9年级数学下册期末试卷含答案1

合集下载

2022年最新强化训练华东师大版九年级数学下册第28章 样本与总体重点解析试卷(含答案详解)

2022年最新强化训练华东师大版九年级数学下册第28章 样本与总体重点解析试卷(含答案详解)

华东师大版九年级数学下册第28章样本与总体重点解析考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,那么估计该厂这10万件产品中不合格产品约为()A.50件B.500件C.5000件D.50000件2、下列调查中,最适合采用普查方式的是()A.调查某品牌电视的使用寿命B.调查毕节市元旦当天进出主城区的车流量C.调查我校七(1)班新冠核酸检查结果D.调查某批次烟花爆竹的燃放效果3、下列说法中正确的是()A.“打开电视,正在播放《新闻联播》”是必然事件B.某次抽奖活动中奖的概率为1100,说明每买100张奖券,一定有一次中奖C.想了解某市城镇居民人均年收入水平,宜采用抽样调查D.我区未来三天内肯定下雪4、能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制()A.条形统计图B.扇形统计图C.折线统计图D.直方图5、下列调查中,最适合采用全面调查(普查)方式的是()A.对渝北区初中学生对防护新冠肺炎知识的了解程度的调查B.对“神州十三号”飞船零部件安全性的检查C.对某品牌手机电池待机时间的调查D.对中央电视台2021年春节联欢晚会满意度的调查6、广元市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学生的体重进行统计分析,下列叙述不正确的是()A.8900名学生的体重情况是总体B.每名学生的体重情况是个体C.1500名学生的体重情况是总体的一个样本D.以上调查是全面调查7、下列调查中,最适合抽样调查的是()A.调查某校七年级一班学生的课余体育运动情况B.调查某班学生早餐是否有喝牛奶的习惯C.调查某种灯泡的使用寿命D.调查某校足球队员的身高8、下列调查活动中最适合用全面调查的是()A.调查某批次汽车的抗撞击能力B.调查你所在班级学生的身高情况C.调查全国中学生的视力情况D.对端午节市场粽子质量进行调查9、下列调查中,适合采用全面调查(普查)方式的是()A.了解江西省中小学生的视力情况B.在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C.了解全国快递包裹产生包装垃圾的数量D.了解抚州市市民对社会主义核心价值观的内容的了解情况10、下列调查方式中,适合用普查方式的是()A.对某市学生课外作业时间的调查B.对神州十三号载人航天飞船的零部件进行调查C.对某工厂生产的灯泡寿命的调查D.对某市空气质量的调查第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是 ___.2、为了解中学生获取资讯的主要渠道,设置“A.报纸,B.电视,C.网络,D.身边的人,E.其他”五个选项(必选且只能选一项),随机抽取50名中学生进行问卷调查,根据调查结果绘制条形图如图该调查的方式是________,图中a的值是________.3、一个盒子中有5个红球和若干个白球,它们除颜色外都相同,从中随机摸出一个球,记下它的颜色后再放回盒子中.不断重复这个过程,共摸了100次球,发现有25次摸到红球,请估计盒子中白球大约有_____个.4、为了解七年级共650名学生的体质情况,从中抽取了50名学生进行体能测试并统计分析,在此次调查中,样本容量是 _____.5、2020年末,我国完成了第7次人口普查,国家统计局采取的调查方式是_______.(填“全面调查”“抽样调查”)6、某学校有学生2000名,从中随意询问200名,调查收看电视的情况,结果如下表:15 47 78 41 19则全校每周收看电视不超过4小时的人数约为________.7、一个不透明的盒子中有若干个白球和5个黑球,从中摸出一球记下颜色后放回,重复摸球100次,其中摸到黑球的次数为25次,盒中有白球约______个.8、为了使样本能较好地反映总体情况,除了有合适的样本容量外,抽取时还要尽量使每一个个体有_______的机会被抽到.抽样调查是实际中经常采用的调查方式,如果抽取的_______得当,就能很好地反应总体情况,否则,抽样调查的结果会偏离总体情况.抽取样本的过程中,总体中的每一个个体都有相等的机会被抽到,像这样的抽样方法是一种_______.9、从全市10000份数学试卷中随机抽取500份试卷,其中有420份成绩合格,估计全市成绩合格的人数约为________人.10、在一个组数为4的频数分布直方图中,已知样本容量为80,第一、二、三、四组所对应的各个长方形高的比为2:3:4:1,那么第四组的频数是 ___.三、解答题(5小题,每小题8分,共计40分)1、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?2、某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.3、某校对七年级学生进行“综合素质”评价,评价的结果分为A、B、C、D四个等级,现从中随机抽查了若干名学生的“综合素质”等级作为样本进行数据处理,并绘制了两幅不完整的统计图.根据统计图提供的信息,解答下列问题:(1)B等级人数所占百分比是;C等级所在扇形的圆心角是度;(2)请补充完整条形统计图;(3)若该校七年级学生共1000名,请根据以上调查结果估算:评价结果为A等级或B等级的学生共有名.4、某校为了解学生对生物知识的掌握情况,从中随机抽取了部分学生的成绩作为样本,把成绩按优秀、良好、及格和不及格四个级别进行了统计,抽调的学生成绩为及格的占抽调学生总人数的30%.(1)求一共抽调多少名学生?(2)请通过计算补全条形统计图;(3)若该校共有学生2400名,请估计该校学生中有多少人的成绩为不及格?5、为了解全校1000名学生对学校设置的篮球、羽毛球、乒乓球、踢毽子、跳绳共5项体育活动的喜爱情况,在全校范围内随机抽查部分学生,对他们喜爱的体育项目(每人只选一项)进行了问卷调查,将统计数据绘制成如图两幅不完整统计图,请根据图中提供的信息解答下列各题.(1)m=____,这次共抽取了_____名学生进行调查;并补全条形图;(2)请你估计该校约有多少名学生喜爱打篮球;(3)现学校准备从喜欢跳绳活动的4人(三女一男)中随机选取2人进行体能测试,请利用列表或画树状图的方法,求抽到一男一女学生的概率是多少?-参考答案-一、单选题1、C【解析】【分析】抽取的100件进行质检,发现其中有5件不合格,由此即可求出这类产品的不合格率是5%,然后利用样本估计总体的思想,即可知道不合格率是5%,即可求出该厂这10万件产品中不合格品的件数.【详解】解:∵某工厂从10万件同类产品中随机抽取了100件进行质检,发现其中有5件不合格,∴不合格率为5÷100=5%,∴估计该厂这10万件产品中不合格品约为10×5%=0.5万件,故选C.【点睛】此题主要考查了样本估计总体的思想,此题利用样本的不合格率去估计总体的不合格率.2、C【解析】【分析】根据抽样调查与普查的适用范围进行判断即可.【详解】解:A、D中为出售的产品,适合抽样调查;不符合要求;B中元旦的车流量较大,适合抽样调查;不符合要求;C中新冠核酸检查关乎每个人的身心健康,适合普查,符合要求;故选C.【点睛】本题考查了抽样调查与普查.解题的关键在于区分二者的适用范围.3、C【解析】【分析】根据必然事件,随机事件的定义,判断全面调查与抽样调查,逐项分析判断即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】A. “打开电视,正在播放《新闻联播》”是随机事件,故该选项不正确,不符合题意;B. 某次抽奖活动中奖的概率为1100,说明每买100张奖券,不一定有一次中奖,故该选项不正确,不符合题意;C. 想了解某市城镇居民人均年收入水平,宜采用抽样调查,故该选项正确,符合题意;D. 我区未来三天内不一定下雪,故该选项不正确,不符合题意;故选C【点睛】本题考查了必然事件,随机事件,判断全面调查与抽样调查,掌握以上知识是解题的关键.4、C【解析】【分析】根据统计图的特点解答.【详解】解:能清楚地反映漳州市近三年初中毕业学生人数的变化情况,应绘制折线统计图,故选:C.【点睛】此题考查了统计图的特点,条形统计图能够直观地反映各变量数量的差异,折线图能直观反映各变量的变化趋势,扇形统计图能清楚地表示各部分在总体中所占的百分比,直方图体现个体的数量,熟记每种统计图的特点是解题的关键.5、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【详解】解:A、对渝北区初中学生对防护新冠肺炎知识的了解程度的调查,适合采用抽样调查方式,故本选项不符合题意;B、对“神州十三号”飞船零部件安全性的检查,适合采用全面调查(普查)方式,故本选项符合题意;C、对某品牌手机电池待机时间的调查,适合采用抽样调查方式,故本选项不符合题意;D、对中央电视台2021年春节联欢晚会满意度的调查,适合采用抽样调查方式,故本选项不符合题意;故选:B【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键.一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.6、D【解析】【分析】根据总体,个体、样本、普查、抽查的意义进行判断即可.【详解】解:“8900名学生的体重情况”是考查的总体,因此选项A正确,不符合题意;“每一名学生的体重情况”是总体的一个个体,因此选项B正确,不符合题意;“1500名学生的体重情况”是总体的一个样本,因此选项C正确,不符合题意;以上调查是抽样调查,不是普查,因此选项D错误,符合题意;故选D【点睛】本题考查了总体、个体、样本、以及普查和抽样调查,解题的关键是理解总体、个体、样本的意义.7、C【解析】【分析】根据抽样调查的定义(从研究对象的全部单位中抽取一部分单位进行考察和分析,并用这部分单位的数量特征去推断总体的数量特征的一种调查方法)与全面调查的定义(对调查对象的所有单位一一进行调查的调查方式)逐项判断即可得.【详解】解:A、“调查某校七年级一班学生的课余体育运动情况”适合全面调查,此项不符题意;B、“调查某班学生早餐是否有喝牛奶的习惯”适合全面调查,此项不符题意;C、“调查某种灯泡的使用寿命”适合抽样调查,此项符合题意;D、“调查某校足球队员的身高”适合全面调查,此项不符题意;故选:C.【点睛】本题考查了抽样调查与全面调查,熟记定义是解题关键.8、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批次汽车的抗撞击能力,适合用抽样调查,故此选项错误;B、调查你所在班级学生的身高情况,适合用全面调查,故此选项正确;C、调查全国中学生的视力情况,适合用抽样调查,故此选项错误;D、对端午节市场粽子质量进行调查,适合用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.9、B【解析】【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可.【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.10、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A.对某市学生课外作业时间的调查工作量比较大,宜采用抽样调查;B.对神州十三号载人航天飞船的零部件进行调查非常重要,宜采用普查;C.对某工厂生产的灯泡寿命的调查具有破坏性,宜采用抽样调查;D.对某市空气质量的调查工作量非常大,宜采用抽样调查;故选B.【点睛】本题考查的是抽样调查和全面调查,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.二、填空题1、80【解析】【分析】根据样本容量是指样本中个体的数目,可得答案.【详解】解:为了了解某校800名初一学生的睡眠时间,从中抽取80名学生进行调查,在这个问题中样本容量是80.故答案为:80.【点睛】本题主要考查总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.2、 抽样调查 24【解析】【分析】根据 “随机抽取50名中学生进行该问卷调查”可得该调查方式是抽样调查,根据调查的样本容量为50列出方程6+10+8+a +12=50,解方程即可.【详解】解:由题意知,该调查方式是抽样调查,由样本容量为50可知:6+10+6+a +4=50,解得a =24,故答案为:抽样调查;24.【点睛】此题主要考查了条形统计图,以及抽样调查,关键是读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.3、15【解析】【分析】由共摸了100次球,发现有25次摸到红球知摸到红球的概率为0.25,设盒子中白球有x 个,可得50.255x=+,解之即可. 【详解】解:设盒子中白球大约有x 个, 根据题意,得:50.255x=+,解得15x=,经检验15x=是分式方程的解,所以估计盒子中白球大约有15个,故答案为:15.【点睛】本题考查用样本估计总体,从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息,解题的关键是用频率分布直方图来表示相应样本的频率分布,从而去估计总体的分布情况.4、50【解析】【分析】根据样本容量则是指样本中个体的数目,可得答案.【详解】解:为了解七年级共650名学生的体质情况,从中抽取了50名学生进行体能测试并统计分析,在此次调查中,样本容量是50.故答案为:50.【点睛】本题考查了总体、个体、样本、样本容量的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.5、全面调查【解析】【分析】根据全面调查和抽样调查的概念判断即可.解:为了全面的、可靠的得到我国人口信息,所以国家统计局采取的调查方式是全面调查,故答案为:全面调查.【点睛】本题考查的是全面调查和抽样调查,解题的关键是掌握通过普查可以直接得到较为全面、可靠的信息,但花费的时间较长,耗费大,且一些调查项目并不适合普查.其一,调查者能力有限,不能进行普查,其二,调查过程带有破坏性,其三,有些被调查的对象无法进行普查.6、620人【解析】【分析】根据2000乘以样本中每周收看电视不超过4小时的人数所占样本的比例即可求得全校每周收看电视不超过4小时的人数【详解】解:全校每周收看电视不超过4小时的人数约为15472000620200+⨯=(人),故答案为:620人.【点睛】本题考查了根据样本求总体,从统计图获取信息是解题的关键.7、15【解析】【分析】可根据“黑球数量=黑球所占比例⨯黑白球总数”来列等量关系式,其中“黑白球总数=黑球个数+白球个数”,“黑球所占比例⨯总共摸球的次数=随机摸到的黑球次数”.解:设盒中原有白球有x 个,根据题意得:()2555100x ⨯+=⨯, 解得:x =15,答:盒中原有白球约有15个.故答案为:15.【点睛】本题主要考查用样本估计总体,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.8、 相等 样本 简单的随机抽样【解析】略9、8400【解析】【分析】由题意可知:抽取500份试卷中合格率为420100%84%500⨯=,则估计全市10000份试卷成绩合格的人数约为1000084%8400⨯=份.【详解】 解:420100008400500⨯=(人). 故答案为:8400.【点睛】本题考查了用样本的数据特征来估计总体的数据特征,解题的关键是明白利用样本中的数据对整体进行估算是统计学中最常用的估算方法.10、8【解析】【分析】根据第一、二、三、四组所对应的各个长方形高的比为2:3:4:1,可求出第四组所占整体的百分比,进而根据频数=频率×样本容量即可.【详解】解:80×12+3+4+1=8,故答案为:8.【点睛】本题考查频数分布直方图,根据各组所对应的各个长方形高的比,可求出第四组所占整体的百分比是解决问题的关键.三、解答题1、(1)400人;(2)画图见解析;(3)500人【解析】【分析】(1)由喜欢足球的有100人,占比25%,列式10025%,再计算即可得到答案;(2)分别求解喜欢排球的占比为:10%,喜欢篮球的占比为:25%,喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有100400 25%=人,(2)喜欢排球的占比为:40100%10%, 400⨯=所以喜欢篮球的占比为:140%25%10%25%,---=喜欢篮球的人数为:40025%100⨯=人,喜欢乒乓球的人数有:40040%160⨯=人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:200025%500⨯=人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.2、 (1)这次活动一共调查了250名学生;(2)见解析;(3)100.8°(4)320人【解析】【分析】(1)直接利用足球人数÷所占百分比=总人数,即可得出答案;(2)首先求出篮球人数进而补全条形统计图;(3)利用(2)中所求,得出所占百分比进而得出答案;(4)利用羽毛球所占百分比进而估计总人数即可;(1)解:由题意得:总人数为:8032%=250人,答:这次活动一共调查了250名学生;(2)解:由题意得:篮球人数为:250-80-40-60=70(人),如图所示:(3)解:依题意得:70250×360°=100.8°;答:选择篮球项目的人数所在扇形的圆心角为100.8°;(4)依题意得:2000×40250=320(人),答:该学校选择羽毛球项目的学生人数大约为320人.【点睛】本题考查了条形统计图以及扇形统计图的应用,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.3、(1)25%;72;(2)见解析;(3)700.【解析】【分析】(1)先根据D等级人数及其所占百分比求出被调查的总人数,再由四个等级人数之和等于总人数求出B等级人数,最后用B等级人数除以总人数可得答案,再用360°乘以C等级人数所占比例可得答案;(2)根据(1)中计算结果可补全条形图;(3)用总人数乘以样本中A、B等级人数和所占比例即可.【详解】解:(1)∵被调查的人数为4÷10%=40(人),∴B等级人数为40﹣(18+8+4)=10(人),则B(良好)等级人数所占百分比是1040×100%=25%,在扇形统计图中,C(合格)等级所在扇形的圆心角度数是360°×840=72°,故答案为:25%;72;(2)补全条形统计图如下:;(3)估计评价结果为A(优秀)等级或B(良好)等级的学生共有1000×181040=700(人).故答案为:700.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大小.4、 (1)一共抽调100名学生;(2)见解析;(3)该校学生中有240人的成绩为不及格【解析】【分析】(1)根据及格人数和及格人数所占的百分比求解即可;(2)求出良好人数即可补全条形统计图;(3)由总人数乘以样本中不及格人数所占的比例即可求解.(1)解:30÷30%=100(名),。

九年级(上)期末数学(上册及下册前两章)试卷(含答案)

九年级(上)期末数学(上册及下册前两章)试卷(含答案)

