5p+q )x 2+(7-5q )x+7q , 又∵展开式中不含x 2与x 3项,∴p-5=0,7-5p+q=0,解得p=5,q=18.故选A .2.下列各计算中,正确的是( )A .2323a a a +=B .326a a a ⋅=C .824a a a ÷=D .326()a a =【答案】D【解析】【分析】本题主要考查的就是同底数幂的计算法则【详解】解:A 、不是同类项,无法进行合并计算;B 、同底数幂乘法,底数不变,指数相加,原式=5a ;C 、同底数幂的除法,底数不变,指数相减,原式=6a ;D 、幂的乘方法则,底数不变,指数相乘,原式=6a .【点睛】本题主要考查的就是同底数幂的计算法则.在运用同底数幂的计算的时候首先必须将各幂的底数化成相同,然后再利用公式来进行计算得出答案.同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方法则,底数不变,指数相乘.在进行逆运算的时候很多同学容易用错,例如:m n m n a a a +=+等等.3.下列各式中,运算正确的是( )A .632a a a ÷=B .325()a a =C .=D =【答案】D【解析】【分析】利用同底数幂的除法、幂的乘方、二次根式的加法和二次根式的除法法则计算.【详解】解:A 、a 6÷a 3=a 3,故不对;B 、(a 3)2=a 6,故不对;C 、22和33不是同类二次根式,因而不能合并;D 、符合二次根式的除法法则,正确.故选D .4.一种微生物的直径约为0.0000027米,用科学计数法表示为( )A .62.710-⨯B .72.710-⨯C .62.710-⨯D .72.710⨯【答案】A【解析】【分析】绝对值小于1的正数科学记数法所使用的是负指数幂,指数由原数左边起第一个不为0的数字前面的0的个数所决定.【详解】解:0.0000027的左边第一个不为0的数字2的前面有6个0,所以指数为-6,由科学记数法的定义得到答案为62.710-⨯.故选A.【点睛】本题考查了绝对值小于1的正数科学记数法表示,一般形式为10n a -⨯.5.如图,下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的正方形有5个,第(3)个图形中面积为1的正方形有9个,…,按此规律.则第(6)个图形中面积为1的正方形的个数为( )A .20B .27C .35D .40【答案】B【解析】 试题解析:第(1)个图形中面积为1的正方形有2个,第(2)个图形中面积为1的图象有2+3=5个,第(3)个图形中面积为1的正方形有2+3+4=9个,…,按此规律,第n 个图形中面积为1的正方形有2+3+4+…+(n+1)=(3)2n n +个, 则第(6)个图形中面积为1的正方形的个数为2+3+4+5+6+7=27个.故选B .考点:规律型:图形变化类.6.下列运算或变形正确的是( )A .222()a b a b -+=-+B .2224(2)a a a -+=-C .2353412a a a ⋅=D .()32626a a =【答案】C【解析】【分析】根据合并同类项,完全平方公式,同底数幂的乘法以及幂的乘方与积的乘方计算法则解答.【详解】A 、原式中的两项不是同类项,不能合并,故本选项错误;B 、原式=(a-1)2+2,故本选项错误;C 、原式=12a 5,故本选项正确;D 、原式=8a 6,故本选项错误;故选:C .【点睛】此题考查单项式的乘法,因式分解,解题关键在于熟记计算法则.7.将正整数按如图所示的规律排列下去,若有序实数对(n ,m )表示第n 排,从左到右第m 个数,如(4,2)表示9,则表示58的有序数对是( )A .(11,3)B .(3,11)C .(11,9)D .(9,11) 【答案】A【解析】 试题分析:根据排列规律可知从1开始,第N 排排N 个数,呈蛇形顺序接力,第1排1个数;第2排2个数;第3排3个数;第4排4个数根据此规律即可得出结论.解:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以58在第11排;偶数排从左到右由大到小,奇数排从左到右由小到大,所以58应该在11排的从左到右第3个数.故选A .考点:坐标确定位置.8.计算 2017201817(5)()736-⨯ 的结果是( ) A .736- B .736 C .