九年级(上)期末数学试卷一、选择题(本题共12小题,每小题3分,共36分)1.(3分)一元二次方程x2+2x=0的根是()A.x1=0,x2=2B.x1=0,x2=﹣2C.x1=1,x2=﹣2D.x1=1,x2=2 2.(3分)若点(3,4)是反比例函数y=图象上一点,此函数图象必须经过点()A.(2,6)B.(2,﹣6)C.(4,﹣3)D.(3,﹣4)3.(3分)将一个长方体内部挖去一个圆柱(如图所示),它的主视图是()A.B.C.D.4.(3分)一个菱形的两条对角线的长分别为5和8,那么这个菱形的面积是()A.40B.20C.10D.255.(3分)二次函数y=ax2+bx+c的部分图象如图所示,由图象可知方程ax2+bx+c=0的根是()A.x1=﹣1,x2=5B.x1=﹣2,x2=4C.x1=﹣1,x2=2D.x1=﹣5,x2=5 6.(3分)如图,四边形ABCD是平行四边形,下列说法不正确的是()A.当AC=BD时,四边形ABCD是矩形B.当AB=BC时,四边形ABCD是菱形C.当AC⊥BD时,四边形ABCD是菱形D.当∠DAB=90°时,四边形ABCD是正方形7.(3分)一件衣服的原价是500元,经过两次提价后的价格为621元,如果每次提价的百分率都是x,根据题意,下面列出的方程正确的是()A.500(1+x)2=621B.500(1﹣x)2=621C.500(1+x)=621D.500(1﹣x)=6218.(3分)如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)9.(3分)如图,∠1=∠2,DE∥AC,则图中的相似三角形有()A.2对B.3对C.4对D.5对10.(3分)下列四个函数图象中,当x<0时,函数值y随自变量x的增大而减小的是()A.B.C.D.11.(3分)如图,一艘轮船在A处测得灯塔P位于其东北方向上,轮船沿正东方向航行30海里到达B处后,此时测得灯塔P位于其北偏东30°方向上,此时轮船与灯塔P的距离是()海里.A.15+15B.30+30C.45+15D.6012.(3分)如图,Rt△BOA与Rt△COA的斜边在x轴上,BA=6,A(10,0),AC与OB 相交于点E,且CA=CO,连接BC,下列判断一定正确的是()①△ABE∽△OCE;②C(5,5);③BC=;④S△ABC=3.A.①③B.②④C.①②③D.①②③④二、填空题(本题共4小题,每小题3分,共12分)13.(3分)若关于x的一元二次方程x2﹣4x+k=0有两个相等的实数根,则k的值为.14.(3分)如图,在△ABC中,D、E分别为AB、AC上的点,若DE∥BC,=,则=.15.(3分)如图,在Rt△ABC中,∠C=90°,AB=4,BC=1,则cos A的值是.16.(3分)二次函数y=ax2+bx+c(a、b、c为常数,且a≠0)中的x与y的部分对应值如下表:当ax2+(b﹣1)x+c>0时,x的取值范围是.三、解答题(本大题有7题,其中17题8分,18题6分,19题6分,20题7分,21题8分,22题8分,23题9分,共52分)17.(6分)计算:cos45°﹣2sin60°+3tan230°﹣(cos60°﹣1)018.(6分)解方程:(x﹣2)2=3(x﹣2).19.(6分)在一个不透明的袋子里有1个红球,1个黄球和n个白球,它们除颜色外其余都相同.(1)从这个袋子里摸出一个球,记录其颜色,然后放回,摇均匀后,重复该实验,经过大量实验后,发现摸到白球的频率稳定于0.5左右,求n的值;(2)在(1)的条件下,先从这个袋中摸出一个球,记录其颜色,放回,摇均匀后,再从袋中摸出一个球,记录其颜色.请用画树状图或者列表的方法,求出先后两次摸出不同颜色的两个球的概率.20.(8分)如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD、BE.(1)求证:CE=AD;(2)当D在AB中点时,四边形BECD是什么特殊四边形?说明你的理由.21.(8分)将一条长为56cm的铁丝剪成两段并把每一段铁丝做成一个正方形.(1)要使这两个正方形的面积之和等于100cm2,该怎么剪?(2)设这两个正方形的面积之和为Scm2,当两段铁丝长度分别为何值时,S有最小值?22.(9分)如图,在矩形OABC中,OA=3,OC=4,分别以OA、OC所在直线为x轴、y 轴,建立平面直角坐标系,D是边CB上的一个动点(不与C、B重合),反比例函数y =(k>0)的图象经过点D且与边BA交于点E,作直线DE.(1)当点D运动到BC中点时,求k的值;(2)求的值;(3)连接DA,当△DAE的面积为时,求k值.23.(9分)如图1,在平面直角坐标系中,抛物线y=ax2+bx+3与直线y=x﹣3交于点A(3,0)和点B(﹣2,n),与y轴交于点C.(1)求出抛物线的函数表达式;(2)在图1中,平移线段AC,点A、C的对应点分别为M、N,当N点落在线段AB上时,M点也恰好在抛物线上,求此时点M的坐标;(3)如图2,在(2)的条件下,在抛物线上是否存在点P(不与点A重合),使△PMC的面积与△AMC的面积相等?若存在,直接写出点P的坐标;若不存在,请说明理由.参考答案与试题解析一、选择题(本题共12小题,每小题3分,共36分)1.【解答】解:∵x2+2x=0,∴x(x+2)=0,则x=0或x+2=0,解得:x1=0,x2=﹣2,故选:B.2.【解答】解:根据题意,若点(3,4)是反比例函数y=图象上一点,则m=3×4=12,结合反比例函数图象上的点的特点,分析选项可得,只有A的点的横纵坐标的积为12;故选:A.3.【解答】解:从正面看易得主视图为长方形,中间有两条垂直地面的虚线.故选:A.4.【解答】解:∵菱形的两条对角线的长分别为5和8,∴这个菱形的面积是,故选:B.5.【解答】解:由图象可知对称轴x=2,与x轴的一个交点横坐标是5,它到直线x=2的距离是3个单位长度,所以另外一个交点横坐标是﹣1.所以x1=﹣1,x2=5.故选:A.6.【解答】解:A、∵四边形ABCD是平行四边形,AC=BD,∴四边形ABCD是矩形,正确,故本选项错误;B、∵四边形ABCD是平行四边形,AB=BC,∴四边形ABCD是菱形,正确,故本选项错误;C、四边形ABCD是平行四边形,AC⊥BD,∴四边形ABCD是菱形,正确,故本选项错误;D、四边形ABCD是平行四边形,∠DAB=90°,∴四边形ABCD是矩形,错误,故本选项正确;故选:D.7.【解答】解:设平均每次提价的百分率为x,根据题意得:500(1+x)2=621,故选:A.8.【解答】解:∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选:A.9.【解答】解:∵DE∥AC,∴△BED∽△BAC,∠EDA=∠DAC,∵∠1=∠2,∴△ADE∽△CAD,∵DE∥AC,∴∠2=∠EDB,∵∠1=∠2,∴∠1=∠EDB,∵∠B=∠B,∴△BDE∽△BAD,∴△ABD∽△CBA,故选:C.10.【解答】解:A、根据函数的图象可知y随x的增大而增大,故本选项错误;B、根据函数的图象可知在第三象限内y随x的增大而增大,故本选项错误;C、根据函数的图象可知,当x<0时,在对称轴的右侧y随x的增大而减小,在对称轴的左侧y随x的增大而增大,故本选项错误;D、根据函数的图象可知,当x<0时,y随x的增大而减小;故本选项正确.故选:D.11.【解答】解:作BD⊥AP,垂足为D,根据题意,得∠BAD=45°,∴AC=PC,即30+BC=PC,又∵∠BPC=30°,∴BP=2BC,PC==BC,∴30+BC=BC,即BC==15(+1),∴BP=2BC=30(+1)=30+30.故选:B.12.【解答】解:如图,作CF⊥OA于F,BH⊥OA于H,连接BF.∵∠OCE=∠ABE=90°,∠OEC=∠AEB,∴△ABE∽△OCE,故①正确,∵A(10,0),∴OA=10,∵OC=CA,∠OCA=90°,CF⊥OA,∴OF=AF=CF=5,∴C(5,5),故②正确,在Rt△ABO中,∵OB===8,∵•OA•BH=•OB•AB,∴BH=,∵tan∠BOH==,∴=,∴OH=,∴B(,),∵C(5,5),∴BC==,故③正确,S△ABC=S△CFB+S△AFB﹣S△ACF=×5×(﹣5)+×5×﹣=3,故④正确,故选:D.二、填空题(本题共4小题,每小题3分,共12分)13.【解答】解:根据题意得△=(﹣4)2﹣4k=0,解得k=4.故答案为4.14.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∴==.故答案为:.15.【解答】解:∵∠C=90°,AB=4,BC=1,∴AC===,则cos A==,故答案为:.16.【解答】解:由表中数据得到抛物线与直线y=x的交点坐标为(﹣1,﹣1),(3,3),所以当﹣1<x<3时,ax2+bx+c>x,即ax2+(b﹣1)x+c>0.故答案为﹣1<x<3.三、解答题(本大题有7题,其中17题8分,18题6分,19题6分,20题7分,21题8分,22题8分,23题9分,共52分)17.【解答】解:原式=×﹣2×+3×()2﹣1=1﹣+1﹣1=1﹣.18.【解答】解:移项得:(x﹣2)2﹣3(x﹣2)=0,即:(x﹣2)(x﹣2﹣3)=0,则(x﹣2)(x﹣5)=0,则x﹣2=0或x﹣5=0,则方程的解是:x1=2,x2=5.19.【解答】解:(1)根据题意,得:=,解得n=2;(2)画树状图如下:由树状图知,共有16种等可能结果,其中先后两次摸出不同颜色的两个球的结果数为10,∴先后两次摸出不同颜色的两个球的概率为=.20.【解答】(1)证明:∵DE⊥BC,∴∠DFB=90°,∵∠ACB=90°,∴∠ACB=∠DFB,∴AC∥DE,∵MN∥AB,即CE∥AD,∴四边形ADEC是平行四边形,∴CE=AD;(2)解:四边形BECD是菱形,理由如下:∵D为AB中点,∴AD=BD,∵CE=AD,∴BD=CE,∵BD∥CE,∴四边形BECD是平行四边形,∵∠ACB=90°,D为AB中点,∴CD=BD,∴四边形BECD是菱形.21.【解答】解:(1)设其中一个正方形的边长为xcm,则另一个正方形的边长为(14﹣x)cm,依题意列方程得x2+(14﹣x)2=100,整理得:x2﹣14x+48=0,(x﹣6)(x﹣8)=0,解方程得x1=6,x2=8,6×4=24(cm),56﹣24=32(cm);因此这段铁丝剪成两段后的长度分别是24cm、32cm;(2)设其中一个正方形的边长为xcm,则另一个正方形的边长为(14﹣x)cm,依题意列方程得S=x2+(14﹣x)2=2x2﹣28x+196,当x=﹣==7时,S有最小值,∴14﹣7=7,答:当两段铁丝长度分别为28cm时,S有最小值.22.【解答】解:(1)∵OA=3,OC=4,四边形OABC为矩形,∴BC=OA=3,点B的坐标为(3,4).∵点D为边BC的中点,∴CD=BC=,∴点D的坐标为(,4).又∵点D在反比例函数y=(k>0)的图象上,∴k=×4=6.(2)∵点D,E在反比例函数y=(k>0)的图象上,∴点D的坐标为(,4),点E的坐标为(3,).又∵点B的坐标为(3,4),∴BD=3﹣,BE=4﹣,∴==.(3)由(2)可知:AE=,BD=3﹣,∴S△DAE=AE•BD=××(3﹣)=,整理,得:k2﹣12k+32=0,解得:k1=4,k2=8,∴当△DAE的面积为时,k的值为4或8.23.【解答】解:(1)把(﹣2,n)代入y=x﹣3得n=﹣2﹣3=﹣5,则B(﹣2,﹣5),把A(3,0),B(﹣2,﹣5)代入得,解得,∴抛物线解析式为y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(3,0),当x=0时,y=﹣x2+2x+3=3,则C(0,3)设N(t,t﹣3),∵AC平移得到MN,∴AC∥MN,AC=MN,而点C先向下平移3个单位,再向右平移3个单位得到点A,当点N先向下平移3个单位,再向右平移3个单位得到点M,则M(t+3,t﹣6),把M(t+3,t﹣6)代入y=﹣x2+2x+3得t﹣6=﹣(t+3)2+2(t+3)+3,解得t1=1,t2=﹣6,∴M点的坐标为(4,﹣5),(﹣3,﹣12)(舍去)当点N先向上平移3个单位,再向左平移3个单位得到点M,则M(t﹣3,t),把M(t﹣3,t)代入y=﹣x2+2x+3得t=﹣(t﹣3)2+2(t﹣3)+3,解得t1=3(舍去),t2=4,∴M点的坐标为(﹣1,4)(舍去),综上所述,M点坐标为(4,﹣2);(3)设直线CM的解析式为y=mx+n,把C(0,3),M(4,﹣2)代入得,∴直线MC的解析式为y=﹣x+3,∵△PMC的面积与△AMC的面积相等,∴AP∥MC,设AP的解析式为y=﹣x+p,把A(3,0)代入得p=,∴AP的解析式为y=﹣x+,解方程组得或,此时P点坐标为(,);直线AP的解析式为y=﹣x+与y轴的交点坐标为(0,),∵﹣3=,把直线CM向下平移个单位得到y=﹣x+,解方程得或,此时P点坐标为(,),(,),综上所述,P点坐标为(,)或(,)或(,).。

2022—2023年部编版九年级数学下册期末试卷(及参考答案)

2022—2023年部编版九年级数学下册期末试卷(及参考答案)

2022—2023年部编版九年级数学下册期末试卷(及参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )A B C D 2.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示( )A .支出20元B .收入20元C .支出80元D .收入80元3. 20位同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意,列方程组正确的是( )A .523220x y x y +=⎧⎨+=⎩B .522320x y x y +=⎧⎨+=⎩C .202352x y x y +=⎧⎨+=⎩D .203252x y x y +=⎧⎨+=⎩4.我国明代珠算家程大位的名著《直指算法统宗》里有一道著名算题:”一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚各几丁?”意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,试问大、小和尚各多少人?设大和尚有x 人,依题意列方程得( )A .()31003x x +-=100 B .10033x x -+=100 C .()31001003x x --= D .10031003x x --= 5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.一个等腰三角形的两条边长分别是方程27100x x -+=的两根,则该等腰三角形的周长是( )A .12B .9C .13D .12或97.如图,将▱ABCD 沿对角线BD 折叠,使点A 落在点E 处,交BC 于点F ,若ABD 48∠=,CFD 40∠=,则E ∠为( )A .102B .112C .122D .928.一次函数y =ax +b 和反比例函数y a b x-=在同一直角坐标系中的大致图象是( ) A . B .C .D .9.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122x x x =++的解是___________. 2.因式分解:3269a a a -+=_________.3.已知关于x 的分式方程233x k x x -=--有一个正数解,则k 的取值范围为________.4.在Rt ABC ∆中,90C =∠,AD 平分CAB ∠,BE 平分ABC ∠,AD BE 、相交于点F ,且4,2AF EF ==,则AC =__________.5.现有四张正面分别标有数字﹣1,1,2,3的不透明卡片,它们除数字外其余完全相同,将它们背而面朝上洗均匀,随机抽取一张,记下数字后放回..,背面朝上洗均匀,再随机抽取一张记下数字,前后两次抽取的数字分别记为m ,n ,则点P (m ,n )在第二象限的概率为__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:241244x x x x -=--+2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.4.如图,在ABC 中,点D E 、分别在边BC AC 、上,连接AD DE 、,且B ADE C ∠=∠=∠.(1)证明:BDA CED △∽△;(2)若45,2B BC ∠=︒=,当点D 在BC 上运动时(点D 不与B C 、重合),且ADE 是等腰三角形,求此时BD 的长.5.为了解某中学学生课余生活情况,对喜爱看课外书、体育活动、看电视、社会实践四个方面的人数进行调查统计.现从该校随机抽取n 名学生作为样本,采用问卷调查的方法收集数据(参与问卷调查的每名学生只能选择其中一项).并根据调查得到的数据绘制成了如图所示的两幅不完整的统计图.由图中提供的信息,解答下列问题:(1)求n的值;(2)若该校学生共有1200人,试估计该校喜爱看电视的学生人数;(3)若调查到喜爱体育活动的4名学生中有3名男生和1名女生,现从这4名学生中任意抽取2名学生,求恰好抽到2名男生的概率.6.俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于30%.试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为y本,销售单价为x元.(1)请直接写出y与x之间的函数关系式和自变量x的取值范围;(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润w 元最大?最大利润是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、B5、A6、A7、B8、A9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、322、2(3)a a -3、k<6且k ≠34 5、3166、8﹣2π三、解答题(本大题共6小题,共72分)1、4x =2、(1)k >﹣3;(2)取k=﹣2, x 1=0,x 2=2.3、(1)略;(2)37°4、(1)理由见详解;(2)2BD =1,理由见详解.5、(1)50;(2)240;(3)12. 6、(1)y=﹣10x+740(44≤x ≤52);(2)当每本足球纪念册销售单价是50元时,商店每天获利2400元;(3)将足球纪念册销售单价定为52元时,商店每天销售纪念册获得的利润w元最大,最大利润是2640元.。

2022—2023年部编版九年级数学下册期末试卷(参考答案)

2022—2023年部编版九年级数学下册期末试卷(参考答案)

2022—2023年部编版九年级数学下册期末试卷(参考答案) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1523.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )A .3,4,5B .1,2,3C .6,7,8D .2,3,44.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .45.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根6.已知:等腰直角三角形ABC 的腰长为4,点M 在斜边AB 上,点P 为该平面内一动点,且满足PC =2,则PM 的最小值为( )A .2B .2 2C .2+2D .27.如图,函数221y ax x =-+和y ax a =-(a 是常数,且0a ≠)在同一平面直角坐标系的图象可能是( )A. B.C. D.8.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2) B.(―9,18)C.(―9,18)或(9,―18) D.(―1,2)或(1,―2)9.如图,在平行四边形ABCD中,点E在边DC上,DE:EC=3:1,连接AE交BD于点F,则△DEF的面积与△BAF的面积之比为()A.3:4 B.9:16 C.9:1 D.3:110.如图,矩形ABCD中,AB=8,BC=4.点E在边AB上,点F在边CD上,点G、H在对角线AC上.若四边形EGFH是菱形,则AE的长是()A.5B.5C.5 D.6二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a⋅=______________.2.分解因式:3x-x=__________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,在Rt△ACB中,∠ACB=90°,∠A=25°,D是AB上一点,将Rt△ABC沿CD折叠,使点B落在AC边上的B′处,则∠ADB′等于______.5.如图,从一块半径为1m的圆形铁皮上剪出一个圆周角为120°的扇形ABC,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m.6.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M为曲线部分的最低点,则△ABC的面积是__________.三、解答题(本大题共6小题,共72分)1.解方程:15102x xx x-+--=22.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m2+1.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.如图,点C为△ABD外接圆上的一动点(点C不在BD上,且不与点B,D重合),∠ACB=∠ABD=45°.(1)求证:BD是该外接圆的直径;(2)连结CD,求证:AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究222,,,三者之间满足的等量关系,并证明你的结论.DM AM BM485的选修情况,学校采取随机抽样的方法进行问卷调查(每个被调查的学生必须选择而且只能选择其中一门).对调查结果进行了整理,绘制成如下两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)本次调查的学生共有人,在扇形统计图中,m的值是;(2)将条形统计图补充完整;(3)在被调查的学生中,选修书法的有2名女同学,其余为男同学,现要从中随机抽取2名同学代表学校参加某社区组织的书法活动,请直接写出所抽取的2名同学恰好是1名男同学和1名女同学的概率.6.一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.(1)若降价3元,则平均每天销售数量为________件;(2)当每件商品降价多少元时,该商店每天销售利润为1200元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、B4、C5、A6、B7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、a 52、x (x+1)(x -1)3、84、40°.5、136、12三、解答题(本大题共6小题,共72分)1、x =7.2、11m m +-,原式=.3、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1)详略;(2)详略;(3)DM 2=BM 2+2MA 2,理由详略.5、(1)50、30%.(2)补图见解析;(3)35. 6、(1)26;(2)每件商品降价10元时,该商店每天销售利润为1200元.。

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017第一学期九年级数学期末试卷(含答案)

2016-2017学年度第一学期九年级数学期末检测试卷一、选择题(本大题8小题,每小题3分,共24分,请将下列各题中唯一正确的答案代号A 、B 、C 、D 填到本题后括号内)1. 民族图案是数学文化中的一块瑰宝,下列图案中,既不是中心对称图形也不是轴对称图形的是( )2.一元二次方程240+=x x 的解为( )A .4=xB .4=-xC .121,3=-=x xD .120,4==-x x 3.如果关于x 的一元二次方程ax 2+x ﹣1=0有实数根,则a 的取值范围是( ) A .14a >-B .14a ≥- C .14a ≥-且a ≠0 D .14a >且a ≠0 4.抛物线262y x x =-+的顶点坐标是( )A .(-3,7)B .(3,2)C .(3,-7)D .(6,2)5.如图,AB 是⊙O 的直径,C ,D 是⊙O 上一点,∠CDB =20°,过点C 作⊙O 的切线交AB 的延长线于点E ,则∠E 的度数为( ) A .20° B .30° C .40° D . 50°6. 一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ) A .49B .13C .16D .197.若反比例函数1232)12(---=k kx k y 的图象位于第二、四象限,则k 的值是( )A . 0B . 0或23 C . 0或23- D . 4 8. 已知面积为2的三角形ABC ,一边长为x ,这边上的高为y ,则y 与x 的变化规律用图象表示正确的是( )9.如图,Rt △ABC 的斜边AB 与量角器的直径恰好重合,B 点与0刻度线的一端重合,∠ABC=40°,射线CD 绕点C 转动,与量角器外沿交于点D ,若射线CD 将△ABC 分割出以BC 为边的等腰三角形,则点D 在量角器上对应的度数是( )A .40°B .80°或140°C .70°D .70°或80° 10.如图,已知△ABC 为等边三角形,AB =2,点D 为边AB 上一点,过点D 作DE∥AC,交BC 于点E ;过点E 作EF⊥DE,交AB 的延长线于点F.设AD =x ,△DEF 的面积为y ,则能大致反映y 与x函数关学校 班级 姓名 座位号系的图象是( )二、填空题(本题共4小题,每小题4分,共16分)11.某药品2013年的销售价为50元/盒,2015年降价为42元/盒,若平均每年降价百分率是x ,则可以列方程 ; 12.如图,在平面直角坐标系中,抛物线212y x =经过平移得到抛物线2122y x x =-,其对称轴与两段抛物线所围成的阴影部分的面积为__________;13.如图,在平面直角坐标系xOy 中,直线AB 经过点A(6,0)、B(0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为= ;14. 如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是 .三、解答题(本大题2小题,每小题8分,共16分)15. 某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利45元,为了扩大销售、增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出4件,若商场平均每天盈利2100元,每件衬衫应降价多少元?16.设点A 的坐标为(x ,y ),其中横坐标x 可取﹣1、2,纵坐标y 可取﹣1、1、2. (1)求出点A 的坐标的所有等可能结果(用树状图或列表法求解); (2)试求点A 与点B (1,﹣1)关于原点对称的概率.四、(本大题2小题,每小题8分,共16分)17. 如图,正比例函数12y x =-与反比例函数2y 相交于点E (m ,2). (1)求反比例函数2y 的解析式.(2)观察图象直接写出当120y y >>时,x 的取值范围.18.如图,在平面直角坐标系中,点A 的坐标是(10,0),点B 的坐标为(8,0),点C ,D 在以OA 为直径的半圆M 上,且四边形OCDB 是平行四边形.求点C 的坐标.五、(本大题2小题,每小题10分,共20分)19.如图所示,已知△ABC 的三个顶点的坐标分别为A (﹣2,3),B (﹣6,0),C (﹣1,0). (1)点A 关于原点O 对称的点的坐标为 ;(2)将△ABC 绕坐标原点O 逆时针旋转90°,画出图形并求A 点经过的路径长; (3)请直接写出:以A 、B 、C 为顶点的平行四边形的第四个顶点D 的坐标.20. 实验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y (毫克/百毫升)与时间x (时)的关系可近似地用二次函数2200400y x x =-+;1.5小时后(含1.5小时)y 与x 可近似地用反比例函数(0ky k x=>)刻画,如图.(1)喝酒后血液中酒精含量达到最大值?最大值是多少? (2)当x=5时,y=45,求k 的值;(3)按照国家规定,驾驶员血液中酒精含量大于或等于20毫克/百毫升时,属于“酒后驾驶”,不能驾车,假设某驾驶员晚上20:00在家喝了半斤低度白酒,第二天早上7:00能否驾车去上班?说明理由.六、本题12分21. 如图,△ABC 中,BE 是它的角平分线,∠C =90°,D 在AB 边上,以DB 为直径的半圆O 经过点E ,交BC 于点F .(1)求证:AC 是⊙O 的切线;(2)若∠A =30°,连接EF ,求证:EF ∥AB ;(3)在(2)的条件下,若AE =2,求图中阴影部分的面积.七、本题12分22. 操作:在△ABC 中,AC=BC=2,∠C =90°,将一块等腰三角板的直角顶点放在斜边AB 的中点P 处,将三角板绕点P 旋转,三角板的两直角边分别交射线AC 、CB 于D 、E 两点.如图①、②、③是旋转三角板得到的图形中的3种情况,研究:y (毫克/百毫升)455x (时)(1)三角板绕点P旋转,观察线段PD与PE之间有什么数量关系?并结合图②说明理由.(2)三角板绕点P旋转,△PBE是否能成为等腰三角形?若能,指出所有情况(即写出△PBE为等腰三角形时CE的长);若不能,请说明理由.八、本题14分23.科技馆是少年儿童节假日游玩的乐园.如图所示,图中点的横坐标x表示科技馆从8:30开门后经过的时间(分钟),纵坐标y表示到达科技馆的总人数.图中曲线对应的函数解析式为y=,10:00之后来的游客较少可忽略不计.(1)请写出图中曲线对应的函数解析式;(2)为保证科技馆内游客的游玩质量,馆内人数不超过684人,后来的人在馆外休息区等待.从10:30开始到12:00馆内陆续有人离馆,平均每分钟离馆4人,直到馆内人数减少到624人时,馆外等待的游客可全部进入.请问馆外游客最多等待多少分钟?2016-2017九年级数学参考答案一、选择题: 1-10:C D CCD D A C B A二、填空题11、250(1)42x -=; 12、4; 13、 14; 14、513三、解答题:15、解:设每件衬衫应降价x 元,可使商场每天盈利2100元.根据题意得(45﹣x )(20+4x )=2100, 化简得:2403000x x -+=…………………………..5分 解得x 1=10,x 2=30.因尽快减少库存,故x=30.(未作讨论的酌情扣1-2分) 答:每件衬衫应降价30元.…………………………..10分16、(1)列举所有等可能结果,画出树状图如下由上图可知,点A 的坐标的所有等可能结果为:(﹣1,﹣1)、(﹣1,1)、(﹣1,2)、(2,﹣1)、 (2,1)、(2,2),共有6种,…………………………6分 (2)点B (1,﹣1)关于原点对称点的坐标为(-1,1). ∴P (点A 与点B 关于原点对称)=16…………………………10分 四、17、解:(1)设反比例函数解析式为xky =2………………1分 ∵x y 21-=过点)2,(m E ∴122-==-m m ∴)2,1(-E …………4分∵xky =2过)2,1(-E ∴2-=k ∴反比例函数解析式为xy 22-=……………7分 (2)当x <-1时,120y y >>.………………………10分18. 解:过点M 作MF ⊥CD 于点F ,过点C 作CE ⊥x 轴于点E ,连接CM. 在Rt △CMF 中,CF =12CD =12OB =4,CM =12OA =5,∴MF =CM 2-CF 2=3.∴CE =MF =3.又EM =CF =4,OM =12OA =5,∴OE =OM -EM =1. ∴C(1,3).五、19、解:(1)点A 关于原点O 对称的点的坐标为(2,﹣3);…………………………..1分(2)△ABC 旋转后的△A ′B ′C ′如图所示,…………………………..4分 点A ′的对应点的坐标为(﹣3,﹣2); OA ′,即点A;…………..7分(3)若AB 是对角线,则点D (﹣7,3), 若BC 是对角线,则点D (﹣5,﹣3), 若AC 是对角线,则点D (3,3).…………………………..10分 20.解:(1)证明:连接OE.∵OB =OE ,∴∠BEO =∠EBO.∵BE 平分∠CBO ,∴∠EBO =∠CBE. ∴∠BEO =∠CBE.∴EO ∥BC.∵∠C =90°,∴∠AEO =∠C =90°. ∴AC 是⊙O 的切线.(2)证明:∵∠A =30°,∴∠ABC =60°. ∴∠OBE =∠FBE =30°.∴∠BEC =90°-∠FBE =60°. ∵∠CEF =∠FBE =30°,∴∠BEF =∠BEC -∠CEF =60°-30°=30°. ∴∠BEF =∠OBE.∴EF ∥AB. (3)连接OF.∵EF ∥AB ,BF ∥OE ,OB =OE ,∴四边形OBFE 是菱形. ∴S △EFB =S △EOF. ∴S 阴影=S 扇EOF.设圆的半径为r ,在Rt △AEO 中,AE =2,∠A =30°,∴r =OE =233.∴S 阴影=S 扇EOF =60π×(233)2360=2π9.六、21、解:(1)22200400200(1)200y x x x =-+=--+,∴饮酒后1小时血液中酒精含量达到最大值,最大值为200(毫克/百毫升)(2)k=225(3)不能驾车上班,理由:晚上20:00到第二天早上7:00共计11小时,把x=11代入22522511y y x ==得,>20,所以不能.七、22、解:(1)由图①可猜想PD=PE ,再在图②中构造全等三角形来说明.即PD=PE .y (毫克/百毫升)455x (时)理由如下:连接PC,因为△ABC是等腰直角三角形,P是AB的中点,∴CP=PB,CP⊥AB,∠ACP=12∠ACB=45°.∴∠ACP=∠B=45°.又∵∠DPC+∠CPE=∠BPE+∠CPE,∴∠DPC=∠BPE.∴△PCD≌△PBE.∴PD=PE.(2)△PBE是等腰三角形,①当PE=PB时,此时点C与点E重合,CE=0;②当BP=BE时,E在线段BC上,;E在CB的延长线上,;③当EP=EB时,CE=1.八、23、解(1)由图象可知,300=a×302,解得a=,n=700,b×(30﹣90)2+700=300,解得b=﹣,∴y=,(2)由题意﹣(x﹣90)2+700=684,解得x=78,∴=15,∴15+30+(90﹣78)=57分钟所以,馆外游客最多等待57分钟.。

2023年人教版九年级数学(下册)期末试卷含答案

2023年人教版九年级数学(下册)期末试卷含答案

2023年人教版九年级数学(下册)期末试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x -3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥36.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .27.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .49.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.364 的平方根为__________.2.分解因式:2x 2﹣8=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+3x+m-1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、D6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±22、2(x+2)(x ﹣2)3、0或14、154或3075、6、245三、解答题(本大题共6小题,共72分)1、x=32、(1)m ≤134. (2)m=-3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

2023年人教版九年级数学(下册)期末试卷及答案(汇总)

2023年人教版九年级数学(下册)期末试卷及答案(汇总)

2023年人教版九年级数学(下册)期末试卷及答案(汇总)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2019-=( )A .2019B .-2019C .12019D .12019- 2.如果()P m 3,2m 4++在y 轴上,那么点P 的坐标是( )A .()2,0-B .()0,2-C .()1,0D .()0,13.抛物线y=(x ﹣2)2﹣1可以由抛物线y=x 2平移而得到,下列平移正确的是( )A .先向左平移2个单位长度,然后向上平移1个单位长度B .先向左平移2个单位长度,然后向下平移1个单位长度C .先向右平移2个单位长度,然后向上平移1个单位长度D .先向右平移2个单位长度,然后向下平移1个单位长度4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.下列说法正确的是( )A .负数没有倒数B .﹣1的倒数是﹣1C .任何有理数都有倒数D .正数的倒数比自身小6.下列性质中,菱形具有而矩形不一定具有的是( )A .对角线相等B .对角线互相平分C .对角线互相垂直D .邻边互相垂直7.如图,直线y=kx+b (k ≠0)经过点A (﹣2,4),则不等式kx+b >4的解集为( )A .x >﹣2B .x <﹣2C .x >4D .x <48.下列图形中,是中心对称图形的是( )A .B .C .D .9.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°10.如图,在平面直角坐标系中,ABCD 的三个顶点坐标分别为()()()1,04,22,3A B C ,,,第四个顶点D 在反比例函数()0k y x x=<的图像上,则k 的值为( )A .1-B .2-C .3-D .4-二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23a a ⋅=______________.2.分解因式:x 2-9=______.3.式子3x -在实数范围内有意义,则 x 的取值范围是__________.4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图,△ABC 中,AB=BC ,∠ABC=90°,F 为AB 延长线上一点,点E 在BC 上,且AE=CF ,若∠BAE=25°,则∠ACF=__________度.6.如图,△ABC 中,AD 是BC 边上的中线,BE 是△ABD 中AD 边上的中线,若△ABC 的面积是24,则△ABE 的面积__________.三、解答题(本大题共6小题,共72分)1.(1)计算:|3﹣5|﹣(π﹣3.14)0+(﹣2)﹣1+sin30°(2)解分式方程:244x -+1=12x -2.关于x 的一元二次方程x 2+3x+m-1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.3.在□ABCD ,过点D 作DE ⊥AB 于点E ,点F 在边CD 上,DF =BE ,连接AF ,BF.(1)求证:四边形BFDE 是矩形;(2)若CF =3,BF =4,DF =5,求证:AF 平分∠DAB .4.如图,在平面直角坐标系中,一次函数1y ax b =+的图象与反比例函数2k y x=的图象交于点()A 1,2和()B 2,m -. (1)求一次函数和反比例函数的表达式;(2)请直接写出12y y >时,x 的取值范围;(3)过点B 作BE //x 轴,AD BE ⊥于点D ,点C 是直线BE 上一点,若AC 2CD =,求点C 的坐标.5.甲、乙两家快递公司揽件员(揽收快件的员工)的日工资方案如下:甲公司为“基本工资+揽件提成”,其中基本工资为70元/日,每揽收一件提成2元;乙公司无基本工资,仅以揽件提成计算工资.若当日揽件数不超过40,每件提成4元;若当日搅件数超过40,超过部分每件多提成2元.如图是今年四月份甲公司揽件员人均揽件数和乙公司搅件员人均揽件数的条形统计图:(1)现从今年四月份的30天中随机抽取1天,求这一天甲公司揽件员人均揽件数超过40(不含40)的概率;(2)根据以上信息,以今年四月份的数据为依据,并将各公司揽件员的人均揽件数视为该公司各揽件员的揽件数,解决以下问题:①估计甲公司各揽件员的日平均件数;②小明拟到甲、乙两家公司中的一家应聘揽件员,如果仅从工资收入的角度考虑,请利用所学的统计知识帮他选择,井说明理由.6.某商场以每件280元的价格购进一批商品,当每件商品售价为360元时,每月可售出60件,为了扩大销售,商场决定采取适当降价的方式促销,经调查发现,如果每件商品降价1元,那么商场每月就可以多售出5件.(1)降价前商场每月销售该商品的利润是多少元?(2)要使商场每月销售这种商品的利润达到7200元,且更有利于减少库存,则每件商品应降价多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、D4、D5、B6、C7、A8、D9、A10、A二、填空题(本大题共6小题,每小题3分,共18分)1、a 52、(x +3)(x -3)3、x ≥34、(4,3)5、706、6三、解答题(本大题共6小题,共72分)1、(1)1;(2)分式方程的解为x=﹣1.2、(1)m ≤134. (2)m=-3.3、(1)略(2)略4、(1)反比例函数的解析式为22y x=,一次函数解析式为:1y x 1=+;(2)当2x 0-<<或x 1>时,12y y >;(3)当点C 的坐标为()11-或)1,1-时,AC 2CD =. 5、(1)215;(2)39件;仅从工资收入的角度考虑,小明应到乙公司应聘.6、(1) 4800元;(2) 降价60元.。

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。

吉林省松原市前郭县2022-2023学年第一学期九年级数学期末试卷(含答案)

吉林省松原市前郭县2022-2023学年第一学期九年级数学期末试卷(含答案)

前郭县 2022—2023 学年度第一学期期末考试九年级数学试卷二、填空题(每小题 3 分,共 24 分)b x 2 0a 0题 号 得 分一 二 三 四 五 六 总 分2022 a b 的一个解是 x=-1,那么代数式ax 27.关于 x 的一元二次方程 的值是.y ax 2b xc 一、单项选择题(每小题 2 分,共 12 分) 8.若方程 ax 2 b x c 0(a >0)的两个根是﹣3 和 1,则对于二次函数 ,1.下列方程中是关于 x 的一元二次方程的是( ) 当 y >0 时,x 的取值范围是 9.已知关于 x 的一元二次方程 .1 C . x 1 x 2x2B . ax 2b xc 01D .3x 2 2xy 5y 2ax 22x 1 0 A . 有两个不相等的实数根,则 a 的取值范围x2 2.如图,△AOB 绕点 O 逆时针旋转 75°得到△COD ,若∠AOB =30°,∠BOC 的度数是( A .30°B .35°C .45°D .75°)是 .10.如图,将半径为 10cm 的圆形纸片沿一条弦 AB 折叠,折叠后弧 AB 的中点 C 与圆心 O 重 叠,则弦 AB 的长度为cm .11.如图,在 ABC 中, CAB 70 ,在同一平面内,将 ABC 绕点 A 逆时针旋转到△AB C的位置,使C C ∥ AB ,作 B D ∥ A C 交 BC 于点 D ,则 AB D.3.如图, O 中,弦 AB 、 C D 相交于 P , A 40 , AP D 75 ,则∠B= A .15B .35C . 40D . 75( )4.一个不透明的袋子中装有除颜色外其余均相同的 3 个白球, x 个黑球,随机的从袋子中 第 10 题图第 11 题图第 12 题图第 13 题图kx 3 x和 y摸出一个球,记录下颜色后,放回袋子中并摇匀,大量重复试验后,发现摸出白球的频率 12.如图,两个反比例函数 y 在第一象限内的图象依次是 C 和 C ,设点 P 在1 2 稳定在 0.3 附近,则 x 的值为 ()C 上,PC⊥x 轴于点 C ,交 C 于点 A ,PD⊥y 轴于点D ,交 C 于点 B ,若四边形 PAOB 的面积 12 2 A .2B .3C .7D .13为 5,则 k=.k 25.反比例函数 y A . k 2的图象在每一个象限内 y 随 x 的增大而减小,那么 k 值范围是( ) 13.如图,圆锥体的高 h 2 2c m ,底面圆半径 r =1cm ,则该圆锥体的侧面展开图的圆心 xB . k 2C . k 2k 2 D .角的度数是.ax14.烟花厂为建党 100 周年特别设计制作了一种新型礼炮,这种礼炮的升空高度 h (m )与 6.二次函数 ax b x c y 2的图象如图所示,则一次函数 y bx c 和反比例函数 y2 飞行时间 t (s )的关系式是 h t 2 8t .若这种礼炮在升空到最高点时引爆,则从点 3在同一平面直角坐标系中的图象可能是 ()火升空到引爆需要的时间为s.九年级数学试卷 第 1 页 (共 8 页) 九年级数学试卷 第 2 页(共 8 页)三、解答题(每题 5 分,共 20 分) 四、解答题(每小题 7 分,共 28 分) x 2 2x 4 0215.解方程: 19.如图, AB 为O 的直径,点 C 为O 上一点, BD CE 于点 D , BC 平分AB D .(1)求证:直线CE 是O 的切线;(2)若 ABC 30,O 的半径为 2,求图中阴影部分的面积.16.如图,图中的小方格都是边长为 1 的正方形,△ABC 的顶点坐标分别为 A (﹣3,0), B (﹣1,﹣2),C (﹣2,2).(1)请在图中画出△ABC 关于原点 O 的中心对称图形; (2)请直接写出以 A 、B 、C 为顶点的平行四边形的 第四个顶点 D 的坐标.20.请根据图片内容,回答下列问题:17.如图,O 的弦 AB 、C D 相交于点 E ,且 AB C D .求证: BE DE .(1)每轮传染中,平均一个人传染了几个人?(2)按照这样的速度传染,第三轮将新增多少名感染者(假设每轮传染人数相同)?y m 2x 2 2mx m 318.已知抛物线与x 轴有两个交点. (1)求 m 的取值范围;(2)当 m 取满足条件的最大整数时,求抛物线与 x 轴两个交点的坐标.21. 一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字 1,2,3,4. (1)从口袋中随机摸出一个小球,求摸出小球上的数字是奇数的概率(直接写出结果);九年级数学试卷 第 3 页 (共 8 页) 九年级数学试卷 第 4 页(共 8 页)(2)先从口袋中随机摸出一个小球,将小球上的数字记为 x ,在剩下的三个小球中再随机 摸出一个小球,将小球上的数字记为 y .请用列表或画树状图法,求由 x ,y 确定的点(x,y ) yx 4的图象上的概率.(2)如图 2,将另一长,宽,高分别为 60cm ,20cm ,10cm ,且与原长方体相同重量的 长方体放置于该水平玻璃桌面上.若玻璃桌面能承受的最大压强为 2000Pa ,问:这种摆 放方式是否安全?请判断并说明理由.在函数m x22.如图,已知一次函数 y =ax+b 与反比例函数 y(x <0)的图象交于 A (﹣2,4),B (﹣4,2)两点,且与 x 轴和 y 轴分别交于点 C 、点 D . 24.【问题原型】小伟遇到这样一个问题:如图①,在等边三角形 ABC 内部有一点 P ,PA =2,PB =3 ,PC =1,求∠BPC 的度数.小伟是这样思考的:将线段 BP 绕点 B 逆时针旋m x (1)根据图象直接写出不等式 <ax+b 的解集;(2)求反比例函数与一次函数的解析式;转 60°得到线段 BP ',连结 AP '、PP ',得到两个特殊的三角形,从而将问题解决.请你 计算图①中∠BPC 的度数.(3)点 P 在 y 轴上,且 S △AOP= S △AOB,请求出点 P 的坐标.【类比迁移】如图②,在正方形 ABCD 内有一点 P ,且 PA = 10 ,PB =2,PC = 2 .∠BPC 的度数.五、解答题(每小题 8 分,共 16 分)23.如图 1,将一长方体放置于一水平玻璃桌面上,按不同的方式摆放,记录桌面所受压 强与受力面积的关系如下表所示:桌面所受压强 P (Pa ) 400 受力面积 S (m )0.5500 0.4800 a1000 0.21250 0.162 (1)根据表中数据,求出压强 P (Pa )关于受力面积 S (m )的函数表达式及 a 的值.2九年级数学试卷 第 5 页 (共 8 页) 九年级数学试卷 第 6 页(共 8 页)六、解答题(每小题10分,共20分)26.如图,抛物线y ax2ax12a经过点C(0,4),与x轴交于A,B两点,连接AC、BC,M为线段OB上的一个动点,过点M作PM⊥x轴,交抛物线于点P,交BC于点Q.(1)直接写出a的值以及A,B的坐标:a=,A(),B((2)过点P作PN⊥BC,垂足为点N,设M点的坐标为M(m,0),试求PQ+25.如图,在△ABC中,C 90,AC BC,AB 8.点P从点A出发,以每秒2个单位长度的速度沿边AB向点B运动.过点P作PD⊥AB交折线AC—CB于点D,以PD为边在PD右侧做正方形PDEF.设正方形PDEF与△ABC重叠部分图形的面积为S,点P的运动时间为t秒(0<t<4).,,);PN的最大值;(3)试探究点M在运动过程中,是否存在这样的点Q,使得以A,C,Q为顶点的三角形是等腰三角形.若存在,请求出此时点Q的坐标;若不存在,请说明理由.(1)当点D在边AC上时,正方形PDEF的边长为(2)当点E落在边BC上时,求t的值.(用含t的代数式表示).(3)当点D在边AC上时,求S与t之间的函数关系式.九年级数学试卷第7页(共8页)九年级数学试卷第8页(共8页)16.解:17.解:18.解:前郭县 2022—2023 学年度第一学期期末考试九年级数学学科答题卡学校:班级: 姓名:一、选择题 1.4.5.6.2.3. 二、填空题 7.11.12.13.14.8.9. 10. 三、解答题 15.解:19.解:20.解:23.解:21.解:24.解:22..解:25.解:26.解:前郭县 2022—2023 学年度第一学期期末考试九年级数学试卷参考答案及评分标准一、单项选择题(每小题 2 分,共 12 分) 1.C2.C3.B4.C5.A二、填空题:(每小题 3 分,共 24 分) 6.C7. 20208.x <﹣3 或 x >1 14. 69.a >-1 且 a≠0 10.10 3 11.30° 12.813.120三、解答题(每题 5 分,共 20 分) 15.解:(x ﹣2) ﹣2x+4=0, (x ﹣2) ﹣2(x ﹣2)=0, 2 2 (x ﹣2)(x ﹣2﹣2)=0, x ﹣2=0 或 x ﹣2﹣2=0,解得:x =2,x =4...........................................................5 分12 16.解:(1)如图,△DEF 即为所求;...........................................2 分 (2)如图,满足条件的点 D 的坐标为(0,0)或(﹣4,4)或(﹣2,﹣4).........5 分17.证明:AB CD ,AB CD , .........................................2 分 AB AC CD AC , A D BC ...............................................3 分B D BE DE ,............................................4 分..............................................5 分18.(1)解:∵抛物线 y=(m ﹣2)x ∴y=0 时,(m ﹣2)x +2mx+m+3=0,则△=(2m ) ﹣4×(m ﹣2)×(m+3)>0,且 m ﹣2≠0,..........................2 分 2+2mx+m+3 与 x 轴有两个交点,2 2 解得 m <6 且 m≠2...........................................................3 分 即 m 的取值范围是:m <6 且 m≠2.(2)解:∵m <6 且 m≠2,∴m 满足条件的最大整数是 m=5........................4 分4 ∴y=3x +10x+8.当 y=0 时,3x 22 +10x+8=0.解得 x =− 2, x =− ..................5 分1 2 34即抛物线与 x 轴有两个交点的坐标是:(﹣2,0),( − ,0).3 四、解答题(每小题 7 分,共 28 分) 19.(1)证明:连接 OC ,如图,∵OB OC , ∴ OB C OCB , ∵ BC 平分AB D , ∴OBC DCB , ∴OCB DCB ,B D ∥OC ∴ ,..............................................2 分 ∵ BD CE 于点 D , ∴O C D E , ∴直线CEO是的切线;....................................3 分(2)过点 O 作OF CB 于 F ,如图,∵ AB C 30 , O B 2 , ∴OF1, BF 3 ,∴ BC 2BF 2 3 ,1 12∴ S △OB C B C O F 2 31 3 ,..........................5 分2∵BOF 9030 60,∴ BOC 2 BOF 120 , 120 360 4 3 ∴ S 2 2 ,.................................6 分扇形OBC43∴ S 阴影 S 扇形OB C S OBC3 ............................7 分20.解:(1)设每轮传染中,平均一个人传染 x 个人,根据题意,可得(1+x ) 2=121,.................................3 分解得 x =10,x =﹣12(舍去),.................................5 分 21答:每轮传染中,平均一个人传染 10 个人;(2)根据题意,121×10=1210(名),......................................7 分 答:按照这样的速度传染,第三轮将新增 1210 名感染者.1 221.(1)解:P (奇数)= ...................................................2 分(2)解:列表得:...........................................................4 分共有 12 种等可能的结果,其中点在函数 y=-x+4 的图象上的有 2 种(1,3),(3,1) 1 6∴P (点在函数 y=-x+4 的图象上)= .........................................7 分x 1 2 3 4y 1 (1,2) (1,3) (1,4)(2,3) (2,4)2 3 4(2,1)(3,1) (3,2)(3,4)(4,1) (4,2) (4,3)22.解:(1)当 y = 的图象在 y =ax+b 图象的下方时, <ax+b 成立,∴﹣4<x <﹣2..................................................2 分(2)将 A (﹣2,4)代入 y = 得:﹣8=m ,∴反比例函数为:y =﹣ ........................................3 分将 A (﹣2,4),B (﹣4,2)代入 y =ax+b 得: ,解得: ,∴一次函数的表达式为:y =x+6............................................4 分(3)在 y =x+6 中,当 y =0 时,x =﹣6,∴C (﹣6,0).∴S △ABO =S △AOC ﹣S △BOC= = OC×(y ﹣y )A B×6×2=6,............................................5 分∴S △AOP = ×6=3,∵P 在 y 轴上,∴ OP×|x A|=3, ∴OP =3..............................................................6 分 ∴P (0,3)或(0.﹣3).................................................7 分五、解答题:(每小题 8 分,共 16 分)23.解:(1)由表格可知,压强 P 与受力面积 S 的乘积不变,故压强 P 是受力面积 S 的反比 例函数,设 P = ,将(400,0.5)代入得:0.5=∴P = ,解得 k =200, ,...........................................................2 分当 P =800 时,800=∴a =0.25,...........................................................4 分 答:P = ,a =0.25;(2)这种摆放方式不安全,理由如下:由图可知 S =0.1×0.2=0.02(m ),......................................6 分 , 2 ∴将长方体放置于该水平玻璃桌面上,P =∵10000>2000,=10000(Pa ),..............7 分∴这种摆放方式不安全.................................................8 分24.解:【问题原型]】将线段 BP 绕点 B 逆时针旋转 60°得到线段 BP ',连结 A P '、P P ', ∴△BPC≌△BP 'A ,....................................................1 分 ∴BP=B P ,A P =PC=1,∠PB P =60°,∠A P B =∠BPC ,P ∴△B P 是等边三角形,...............................................2 分 ∴∠B P P=∠PB P =60°,P P =BP= ,3 ∵ AP 2 PP 2 1 34 AP ,2 PP ∴△A P 是直角三角形,∠A P=90°,..................................3 分 ∴∠A P B=∠AP P +∠B P P =150°,∴∠BPC=150°,........................................................4 分【类比迁移】如图,将△BPC 绕点 B 逆时针旋转 90°,得到△BEA ,.............5 分 ∴△BPC≌△BEA ,∴BE=BP=2,AE=PC= 2 ,∠PBE=90°,∠AEB=∠BPC ,∴△BEP 是等腰直角三角形,2 ∴∠BEP=∠EPB=45°,PE =2 ∵ AE PE 2 8 10 AP ,..............6 分2 2 2 ,∴△AEP 是直角三角形,∠AEP=90°,...........7 分∴∠AEB=∠AEP+∠BEP=135°,第 24 题图 ∴∠BPC=135°;.............................8 分六、解答题:(每小题 10 分,共 20 分)25.解:(1)2t . .........................................................2 分(2)2t 2t 2t 8.4 t . ....................................................4 分 34 (3)当 0<t ≤ 时, 3S 2t 2t 4t 2. .....................................7 分 4 3 1 当 <t ≤2 时, S 2t 2t 2t (8 4t) 2 14t 2 48t 32. ..........10 分2 26.解:(1)将 C (0,4)代入 y =ax 2 ﹣ax ﹣12a 得 4=﹣12a ,∴a =﹣ .......................................................1 分∴y =﹣ x + x+4,2令 y =0 得 0=﹣ ∴A (﹣3,0),B (4,0),...............................................3 分(2)∵y =﹣ x+4,x 2 + x+4,解得 x =4,x =﹣3, 1 22 x + ∴令 x =0 得 y =4,∴C (0,4),OC =4,而 B (4,0)有 OB =4,∴OB =OC ,△BOC 为等腰直角三角形,....................................4 分∴∠CBO =45°,∵PM⊥x 轴,∴∠BQM =45°=∠PQC ,∵PN⊥BC ,∴△PQN 是等腰直角三角形,∴PQ =∴PQ+∴PQ+ PN , PN =2PQ , PN 取最大值即是 PQ 取最大值,.................................5 分由 C (0,4),B (4,0)可得 BC 解析式为 y =﹣x+4,∵M (m ,0),∴P (m ,﹣ ∴PQ =(﹣ m 2 + m+4),Q (m ,﹣m+4),m+4)﹣(﹣m+4)=﹣ m 2 + 2 m + m =﹣ (m ﹣2)+ , 2∴m =2 时,PQ 最大值为 ∴PQ+ PN 的最大值为 ............................................6 分(3)∵A (﹣3,0),C (0,4),Q (m ,﹣m+4),∴AC ==5,AQ = ,...........................................7 分以 A ,C ,Q 为顶点的三角形是等腰三角形,分三种情况:,= ,CQ = = ①AC =AQ 时, =5,解得 m =0(此时 Q 与 C 重合,舍去)或 m =1,∴Q (1,3),...............................................................8 分②AC =CQ 时,∴Q ( ③AQ =CQ 时,去),.....................................................................10 分 =5,解得 m = ),.....................................................9 分,解得 m =12.5(此时 M 不在线段 OB 上,舍 或 m =﹣ (此时 M 不在线段 OB 上,舍去), , = 综上所述,以 A ,C ,Q 为顶点的三角形是等腰三角形,Q (1,3)或 Q ( , ).。