- 1 D .367【答案】A【解析】【分析】根据积的乘方的逆用进行化简运算即可.【详解】2017201817(5)()736-⨯ 20172018367()()736=-⨯ 20173677()73636=-⨯⨯ 20177(1)36=-⨯ 736=- 故答案为:A .【点睛】本题考查了积的乘方的逆用问题,掌握积的乘方的逆用是解题的关键.9.下列各运算中,计算正确的是( )A .2a•3a =6aB .(3a 2)3=27a 6C .a 4÷a 2=2aD .(a+b)2=a 2+ab+b 2【答案】B【解析】试题解析:A 、2a •3a =6a 2,故此选项错误;B 、(3a 2)3=27a 6,正确;C 、a 4÷a 2=a 2,故此选项错误;D 、(a+b )2=a 2+2ab +b 2,故此选项错误;故选B .【点睛】此题主要考查了积的乘方运算以及同底数幂的除法运算、完全平方公式、单项式乘以单项式等知识,正确化简各式是解题关键.10.下列运算正确的是( )A .x 3+x 5=x 8B .(y+1)(y-1)=y 2-1C .a 10÷a 2=a 5D .(-a 2b)3=a 6b 3【答案】B【解析】【分析】直接利用合并同类项法则以及积的乘方运算法则、整式的乘除运算分别计算得出答案.【详解】A 、x 3+x 5,无法计算,故此选项错误;B 、(y+1)(y-1)=y 2-1,正确;C 、a 10÷a 2=a 8,故此选项错误;D 、(-a 2b )3=-a 6b 3,故此选项错误.故选:B .【点睛】本题考查了合并同类项以及积的乘方运算、整式的乘除运算,正确掌握相关运算法则是解题的关键.11.下列运算中,正确的是( )A .236x x x ⋅=B .333()ab a b =C .33(2)6a a =D .239-=-【答案】B【解析】【分析】分别根据同底数幂的乘法法则,积的乘方法则以及负整数指数幂的运算法则逐一判断即可.【详解】x 2•x 3=x 5,故选项A 不合题意;(ab )3=a 3b 3,故选项B 符合题意;(2a )3=8a 6,故选项C 不合题意; 3−2=19,故选项D 不合题意. 故选:B .【点睛】 此题考查同底数幂的乘法,幂的乘方与积的乘方以及负整数指数幂的计算,熟练掌握幂的运算法则是解题的关键.12.填在下面各正方形中的四个数之间都有相同的规律,根据这种规律,m 的值应是( )A .110B .158C .168D .178【答案】B【解析】根据排列规律,10下面的数是12,10右面的数是14,∵8=2×4−0,22=4×6−2,44=6×8−4,∴m =12×14−10=158.故选C.13.5. 某企业今年3月份产值为万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( )A .(-10%)(+15%)万元B .(1-10%)(1+15%)万元C .(-10%+15%)万元D .(1-10%+15%)万元【答案】B【解析】列代数式.据3月份的产值是a 万元,用a 把4月份的产值表示出来a (1-10%),从而得出5月份产值列出式子a 1-10%)(1+15%).故选B .14.下列说法正确的是()A .若 A 、B 表示两个不同的整式,则A B 一定是分式 B .()2442a a a ÷=C .若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍 D .若35,34m n ==则2532m n -= 【答案】C【解析】【分析】 根据分式的定义、幂的乘方、同底数幂相除、分式的基本性质解答即可.【详解】A. 若 A 、B 表示两个不同的整式,如果B 中含有字母,那么称A B 是分式.故此选项错误. B. ()244844a a a a a ÷=÷=,故故此选项错误.C. 若将分式xy x y+中,x 、y 都扩大 3 倍,那么分式的值也扩大 3 倍,故此选项正确.D. 若35,34m n ==则()22253332544m n m n -=÷=÷=,故此选项错误. 故选:C【点睛】 本题考查的是分式的定义、幂的乘方、同底数幂相除、分式的基本性质,熟练掌握各定义、性质及运算法则是关键.15.图为“L ”型钢材的截面,要计算其截面面积,下列给出的算式中,错误的是( )A .2ab c -B .() ac b c c +-C .