北师大版九年级下册数学期末试卷含答案解析

北师大版九年级下册数学期末试卷含答案解析

北师大版九年级下册数学期末试卷含答案解析一.选择题(共10小题)1.下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°2.一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°B.C.AC=1.2tan10°米D.AB=米3.已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于()A.B.2 C.D.4.函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.5.若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+46.若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=17.如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.118.如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°9.已知⊙O的半径OD垂直于弦AB,交AB于点C,连接AO并延长交⊙O于点E,若AB=8,CD=2,则△BCE 的面积为()A.12 B.15 C.16 D.1810.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4二.填空题(共10小题)11.在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是.12.在将Rt△ABC中,∠A=90°,∠C:∠B=1:2,则sinB=.13.已知cosα=,则的值等于.14.已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=.15.若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为.16.已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为.17.若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O.18.如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为cm.19.已知AB、BC是⊙O的两条弦,AB=AC,∠AOB=120°,则∠CAB的度数是.20.二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q的大小关系是.三.解答题(共10小题)21.计算:.22.如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.23.已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长.25.如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.26.某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?27.为了增强学生体质,学校鼓励学生多参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,≈1.41)28.据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.29.如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.30.在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.北师大版九年级下册数学期末试卷参考答案与试题解析一.选择题(共10小题)1.(2016•永州)下列式子错误的是()A.cos40°=sin50°B.tan15°•tan75°=1C.sin225°+cos225°=1 D.sin60°=2sin30°【分析】根据正弦和余弦的性质以及正切、余切的性质即可作出判断.【解答】解:A、sin40°=sin(90°﹣50°)=cos50°,式子正确;B、tan15°•tan75°=tan15°•cot15°=1,式子正确;C、sin225°+cos225°=1正确;D、sin60°=,sin30°=,则sin60°=2sin30°错误.故选D.【点评】本题考查了互余两个角的正弦和余弦之间的关系,以及同角之间的正切和余切之间的关系,理解性质是关键.2.(2016•巴中)一个公共房门前的台阶高出地面1.2米,台阶拆除后,换成供轮椅行走的斜坡,数据如图所示,则下列关系或说法正确的是()A.斜坡AB的坡度是10°B.斜坡AB的坡度是tan10°C.AC=1.2tan10°米D.AB=米【分析】根据坡度是坡角的正切值,可得答案.【解答】解:斜坡AB的坡度是tan10°=,故B正确;故选:B.【点评】本题考查了坡度坡角,利用坡度是坡角的正切值是解题关键.3.(2016•钦州校级自主招生)已知,在Rt△ABC中,∠C=90°,AB=,AC=1,那么∠A的正切tanA等于()A.B.2 C.D.【分析】根据勾股定理求出BC,根据正切的定义计算即可.【解答】解:∵∠C=90°,AB=,AC=1,∴BC==2,则tanA==2,故选:B.【点评】本题考查的是锐角三角函数的定义,掌握锐角A的对边a与邻边b的比叫做∠A的正切是解题的关键.4.(2016•赤峰)函数y=k(x﹣k)与y=kx2,y=(k≠0),在同一坐标系上的图象正确的是()A. B.C.D.【分析】将一次函数解析式展开,可得出该函数图象与y轴交于负半轴,分析四个选项可知,只有C选项符合,由此即可得出结论.【解答】解:一次函数y=k(x﹣k)=kx﹣k2,∵k≠0,∴﹣k2<0,∴一次函数与y轴的交点在y轴负半轴.A、一次函数图象与y轴交点在y轴正半轴,A不正确;B、一次函数图象与y轴交点在y轴正半轴,B不正确;C、一次函数图象与y轴交点在y轴负半轴,C可以;D、一次函数图象与y轴交点在y轴正半轴,D不正确.故选C.【点评】本题考查了一次函数的图象,解题的关键是分析一次函数图象与y轴的交点.本题属于基础题,难度不大,解决该题时,由一次函数与y轴的交点即可排除了A、B、D三个选项,因此只需分析一次函数图象即可得出结论.5.(2016•眉山)若抛物线y=x2﹣2x+3不动,将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,则原抛物线图象的解析式应变为()A.y=(x﹣2)2+3 B.y=(x﹣2)2+5 C.y=x2﹣1 D.y=x2+4【分析】思想判定出抛物线的平移规律,根据左加右减,上加下减的规律即可解决问题.【解答】解:将平面直角坐标系xOy先沿水平方向向右平移一个单位,再沿铅直方向向上平移三个单位,这个相当于把抛物线向左平移有关单位,再向下平移3个单位,∵y=(x﹣1)2+2,∴原抛物线图象的解析式应变为y=(x﹣1+1)2+2﹣3=x2﹣1,故答案为C.【点评】本题考查二次函数图象的平移,解题的关键是理解坐标系的平移和抛物线的平移是反方向的,记住左加右减,上加下减的规律,属于中考常考题型.6.(2016•宿迁)若二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),则方程ax2﹣2ax+c=0的解为()A.x1=﹣3,x2=﹣1 B.x1=1,x2=3 C.x1=﹣1,x2=3 D.x1=﹣3,x2=1【分析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C.【点评】此题主要考查了抛物线与x轴的交点,正确应用二次函数对称性是解题关键.7.(2016•黄石)如图所示,⊙O的半径为13,弦AB的长度是24,ON⊥AB,垂足为N,则ON=()A.5 B.7 C.9 D.11【分析】根据⊙O的半径为13,弦AB的长度是24,ON⊥AB,可以求得AN的长,从而可以求得ON的长.【解答】解:由题意可得,OA=13,∠ONA=90°,AB=24,∴AN=12,∴ON=,故选A.【点评】本题考查垂径定理,解题的关键是明确垂径定理的内容,利用垂径定理解答问题.8.(2016•巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°【分析】求出∠AEC=90°,根据三角形内角和定理求出∠C=50°,根据圆周角定理即可求出∠ABD,根据OB=OD 得出∠ABD=∠ODB=50°,根据三角形外角性质求出即可.【解答】解:∵CD⊥AB,∴∠AEC=90°,∵∠CAB=40°,∴∠C=50°,∴∠ABD=∠C=50°,∵OB=OD,∴∠ABD=∠ODB=50°,∴∠AOD=∠ABD+∠ODB=100°,故选B.【点评】本题考查了圆周角定理,垂径定理的应用,能熟记圆周角定理的内容是解此题的关键.9.(2016•丹阳市校级一模)已知⊙O的半径OD垂直于弦AB,交AB于点C,连接AO并延长交⊙O于点E,若AB=8,CD=2,则△BCE的面积为()A.12 B.15 C.16 D.18【分析】设OC=x,根据垂径定理可得出AC=4,利用勾股定理可得出关于x的一元二次方程,解方程求出x的值,进而得出OC的长度,再根据三角形的中位线的性质以及三角形的面积公式即可得出结论.【解答】解:依照题意画出图形,如图所示.设OC=x,则OA=OD=x+2,∵OD⊥AB于C,∴在Rt△OAC中,OC2+AC2=OA2,即x2+42=(x+2)2,解得x=3,即OC=3,∵OC为△ABE的中位线,∴BE=2OC=6.∵AE是⊙O的直径,∴∠B=90°,∴.故选A.【点评】本题考查了垂径定理、三角形的中位线以及三角形的面积,解题的关键是求出BE的长度.本题属于基础题,难度不大,解决该题型题目时,根据勾股定理找出方程是关键.10.(2016•常德)二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①b<0;②c>0;③a+c<b;④b2﹣4ac>0,其中正确的个数是()A.1 B.2 C.3 D.4【分析】由二次函数的开口方向,对称轴0<x<1,以及二次函数与y的交点在x轴的上方,与x轴有两个交点等条件来判断各结论的正误即可.【解答】解:∵二次函数的开口向下,与y轴的交点在y轴的正半轴,∴a<0,c>0,故②正确;∵0<﹣<1,∴b>0,故①错误;当x=﹣1时,y=a﹣b+c<0,∴a+c<b,故③正确;∵二次函数与x轴有两个交点,∴△=b2﹣4ac>0,故④正确正确的有3个,故选:C.【点评】此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a 决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二.填空题(共10小题)11.(2016•永春县模拟)在△ABC中,∠C=90°,AB=13,BC=5,则sinA的值是.【分析】利用锐角三角函数的定义求解,sinA为∠A的对边比斜边,求出即可.【解答】解:∵在△ABC中,∠C=90°,AB=13,BC=5,∴sinA==.故答案为.【点评】此题主要考查了锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.12.(2016•株洲模拟)在将Rt△ABC中,∠A=90°,∠C:∠B=1:2,则sinB=.【分析】根据题意和三角形内角和定理求出∠B的度数,根据正弦的定义解答即可.【解答】解:∵∠A=90°,∴∠C+∠B=90°,又∠C:∠B=1:2,∴∠B=60°,∴sinB=,故答案为:.【点评】本题考查的是锐角三角函数的定义、三角形内角和定理的应用,掌握三角形内角和等于180°、熟记锐角三角函数的定义是解题的关键.13.(2016•雅安校级模拟)已知cosα=,则的值等于0.【分析】先利用tanα=得到原式==,然后把cosα=代入计算即可.【解答】解:∵tanα=,∴==,∵cosα=,∴==0.故答案为0.【点评】本题考查了同角三角函数的关系:平方关系:sin2A+cos2A=1;正余弦与正切之间的关系(积的关系):一个角的正切值等于这个角的正弦与余弦的比,即tanA=或sinA=tanA•cosA.14.(2016•牡丹江)已知抛物线y=ax2﹣3x+c(a≠0)经过点(﹣2,4),则4a+c﹣1=﹣3.【分析】将点(﹣2,4)代入y=ax2﹣3x+c(a≠0),即可求得4a+c的值,进一步求得4a+c﹣1的值.【解答】解:把点(﹣2,4)代入y=ax2﹣3x+c,得4a+6+c=4,∴4a+c=﹣2,∴4a+c﹣1=﹣3,故答案为﹣3.【点评】此题考查了二次函数图象上点的坐标特征,点在函数上,将点代入解析式即可.15.(2016•泸州)若二次函数y=2x2﹣4x﹣1的图象与x轴交于A(x1,0)、B(x2,0)两点,则+的值为﹣4.【分析】设y=0,则对应一元二次方程的解分别是点A和点B的横坐标,利用根与系数的关系即可求出+的值.【解答】解:设y=0,则2x2﹣4x﹣1=0,∴一元二次方程的解分别是点A和点B的横坐标,即x1,x2,∴x1+x2=﹣=2,x1,•x2=﹣,∴+==﹣4,故答案为:﹣4.【点评】本题考查了二次函数与一元二次方程的关系,掌握二次函数与x轴的交点的横坐标就是对应的一元二次方程的根是解题关键.16.(2016•邯郸校级自主招生)已知M、N两点关于y轴对称,且点M在双曲线上,点N在直线y=﹣x+3上,设点M坐标为(a,b),则y=﹣abx2+(a+b)x的顶点坐标为(±,).【分析】根据反比例函数和一次函数的性质解题.【解答】解:∵M、N两点关于y轴对称,∴M坐标为(a,b),N为(﹣a,b),分别代入相应的函数中得,b=①,a+3=b②,∴ab=,(a+b)2=(a﹣b)2+4ab=11,a+b=±,∴y=﹣x2±x,∴顶点坐标为(=±,=),即(±,).故答案为:(±,).【点评】主要考查了函数的性质和求抛物线的顶点坐标、对称轴的方法.解题关键是先求出ab,a+b的值,整体代入求出函数的解析式.17.(2016秋•南京期中)若⊙O的直径为2,OP=2,则点P与⊙O的位置关系是:点P在⊙O外.【分析】由条件可求得圆的半径为1,由条件可知点P到圆心的距离大于半径,可判定点P在圆外.【解答】解:∵⊙O的直径为2,∴⊙O的半径为1,∵OP=2>1,∴点P在⊙O外,故答案为:外.【点评】本题主要考查点与圆的位置关系,利用点到圆心的距离d与半径r的大小关系判定点与圆的位置关系是解题的关键.18.(2016•绥化)如图,⊙O的直径CD=20cm,AB是⊙O的弦,AB⊥CD,垂足为M,若OM=6cm,则AB的长为16cm.【分析】连接OA,根据垂径定理求出AB=2AM,已知OA、OM,根据勾股定理求出AM即可.【解答】解:连接OA,∵⊙O的直径CD=20cm,∴OA=10cm,在Rt△OAM中,由勾股定理得:AM==8cm,∴由垂径定理得:AB=2AM=16cm.故答案为:16.【点评】本题考查了垂径定理和勾股定理的应用,关键是构造直角三角形.19.(2016•香坊区模拟)已知AB、BC是⊙O的两条弦,AB=AC,∠AOB=120°,则∠CAB的度数是15°或75°.【分析】①若点C在优弧AB上,根据AB=AC设AC=2x、AB=x,作OD⊥AB、作OE⊥AC,由∠AOB=120°、OA=OB得∠OAD=30°,在Rt△OAD中可得OA=x,在Rt△OAE中由cos∠OAE=可得∠OAE度数,继而根据∠CAB=∠OAB+∠OAE可得∠CAB度数;②当点C在劣弧AB上时,与(1)同理可得∠OAB=30°,∠OAE=45°,根据∠CAB=∠OAE﹣∠OAD可得此时∠CAB的度数,即可得答案.【解答】解:①如图1,若点C在优弧AB上,∵AB=AC,∴设AC=2x,则AB=x,过点O作OD⊥AB于点D,作OE⊥AC于点E,∴AD=AB=x,AE=AC=x,∵∠AOB=120°,OA=OB,∴∠OAD=30°,在Rt△OAD中,OA===x,在Rt△OAE中,cos∠OAE===,∴∠OAE=45°,∴∠CAB=∠OAB+∠OAE=75°;②如图2,当点C在劣弧AB上时,由①知,∠OAB=30°,∠OAE=45°,∴∠CAB=∠OAE﹣∠OAD=15°,故答案为:15°或75°.【点评】本题主要考查垂径定理及三角函数的应用,熟练掌握垂径定理是解题的关键.20.(2016•内江)二次函数y=ax2+bx+c的图象如图所示,且P=|2a+b|+|3b﹣2c|,Q=|2a﹣b|﹣|3b+2c|,则P,Q 的大小关系是P>Q.【分析】由函数图象可以得出a<0,b>0,c>0,当x=1时,y=a+b+c>0,x=﹣1时,y=a﹣b+c<0,由对称轴得出2a+b=0,通过确定绝对值中的数的符号后去掉绝对值再化简就可以求出P、Q的值.【解答】解:∵抛物线的开口向下,∴a<0,∵﹣>0,∴b>0,∴2a﹣b<0,∵﹣=1,∴b+2a=0,x=﹣1时,y=a﹣b+c<0.∴﹣b﹣b+c<0,∴3b﹣2c>0,∵抛物线与y轴的正半轴相交,∴c>0,∴3b+2c>0,∴p=3b﹣2c,Q=b﹣2a﹣3b﹣2c=﹣2a﹣2b﹣2c,∴Q﹣P=﹣2a﹣2b﹣2c﹣3b+2c=﹣2a﹣5b=﹣4b<0∴P>Q,故答案为:P>Q.【点评】本题考查了二次函数的图象与系数的关系,去绝对值,二次函数的性质.熟记二次函数的性质是解题的关键.三.解答题(共10小题)21.(2016•金华校级模拟)计算:.【分析】先根据二次根式的化简、负整数指数幂、特殊角的三角函数值及0指数幂把原式化简,再根据实数混合运算的法则进行计算即可.【解答】解:原式=2+2﹣4×﹣1,=2+2﹣2﹣1,=1.故答案为:1.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂及二次根式等考点的运算.22.(2016•江西模拟)如图,△ABC中,∠ACB=90°,sinA=,BC=8,D是AB中点,过点B作直线CD的垂线,垂足为点E.(1)求线段CD的长;(2)求cos∠ABE的值.【分析】(1)在△ABC中根据正弦的定义得到sinA==,则可计算出AB=10,然后根据直角三角形斜边上的中线性质即可得到CD=AB=5;(2)在Rt△ABC中先利用勾股定理计算出AC=6,在根据三角形面积公式得到S△BDC=S△ADC,则S△BDC=S△ABC,即CD•BE=•AC•BC,于是可计算出BE=,然后在Rt△BDE中利用余弦的定义求解.【解答】解:(1)在△ABC中,∵∠ACB=90°,∴sinA==,而BC=8,∴AB=10,∵D是AB中点,∴CD=AB=5;(2)在Rt△ABC中,∵AB=10,BC=8,∴AC==6,∵D是AB中点,∴BD=5,S△BDC=S△ADC,∴S△BDC=S△ABC,即CD•BE=•AC•BC,∴BE==,在Rt△BDE中,cos∠DBE===,即cos∠ABE的值为.【点评】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了直角三角形斜边上的中线性质和三角形面积公式.23.(2016•宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.【分析】(1)由等腰三角形的性质得到∠EDC=∠C,由圆外接四边形的性质得到∠EDC=∠B,由此推得∠B=∠C,由等腰三角形的判定即可证得结论;(2)连接AE,由AB为直径,可证得AE⊥BC,由(1)知AB=AC,证明△CDE∽△CBA后即可求得CD的长.【解答】(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.【点评】本题考查了圆周角定理,等腰三角形的判定和性质,勾股定理,正确的作出辅助线是解题的关键.24.(2016•漳州)如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC、BC.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若AD=2,AC=,求AB的长.【分析】(1)连接OC,由C为的中点,得到∠1=∠2,等量代换得到∠2=∠ACO,根据平行线的性质得到OC ⊥CD,即可得到结论;(2)连接CE,由勾股定理得到CD==,根据切割线定理得到CD2=AD•DE,根据勾股定理得到CE==,由圆周角定理得到∠ACB=90°,即可得到结论.【解答】解:(1)相切,连接OC,∵C为的中点,∴∠1=∠2,∵OA=OC,∴∠1=∠ACO,∴∠2=∠ACO,∴AD∥OC,∵CD⊥AD,∴OC⊥CD,∴直线CD与⊙O相切;(2)方法1:连接CE,∵AD=2,AC=,∵∠ADC=90°,∴CD==,∵CD是⊙O的切线,∴CD2=AD•DE,∴DE=1,∴CE==,∵C为的中点,∴BC=CE=,∵AB为⊙O的直径,∴∠ACB=90°,∴AB==3.方法2:∵∠DCA=∠B,易得△ADC∽△ACB,∴=,∴AB=3.【点评】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.25.(2016•随州)如图,AB是⊙O的弦,点C为半径OA的中点,过点C作CD⊥OA交弦AB于点E,连接BD,且DE=DB.(1)判断BD与⊙O的位置关系,并说明理由;(2)若CD=15,BE=10,tanA=,求⊙O的直径.【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBD=90°,即可证明BD是⊙O的切线;(2)过点D作DG⊥BE于G,根据等腰三角形的性质得到EG=BE=5,由两角相等的三角形相似,△ACE∽△DGE,利用相似三角形对应角相等得到sin∠EDG=sinA=,在Rt△EDG中,利用勾股定理求出DG的长,根据三角形相似得到比例式,代入数据即可得到结果.【解答】(1)证明:连接OB,∵OB=OA,DE=DB,∴∠A=∠OBA,∠DEB=∠ABD,又∵CD⊥OA,∴∠A+∠AEC=∠A+∠DEB=90°,∴∠OBA+∠ABD=90°,∴OB⊥BD,∴BD是⊙O的切线;(2)如图,过点D作DG⊥BE于G,∵DE=DB,∴EG=BE=5,∵∠ACE=∠DGE=90°,∠AEC=∠GED,∴∠GDE=∠A,∴△ACE∽△DGE,∴sin∠EDG=sinA==,即DE=13,在Rt△ECG中,∵DG==12,∵CD=15,DE=13,∴CE=2,∵△ACE∽△DGE,∴=,∴AC=•DG=,∴⊙O的直径2OA=4AC=.【点评】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.26.(2016•丹东)某片果园有果树80棵,现准备多种一些果树提高果园产量,但是如果多种树,那么树之间的距离和每棵树所受光照就会减少,单棵树的产量随之降低.若该果园每棵果树产果y(千克),增种果树x(棵),它们之间的函数关系如图所示.(1)求y与x之间的函数关系式;(2)在投入成本最低的情况下,增种果树多少棵时,果园可以收获果实6750千克?(3)当增种果树多少棵时,果园的总产量w(千克)最大?最大产量是多少?【分析】(1)函数的表达式为y=kx+b,把点(12,74),(28,66)代入解方程组即可.(2)列出方程解方程组,再根据实际意义确定x的值.(3)构建二次函数,利用二次函数性质解决问题.【解答】解:(1)设函数的表达式为y=kx+b,该一次函数过点(12,74),(28,66),得,解得,∴该函数的表达式为y=﹣0.5x+80,(2)根据题意,得,(﹣0.5x+80)(80+x)=6750,解得,x1=10,x2=70∵投入成本最低.∴x2=70不满足题意,舍去.∴增种果树10棵时,果园可以收获果实6750千克.(3)根据题意,得w=(﹣0.5x+80)(80+x)=﹣0.5 x2+40 x+6400=﹣0.5(x﹣40)2+7200∵a=﹣0.5<0,则抛物线开口向下,函数有最大值∴当x=40时,w最大值为7200千克.∴当增种果树40棵时果园的最大产量是7200千克.【点评】本题考查二次函数的应用、一次函数的应用、一元二次方程等知识,解题的关键是熟练掌握待定系数法,学会构建二次函数解决实际问题中的最值问题,属于中考常考题型.27.(2016•湘潭)为了增强学生体质,学校鼓励学生多参加体育锻炼,小胖同学马上行动,每天围绕小区进行晨跑锻炼.该小区外围道路近似为如图所示四边形ABCD,已知四边形ABED是正方形,∠DCE=45°,AB=100米.小胖同学某天绕该道路晨跑5圈,时间约为20分钟,求小胖同学该天晨跑的平均速度约为多少米/分?(结果保留整数,≈1.41)【分析】首先利用勾股定理求出CD的长度,然后求出小胖每天晨跑的路程,进而求出平均速度.【解答】解:∵ABED是正方形,∠DCE=45°,AB=100米,∴DE=CE=100米,在直角三角形DEC中,DC2=DE2+CE2,即DC=100,∴四边形ABCD的周长为100+100+100+100+100=400+100,∵小胖同学某天绕该道路晨跑5圈,时间约为20分钟,∴小胖每天晨跑的路程为(2000+500)米,∴小胖同学该天晨跑的平均速度(2000+500)÷20=100+25≈135.25米/分.【点评】本题主要考查了解直角三角形的应用,解题的关键是利用勾股定理求出DC的长度,此题难度不大.28.(2016•六盘水)据调查,超速行驶是引发交通事故的主要原因之一,所以规定以下情境中的速度不得超过15m/s,在一条笔直公路BD的上方A处有一探测仪,如平面几何图,AD=24m,∠D=90°,第一次探测到一辆轿车从B点匀速向D点行驶,测得∠ABD=31°,2秒后到达C点,测得∠ACD=50°(tan31°≈0.6,tan50°≈1.2,结果精确到1m)(1)求B,C的距离.(2)通过计算,判断此轿车是否超速.【分析】(1)在直角三角形ABD与直角三角形ACD中,利用锐角三角函数定义求出BD与CD的长,由BD﹣CD 求出BC的长即可;(2)根据路程除以时间求出该轿车的速度,即可作出判断.【解答】解:(1)在Rt△ABD中,AD=24m,∠B=31°,∴tan31°=,即BD==40m,在Rt△ACD中,AD=24m,∠ACD=50°,∴tan50°=,即CD==20m,∴BC=BD﹣CD=40﹣20=20m,则B,C的距离为20m;(2)根据题意得:20÷2=10m/s<15m/s,则此轿车没有超速.【点评】此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.29.(2016•六盘水)如图,抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),顶点为D.(1)求此抛物线的解析式.(2)求此抛物线顶点D的坐标和对称轴.(3)探究对称轴上是否存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形?若存在,请求出所有符合条件的P点的坐标,若不存在,请说明理由.【分析】(1)根据抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),可以求得抛物线的解析式;(2)根据(1)中的解析式化为顶点式,即可得到此抛物线顶点D的坐标和对称轴;(3)首先写出存在,然后运用分类讨论的数学思想分别求出各种情况下点P的坐标即可.【解答】解:(1)∵抛物线y=ax2+bx+c的图象与x轴交于A(﹣1.0),B(3,0)两点,与y轴交于点C(0,﹣3),∴,解得,,即此抛物线的解析式是y=x2﹣2x﹣3;(2)∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴此抛物线顶点D的坐标是(1,﹣4),对称轴是直线x=1;(3)存在一点P,使得以点P、D、A为顶点的三角形是等腰三角形,设点P的坐标为(1,y),当PA=PD时,=,解得,y=﹣,即点P的坐标为(1,﹣);当DA=DP时,=,解得,y=﹣4±,即点P的坐标为(1,﹣4﹣2)或(1,﹣4+);当AD=AP时,=,解得,y=±4,即点P的坐标是(1,4)或(1,﹣4),当点P为(1,﹣4)时与点D重合,故不符合题意,由上可得,以点P、D、A为顶点的三角形是等腰三角形时,点P的坐标为(1,﹣)或(1,﹣4﹣2)或(1,﹣4+)或(1,4).【点评】本题考查二次函数综合题,解题的关键是明确题意,找出所求问题需要的条件,利用分类讨论的数学思想解答问题.30.(2016•河池)在平面直角坐标系中,抛物线y=﹣x2﹣2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)请直接写出点A,C,D的坐标;(2)如图(1),在x轴上找一点E,使得△CDE的周长最小,求点E的坐标;(3)如图(2),F为直线AC上的动点,在抛物线上是否存在点P,使得△AFP为等腰直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【分析】(1)令抛物线解析式中y=0,解关于x的一元二次方程即可得出点A、B的坐标,再令抛物线解析式中x=0求出y值即可得出点C坐标,利用配方法将抛物线解析式配方即可找出顶点D的坐标;(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,由点C的坐标可找出点C′的坐标,根据点C′、D的坐标利用待定系数法即可求出直线C′D的解析式,令其y=0求出x值,即可得出点E的坐标;(3)根据点A、C的坐标利用待定系数法求出直线AC的解析式,假设存在,设点F(m,m+3),分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.根据等腰直角三角形的性质结合点A、F点的坐标找出点P的坐标,将其代入抛物线解析式中即可得出关于m的一元二次方程,解方程求出m值,再代入点P坐标中即可得出结论.【解答】解:(1)当y=﹣x2﹣2x+3中y=0时,有﹣x2﹣2x+3=0,解得:x1=﹣3,x2=1,∵A在B的左侧,∴A(﹣3,0),B(1,0).当y=﹣x2﹣2x+3中x=0时,则y=3,∴C(0,3).∵y=﹣x2﹣2x+3=﹣(x+1)2+4,∴顶点D(﹣1,4).(2)作点C关于x轴对称的点C′,连接C′D交x轴于点E,此时△CDE的周长最小,如图1所示.∵C(0,3),∴C′(0,﹣3).设直线C′D的解析式为y=kx+b,则有,解得:,∴直线C′D的解析式为y=﹣7x﹣3,当y=﹣7x﹣3中y=0时,x=﹣,∴当△CDE的周长最小,点E的坐标为(﹣,0).(3)设直线AC的解析式为y=ax+c,则有,解得:,∴直线AC的解析式为y=x+3.假设存在,设点F(m,m+3),△AFP为等腰直角三角形分三种情况(如图2所示):①当∠PAF=90°时,P(m,﹣m﹣3),∵点P在抛物线y=﹣x2﹣2x+3上,∴﹣m﹣3=﹣m2﹣2m+3,解得:m1=﹣3(舍去),m2=2,此时点P的坐标为(2,﹣5);②当∠AFP=90°时,P(2m+3,0)∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣(2m+3)2﹣2×(2m+3)+3,解得:m3=﹣3(舍去),m4=﹣1,此时点P的坐标为(1,0);③当∠APF=90°时,P(m,0),∵点P在抛物线y=﹣x2﹣2x+3上,∴0=﹣m2﹣2m+3,解得:m5=﹣3(舍去),m6=1,此时点P的坐标为(1,0).综上可知:在抛物线上存在点P,使得△AFP为等腰直角三角形,点P的坐标为(2,﹣5)或(1,0).【点评】本题考查了解一元二次方程、待定系数法求函数解析式以及等腰直角三角形的性质,解题的关键是:(1)根据二次函数图象上点的坐标特征求出点A、B、C的坐标,利用配方法求出顶点坐标;(2)找出点E的位置;(3)分∠PAF=90°、∠AFP=90°和∠APF=90°三种情况考虑.本题属于中档题,难度不大,解决该题型题目时,利用一次函数图象上点的坐标特征设出点F的坐标,再根据等腰直角三角形的性质表示出点P的坐标是关键.。

2022-2023学年人教版九年级数学第一学期期末测试题含答案

2022-2023学年人教版九年级数学第一学期期末测试题含答案

第1页,共4页 第2页,共4页………○…………○…………内…………○…………装…………○…………订…………○…………线…………○………………○…………○…………外…………○…………装…………○…………订…………○…………线…………○………考点考场考号姓 名座位号2022-2023学年第一学期期末质量监测试卷九年级 数学学科(考试时间:120分钟 考试分值:150分)一、选择题。

(每题5分,共45分)1.在下列图形中,是中心对称图形的是( )A.B.C.D.2.下列事件属于必然事件的是( )A.打开电视,正在播放新闻B.我们班的同学将会有人成为航天员C.实数0<a ,则02<aD.新疆的冬天不下雪3.若关于x 的一元二次方程01)12=++-x x k (有两个实数根,则k 的取值范围是( ) A.45≤k B.45>kC.45<k 且1≠kD.45≤k 且1≠k4.用配方法解方程0982=++x x ,变形后的结果正确的是 A.9)4(2-=+x B.7)4(2-=+x C.25)4(2=+xD.7)4(2=+x5.二次函数3)1(2+-=x y 的图象的顶点坐标是 A.)3,1(-B.)3,1(C.)3,1(--D.)3,1(-6.如图,在圆O 中,所对的圆周角50=∠ACB ,若P 为上一点,55=∠AOP ,则=∠POB ( ) A.30B.45 C.55D.60第6题图 第7题图7.小红要过生日了,为了筹备生日聚会,准备自己动手用纸板制作圆锥形生日礼帽.如图,圆锥帽底面半径为cm 9,母线长为cm 36,请你帮助他们计算制作一个这样的生日礼帽需要纸板的面积为( ) A.2648cm ΠB.2432cm ΠC.2324cm ΠD.2216cm Π8.下列各图是在同一直角坐标系内,二次函数c x c a ax y +++=)(2与一次函数c ax y +=的大致图象,有且只有一个是正确的,正确的是( )A.B. C. D.9.宾馆有50间房供游客居住,当毎间房每天定价为180元时,宾馆会住满;当毎间房每天的定价每增加10元时,就会空闲一间房.如果有游客居住,宾馆需对居住的毎间房每天支出20元的费用.当房价定为多少元时,宾馆当天的利润为10890元?设房价定为x 元.则有( )A.10890)1050)(20180=--+xx ( B.10890)1018050)(20=---x x (C.180902050)108050(=⨯---x xD.108902050)1050)(180=⨯--+xx (二、 填空题。

九年级(上)期末数学(上册及下册前两章)试卷(含答案)

九年级(上)期末数学(上册及下册前两章)试卷(含答案)

九年级(上)期末数学试卷一、选择题(共12小题,每小题4分,满分48分)1.(4分)如图所示的工件,其俯视图是()2.(4分)若反比例函数y=的图象经过点A(2,m),则m的值()A.2B.C.﹣D.﹣23.(4分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan A=()A.B.C.D.4.(4分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是()A.B.C.D.5.(4分)抛物线y=(x﹣2)2+3的顶点坐标是()A.(2,3)B.(﹣2,3)C.(2,﹣3)D.(﹣2,﹣3)6.(4分)在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是()A.8B.12C.16D.207.(4分)用配方法解方程x2+10x+9=0,配方正确的是()A.(x+5)2=16B.(x+5)2=34C.(x﹣5)2=16D.(x+5)2=258.(4分)把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣19.(4分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是()A.k<B.k>C.k<且k≠0D.k>且k≠010.(4分)在反比例函数y=﹣图象上有三个点A(x1,y1)、B(x2,y2)、C(x3,y3),若x1<0<x2<x3,则下列结论正确的是()A.y3<y2<y1B.y1<y3<y2C.y2<y3<y1D.y3<y1<y211.(4分)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,CH⊥AF于点H,那么CH 的长是()A.B.C.D.12.(4分)如图是二次函数y=ax2+bx+c(a≠0)图象的一部分,直线x=﹣1是对称轴,有下列判断:①b﹣2a=0;②4a﹣2b+c<0;③a﹣b+c=﹣9a;④若(﹣3,y1),(,y2)是抛物线上两点,则y1>y2,其中正确的个数是()A.1个B.2个C.3个D.4个二、填空题(共6小题,每小题4分:满分分24分)13.(4分)如果4x=5y,那么x:y=.14.(4分)Rt△ABC中,∠C=90°,BC=2.5,sin A=,则AB=.15.(4分)如图,点P是反比例函数(x<0)图象的一点,P A垂直于y轴,垂足为点A,PB垂直于x轴,垂足为点B.若矩形PBOA的面积为6,则k的值为.16.(4分)如图,AB和DE是直立在地面上的两根立柱,AB=7米,某一时刻AB在阳光下的投影BC=4米,在测量AB的投影时,同时测量出DE在阳光下的投影长为6米,则DE的长为米.17.(4分)如图,二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,当函数值y>0时,自变量x的取值范围是.18.(4分)如图,平行四边形ABCD的顶点C在y轴正半轴上,CD平行于x轴,直线AC交x轴于点E,BC⊥AC,连接BE,反比例函数y=(x>0)的图象经过点D,已知S△BCE=2,则k的值是.三、解答题(本大题共9个小题,共78分.)19.(6分)解方程:x2﹣3x+2=0.20.(6分)计算:﹣cos30°+﹣(﹣1)0﹣2﹣1.21.(6分)已知二次函数的图象如图所示,求该抛物线的解析式.22.(8分)如图,在△ABC中,∠B=90°,AB=4,BC=2,以AC为边作△ACE,∠ACE=90°,AC=CE,延长BC至点D,使CD=5,连接DE.求证:△ABC∽△CED.23.(8分)有3个完全相同的小球,把它们分别标号为1,2,3,放在一个口袋中,随机地摸出一个小球不放回,再随机地摸出一个小球.(Ⅰ)采用树形图法(或列表法)列出两次摸球出现的所有可能结果.(Ⅱ)求摸出的两个球号码之和等于5的概率.24.(10分)济南大明湖畔的“超然楼”被称作“江北第一楼”.某校数学社团的同学对超然楼的高度进行了测量.如图,他们在A处仰望塔顶,测得仰角为30°,再往楼的方向前进60m至B处,测得仰角为60°,若学生的身高忽略不计,则该楼的高度CD多少米?(结果保留根号)25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=的图象交于A(﹣2,1),B(1,n)两点.(1)求一次函数与反比例函数的表达式;(2)求△AOB的面积;(3)根据所给条件,请直接写出不等式kx+b<的解集.26.(12分)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,△BPE和△CQE的形状有什么关系,请证明;(2)如图②,当点Q在线段CA的延长线上时,△BPE和△CQE有什么关系,说明理由;(3)当BP=1,CQ=时,求P、Q两点间的距离.27.(12分)如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.参考答案与试题解析一、选择题(共12小题,每小题4分,满分48分,每小题只有一个选项符合题意)1.【解答】解:从上边看是一个同心圆,外圆是实线,內圆是虚线,故选:B.2.【解答】解:∵反比例函数y=的图象经过点A(2,m),∴1=2m∴m=故选:B.3.【解答】解:在直角△ABC中,∵∠ABC=90°,∴tan A==.故选:D.4.【解答】解:根据题意可得:一个不透明的袋中装有除颜色外其余均相同的3个白球和5个红球,从中随机摸出一个,则摸到红球的概率是=.故选:A.5.【解答】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.6.【解答】解:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,,∴△ADE∽△ABC,∴,∵△ADE的面积为4,∴,∴S△ABC=16.故选:C.7.【解答】解:x2+10x+9=0,x2+10x=﹣9,x2+10x+52=﹣9+52,(x+5)2=16.故选:A.8.【解答】解:∵函数y=﹣2x2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=﹣2x2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=﹣2(x﹣1)2+1,故选:B.9.【解答】解:根据题意得k≠0且△=(﹣1)2﹣4k>0,解得k<且k≠0.故选:C.10.【解答】解:∵A(x1,y1)在反比例函数y=﹣图象上,x1<0,∴y1>0,对于反比例函数y=﹣,在第二象限,y随x的增大而增大,∵0<x2<x3,∴y2<y3<0,∴y2<y3<y1故选:C.11.【解答】解:∵CD=BC=1,∴GD=3﹣1=2,∵△ADK∽△FGK,∴,即,∴DK=DG,∴DK=2×=,GK=2×=,∴KF=,∵△CHK∽△FGK,∴,∴,∴CH=.方法二:连接AC、CF,利用面积法:CH=;故选:A.12.【解答】解:①∵直线x=﹣1是对称轴,∴﹣=﹣1,即b﹣2a=0,①正确;②x=﹣2时,y>0,∴4a﹣2b+c>0,②错误;∵x=﹣4时,y=0,∴16a﹣4b+c=0,又b=2a,∴a﹣b+c=﹣9a,③正确;④根据抛物线的对称性,得到x=﹣3与x=1时的函数值相等,∴y1>y2,④正确,故选:C.二、填空题(共6小题,每小题4分:满分分24分)13.【解答】解:∵4x=5y,∴=,∴x:y=5:4.故答案为:5:4.14.【解答】解:如图所示:∵Rt△ABC中,∠C=90°,BC=2.5,sin A=,∴==,∴AB=6.5.故答案为:6.5.15.【解答】解:∵矩形PBOA的面积为6,∴|k|=6,∵反比例函数(x<0)的图象过第二象限,∴k<0,∴k=﹣6;故答案为:﹣6.16.【解答】解:如图,在测量AB的投影时,同时测量出DE在阳光下的投影长EF为6m,∵△ABC∽△DEF,AB=5m,BC=3m,EF=6m∴=,∴=,∴DE=(m)故答案为.17.【解答】解:∵二次函数y=ax2+bx+c的图象与x轴交于(3,0),对称轴是直线x=1,∴图象与x轴的另一个交点为:(﹣1,0),故当函数值y>0时,自变量x的取值范围是:﹣1<x<3.故答案为:﹣1<x<3.18.【解答】解:过点D作DF⊥x轴于点F,如图所示.∵四边形ABCD是平行四边形,∴BC∥AD,BC=AD.又∵BC⊥AC,∴DA⊥AC.∵CD平行于x轴,∴∠ACD=∠CEO.∵CO⊥OE,DA⊥AC,∴∠ECO=∠D.设点D的坐标为(m,)(m>0),则CD=m,OC=DF=.在Rt△CAD中,CD=m,∠CAD=90°,AD=m•cos∠D.在Rt△COE中,OC=,∠COE=90°,CE==.S△BCE=CE•BC=•m•cos∠D=k=2,解得:k=4.故答案为:4.三、解答题(本大题共9个小题,共78分.)19.【解答】解:∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,∴x﹣1=0或x﹣2=0,∴x1=1,x2=2.20.【解答】解:原式=﹣+2﹣1﹣=+2﹣.21.【解答】解:∵抛物线与x轴的一个交点坐标为(﹣1,0),抛物线与x轴的另一个交点坐标为(3,0)设抛物线解析式为y=a(x+1)(x﹣3),把(0,3)代入得a×1×(﹣3)=3,解得a=﹣1,∴抛物线解析式为y=﹣(x+1)(x﹣3)=﹣x2+2x+3.22.【解答】证明:∵∠B=90°,AB=4,BC=2,∴AC==2,∵CE=AC,∴CE=2,∵CD=5,∵==,=,∴=,∵∠B=90°,∠ACE=90°,∴∠BAC+∠BCA=90°,∠BCA+∠DCE=90°.∴∠BAC=∠DCE.∴△ABC∽△CED.23.【解答】解:(Ⅰ)方法一:,摸出两球出现的所有可能结果共有6种;方法二:根据题意,可以列出下表:从上表中可以看出,摸出两球出现的所有可能结果共有6种.(Ⅱ)设两个球号码之和等于5为事件A,摸出的两个球号码之和等于5的结果有2种,它们是:(2,3)(3,2),∴P(A)=.24.【解答】解:根据题意得:∠A=30°,∠DBC=60°,DC⊥AC,∴∠ADB=∠DBC﹣∠A=30°,∴∠ADB=∠A=30°,∴BD=AB=60m,∴CD=BD•sin60°=60×=30(m)25.【解答】解:(1)把点A(﹣2,1)代入反比例函数y=得:1=,解得:m=﹣2,即反比例函数的解析式为:y=﹣,把点B(1,n)代入反比例函数y=﹣得:n=﹣2,即点A的坐标为:(﹣2,1),点B的坐标为:(1,﹣2),把点A(﹣2,1)和点B(1,﹣2)代入一次函数y=kx+b得:,解得:,即一次函数的表达式为:y=﹣x﹣1,(2)把y=0代入一次函数y=﹣x﹣1得:﹣x﹣1=0,解得:x=﹣1,即点C的坐标为:(﹣1,0),OC的长为1,点A到OC的距离为1,点B到OC的距离为2,S△AOB=S△OAC+S△OBC=+=,(3)如图可知:kx+b<的解集为:﹣2<x<0,x>1.26.【解答】解:(1)△BPE≌△CQE.理由∵△ABC是等腰直角三角形,∴∠B=∠C=45°,AB=AC,∵AP=AQ,∴BP=CQ,∵E是BC的中点,∴BE=CE,在△BPE和△CQE中,,∴△BPE≌△CQE(SAS);(2)△BPE∽△CEQ.理由:∵△ABC和△DEF是两个全等的等腰直角三角形,∴∠B=∠C=∠DEF=45°,∵∠BEQ=∠EQC+∠C,即∠BEP+∠DEF=∠EQC+∠C,∴∠BEP+45°=∠EQC+45°,∴∠BEP=∠EQC,∵∠B=∠C,∴△BPE∽△CEQ;(3)如图②,连结PQ,∵△BPE∽△CEQ,∴=,∵BP=1,CQ=,BE=CE,∴=,∴BE=CE=,∴BC=3,在Rt△ABC中,AB=AC,∴AB=AC=3,∴AQ=CQ﹣AC=,P A=AB﹣BP=2,在Rt△APQ中,PQ==.27.【解答】解:(1)把A(﹣1,0),C(0,2)代入y=﹣x2+mx+n得,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在.抛物线的对称轴为直线x=﹣=,则D(,0),∴CD===,如图1,当CP=CD时,则P1(,4);当DP=DC时,则P2(,),P3(,﹣),综上所述,满足条件的P点坐标为(,4)或(,)或(,﹣);(3)当y=0时,﹣x2+x+2=0,解得x1=﹣1,x2=4,则B(4,0),设直线BC的解析式为y=kx+b,把B(4,0),C(0,2)代入得,解得,∴直线BC的解析式为y=﹣x+2,设E(x,﹣x+2)(0≤x≤4),则F(x,﹣x2+x+2),∴FE=﹣x2+x+2﹣(﹣x+2)=﹣x2+2x,∵S△BCF=S△BEF+S△CEF=•4•EF=2(﹣x2+2x)=﹣x2+4x,而S△BCD=×2×(4﹣)=,∴S四边形CDBF=S△BCF+S△BCD=﹣x2+4x+(0≤x≤4),=﹣(x﹣2)2+当x=2时,S四边形CDBF有最大值,最大值为,此时E点坐标为(2,1).。