() bc a c c +-D .2ac bc c +-【答案】A【解析】【分析】 根据图形中的字母,可以表示出“L”型钢材的截面的面积,本题得以解决.【详解】解:由图可得,“L”型钢材的截面的面积为:ac+(b-c )c=ac+bc-c 2,故选项B 、D 正确,或“L”型钢材的截面的面积为:bc+(a-c )c=bc+ac-c 2,故选项C 正确,选项A 错误, 故选:A .【点睛】本题考查整式运算的应用,解答本题的关键是理解题意,掌握基本运算法则,利用数形结合的思想解答.16.下列运算正确的是A .32a a 6÷=B .()224ab ab =C .()()22a b a b a b +-=-D .()222a b a b +=+【答案】C【解析】根据整式的除法,幂的乘方与积的乘方运算法则和平方差公式,完全平方公式逐一计算作出判断:A 、322a a 2a ÷=,故选项错误;B 、()2224ab a b =,故选项错误;C 、选项正确;D 、()222a b a 2ab b +=++,故选项错误.故选C .17.如图,大正方形与小正方形的面积之差是60,则阴影部分的面积是 ( )A .30B .20C .60D .40【答案】A【解析】【分析】 设大正方形的边长为x ,小正方形的边长为y ,表示出阴影部分的面积,结合大正方形与小正方形的面积之差是60即可求解.【详解】设大正方形的边长为x ,小正方形的边长为y ,则2260x y -=,∵S 阴影=S △AEC +S △AED =11()()22x y x x y y -+-g g =1()()2x y x y -+g =221()2x y - =1602⨯ =30.故选A.【点睛】 此题主要考查了平方差公式的应用,读懂图形和熟练掌握平方差公式是解此题的关键.18.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y 与n 之间的关系是()A .y=2n+1B .y=2n +nC .y=2n+1+nD .y=2n +n+1【答案】B【解析】【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n ,右边三角形的数字规律为:2,,…,, 下边三角形的数字规律为:1+2,,…,, ∴最后一个三角形中y 与n 之间的关系式是y=2n +n.故选B .【点睛】考点:规律型:数字的变化类.19.下列运算正确的是( )A .426x x x +=B .236x x x ⋅=C .236()x x =D .222()x y x y -=-【答案】C【解析】试题分析:4x 与2x 不是同类项,不能合并,A 错误; 235x x x ⋅=,B 错误;236()x x =,C 正确;22()()x y x y x y -=+-,D 错误.故选C .考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法;因式分解-运用公式法.20.观察等式:232222+=-;23422222++=-;2345222222+++=-⋅⋅⋅已知按一定规律排列的一组数:502、512、522、⋅⋅⋅、992、1002.若502a =,用含a 的式子表示这组数的和是( )A .222a a -B .2222a a --C .22a a -D .22a a +【答案】C【解析】【分析】根据题意,一组数:502、512、522、⋅⋅⋅、992、1002的和为250+251+252+…+299+2100==a +(2+22+…+250)a ,进而根据所给等式的规律,可以发现2+22+…+250=251-2,由此即可求得答案.【详解】250+251+252+…+299+2100=a +2a +22a + (250)=a +(2+22+…+250)a ,∵232222+=-, 23422222++=-,2345+++=-,222222…,∴2+22+…+250=251-2,∴250+251+252+…+299+2100=a+(2+22+…+250)a=a+(251-2)a=a+(2 a-2)a=2a2-a ,故选C.【点睛】本题考查了规律题——数字的变化类,仔细观察,发现其中哪些发生了变化,哪些没有发生变化,是按什么规律变化的是解题的关键.。
代数式的计算练习题