2022—2023年部编版九年级数学(下册)期末试卷及答案(完美版)

2022—2023年部编版九年级数学(下册)期末试卷及答案(完美版)

2022—2023年部编版九年级数学(下册)期末试卷及答案(完美版) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计101+的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.已知a ,b 满足方程组51234a b a b +=⎧⎨-=⎩则a+b 的值为( ) A .﹣4 B .4 C .﹣2 D .23.已知m=4+3,则以下对m 的估算正确的( )A .2<m <3B .3<m <4C .4<m <5D .5<m <64.已知整式252x x -的值为6,则整式2x 2-5x+6的值为( ) A .9 B .12 C .18 D .245.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-6.若关于x 的函数||(1)5m y m x =--是一次函数,则m 的值为( )A .±1B .1-C .1D .27.如图,快艇从P 处向正北航行到A 处时,向左转50°航行到B 处,再向右转80°继续航行,此时的航行方向为( )A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°8.一次函数y=ax+b和反比例函数ya bx-=在同一直角坐标系中的大致图象是()A.B.C.D.9.如图,△ABC中,AD是BC边上的高,AE、BF分别是∠BAC、∠ABC的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=()A.75°B.80°C.85°D.90°10.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC二、填空题(本大题共6小题,每小题3分,共18分)181____________.2.分解因式:2x3﹣6x2+4x=__________.3.正五边形的内角和等于__________度.4.如图,在矩形ABCD 中,AD=3,将矩形ABCD 绕点A 逆时针旋转,得到矩形AEFG ,点B 的对应点E 落在CD 上,且DE=EF ,则AB 的长为__________.5.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:(1)214111x x x +-=-- (2)1132422x x +=--2.先化简,再求值:222221412()x x x x x x x x-+-+÷-+,且x 为满足﹣3<x <2的整数.3.如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.4.某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y (℃)与时间x(h)之间的函数关系,其中线段AB、BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?5.为了提高学生的阅读能力,我市某校开展了“读好书,助成长”的活动,并计划购置一批图书,购书前,对学生喜欢阅读的图书类型进行了抽样调查,并将调查数据绘制成两幅不完整的统计图,如图所示,请根据统计图回答下列问题:(1)本次调查共抽取了名学生,两幅统计图中的m=,n=.(2)已知该校共有3600名学生,请你估计该校喜欢阅读“A”类图书的学生约有多少人?(3)学校将举办读书知识竞赛,九年级1班要在本班3名优胜者(2男1女)中随机选送2人参赛,请用列表或画树状图的方法求被选送的两名参赛者为一男一女的概率.6.某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.(1)第一批饮料进货单价多少元?(2)若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、B3、B4、C5、D6、B7、A8、A9、A10、D二、填空题(本大题共6小题,每小题3分,共18分)1、32、2x (x ﹣1)(x ﹣2).3、5404、5、360°.6、1三、解答题(本大题共6小题,共72分)1、(1)无解.(2)5x =-2、-53、(1)略;(24、(1)y 关于x 的函数解析式为210(05)20(510)200(1024)x x y x x x ⎧⎪+≤<⎪=≤<⎨⎪⎪≤≤⎩;(2)恒温系统设定恒温为20°C ;(3)恒温系统最多关闭10小时,蔬菜才能避免受到伤害.5、(1)200 , 8415m n ==,;(2)1224人;(3)见解析,23.6、(1)第一批饮料进货单价为8元.(2) 销售单价至少为11元.。

宣城市2021-2022学年度第一学期九年级数学期末考试试卷(含答案)

宣城市2021-2022学年度第一学期九年级数学期末考试试卷(含答案)

2021—2022学年度第一学期期末教学质量监测九年级数学试卷题 号一二三四五六七八总 分得 分得分评卷人 一、选择题(本大题共10小题,每小题4分,满分40分)题 号12345678910答 案 每小题都给出A、B、C、D四个选项,其中只有一个是正确的1 已知点A(1,y1),B(2,y2)在抛物线y=(x+1)2+2上,则下列结论正确的是A 2>y1>y2B 2>y2>y1C y1>y2>2D y2>y1>22 下列各组的四条线段成比例线段的是A a=4,b=6,c=5,d=10B a=1,b=2,c=3,d=4C a槡=2,b=3,c=2,d槡=3D a=2,b槡=5,c槡=23,d槡=153 函数y=k+1x的图象中,在每个象限内y随x增大而增大,则k可能为A -2B -1C 0D 14 如图,某停车场入口的栏杆AB,从水平位置绕点O旋转到的A′B′位置,已知AO的长为4米 若栏杆的旋转角∠AOA′=α,则栏杆A端升高的垂直高度A′C为A 4sinα米B 4sinα米C 4cosα米D 4cosα米5 以下有关抛物线y=-x2+4x-3的结论,正确的是A 开口向上B 与y轴的交点坐标是(0,3)C 与x轴只有一个交点D 顶点坐标是(2,1) 第4题图 第6题图6 如图,小正方形的边长均为1,则下列图中的三角形(阴影部分)与△ABC相似的是ABC D 第7题图7 △ABC在网格中的位置如图所示(每个小正方形边长为1),AD⊥BC于D,下列四个选项中,错误的是A sinα=cosαB tanC=2C sinβ=cosβD tanα=18 共享单车为市民出行带来了方便,某单车公司第一个月投放a辆单车,计划第三个月投放单车y辆,设该公司第二、三两个月投放单车数量的月平均增长率为x,那么y与x的函数关系是A y=x2+aB y=a(1+x)2C y=(1-x)2+aD y=a(1-x)29 如图,乐器上的一根弦AB=80cm,两个端点A,B固定在乐器板面上,支撑点C是靠近点B的黄金分割点,支撑点D是靠近点A的黄金分割点,则C,D之间的距离为A (槡405-40)cmB (槡805-40)cmC (槡120-405)cmD (槡805-160)cm 第9题图 第10题图10 正方形ABCD中,AB=4,P为对角线BD上一动点,F为射线上AD一点,若AP=PF,则△APF的面积最大值为槡A 8B 6C 4D 22得分评卷人 二、填空题(本大题共4小题,每小题5分,满分20分)11 若2x-5y=0,且xy≠0,则x+yy=12 如图,某水库大坝的横断面是梯形,坝外斜坡的坡比i=1∶1,两个坡角的和为75°,则坝内斜坡的坡比是13 如图,在平面直角坐标系中,O(0,0),A(3,1),B(1,2).反比例函数y=kx(k≠0)的图象经过 OABC的顶点C,则k= 第12题图 第13题图 第14题图14 如图,正方形ABCD中,点F在边AB上,且AF∶FB=1∶2,AC与DF交于点N (1)当AB=4时,AN= (2)S△ANF∶S四边形CNFB=得分评卷人 三、(本大题共2小题,每小题8分,满分16分)15 计算:tan45°+4cos30°sin45°-槡33tan60°16 已知线段a,b,c满足a3=b2=c6,且a+2b+c=26 求线段a,b,c的长;17 如图,一次函数y1=kx+b的图象与反比例函数y2=mx的图象交于A、B两点(1)利用图中的条件,求反比例函数和一次函数的解析式;(2)根据图象直接写出使y1<y2的自变量x取值范围 第17题图18 如图,在6×8的网格图中,每个小正方形边长均为1,原点O和△ABC的顶点均为格点 (1)以O为位似中心,在网格图中作△A′B′C′,使△A′B′C′与△ABC位似,且位似比为1∶2;(2)写出点A′、点B′、点C′的坐标; 第18题图19 已知:如图,在Rt△ABC中,∠BAC=90°,AD⊥BC于D,E为直角边AC的中点,过D,E作直线交AB的延长线于F (1)若AB=6,AC=8,求BD长; 第19题图(2)求证:AB·AF=AC·DF 20 跳台滑雪是北京冬奥会的项目之一 某跳台滑雪训练场的横截面示意图如图并建立平面直角坐标系 抛物线C1∶y=-112x2+76x+1近似表示滑雪场地上的一座小山坡,某运动员从点O正上方4米处的A点滑出(即A点坐标为(0,4)),滑出后沿一段抛物线C2∶y=-18x2+bx+c运动 (1)当运动员运动到距A处的水平距离为4米时,距图中水平线的高度为8米(即经过点(4,8)),求抛物线C2的函数解析式(不要求写出自变量的取值范围);(2)在(1)的条件下,当运动员运动的水平距离为多少米时,运动员与小山坡的竖直距离为1米? 第20题图21 如图1为放置在水平桌面l上的台灯,底座的AB高为5cm,连杆BC,CD长度均为20cm,且与AB始终在同一平面上第21题图(1)转动连杆BC,CD,使成∠BCD成平角,∠ABC=150°,如图2,求连杆端点D离桌面l的高度DE;(2)将(1)中的连杆CD再绕点C逆时针旋转,使∠BCD=165°,如图3,问:此时连杆端点D离桌面的高度是增加还是减少?增加或减少了多少?(结果精确到0.1cm,参考数据:槡2≈1 41,槡3≈1 73)22 2022年冬奥会即将在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件)(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?23 如图1,在四边形ABCD中,∠ABC=∠BCD,点E在边BC上,且AE∥CD,DE∥AB,作CF∥AD交线段AE于点F,连接BF(1)求证:△ABF≌△EAD;(2)如图2,若AB=9,CD=5,∠ECF=∠AED,求BE的长;(3)如图3,若BF的延长线经过点D,求BEEC的值.第23题图2021—2022学年度第一学期期末教学质量监测九年级数学参考答案及评分标准一、选择题:(每题4分,满分40分)题 号12345678910答 案DDABDBCBDC二、填空题(每题5分,满分20分)11 72槡槡 12 1∶3 13 -2 14 2,1∶11(第1空2分,第2空3分)三、(本大题共2小题,满分16分)15 【解】原式=1+4×槡32×槡22-槡33槡×3(4分)…………………………………………………槡=6(8分)………………………………………………………………………………16 【解】设a3=b2=c6=k,∴a=3k,b=2k,c=6k,(4分)…………………………………………………………∴a+2b+c=3k+4k+6k=13k=26∴k=2(6分)……………………………………………………………………………∴a=6.b=4.c=12(8分)………………………………………………………………四、(本大题共2小题,满分16分)17 【解】(1)把A(2,1)代入y2=mx得:m=2∴y2=2x(2分)………………………………………………………………………把B(-1,n)代入y2=2x得:n=-2∴B(-1.-2)(4分)……………………………………………………………… 第18题答案图把A(2,1),(-1,n)代入y1=kx+b得:2k+b=1-k+b{=-2解得:k=1b{=-1∴y1=x-1(6分)………………………(2)x<-1或0<x<2(8分)………………18 【解】(1)如图所示:△A′B′C′即为所求;(5分)…(2)A′(-1,0),B′(2,0),C′(1,2)(8分)……………………………………………………五、(本大题共2小题,满分20分)19 【解】(1)∵∠BAC=90°,AB=6,AC=8,∴BC=62+8槡2=10∵∠BAC=90°,AD⊥BC,∴∠CAB=∠ADB,∵∠B=∠B,∴△CBA∽△ABD,∴BDAB=ABBC,即BD6=610,∴BD=3 6(5分)………………………………………………………………………(2)证明:∵E为AC的中点,AD⊥BC,∴ED=AE=EC,∴∠C=∠EDC=∠FAD=∠BDF,又∵∠F为公共角,∴△DBF∽△ADF,∴BD∶AD=DF∶AF,由(1)知:BD∶AD=AB∶AC∴AB∶AC=DF∶AF,∴AB·AF=AC·DF (10分)……………………………………………………………20 【解】(1)抛物线C2∶y=-18x2+bx+c过点(0,4)和(4,8),将其代入得:c=4-18×42+4b+c{=8解得:b=32c{=4,∴抛物线C2的函数解析式为:y=-18x2+32x+4;(5分)………………………(2)设运动员运动的水平距离为m米时,运动员与小山坡的竖直距离为1米,依题意得:-18m2+32m+4-(-112m2+76m+1)=1,整理得:(m-12)(m+4)=0,解得:m1=12,m2=-4(舍去),故运动员运动的水平距离为12米时,运动员与小山坡的竖直距离为1米 (10分)…………………………………………………………………………………六、(本题满分12分)21 【解】(1)如图①,过点B作BO⊥DE,垂足为O则四边形ABOE是矩形,∠OBD=150°-90°=60° 所以DO=BD×sin60°=40×槡32槡=203(cm) 所以DE=DO+OE=DO+AB槡=203+5 (4分)………………………………(2)减少如图②,过点D作于DF⊥l于点F,过点C作CP⊥DF于点P,过点B作BG⊥DF于点G,过点C作CH⊥BG于点H.则四边形PCHG为矩形∵∠CBH=60°,∴∠BCH=30°,CH=BC×sin60°槡=103cm ∴PG槡=103(cm) 又∵∠BCD=165°,∴∠DCP=45°∴DP=CD×sin45°槡=102(cm) ∴DF=DP+PG+GF=DP+CH+AB=(槡槡102+103+5)cm (10分)………则DE-DF槡槡槡槡槡=203+5-102-103-5=103-102≈3 2(cm) 故高度减少了,减少了32m (12分)……………………………………………七、(本题满分12分)22 【解】(1)由题意可得:y=20+2(70-x),∴y=-2x+160(4分)……………………………………………………………(2)设销售所得利润为w,由题意可得:w=(x-30-2)y=(x-32)(-2x+160)=-2x2+224x-5120,(8分)………整理,得:w=-2(x-56)2+1152,∵-2<0,∴当x=56时,w取最大值为1152,∴当销售单价为56元时,销售这款文化衫每天所获得的利润最大,最大利润为1152元 (12分)……………………………………………………………………八、(本题满分14分)23 【解】(1)解:(1)∵AE∥CD,DE∥AB,∴∠AEB=∠BCD,∠DEC=∠ABC∵∠ABC=∠BCD∴∠ABC=AEB=∠DEC=∠BCD∴AB=AE,DE=DC∵CF∥AD,AE∥CD∴四边形ADCF是平行四边形,∴AF=CD=DE,在△ABF和△EAD中,AB=AE∠BAF=∠AED,AF={DF∴△ABF≌△EAD(SAS)(4分)……………………………………………………(2)由(1)知:四边形ADCF是平行四边形,∴AD=CF,AF=CD=5,由(1)知:△ABF≌△EAD,∴BF=AD=CF,AB=AE=9,∴∠FBC=∠FCB=∠AED=∠BAE,∵∠BEF=∠AEB,∴△BEF∽△AEB,∴EFBE=BEAE,∴BE2=4×9=36,即BE=6(8分)………………………………………………(3)如图3,∵AB∥DE∴EFAF=DFBF,∵EF∥DC∴EFDC=BEBC,ECBE=DFBF,由(1)知:AF=DC∴EFAF=EFDC=BEBC=DFBF=ECBE设EC=1,BE=x,∴xx+1=1x,∴x2-x-1=0,解得:x=槡1+52或x=槡1-52(舍去),∴BEEC=x=槡1+52.(14分)…………………………………………………………。

达标测试华东师大版九年级数学下册第27章 圆同步测评试题(含答案解析)

达标测试华东师大版九年级数学下册第27章 圆同步测评试题(含答案解析)

华东师大版九年级数学下册第27章 圆同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在矩形ABCD 中,点E 在CD 边上,连接AE ,将ADE 沿AE 翻折,使点D 落在BC 边的点F 处,连接AF ,在AF 上取点O ,以O 为圆心,线段OF 的长为半径作⊙O ,⊙O 与AB ,AE 分别相切于点G ,H ,连接FG ,GH .则下列结论错误的是( )A .2BAE DAE ∠=∠B .四边形EFGH 是菱形C .3AD CE = D .GH AO ⊥2、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相交或相切3、如图,△ABC 周长为20cm ,BC =6cm ,圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M、N,则△AMN的周长为()A.14cm B.8cm C.7cm D.9cm4、有下列四个命题,其中正确的个数是()(1)经过三个点一定可以作一个圆;(2)任意一个三角形有且仅有一个外接圆;(3)三角形的外心到三角形的三个顶点的距离相等;(4)在圆中,平分弦的直径一定垂直于这条弦;A.1个B.2个C.3个D.4个5、如图,AB是O的切线,B为切点,连接O A,与O交于点C,D为O上一动点(点D不与点C、点B重合),连接CD BD、.若42∠的度数为()∠=︒,则DAA.21︒B.24︒C.42︒D.48︒6、如图,点A,B,C为O上三点,若54∠的大小为()∠=︒,则AOBCA .27︒B .36︒C .54︒D .108︒7、如图,PA ,PB 是⊙O 的切线,A ,B 为切点,PA =4,则PB 的长度为( )A .3B .4C .5D .68、在圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数之比为2:4:7,则∠B 的度数为( )A .140°B .100°C .80°D .40°9、如图,在Rt ABC 中,90C ∠=︒,10cm AB =,若以点C 为圆心,CB 的长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A .5cmB .6cmC .D .10、如图,在33⨯的网格中,A ,B 均为格点,以点A 为圆心,AB 的长为半径作弧,图中的点C 是该弧与格线的交点,则tan BAC ∠的值是( )A .12BCD .23第Ⅱ卷(非选择题 70分)二、填空题(10小题,每小题3分,共计30分)1、如图,PA 是⊙O 的切线,A 是切点.若∠APO =25°,则∠AOP =___________°.2、如图,已知P 的半径为1,圆心P 在抛物线2112y x =-+上运动,当P 与x 轴相切时,圆心P 的横坐标为______.3、如图,在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,以点A 为圆心,AC 的长为半径画弧,以点B 为圆心,BC 的长为半径画弧,两弧分别交AB 于点D 、F ,则图中阴影部分的面积是_________.4、如图,PA 、PB 分别与O 相切于A 、B 两点,若58P ∠=︒,则ACB ∠的度数为________.5、如图,点A ,B ,C 在⊙O 上,四边形OABC 是平行四边形,若对角线AC =AC 的长为 _____.6、已知Rt ABC 中,90ACB ∠=︒,6cm AC =,8cm BC =,以C 为圆心,4.8cm 长度为半径画圆,则直线AB 与O 的位置关系是__________.7、在Rt △ABC 中,∠C =90°,∠B =30°,AC =2,点D 、E 分别在边BC 、AB 上,且DE ⊥BC ,BD =2,将△BDE 绕点B 旋转至△BD 1E 1,点D 、E 分别对应点D 1、E 1,当A 、D 1、E 1三点共线时,CD 1的长为 ___.8、如图,⊙O 的半径为2,△ABC 是⊙O 的内接三角形,连接OB 、OC ,若弦BC 的长度为∠BAC =________度.9、如图,AB、CD为一个正多边形的两条边,O为该正多边形的中心,若∠ADB=12°,则该正多边形的边数为 _____.10、如图,PA,PB分别与⊙O相切于A,B两点,C是优弧AB上的一个动点,若∠P= 50°,则∠ACB=_____________°三、解答题(5小题,每小题8分,共计40分)1、【数学认识】数学是研究数量关系的一门学科,在初中几何学习的历程中,常常把角与角的数量关系转化为边与边的数量关系,把边与边的数量关系转化为角与角的数量关系.【构造模型】(1)如图①,已知△ABC,在直线BC上用直尺与圆规作点D,使得∠ADB=1∠ACB.2(不写作法,保留作图痕迹)【应用模型】已知△ABC是⊙O的内接三角形,⊙O的半径为r,△ABC的周长为c.(2)如图②,若r=5,AB=8,求c的取值范围.(3)如图③,已知线段MN,AB是⊙O一条定长的弦,用直尺与圆规作点C,使得c=MN.(不写作法,保留作图痕迹)2、(1)如图1,在△ABC 中,AC =6,AB =135BAC ∠=︒,求△ABC 的面积.(2)如图2,半圆O 的直径AB =10,C 是半圆AB 的中点,点D 在BC 上,且2CD BD =,点P 是AB 上的动点,试求PC +PD 的最小值.(3)如图3,扇形AOB 的半径为20,∠AOB =45°,在AB 选点P ,在边OA 上选点E ,在边OB 上选点F ,求PE +EF +FP 的长度的最小值.3、如图,在ABC 中,90C ∠=︒,CAB ∠的平分线交BC 于点D ,点O 在AB 上,以O 为圆心,OA 长为半径的圆恰好经过点D ,分别交AC 、AB 于点E 、F .(1)试判断直线BC 与O 的位置关系,并说明理由;(2)若1CE =,3DE =,求O 的半径.4、如图, 在Rt ABC 中, 90ACB ∠=, 经过A B C ,,三点作O ACB ∠,的角平分线CE 交AB 于点D , 交O 于点E , 连结 AE BE ,.(1)求证: EAB EBA ∠=∠;(2)当68AC BC ==,时, 求线段CE 的长;(3)当14AC BC +=时, 设AC x CD y ==,, 求y 关于x 的函数表达式.5、【教材呈现】下图是华师版九年级下册数学教材第43页的部分内容.圆周角定理 在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于该弧所对的圆心角的一半;相等的圆周角所对的弧相等.由圆周角定理,可以得到以下推论:推论1 90°的圆周角所对的弦是直径.(如图)【推论证明】已知:△ABC 的三个顶点都在⊙O 上,且∠ACB =90°.求证:线段AB 是⊙O 的直径.请你结合图①写出推论1的证明过程.【深入探究】如图②,点A ,B ,C ,D 均在半径为1的⊙O 上,若∠ACB =90°,∠ACD =60°.则线段AD 的长为 .【拓展应用】如图③,已知△ABC是等边三角形,以AC为底边在三角形ABC外作等腰直角三角形ACD,点E是BC的中点,连结DE.若AB=DE的长为.-参考答案-一、单选题1、C【解析】【分析】由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED,再根据切线长定理得到AG=AH,∠GAF=∠HAF,进而求出∠GAF=∠HAF=∠DAE=30°,据此对A作出判断;接下来延长EF与AB交于点N,得到EF是⊙O的切线,∆ANE是等边三角形,证明四边形EFGH是平行四边形,再结合HE=EF可对B作出判断;在Rt∆EFC中,∠C=90°,∠FEC=60°,则EF=2CE,再结合AD对C作出判断;由AG=AH,∠GAF=∠HAF,得出GH⊥AO,不难判断D.【详解】解:由折叠可得∠DAE=∠FAE,∠D=∠AFE=90°,EF=ED.∵AB和AE都是⊙O的切线,点G、H分别是切点,∴AG=AH,∠GAF=∠HAF,∴∠GAF=∠HAF=∠DAE=30°,∴∠BAE=2∠DAE,故A正确,不符合题意;延长EF与AB交于点N,如图:∵OF⊥EF,OF是⊙O的半径,∴EF是⊙O的切线,∴HE=EF,NF=NG,∴△ANE是等边三角形,∴FG//HE,FG=HE,∠AEF=60°,∴四边形EFGH是平行四边形,∠FEC=60°,又∵HE=EF,∴四边形EFGH是菱形,故B正确,不符合题意;∵AG=AH,∠GAF=∠HAF,∴GH⊥AO,故D正确,不符合题意;在Rt△EFC中,∠C=90°,∠FEC=60°,∴∠EFC=30°,∴EF=2CE,∴DE=2CE.∵在Rt△ADE中,∠AED=60°,∴AD,∴AD,故C错误,符合题意.故选C.【点睛】本题是一道几何综合题,考查了切线长定理及推论,切线的判定,菱形的定义,含30︒的直角三角形的性质,等边三角形的判定和性质,翻折变换等,正确理解翻折变换及添加辅助线是解决本题的关键.2、B【解析】【分析】圆的半径为,r圆心O到直线l的距离为,d当d r=时,直线与圆相切,当d r时,直线与圆相离,<时,直线与圆相交,根据原理直接作答即可.当d r【详解】解:⊙O的直径为10cm,圆心O到直线l的距离为5cm,∴⊙O的半径等于圆心O到直线l的距离,∴直线l与⊙O的位置关系为相切,故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.3、B【解析】【分析】根据切线长定理得到BF=BE,CF=CD,DN=NG,EM=GM,AD=AE,然后利用三角形的周长和BC的长求得AE和AD的长,从而求得△AMN的周长.解:∵圆O 是△ABC 的内切圆,圆O 的切线MN 与AB 、CA 相交于点M 、N ,∴BF =BE ,CF =CD ,DN =NG ,EM =GM ,AD =AE ,∵△ABC 周长为20cm ,BC =6cm ,∴AE =AD =2AB AC BC +-=202BC BC --=20122-=4(cm ), ∴△AMN 的周长为AM +MG +NG +AN =AM +ME +AN +ND =AE +AD =4+4=8(cm ),故选:B .【点睛】本题考查三角形的内切圆与内心及切线的性质的知识,解题的关键是利用切线长定理求得AE 和AD 的长,难度不大.4、B【解析】【分析】根据确定圆的条件、三角形的外心的概念、垂径定理的推论判断即可.【详解】(1)经过不在同一直线上的三个点一定可以作一个圆,故本说法错误;(2)任意一个三角形有且仅有一个外接圆,本说法正确;(3)三角形的外心到三角形的三个顶点的距离相等,本说法正确;(4)在圆中,平分弦(不是直径)的直径一定垂直于这条弦,故本说法错误;【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.5、B【解析】【分析】如图:连接OB,由切线的性质可得∠OBA=90°,再根据直角三角形两锐角互余求得∠COB,然后再根据圆周角定理解答即可.【详解】解:如图:连接OB,∵AB是O的切线,B为切点∴∠OBA=90°∵42∠=︒A∴∠COB=90°-42°=48°∠COB=24°.∴D∠=12故选B.【点睛】本题主要考查了切线的性质、圆周角定理等知识点,掌握圆周角等于对应圆心角的一半成为解答本题6、D【解析】【分析】直接根据圆周角定理即可得出结论.【详解】解:C ∠与AOB ∠是同弧所对的圆周角与圆心角,2108AOB C ∴∠=∠=︒,故选:D .【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.7、B【解析】【分析】由切线的性质可推出OA AP ⊥,OB BP ⊥.再根据直角三角形全等的判定条件“HL ”,即可证明OAP OBP ≅,即得出4PB PA ==.【详解】∵PA ,PB 是⊙O 的切线,A ,B 为切点,∴OA AP ⊥,OB BP ⊥,∴在Rt OAP △和Rt OBP 中,OA OB OP OP =⎧⎨=⎩, ∴()OAP OBP HL ≅,∴4PB PA ==.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、C【解析】【分析】180A C ∠+∠=︒,::2:4:7A B C ∠∠∠=,40A ∠=︒,进而求解B 的值.【详解】解:由题意知180A C ∠+∠=︒∵::2:4:7A B C ∠∠∠=∴():1802:7A A ∠-∠=∴40A ∠=︒∵:2:4A B ∠∠=∴80B ∠=︒故选C .【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.9、D【解析】【分析】连接CD ,由直角三角形斜边中线定理可得CD =BD ,然后可得△CDB 是等边三角形,则有BD =BC =5cm ,进而根据勾股定理可求解.【详解】解:连接CD ,如图所示:∵点D 是AB 的中点,90C ∠=︒,10cm AB =, ∴15cm 2CD BD AB ===, ∵CD BC =,∴5cm CD BD BC ===,在Rt△ACB 中,由勾股定理可得AC =;故选D .【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.10、B【解析】【分析】利用CD AB ∥,得到∠BAC =∠DCA ,根据同圆的半径相等,AC =AB =3,再利用勾股定理求解,CD 可得tan ∠ACD =AD CD =. 【详解】解:如图, ∵CD AB ∥,∴∠BAC =∠DCA .∵同圆的半径相等, ∴AC =AB =3,而2,AD = 225,CDAC AD在Rt △ACD 中,tan ∠ACD =AD CD∴tan ∠BAC =tan ∠ACD . 故选B .【点睛】 本题主要考查了解直角三角形的应用,利用图形的性质进行角的等量代换是解本题的关键.二、填空题1、65【解析】根据切线的性质得到OA ⊥AP ,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA 是⊙O 的切线,∴OA ⊥AP ,∴90APO AOP ∠+∠=︒,∵∠APO =25°,∴90902565AOP APO ∠=︒-∠=︒-︒=︒,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键. 2、2或2-或0【解析】【分析】当⊙P 与x 轴相切时,圆心P 的纵坐标为1或-1,根据圆心P 在抛物线上,所以当y 为±1时,可以求出点P 的横坐标.【详解】解:当y =1时,有1=-12x 2+1,x =0.当y =-1时,有-1=-12x 2+1,x =2±.故答案是:2或2-或0.【点睛】本题考查的是二次函数的综合题,利用圆与x 轴相切得到点P 的纵坐标,然后代入抛物线求出点P 的3、512π-【解析】【分析】根据直角三角形30度角的性质及勾股定理求出AC 、BC ,∠A =60°,利用扇形面积公式求出阴影面积.【详解】解:在Rt ABC 中,90ACB ∠=︒,30B ∠=︒,2AB =,∴AC =1,BC ==A =60°,∴图中阴影部分的面积=ABC CAD CBE S S S+-扇形扇形=2601113602π⨯⨯=512π故答案为:512π 【点睛】此题考查了直角三角形30度角的性质,勾股定理,扇形面积的计算公式,直角三角形面积公式,熟记各知识点并综合应用是解题的关键.4、61︒【解析】【分析】根据已知条件可得出90OAP OBP ∠=∠=︒,122AOB ∠=︒,再利用圆周角定理得出1612C AOB ∠=∠=︒即可.【详解】解:PA 、PB 分别与O 相切于A 、B 两点,OA PA ∴⊥,OB PB ⊥,90OAP OBP ∴∠=∠=︒,180********AOB P ∴∠=︒-∠=︒-︒=︒,111226122C AOB ∴∠=∠=⨯︒=︒. 故答案为:61︒.【点睛】本题考查的知识点是切线的性质以及圆周角定理,掌握以上知识点是解此题的关键.5、4π3【解析】【分析】连接OB ,交AC 于点D ,根据有一组邻边相等的平行四边形是菱形,可得四边形OABC 为菱形,根据菱形的性质可得:OB AC ⊥,OA AB =,AD DC =,根据等边三角形的判定得出OAB 为等边三角形,由此得出120AOC ∠=︒,在直角三角形中利用勾股定理即可确定圆的半径,然后代入弧长公式求解即可.【详解】解:如图所示,连接OB ,交AC 于点D ,∵四边形OABC 为平行四边形,OA OC =,∴四边形OABC 为菱形,∴OB AC ⊥,OA AB =,12AD DC AC === ∵OA OB AB ==,∴OAB 为等边三角形,∴60AOB ∠=︒,∴120AOC ∠=︒,在Rt OAD 中,设AO r =,则12OD r =, ∴222AD OD AO +=,即22212r r ⎛⎫+= ⎪⎝⎭, 解得:2r =或2r =-(舍去),∴AC 的长为:120241803ππ⨯⨯=, 故答案为:43π. 【点睛】题目主要考查菱形的判定和性质,等边三角形的判定和性质,勾股定理,弧长公式等,熟练掌握各个定理和公式是解题关键.6、相切【解析】【分析】过点C 作CD ⊥AB 于D ,在Rt△ABC 中,根据勾股定理AB 10=cm ,利用面积得出CD·AB=AC·BC,即10CD=6×8,求出CD=4.8cm,根据CD=r=4.8cm,得出直线AB与O的位置关系是相切.【详解】解:过点C作CD⊥AB于D,在Rt△ABC中,根据勾股定理AB10=cm,∴S△ABC=12CD·AB=12AC·BC,即10CD=6×8,解得CD=4.8cm,∴CD=r=4.8cm,∴直线AB与O的位置关系是相切.故答案为:相切.【点睛】本题考查勾股定理,直角三角形面积,圆的切判定,掌握勾股定理,直角三角形面积,圆的切判定是解题关键.7、2或4##4或2【解析】【分析】根据题意分两种情况讨论,由矩形的性质和全等三角形的性质进行分析即可求解.【详解】解:如图1,当点D1在线段AE1上,∵∠ACD=90°,∠ABC=30°,AC=2,∴AB=4,BC∵将△BDE绕点B旋转至△BD1E1,∴D1B=2=DB,∠BD1E1=90°,∴AD=,1∴AD1=BC,且AC=BD1,∴四边形ACBD1是平行四边形,且∠ACB=90°,∴四边形ACBD1是矩形,∴CD1=AB=4,如图2,当点D1在线段AE1的延长线上,∵∠ACB=∠AD1B=90°,∴点A,点B,点D1,点C四点共圆,∴∠AD1C=∠ABC=30°,∵AC=BD1,AB=AB,∴Rt△ABC≌Rt△BAD1(HL)∴∠D1AB=∠ABC=30°,且∠BAC=60°,∴∠CAD1=30°=∠AD1C,∴AC=CD1=2,综上所述:CD1=2或4,故答案为:2或4.【点睛】本题考查旋转的性质,矩形的判定和性质,全等三角形的判定和性质,直角三角形的性质,勾股定理等知识,利用分类讨论解决问题是解答本题的关键.8、60【解析】【分析】在Rt△BOE中,利用勾股定理求得OE=1,知OB=2OE,得到∠BOE=60°,∠BOC=120°,再利用圆周角定理即可解决问题.【详解】解:如图作OE⊥BC于E.∵OE⊥BC,∴BE=EC BOE=∠COE,∴OE=1,∴OB=2OE,∴∠OBE=30°,∴∠BOE=∠COE=60°,∴∠BOC=120°,∴∠BAC=60°,故答案为:60.【点睛】本题考查三角形的外心与外接圆、圆周角定理.垂径定理、勾股定理、直角三角形30度角性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.9、15##十五【解析】【分析】根据圆周角定理可得正多边形的边AB所对的圆心角∠AOB=24°,再根据正多边形的一条边所对的圆心角的度数与边数之间的关系可得答案.【详解】解:如图,设正多边形的外接圆为⊙O ,连接OA ,OB ,∵∠ADB =12°,∴∠AOB =2∠ADB =24°,而360°÷24°=15,∴这个正多边形为正十五边形,故答案为:15.【点睛】本题考查正多边形与圆,圆周角,掌握圆周角定理是解决问题的关键,理解正多边形的边数与相应的圆心角之间的关系是解决问题的前提.10、65【解析】【分析】连接,OA OB ,根据切线的性质以及四边形内角和定理求得130AOB ∠=︒,进而根据圆周角定理即可求得∠ACB【详解】解:连接,OA OB ,如图,PA ,PB 分别与⊙O 相切90OAP OBP ∴∠=∠=︒360130AOB OAP OBP P ∴∠=︒-∠-∠-∠=︒AB AB =1652ACB AOB ∴∠=∠=︒ 故答案为:65【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.三、解答题1、(1)见解析;(2)16<c ≤8+(3)见解析【解析】【分析】(1)可找到两个这样的点:①当点D 在BC 的延长线上时:以点C 为圆心,AC 长为半径,交BC 的延长线于点D ,连接AD ,即为所求;②当点D 在CB 的延长线上时:以点A 为圆心,AD 长为半径,交CB 的延长线于点1D ,连接1AD ,即为所求;两种情况均可利用等腰三角形的性质及三角形外角的性质证明;(2)考虑最极端的情况:当C 与A 或B 重合时,则8CA CB AB +==,可得此时16c =,根据题意可得16c >,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =,利用等腰三角形的性质及三角形外角性质可得点D的运动轨迹为一个圆,点C为优弧AB的中点时,点C即为ABD外接圆的圆心,AC长为半径,连接CO并延长交AB于点E,连接AO,根据垂径定理及勾股定理可得AC=AD为直径时,c最大即可得;(3)依照(1)(2)的做法,方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得ED BD=;第2步:作ABE的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF 交⊙O于点C,即为所求.【详解】(1)如图所示:①当点D在BC的延长线上时:以点C为圆心,AC长为半径,交BC的延长线于点D,连接AD,即为所求;②当点D在CB的延长线上时:以点A为圆心,AD长为半径,交CB的延长线于点1D,连接1AD,即为所求;证明:①∵AC CD=,∴CDA CAD∠=∠,∴12CDA BCA ∠=∠;同理可证明11 2CD A BCA ∠=∠;(2)当C 与A 或B 重合时,则8CA CB AB +==,∴16c CA CB AB =++=,∵ABC ,∴16c >,如图,当点C 为优弧AB 的中点时,连接AC 并延长至D ,使得CD CB =, ∴12D ACB ∠=∠,∵同弧所对的圆周角相等,∴ACB ∠为定角,∴D ∠为定角,∴点D 的运动轨迹为一个圆,当点C 为优弧AB 的中点时,点C 即为ABD 外接圆的圆心,AC 长为半径,连接CO 并延长交AB 于点E ,连接AO ,由垂径定理可得:CE 垂直平分AB , ∴142AE AB ==, 在Rt AOE 中,OE==,3CE=+=,∴538∴AC=∴AD为直径时最长,∴AC BC AD+==∴ABC的周长最长.∴c最长为8++=+,AB AC BC∴c的取值范围为:168<≤+c(3)方法一:第1步:作AB的垂直平分线交⊙O于点P;第2步:以点P为圆心,PA为半径作⊙P;第3步:在MN上截取AB的长度;第4步:以A为圆心,MN减去AB的长为半径画弧交⊙P于点E;第5步:连接AE交⊙O于点C,即为所求;方法二:第1步:在圆上取点D,连接AD、BD,延长AD使得ED BD;第2步:作ABE的外接圆;第3步:在MN上截取AB的长度;第4步:以点A为圆心,MN减去AB的长为半径画弧交△ABE的外接圆于点F;第5步:连接AF交⊙O于点C,即为所求.【点睛】题目主要考查等腰三角形的性质及三角形外角的性质,勾股定理,垂径定理,角的作法等,理解题意,综合运用各个知识点作图是解题关键.2、(1)12;(2)(3)【解析】【分析】(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,解直角三角形求出BD,可得结论.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,因为PC+PD≥CQ所以当点P处于解图2中的位置,PC+PD 取最小值,且最小值为CQ的长度,求出CQ的长即可解决问题.(3)如图3中,在AB上这一点作点P关于OA的对称点S,作点P关于OB的对称点N,连接SN,交OA于点E,交OB于点F,连接OS、ON、OP、EP、FP,因为PE+EF+FP≥SN,所以当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,求出SN,可得结论.【详解】解:(1)如图1中,过点B作BD⊥CA,交CA延长线于点D,∵∠BAC=135°,∴∠BAD=180°﹣∠BAC=180°﹣135°=45°,∵BD⊥CA,交CA延长线于点D,∴△BAD为等腰直角三角形,且∠BDA=90°,∴BD=AD,在△BAD中,BD=AD,∠BDA=90°,∴BD2+AD2=AB2,即2BD2=AB2,∵AB=∴222232BD AB===,解得:BD=4,∵AC=6,∴11641222ABCS AC BD∆=⋅⋅=⨯⨯=.(2)如图2中,作点D关于AB的对称点Q,交AB于点H,连接CQ,交AB于点P,连接PD、OD、OC,过点Q作QM⊥CO,交CO延长线于点M,∵D关于AB的对称点Q,CQ交AB于点P,∴PD=PQ,∴PC+PD=PC+PQ=CQ,∵点P为AB上的动点,∴PC+PD≥CQ,∴当点P处于解图2中的位置,PC+PD取最小值,且最小值为CQ的长度,∵点C为半圆AB的中点,∴∠COB=90°,∵∠BOD+∠COD=∠COB=90°,∴11903033BOD COB︒︒∠=∠=⨯=,∵AB=10,∴1110522OD AB ==⨯=, 在Rt △ODH 中,由作图知,∠OHD =90°,且∠HOD =∠BOD =30°, ∴1522DH OD ==, ∴52QH DH ==,∴OH == ∵由作图知,四边形OMQH 为矩形,∴5,2OM QH MQ OH ====, ∴515522CM OM OC =+=+=,∴CQ ==∴PC +PD 的最小值为(3)如图3中,在AB 上这一点作点P 关于OA 的对称点S ,作点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F ,连接OS 、ON 、OP 、EP 、FP ,∵点P 关于OA 的对称点S ,点P 关于OB 的对称点N ,连接SN ,交OA 于点E ,交OB 于点F , ∴PE =SE ,FP =FN ,∠SOA =∠POA ,∠NOB =∠POB ,OS =OP =ON ,∴PE +EF +FP =SE +EF +FN =SN ,∠SOA +∠NOB =∠POA +∠POB ,∵E为OA上的点,F为OB上的点,∴PE+EF+FP≥SN,∴当点E、F处于解图3的位置时,PE+EF+FP的长度取最小值,最小值为SN的长度,∵∠POA+∠POB=∠AOB=45°,∴∠SOA+∠NOB=45°,∴∠SON=∠SOA+∠AOB+∠NOB=45°+45°=90°,∵扇形AOB的半径为20,∴OS=ON=OP=20,在Rt△SON中,∠SON=90°,OS=ON=20,∠SON=90°,∴SN OS=∴PE+EF+FP的长度的最小值为【点睛】本题属于圆综合题,考查了轴对称最短问题,矩形的判定和性质,解直角三角形,等腰直角三角形的判定和性质等知识,解题的关键是学会利用轴对称解决最短问题.3、 (1)直线BC与O相切,见解析;(2)9 2【解析】【分析】(1)连接OD,根据AD平分CAB∠,得到∠CAD=∠BAD,由OA=OD,推出∠BAD=∠ADO.进而证得AC∥OD,得到∠ODB=90C∠=︒,得到直线BC与O相切;(2)过点D作DH⊥AB于H,连接DF,根据四边形AEDF是圆内接四边形,得到∠CED=∠DFH,利用角平分线的性质得CD=HD,由此证明△CED≌△HFD,求出FH=CE=1,DF=DE=3,再证明△DFH∽△AFD,得到2DF FH AF=⋅,求出AF即可得到半径.(1)解:直线BC 与O 相切;证明:连接OD ,∵AD 平分CAB ∠,∴∠CAD =∠BAD ,∵OA=OD ,∴∠BAD =∠ADO .∴∠CAD =∠ADO .∴AC ∥OD ,∴∠ODB =90C ∠=︒,即OD ⊥BC ,∵BC 过半径OD 的外端点D ,∴直线BC 与O 相切.(2)解:过点D 作DH ⊥AB 于H ,连接DF ,∵四边形AEDF 是圆内接四边形,∴∠CED =∠DFH ,∵AD 平分CAB ∠,DH ⊥AB ,CD ⊥AC ,∴CD=HD ,∵∠DHF =90C ∠=︒,∴△CED ≌△HFD ,∴FH=CE=1,DF=DE =3,∵AF 是O 的直径,∴∠DHF =90,ADF DFH AFD ∠=︒∠=∠,∴△DFH ∽△AFD ,∴2DF FH AF =⋅,∴2=3=9AF ,∴O 的半径是92.【点睛】此题考查了圆的切线的判定定理,平行线的性质,全等三角形的判定及性质,圆内接四边形的性质,相似三角形的判定及性质,这是一道几何的综合题,综合掌握各知识点并熟练应用是解题的关键.4、 (1)见解析;(2)CE =(3)2y = 【解析】【分析】(1)根据角平分线定义和等弧所对的圆周角相等解答即可;(2)过E作EF⊥CA交CA延长线于F,过E作EH⊥BC于H,根据角平分线性质定理得出EF=EH,证明四边形CFEH是正方形,则CF=CH,CE,根据HL定理可证明Rt△AEF≌Rt△BEH,则有AF=BH,由6+AF=8-AF求出AF即可解答;(3)过A作AP⊥CE于P,过B作BQ⊥CE于Q,根据角平分线定义得出∠ACP=∠BCQ=45°,利用锐角S S S求解即可.三角函数求得AP、BQ,利用等面积ABC ACD BCD(1)证明:∵CE平分∠ACB,∴∠CAE=∠BCE,∴AE BE=,∴EAB EBA∠=∠;(2)解:过E作EF⊥CA交CA延长线于F,过E作EH⊥BC于H,则∠EFC=∠EHC=90°,又∵∠ACB=90°,∴四边形CFEH是矩形,∵CE平分∠ACB,EF⊥CA,EH⊥BC,∴EF=EH,∴四边形CFEH是正方形,∴CF=CH,CE,∵AE BE=∴AE=BE,在Rt△AEF和Rt△BEH中,AE BE EF EH=⎧⎨=⎩, ∴Rt △AEF ≌Rt △BEH (HL ),∴AF=BH ,∵AC =6,BC =8,CF=CH ,∴6+AF =8-AF ,∴AF =1,即CF =7,∴CE CF =(3)解:过A 作AP ⊥CE 于P ,过B 作BQ ⊥CE 于Q , ∵AD 平分∠ACB ,∠ACB =90°∴∠ACP =∠BCQ =45°,在Rt△ACP 中,AC=x ,∴AP =AC , 在Rt △BCQ 中,BC=14-x ,∴BQ =BC -x ),由ABC ACD BCD SS S 得:111222AC BC CD AP CD BQ ,∴111(14))222x x y y x y -=+-=,整理得:2y =,即y 关于x 的函数表达式为2y x =.【点睛】本题考查角平分线性质、圆周角定理、正方形的判定与性质、全等三角形的判定与性质、锐角三角函数、三角形的面积公式等知识,知识面广,综合性强,解答的关键是熟练掌握相关知识的联系与运用.5、【推论证明】见解析;【拓展应用】1+【解析】【分析】推论证明:根据圆周角定理求出180AOB ∠=︒,即可证明出线段AB 是⊙O 的直径;深入探究:连接AB ,首先根据∠ACB =90°得出AB 是⊙O 的直径,然后求出30BCD ∠=︒,然后根据同弧所对的圆周角相等得到30BAD ∠=︒,然后根据30°角直角三角形的性质求出BD 的长度,最后根据勾股定理即可求出AD 的长度;拓展应用:连接AE ,作CF ⊥DE 交DE 于点F ,首先根据等边三角形三线合一的性质求出AE BC ⊥,然后证明出A ,E ,C ,D 四点共圆,然后根据同弧或等弧所对的圆周角相等求出45CED CAD ∠=∠=︒,30EDC EAC ∠=∠=︒,最后根据等腰直角三角形的性质和30°角直角三角形的性质,结合勾股定理求解即可.【详解】解:推论证明:∵90C ∠=︒∴180AOB ∠=︒,∴A ,B ,O 三点共线,又∵点O 是圆心,∴AB 是⊙O 的直径;深入探究:如图所示,连接AB ,∵∠ACB =90°∴AB 是⊙O 的直径∴90ADB ∠=︒∵∠ACD =60°∴30BCD ACB ACD ∠=∠-∠=︒∵DB DB =∴30BAD BCD ∠=∠=︒∴在Rt ABD ∆中,112BD AB ==∴AD拓展应用:如图所示,连接AE ,作CF ⊥DE 交DE 于点F ,∵△ABC 是等边三角形,点E 是BC 的中点∴AE BC ⊥,1302CAE BAC ∠=∠=︒又∵以AC 为底边在三角形ABC 外作等腰直角三角形ACD∴90ADC ∠=︒,45DAC ∠=︒∴点A ,E ,C ,D 四点都在以AC 为直径的圆上,∵DC DC =∴45CED CAD ∠=∠=︒∵CF ⊥DE∴EFC ∆是等腰直角三角形∴EF CF =,222EF CF EC +=∴222EF EC =∵1122EC BC AB ===∴222EF =,解得:1EF =∴1FC = ∵EC EC =∴30EDC EAC ∠=∠=︒∴在Rt FCD ∆中,22CD FC ==∴DF∴1=+=DE EF DF【点睛】此题考查了圆周角定理,90°的圆周角所对的弦是直径,相等的圆周角所对的弧相等,等边三角形和等腰直角三角形的性质等知识,解题的关键是熟练掌握以上知识点和性质定理.。