代数式的计算练习题一、单项式与多项式的计算1. 计算下列单项式的值:(1) 3x^2,其中x=4(2) 5a^3b,其中a=2,b=32. 计算下列多项式的值:(1) 2x^2 3x + 1,其中x=5(2) 4a^3 2a^2 + 3a 7,其中a=1二、合并同类项1. 合并下列多项式中的同类项:(1) 3x^2 + 5x 2x^2 + 4(2) 4a^3 3a^2 + 2a^3 + 5a^2 72. 化简下列表达式:(1) 2x^2 3x + 4x^2 5x + 6(2) 5a^3 4a^2 + 3a^3 2a^2 + a三、去括号与添括号1. 去括号并化简:(1) 3(x 4)(2) 4(a + 2b) 2(a 3b)2. 添括号并化简:(1) 5x 3 + 2x(2) 4a^2 3a + 2a^2 5a四、整式的乘法(1) (3x 4)(2x + 5)(2) (4a + 3b)(2a 3b)2. 运用分配律计算:(1) 4x(3x^2 2x + 1)(2) 3a^2(2a^3 4a + 5)五、整式的除法1. 计算下列除法:(1) 18x^3 ÷ 3x(2) 24a^4b^2 ÷ 4ab2. 化简下列表达式:(1) (4x^3 2x^2 + 6x) ÷ 2x(2) (9a^4 6a^3 + 12a^2) ÷ 3a^2六、分式的计算1. 计算下列分式的值:(1) $\frac{3}{4} \div \frac{5}{8}$(2) $\frac{2}{5} \times \frac{15}{4}$ 2. 化简下列分式:(1) $\frac{4x}{8} \frac{3x}{6}$(2) $\frac{5a^2}{10} + \frac{2a^2}{5}$七、分式的乘除法1. 计算下列分式的乘除法:(1) $\frac{3}{4} \times \frac{8}{9}$(2) $\frac{5}{7} \div \frac{2}{3}$(1) $\frac{2x}{5} \times \frac{15}{4x}$(2) $\frac{3a^2}{4} \div \frac{6a}{8}$八、分式的加减法1. 计算下列分式的加减法:(1) $\frac{3}{4} + \frac{2}{3}$(2) $\frac{5}{6} \frac{1}{4}$2. 化简下列分式:(1) $\frac{4x}{5} + \frac{3x}{10}$(2) $\frac{7a}{8} \frac{5a}{12}$九、分式的混合运算1. 计算下列表达式:(1) $\frac{3}{4} \times (2x 3) + \frac{1}{2}$(2) $\frac{5}{6} \div (4a 3) \frac{2}{3}$ 2. 化简下列表达式:(1) $\frac{4}{5} \times (3x + 2)十、代数式的化简1. 化简下列代数式:(1) $5x 3x + 2x^2 4 + x^2$(2) $3a^2b 2ab^2 + 4a^2b 5ab^2$2. 将下列代数式化为最简形式:(1) $2x^3 x^3 + 4x^2 2x^2 + 3x$(2) $4a^3b 3a^2b^2 + 2a^3b a^2b^2$十一、分式的化简与求值(1) $\frac{3x 6}{2x 4}$(2) $\frac{4a^2 9b^2}{2a^2 + 6ab + 9b^2}$2. 求下列分式的值:(1) $\frac{x + 3}{x 2}$,其中$x=5$(2) $\frac{a b}{a + b}$,其中$a=4$,$b=3$十二、方程的求解1. 解下列一元一次方程:(1) $3x 7 = 11$(2) $5 2a = 3$2. 解下列一元二次方程:(1) $x^2 5x + 6 = 0$(2) $2a^2 4a 6 = 0$十三、不等式的求解1. 解下列一元一次不等式:(1) $3x 4 > 7$(2) $5 2a < 3$2. 解下列一元二次不等式:(1) $x^2 4x + 3 > 0$(2) $2a^2 5a + 3 < 0$十四、应用题1. 小明买了3本书和2支笔,总共花费了45元。
代数式测试题(含知识点)
由几个单项式相加组成的代数式叫做多项式。在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,次数最高的项的次数就是这个多项式的次数。
单项式、多项式统称为整式。
多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项。所有常数项也看做同类项。把多项式中的同类项合并成一项,叫做合并同类项。
二、填空题:
1、已知x-2y=-3,则5-x+2y的值是。
2、a个人m天做完的工作,若增加b个人,则可提前天完成这项工作。
3、当a=-2,b=-3,c=-1时,代数式a2-b2+2bc-c2的值是。
4、多项式-3x3+ 是次项式。
。
C、x=2不是代数式D、0是代数式
5、下列代数式书写规范的是()
A、a×2B、2a2C、 D、
6、“a的相反数与a的2倍的差”,用代数式表示为()
A、a-2aB、a+2aC、-a-2aD、-a+2a
7、用代数式表示与2a-1的和是8的数是()
A、8-(2a-1)B、(2a-1)+8
C、8-2a-1D、2a-1-8
18、若实数a满足 =0,则 =。
三、课后作业:
1、已知2x-1=0,则代数式x2+2x等于()
A、2B、 C、 D、
2、“m与n的差的平方”,用代数式表示为()
A、m2-nB、m2-n2C、m-n2D、
3、有三个连续偶数,最大一个是2n+2,则最小一个可以表示为()
A、2n+1B、2nC、2n-2D、2n-1
8、下列各式 ,a-3, , ,2.7y2中单项式的个数是()
A、1个B、2个C、3个D、4个
9、如果一个多项式是五次多项式,那么()
代数式经典测试题含答案
3.如图,由 4 个相同的直角三角形与中间的小正方形拼成一个大正方形,若大正方形面积 是 9,小正方形面积是 1,直角三角形较长直角边为 a,较短直角边为 b,则 ab 的值是 ()
A.4
B.6
C.8
D.10
【答案】A
【解析】
【分析】
根据勾股定理可以求得 a2+b2 等于大正方形的面积,然后求四个直角三角形的面积,即可
C、2a﹣2=
2 a2
,故此选项错误;
D、(﹣2a)3=﹣8a3,正确.
故选 D.
【点睛】
此题主要考查了单项式除以单项式以及积的乘方运算、负指数幂的性质,正确掌握相关运
算法则是解题关键.
8.小明在利用完全平方公式计算一个二项整式的平方时,不小心用墨水把最后一项染黑
了,得到正确的结果变为 4a2 12ab ( ),你觉得这一项应是( )
内,若两张边长分别为 和 ( )的正方形纸片按图 1,图 2 两种
方式放置(图 1,图 2 中两张正方形纸片均有部分重叠),长方形总未被这两张正方形纸
片覆盖的部分用阴影表示,若图 1 中阴影部分的面积为 ,图 2 中阴影部分的面积和为
,则关于 , 的大小关系表述正确的是( )
A.
B.
C.
D.无法确定
加了 15%,则 5 月份的产值是( )
A.( -10%)( +15%)万元
B. (1-10%)(1+15%)万元
C.( -10%+15%)万元
D. (1-10%+15%)万元
【答案】B
【解析】
列代数式.据 3 月份的产值是 a 万元,用 a 把 4 月份的产值表示出来 a (1-10%),从而
代数式练习题
代数式练习题在代数学中,代数式是由变量、常数和运算符组成的表达式。
代数式的主要目的是描述和计算数学问题。
在这篇文档中,我们将提供一些代数式的练习题,帮助你熟悉代数式的构造和运算。
问题一将下列代数式进行合并简化:3x + 2y - 4x + 5y解答:我们可以通过合并同类项简化这个代数式。
同类项是指具有相同变量和指数的项。
在这个例子中,x和y是变量,分别与3和-4相乘。
所以,我们可以将这个代数式简化为:(3x - 4x) + (2y + 5y)根据合并同类项的法则,我们可以计算得出:-x + 7y所以,原始的代数式合并简化后为-x + 7y。
问题二假设我们有以下代数式:2x^2 - 3xy + 4y^2 - x^2 + 2xy - 5y^2请将其进行合并简化。
解答:我们可以按照同样的方法,合并同类项来简化这个代数式。
在这个例子中,我们可以看到x和y的二次项和一次项。
所以,我们可以将这个代数式简化为:(2x^2 - x^2) + (-3xy + 2xy) + (4y^2 - 5y^2)计算得到:x^2 - xy - y^2所以,原始的代数式合并简化后为x^2 - xy - y^2。
问题三给定以下代数式:(x + 3)^2 - (2x - 1)(x + 2)请展开并化简这个代数式。