新】人教版九年级数学下册期末试卷及答案

新】人教版九年级数学下册期末试卷及答案

新】人教版九年级数学下册期末试卷及答案九年级数学下册期末测试卷(B卷)测试时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知 $\frac{b^5-a^b}{a^{13}+b}$ 的值是$\frac{2394}{3249}$,则 $\frac{a^2}{b^2}$ 的值是()A。

$\frac{2394}{3249}$ B。

$\frac{3249}{2394}$ C。

$\frac{13}{5}$ D。

$\frac{5}{13}$2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A。

B。

C。

D。

3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且 $S_{\triangle AEF}=2$,则四边形EBCF的面积为()A。

4 B。

6 C。

16 D。

184.在Rt△ABC中,$\angle C=90°$,若 $\sinA=\frac{3}{5}$,则 $\cos B$ 的值是()A。

$\frac{3}{5}$ B。

$\frac{4}{5}$ C。

$\frac{5}{4}$ D。

$\frac{5}{3}$5.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,$\tan\alpha=\frac{3}{2}$,则t的值是()A。

1 B。

1.5 C。

2 D。

36.反比例函数 $y=\frac{k}{x}$ 的定义域是 $x\neq 0$,则当 $x_1<x_2$ 时,有 $\frac{y_1}{y_2}$ ()A。

$1$ D。

不确定7.已知长方形的面积为20cm²,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A。

B。

C。

D。

8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()。

A。

5.3米 B。

4.8米 C。

4.0米 D。

2.7米9.如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且 $\angle AEF=90°$,则下列结论正确的是()。

2022—2023年人教版九年级数学下册期末试卷(参考答案)

2022—2023年人教版九年级数学下册期末试卷(参考答案)

2022—2023年人教版九年级数学下册期末试卷(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >27.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25 D .13二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.分解因式:29a -=__________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223x x =--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,一次函数y=x+4的图象与反比例函数y=k x (k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、B6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()()33a a +-3、增大.4、70°5、36、15.三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=-3x(2)点P (﹣6,0)或(﹣2,0) 4、(1)2(2)略5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、甲、乙两个工厂每天分别能加工40件、60件新产品。

2023年人教版九年级数学(下册)期末试卷及答案(完整)

2023年人教版九年级数学(下册)期末试卷及答案(完整)

2023年人教版九年级数学(下册)期末试卷及答案(完整)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.8的相反数的立方根是( )A .2B .12C .﹣2D .12- 2.已知a =2018x +2018,b =2018x +2019,c =2018x +2020,则a 2+b 2+c 2-ab -ac -bc 的值是( )A .0B .1C .2D .33.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.某气象台发现:在某段时间里,如果早晨下雨,那么晚上是晴天;如果晚上下雨,那么早晨是晴天,已知这段时间有9天下了雨,并且有6天晚上是晴天,7天早晨是晴天,则这一段时间有( )A .9天B .11天C .13天D .22天5.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.函数13y x =+-的自变量x 的取值范围是( ) A .2x ≥,且3x ≠ B .2x ≥C .3x ≠D .2x >,且3x ≠ 7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A.B.C.D.8.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C.2D.29.如图,AB∥CD,∠1=58°,FG平分∠EFD,则∠FGB的度数等于()A.122°B.151°C.116°D.97°10.如图,在矩形ABCD中,点E在DC上,将矩形沿AE折叠,使点D落在BC 边上的点F处.若AB=3,BC=5,则tan∠DAE的值为()A.12B.920C.25D.13二、填空题(本大题共6小题,每小题3分,共18分)1.方程3122xx x=++的解是___________.2.分解因式:ab 2﹣4ab+4a=________.3.33x x -=-,则x 的取值范围是__________. 4.如图,点A 的坐标为()1,3,点B 在x 轴上,把OAB ∆沿x 轴向右平移到ECD ∆,若四边形ABDC 的面积为9,则点C 的坐标为__________.5.如图,已知正方形ABCD 的边长为3,E 、F 分别是AB 、BC 边上的点,且∠EDF=45°,将DAE 绕点D 逆时针旋转90°,得到DCM .若AE=1,则FM 的长为__________.6.如图,已知Rt △ABC 中,∠B=90°,∠A=60°,AC=23+4,点M 、N 分别在线段AC 、AB 上,将△ANM 沿直线MN 折叠,使点A 的对应点D 恰好落在线段BC 上,当△DCM 为直角三角形时,折痕MN 的长为__________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.已知关于x 的一元二次方程:x 2﹣2x ﹣k ﹣2=0有两个不相等的实数根.(1)求k 的取值范围;(2)给k 取一个负整数值,解这个方程.3.如图,直线y1=﹣x+4,y2=34x+b都与双曲线y=kx交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式34x+b>kx的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P 的坐标.4.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.5.为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:(1)a= ,b= ,c= ;(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为度;(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.6.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y 件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、C4、B5、B6、A7、B8、B9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、3 22、a(b﹣2)2.3、3x≤4、(4,3)5、2.56三、解答题(本大题共6小题,共72分)1、x=﹣3.2、(1)k>﹣3;(2)取k=﹣2, x1=0,x2=2.3、(1)3yx=;(2)x>1;(3)P(﹣54,0)或(94,0)4、(1)略;(2)112.5°.5、(1)2、45、20;(2)72;(3)1 66、(1)1502y x=-+(2)当x为10时,超市每天销售这种玩具可获利润2250元(3)当x为20时w最大,最大值是2400元。

2022九年级数学下学期期末检测卷下册新人教版(含答案)

2022九年级数学下学期期末检测卷下册新人教版(含答案)

九年级数学下学期新人教版:期末检测卷(时间:100分钟 满分:120分)一、选择题(每小题3分,共30分)1.已知反比例函数y =kx的图象过点A (1,-2),则k 的值为( C ) A.1 B.2 C.-2 D.-12.已知△ABC ∽△DEF ,且相似比为1∶2,则△ABC 与△DEF 的面积比为( A ) A.1∶4 B.4∶1 C.1∶2 D.2∶13.在Rt △ABC 中,∠C =90°,sin A =35,则cos A 的值等于( B )A.35B.45C.34D.55 4.若函数y =m +2x的图象在其所在的每一象限内,函数值y 随自变量x 的增大而增大,则m 的取值范围是( A )A.m <-2B.m <0C.m >-2D.m >05.用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是( C )6.如图,点A ,E ,F ,C 在同一条直线上,AD ∥BC ,BE 的延长线交AD 于点G ,且BG ∥DF ,则下列结论错误的是( C )A.AG AD =AE AF B.AG AD =EG DF C.AE AC =AG AD D.AD BC =DF BE7.如图,一艘轮船在A 处测得灯塔P 位于其北偏东60°方向上,轮船沿正东方向航行30海里到达B 处后,此时测得灯塔P 位于其北偏东30°方向上,此时轮船与灯塔P 的距离是( B )A.153海里B.30海里C.45海里D.303海里8.如图,△ABC 是一块锐角三角形材料,高线AH 长8 cm ,底边BC 长10 cm ,要把它加工成一个矩形零件,使矩形DEFG 的一边EF 在BC 上,其余两个顶点D ,G 分别在AB ,AC 上,则四边形DEFG 最大面积为( B )A.40 cm 2B.20 cm 2C.25 cm 2D.10 cm29.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则正比例函数y =(b +c )x 与反比例函数y =a -b +cx在同一坐标系中的大致图象是( C )10.如图,在▱ABCD 中,AC ,BD 相交于点O ,点E 是OA 的中点,连接BE 并延长交AD于点F ,已知S △AEF =4,则下列结论:①AF FD =12;②S △BCE =36;③S △ABE =12;④△AEF ∽△ACD .其中一定正确的是( D )A.①②③④B.①④C.②③④D.①②③二、填空题(每小题4分,共24分)11.如图,已知Rt △ABC 中,斜边BC 上的高AD =4,cos B =45,则AC = 5 .12.已知A ,B 两点分别在反比例函数y =3m x (m ≠0)和y =2m -5x (m ≠52)的图象上,若点A与点B 关于x 轴对称,则m 的值为 1 .13.如图,一个几何体的三视图分别是两个矩形、一个扇形,则这个几何体表面积的大小为 12+15π .14.在平面直角坐标系中,△ABC 顶点A 的坐标为(3,2),若以原点O 为位似中心,画△ABC 的位似图形△A ′B ′C ′,使△ABC 与△A ′B ′C ′的相似比等于12,则点A ′的坐标为(6,4)或(-6,-4) .15.如图,双曲线y =k x(k >0)与⊙O 在第一象限内交于P ,Q 两点,分别过P ,Q 两点向x 轴和y 轴作垂线.已知点P 坐标为(1,3),则图中阴影部分的面积为 4 .16.直角坐标系中,有如图所示的Rt △ABO ,AB ⊥x 轴于点B ,斜边AO =10,sin ∠AOB =35,反比例函数y =kx (x >0)的图象经过AO 的中点C ,且与AB 交于点D ,则点D 的坐标为 (8,32) .三、解答题(共66分) 17.(6分)计算:(-1)2 018-(12)-3+(cos89°)0+|33-8sin60°|. 解:原式=1-8+1+|33-8×32|=-6+ 3.18.(6分)如图,在△ABC 中,AB =AC ,BD =CD ,CE ⊥AB 于E .求证:△ABD ∽△CBE .解:在△ABC 中,AB =AC ,BD =CD ,∴AD ⊥BC . ∵CE ⊥AB ,∴∠ADB =∠CEB =90°. ∵∠B =∠B ,∴△ABD ∽△CBE .19.(6分)为做好防汛工作,防汛指挥部决定对某水库的水坝进行加高加固,专家提供的方案是:水坝加高2米(即CD =2米),背水坡DE 的坡度i =1∶1(即DB :EB =1∶1),如图所示,已知AE =4米,∠EAC =130°,求水坝原来的高度BC .(参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)解:设BC =x 米,在Rt △ABC 中,∠CAB =180°-∠EAC =50°,AB =BCcos50°≈BC 1.2=5BC 6=56x , 在Rt △EBD 中,∵i =DB ∶EB =1∶1,∴BD =BE ,∴CD +BC =AE +AB ,即2+x =4+56x ,解得x =12,即BC =12,答:水坝原来的高度为12米.20.(8分)已知反比例函数y 1=k x的图象与一次函数y 2=ax +b 的图象交于点A (1,4)和点B (m ,-2).(1)求这两个函数的表达式;(2)根据图象直接写出一次函数的值大于反比例函数的值的x 的取值范围. 解:(1)∵A (1,4)在反比例函数图象上,∴把A (1,4)代入反比例函数y 1=k x 得:4=k1,解得k =4,∴反比例函数解析式为y 1=4x的,又B (m ,-2)在反比例函数图象上,∴把B (m ,-2)代入反比例函数解析式,解得m =-2,即B (-2,-2),把A (1,4)和B (-2,-2)代入一次函数解析式y 2=ax +b 得:⎩⎪⎨⎪⎧a +b =4,-2a +b =-2,解得:⎩⎪⎨⎪⎧a =2,b =2.∴一次函数解析式为y 2=2x +2;(2)根据图象得:-2<x <0或x >1.21.(8分)如图,某人为了测量小山顶上的塔ED 的高,他在山下的点A 处测得塔尖点D 的仰角为45°,再沿AC 方向前进60 m 到达山脚点B ,测得塔尖点D 的仰角为60°,塔底点E 的仰角为30°,求塔ED 的高度.(结果保留根号)解:由题知,∠DBC =60°,∠EBC =30°,∴∠DBE =∠DBC -∠EBC =60°-30°=30°.又∵∠BCD =90°, ∴∠BDC =90°-∠DBC =90°-60°=30°.∴∠DBE =∠BDE .∴BE =DE .设EC =x m ,则DE =BE =2EC =2x m ,DC =EC +DE =x +2x =3x m ,BC =BE 2-CE 2=(2x )2-x 2=3x ,由题知,∠DAC =45°,∠DCA =90°,AB =60,∴△ACD 为等腰直角三角形,∴AC =DC .∴3x +60=3x , 解得:x =30+103,2x =60+20 3. 答:塔高约为(60+203) m22.(10分)如图,点E 是正方形ABCD 的边BC 延长线上一点,连结DE ,过顶点B 作BF ⊥DE ,垂足为F ,BF 分别交AC 于H ,交CD 于G .(1)求证:BG =DE ; (2)若点G 为CD 的中点,求HGGF的值. 解:(1)∵BF ⊥DE ,∴∠GFD =90°,∵∠BCG =90°,∠BGC =∠DGF ,∴∠CBG =∠CDE ,∴△BCG ≌△DCE (ASA),∴BG =DE ;(2)设CG =1,∵G 为CD 的中点,∴GD =CG =1,由(1)可知:△BCG ≌△DCE (ASA),∴CG =CE =1,∴由勾股定理可知:DE =BG =5,∵sin ∠CDE =CE DE =GF GD ,∴GF =55,∵AB ∥CG ,∴△ABH ∽△CGH ,∴AB CG =BH GH =21 ,∴BH =23 5,GH =13 5 ,∴HG GF =53.23.(10分))如图,点A ,B 分别在x 轴,y 轴上,点D 在第一象限内,DC ⊥x 轴于点C ,AO =CD =2,AB =DA =5,反比例函数y =kx(k >0)的图象过CD 的中点E .(1)求证:△AOB ≌△DCA ; (2)求k 的值;(3)△BFG 和△DCA 关于某点成中心对称,其中点F 在y 轴上,试判断点G 是否在反比例函数的图象上,并说明理由.(1)∵点A ,B 分别在x ,y 轴上,DC ⊥x 轴于点C ,∴∠AOB =∠DCA =90°,∵AO =CD =2,AB =DA =5∴△AOB ≌△DCA ;(2)∵∠DCA =90°,DA =5,CD =2,∴AC =OA 2-CD 2=(5)2-22=1,∴OC =OA +AC =3,∵E 是CD 的中点,∴CE =DE =1,∴E (3,1),∵反比例函数y =k x的图象过点E ,∴k =3;(3)∵△BFG 和△DCA 关于某点成中心对称,∴BF =DC =2,FG =AC =1,∵点F 在y 轴上,∴OF =OB +BF =1+2=3,∴G (1,3),把x =1代入y =3x中得y =3,∴点G 在反比例函数图象上.24.(12分)如图,AB 是⊙O 的直径,AB =4,点E 为线段OB 上一点(不与O ,B 重合),作CE ⊥OB ,交⊙O 于点C ,垂足为点E ,作直径CD ,过点C 的切线交DB 的延长线于点P ,AF ⊥PC 于点F ,连接CB .(1)求证:CB 是∠ECP 的平分线; (2)求证:CF =CE ;(3)当CF CP =34时,求劣弧BC 的长度.(结果保留π)(1)证明:∵OC =OB ,∴∠OCB =∠OBC ,∵PF 是⊙O 的切线,CE ⊥AB ,∴∠OCP =∠CEB =90°,∴∠PCB +∠OCB =90°,∠BCE +∠OBC =90°,∴∠BCE =∠BCP ,∴BC 平分∠PCE .(2)证明:连接AC .∵AB 是直径,∴∠ACB =90°,∴∠BCP +∠ACF =90°,∠ACE +∠BCE =90°,∵∠BCP =∠BCE ,∴∠ACF =∠ACE ,∵∠F =∠AEC =90°,AC =AC ,∴△ACF≌△ACE ,∴CF =CE ;(3)解:作BM ⊥PF 于M .则CE =CM =CF ,设CE =CM =CF =3a ,PC =4a ,PM =a ,∵△BMC ∽△PMB ,∴BM PM =CM BM ,∴BM 2=CM ·PM =3a 2,∴BM =3a ,∴tan ∠BCM =BM CM =33,∴∠BCM =30°,∴∠OCB =∠OBC =∠BOC =60°,∴BC 的长=60π·23180=233π.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级(下)期末数学试卷
一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂再答题
卡相应位置上)
1.(3分)﹣(﹣2)等于()
A.﹣2 B.2 C.D.±2
2.(3分)下列运算正确的是()
A.+ = B.=2 C.•= D.÷=2
3.(3分)下列几何体中,主视图与俯视图不相同的是()
A.
正方体
B.
四棱锥
C.
圆柱
D.

4.(3分)小亮是一名职业足球队员,根据以往比赛数据统计,小亮进球率为10%,他明天将参加一场比赛,下面几种说法正确的是()
A .小亮明天的进球率为 10%
B .小亮明天每射球 10次必进球 1次
C .小亮明天有可能进球
D .小亮明天肯定进球
5.(3分)已知 x 、x 是关于 x 的方程 x ﹣ax ﹣2=0的两根,下列结论一定正确 2
1 2
的是( ) A .x ≠x 2 B .x +x >0 C .x •x >0 D .x <0,x <0 1 1 2 1 2 1 2
6.(3分)如图,平面直角坐标系 xOy 中,点 A 的坐标为(9,6),AB ⊥y 轴, 垂足为 B ,点 P 从原点 O 出发向 x 轴正方向运动,同时,点 Q 从点 A 出发向点 B 运动,当点 Q 到达点 B 时,点 P 、Q 同时停止运动,若点 P 与点 Q 的速度之比为 1:2,则下列说法正确的是( )
A .线段 PQ 始终经过点(2,3)
B .线段 PQ 始终经过点(3,2)
C .线段 PQ 始终经过点(2,2)
D .线段 PQ 不可能始终经过某一定点
二、填空题(本大题共有 10小题,每小题 3分,共 30分.请把答案直接填写 再答题卡相应位置上)
7.(3分)8的立方根等于 .
8.(3分)亚洲陆地面积约为 4400万平方千米,将 44000000用科学记数法表 示为 .
9.(3分)计算: x•(﹣2x 2
) 3 =
. 10.(3分)分解因式:a 3 ﹣a=
. 11.(3分)某鞋厂调查了商场一个月内不同尺码男鞋的销量,在平均数、中位 数、众数和方差等数个统计量中,该鞋厂最关注的是 .。

相关文档
最新文档