解答:首先,我们可以使用乘法公式(a + b)^2 = a^2 + 2ab + b^2展开(x + 3)^2,得到:x^2 + 2(3)(x) + 3^2化简后为:x^2 + 6x + 9然后,我们可以使用分配律将(2x - 1)(x + 2)展开:2x^2 + 4x - x - 2化简后为:2x^2 + 3x - 2最后,将两个展开后的代数式相减:(x^2 + 6x + 9) - (2x^2 + 3x - 2)计算得到:-x^2 + 3x + 11所以,原始的代数式展开并化简后为-x^2 + 3x + 11。
结论通过这些代数式的练习题,我们可以熟悉代数式的合并简化和展开化简过程。
代数式运算训练题
代数式运算训练题一、化简:1、-5ab+3ab2、18p-9q+5-9q-10p3、-31a b 2+65a b 2-21b2a 4、3(a+b)2-4(a+b)25、2ab-5ab+3ab6、5x 2y-12y 2x 4+3x 4y 2-6yx 27、18p-9q+5+9q-16p 8、5a-(3b-2c+a)9、(3m-5)-(n-3m) 10、-(2m-3)11、n-3(4-2m) 12、a+5(-b-1)13、-(5m+n)-7(a-3b) 14、2ab-(3ab-5a 2b)15、6a 2-4ab-4(2a 2+21ab) 16、3x-[5x-(21x-4)]17、3x-5x+(3x-1) 18、4(xyz-2xy)-(xyz-3z)+3(2xy-z)20、2a 2-(a+2b-3c) 21、-(2a-b)+(c-1)22、x 2+(3x-y+y 2) 23、-(a+b)-(c-d)24、-{-[-(5x-4y)]} 25、3(m-1)-4(1-m)26、-3(2x2-xy)+4(x2+xy+6)27、-{+[-(x-y)]}+{-[-(x+y)]}1(xy-x2)-8xy 29、-2(ab-3a2)-[2b2-(5ab+a2)+2ab]28、2x2-230、y2-(6x-y+3z) 31、9x2-[x-(5z+4)]32、x+[-6y+(5z-1)] 33、-(7x+y)+(z+4)34、4(x2+xy-6)-3(2x2-xy) 35、x+[(3x+1)-(4-x)]36、-(2x-y) 37、-3a+(4a2+2)38、-[-(2a-3y)] 39、-3(a-7) 41、(a+b)+2(a+b)-4(a+b) 42、(7x-3y)-(10y-5x) 43、-(m-2n)+4(m+5n)-2(-3m-n) 44、-xy2+3xy245、7a+3a2+2a-a2+3 46、3a+2b-5a-b47、-4ab+8-2b2-9ab-8 48、3b-3a3+1+a3-2b49、2y+6y+2xy-5 50、3f+2f-7f51、x-f+5x-4f 52、2a+3b+6a+9b-8a+12b53、3pq+7pq+4pq+pq 54、30a2b+2b2c-15a2b-4b2c 55、7xy-8wx+5xy-12xy 56、4+3(x-1)57、4x-(x-1) 58、4a-(a-3b)59、a+(5a-3b)-(a-2b) 60、3(2xy-y)-2xy61、8x-(-3x-5) 62、(3x-1)-(2-5x)63、(-4y+3)-(-5y-2) 64、3x+1-2(4-x)65、-(2m-3) 66、n-3(4-2m)67、16a-8(3b+4c) 68、t+32(12-9v)69、-(5m+n)-7(a-3b) 70、-21(x+y)+41(p+q)71、-8(3a-2ab+4) 72、4(m+p)-7(n-2q)73、-2n-(3n-1) 74、a-(5a-3b)+(2b-a)75、-3(2s-5)+6s 76、1-(2a-1)-(3a+3)77、3(-ab+2a)-(3a-b) 78、14(abc-2a)+3(6a-2abc)79、3(xy-2z)+(-xy+3z) 80、-4(pq+pr)+(4pq+pr)81、5x 4+3x 2y-10-3x 2y+x 4-1 82、p 2+3pq+6-8p 2+pq83、(7y-3z)-(8y-5z) 84、-(a 5-6b)-3(-5a-4b)85、2(2a 2+9b)+3(-5a 2-4b) 86、-3(2x 2-xy)+4(x 2+xy-6)87、3b 2-(a 2+b 2)-b 2 88、x+(2x-1)-(3x +3)89、-2(ab-3a 2)+(5ab-a 2) 90、2a 2-(ab+a 2)-8ab91、-(b-4)+4(-b-3) 92、21(x 2-y)+31(x-y 2)+61(x 2+y 2)93、5x 3+3x 2y-10-3x 2y+x 3-1 94、-3(2x 2+xy)-4(2x 2-xy-7)二、先化简,再求值1、当x=2时,求代数式-3x 2+5x-0.5x 2+x-1的值2、当p=3,q=3时,求代数式8p 2-7q+6q-7p 2-7的值3、当x=-5时,求代数式6x+2x 2-3x+2x+1的值4、当x=2,y=-3时,求代数式4x 2+3xy-x 2-9的值5、当m=6,n=2时,求代数式31m-23n-65n-61m 的值6、当m=5,p=31,q=-23时,求代数式3pq-54m-4pq 的值7、当x=-2时,求代数式9x+6x 2-3(x-32x 2)的值8、当x=21时,求代数式41(-4x 2+2x-8)-(21x-1)的值9、当a=-1,b=1时,求代数式(5a 2-3b 2)+(a 2+b 2)-(5a 2+3b 2)的值10、当a=-2,b=2时,求代数式2(a 2b+ab 2)-2(a 2b-1)-2ab 2-2的值11、当x=-21,y=-1时,求代数式2x 2y+1的值12、当x=-2时,求代数式x+x1的值13、当x=-1,y=-2时,求代数式2xy+3x 2y-6xy-4x 2y 的值14、当m=5,p=31,q=-23时,求代数式3pq-54m-4pq+m 的值15、当m 2-mn=1,4mn-3n 2=-2时,求代数式m 2+3mn-3n 2的值16、当x=-1,y=-2时,求代数式3-2xy+3yx 2+6xy-4x 2y 的值17、当x 2-xy=3a,xy-y 2=-2a 时,求代数式x 2-y 2的值18、当x=2004,y=-1时,求代数式A=x 2-xy+y 2,B=-x 2+2xy+y 2,A+B 的值19、当a=5时,求代数式(6a+2a 2+1)-(a 2-3a)的值20、当x=-2时,求代数式9x+6x 2-3(x-32x 2)的值21、当x=5时,求代数式21(2x 2-6x-4)-4(-1+x+41x 2)的值22、当x=21,时,求代数式(2x 2-x-1)-(x 2-x-31)+(3x 2-331)的值23、当x 2+xy=2,y 2+xy=5时,求代数式x 2+2xy+y 2的值1124、当a-b=4,c+d=-6时,求代数式(b+c)-(a-d)的值25、当a=21,b=1时,求代数式a 2+3ab-b 2的值26、当a=71,b=314时,求代数式4(b+1)+4(1-a)-4(a+b)的值27、当a=6,b=3时,求代数式42b ab 的值28、当a=-2,b=32时,求代数式21a-2(a-31b 2)-(23a-31b 2)的值30、当(x+2)2+|y+1|=0时,求代数式5xy 2-[2x 2y-(2x 2y-xy 2)]的值31、已知:a 2+2a+1=0, 求2a 2+4a-3的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式经典练习题
1. 在式子m+5,ab,a=1,0,π,3(x+y), 2
n k 180
π,x>3中,是代数式的有( )个 2. 下列式子中不是整式的是( )A -23x B x
1 C 12x +5x D 0 3.下列判断(1)π2xy -
不是单项式;(2)3y x -是多项式;(3)0不是单项式;(4)x x +1是整式,正确的有()个 4. 在下列代数式:x
y x abc ab 3,,0,32,4,3---中,单项式有( )A 3个 B 4个 C 5个 D 6个 5. 单项式7
24
3xy -的次数是( ) 6. 下列说法中正确的是( )A 代数式一定是单项式 B 单项式一定是代数式
C 单项式x 的次数是0
D 单项式-π2x 2y 2的次数是6
7. 在下列代数式:1,2
12,3,1,21,2122+-+++++x x b ab b a ab ππ中,多项式有( )个 8.下列说法正确的是( )A .单项式23
x -的系数是3- B .单项式324
2π2ab -的指数是7 C .1x
是单项式 D .单项式可能不含有字母 9. 下列多项式次数为3的是( )A -5x 2+6x -1 B πx 2+x -1 C a 2b +ab +b 2 D x 2y 2-2xy -1
10. 下列说法正确的是( )A 3x -5的项是3x 和5 B 21+x 和3
xy 都是单项式 C z y x +和222y xy x ++都是多项式 D 2
12-x 和7ab 都是整式 11. 若m 、n 都是自然数,多项式222m n m n a b ++-的次数是()A m B 2n C 2m n + D m 、2n 中较大的数
12. 多项式8x 2+mxy-5y 2+xy-8中不含xy 项,则m 的值为( )A 0 B 1 C -1 D -5
13. 当x =1时,代数式px 3+qx +1的值为2003,则当x =-1时,代数式px 3
+qx +1的值()
A -2001
B -2002
C -2003
D 2001
14.甲数为a ,甲数是乙数的8倍小3,用甲数表示乙数 ,乙数是甲数的8倍小3,用甲数表示乙数 。
15.若m 1
ab 6
--是四次单项式,则m 的值是 ,系数是 。
16. 单项式32b a -的系数是 ,次数是 。
2
3x π是 次单项式。
17. 单项式24
3
ab c -的系数是 ,次数是 ,多项式222389x y x y --的最高次项为 。
18. 若单项式()122n n x y --是关于x y ,的三次单项式,则n =
19. 当2y -x =5时,100)2(3)2(52
-+---y x y x 的值是______
20. 已知3a b a b
-=+,代数式2()4()3()a b a b a b a b +---+的值为 。
21. 当1x =,时 5313ax bx cx +++=,当1x =-,时 531ax bx cx +++= 。
22. 写出系数是-2,且含有字母a 、b 的所有4次单项式:_____
23. 已知关于x 的多项式(a -1)x 5+x |b +2|-2x +b 是二次三项式,则a =____,b =____。
24.已知单项式63221
1037
a x y x y π+--与的次数相同,则a=___________. 25.若(k-5)x |k-2|y 3是关于x 、y 的6次单项式,则k 的值是__________.
26.如果多项式2221m a b x π-+-是一个四次三项式,那么m=_________ .
27.如果2x n +(m-1)x+1是关于x 的三次二项式,则n=_____,m=______.
28.当b=________时,式子2a+ab-5的值与a 无关. 29. 受洪水影响,我国南方某市有x 人急需转移到安全地带,原计划转移时间是a 小时,由于天气原因,必须提前2
小时转移完毕,那么每小时需多转移______人.
30、(1) 把多项式4x 3y 2-xy 3-2x 2y 4+3x 4-5按x 的降幂排列,再按y 的升幂排列.
(2) 把多项式5x 3y-y 4-3xy 3+2x 2y 2-7.
(a )按y 的升幂排列:
(b )按y 的降幂排列:
31、把多项式5x 2n +
4
3x 2n-1-32x 2n-2-x 2n+1+2按字母x 降幂排列(n 为自然数).并说出最高次项、常数项. 31. 当x 为哪些整数值时,代数式36-x 的是整数;32. 已知多项式-6xy-7x 3m-1y 2+34x y 3
-x 2y-5是七次多项式, 求m 值.
33.已知式子74692=--y y , 34. 当2x =时,代数式31ax bx -+的值等于17-,
求7322++y y 的值 那么当1x =-时,求代数式31235ax bx -- 的值。
35. 已知3xy x y =+,求代数式3533x xy y x xy y
-+-+-的值。
36. 若多项式()22532m x y n y +--是关于x y ,的四次二项式, 求222m mn n -+的值
37. 已知单项式4312
x y -的次数与多项式21228m a a b a b +++的次数相同,求m 的值。
38. 当多项式()()13212x 52
2--+---x n x m 不含二次项和一次项时,求m 、n 的值。
39. 若71,51==y x ,求代数式y
x y x 1111-+的值; 40. 已知22=-y x ,求8463---+y x y x 的值;
41. 已知3)(+=ax x f ,且3)3(-=f ,求)2001(f ;42、已知x -5y =0 (y ≠0),求代数式y
x y x 3263-+的值
31. 已知m y x y x f ++=23),(,且18)1,2(=f ,求)1,3(-f 的值;
43、已知a+19=b+9=c+8求代数式(a-b)2+(b-c)2+(c-a)2的值。