多天线多载波关键技术

合集下载

lte基础原理与关键技术

lte基础原理与关键技术

lte基础原理与关键技术LTE(Long Term Evolution)是第四代移动通信技术,是由3GPP(3rd Generation Partnership Project)制定的国际标准。

LTE基于OFDMA(Orthogonal Frequency Division Multiple Access)和MIMO(Multiple-Input Multiple-Output)两种关键技术,旨在提供更高的数据传输速率、更低的延迟和更好的系统容量。

LTE的基础原理是通过将频谱分成多个小的子载波,并通过OFDMA技术将数据并行传输在这些子载波上,从而提高整体的数据传输速率。

同时,采用MIMO技术可以在发送和接收端分别使用多个天线,通过空间复用和多路径传输的方式提高系统的抗干扰性能和覆盖范围。

除了OFDMA和MIMO,LTE还采用了其他关键技术来增强系统的性能。

其中,调制技术是LTE中的重要一环。

LTE采用了更高阶的调制方式(如16QAM和64QAM)来提高每个子载波的传输速率。

另外,LTE还引入了天线端口数据复用(TM)技术,将控制信道和数据信道通过不同的天线进行传输,从而提高系统的容量和灵活性。

LTE还采用了自适应调度技术,根据用户的需求和信道条件动态地分配资源,从而提高系统的整体效率。

同时,LTE还引入了多小区(Multi-Cell)协同技术,通过小区间的协作和资源的共享来提高系统的覆盖范围和容量。

除了上述关键技术,LTE还包括了其他一些重要的技术和功能。

例如,LTE使用了数据流控制和快速调度算法来提高系统的传输效率和公平性。

LTE还引入了LTE-Advanced技术,如协同多点传输(Coordinated Multi-Point,CoMP),通过多个基站的协同传输来提高系统的覆盖范围和容量。

总的来说,LTE基于OFDMA和MIMO技术,结合多种关键技术和功能,实现了更高的数据传输速率、更低的延迟和更好的系统容量。

5g通信原理

5g通信原理

5g通信原理
5G通信原理是指第五代移动通信技术的传输原理。

其主要基
于以下几个关键技术:
1. 大规模多输入多输出 (Massive MIMO):5G网络采用大规模
天线阵列,在相同频段上同时传输和接收多个数据流。

这种技术可以提高信号的容量和覆盖范围。

2. 毫米波(Millimeter Wave):5G通信系统在毫米波频段工作,占据了高频段的资源。

毫米波可以提供更大的带宽,但在传输中存在强烈的传播路径损耗和信号衰减。

3. 网络切片 (Network Slicing):5G网络支持网络切片,即将网络资源分割成多个独立的虚拟网络,以满足不同应用场景的需求。

例如,可以为智能交通、工业物联网和虚拟现实等提供专门的网络切片。

4. 载波聚合 (Carrier Aggregation):通过将多个频段绑定在一起,5G网络可以同时利用多个载波进行数据传输,从而提高数据
传输速度和系统容量。

5. 零时延(Ultra-Low Latency):5G通信系统具备极低的时延,可以实现实时的互动和响应。

这对于应用领域如自动驾驶、远程医疗和智能工厂等至关重要。

6. 蜂窝小区密集部署 (Dense Cellular Networks):5G网络采用
更高密度的蜂窝小区布局,通过减小基站之间的距离,提高网
络容量和用户体验。

总之,5G通信原理基于大规模MIMO、毫米波、网络切片、载波聚合、低时延和蜂窝小区密集部署等关键技术,旨在提供更高速率、更稳定可靠、更低时延的移动通信服务。

无线通信实现高速数据传输的核心技术

无线通信实现高速数据传输的核心技术

无线通信实现高速数据传输的核心技术随着科技的快速发展,无线通信技术逐渐成为现代社会中不可或缺的一部分。

在我们日常生活中,无线通信已经广泛应用于移动通信、无线网络以及物联网等领域。

其中,实现高速数据传输是无线通信技术发展的重要方向。

本文将介绍实现高速数据传输的核心技术,包括调制与解调技术、多天线技术以及高级调制技术。

一、调制与解调技术调制与解调技术是实现无线通信高速数据传输的基础。

调制技术将要传输的信号转化为适合无线传输的高频信号,而解调技术则将接收到的高频信号转换为原始信号。

常见的调制技术包括调频调制、调幅调制和调相调制。

调频调制利用不同频率的载波信号来表示不同的二进制数据,调幅调制则通过改变载波信号的振幅来表示不同的二进制数据,调相调制则利用改变载波信号的相位来表示不同的二进制数据。

解调技术则是调制技术的逆过程,将接收到的高频信号转换为原始信号。

二、多天线技术多天线技术是实现无线通信高速数据传输的关键技术之一。

通过增加发射和接收的天线数量,多天线技术可以实现空间多路复用和空间分集,从而提高数据传输的速率和可靠性。

在多输入多输出(MIMO)系统中,发射端和接收端配对的多个天线可以同时传输和接收多个数据流,大大增加了数据传输的效率。

同时,多天线技术还可以利用空间分集技术来增强信号的抗干扰能力和覆盖范围。

三、高级调制技术高级调制技术是实现无线通信高速数据传输的另一个关键技术。

传统的调制技术如QPSK(Quadrature Phase Shift Keying)和16QAM (16 Quadrature Amplitude Modulation)无法满足更高速的数据传输需求。

因此,研究人员提出了更高级的调制技术,如64QAM和256QAM。

这些高级调制技术可以在单位时间内传输更多的比特,从而实现更高的数据传输速率。

同时,高级调制技术对信号质量和信道条件的要求也更高,对通信系统的设计和优化提出了更高的要求。

5G中MIMO技术分析及应用

5G中MIMO技术分析及应用

5G中MIMO技术分析及应用多输入多输出天线技术是无线移动通信领域的重大突破,在不增加带宽的情况下,MIMO技术成倍的提高了通信质量和频谱利用率,是新一代通信系统必备的关键技术。

在5G的建设中,大规模MIMO技术是一项关键技术,它解决了过去传统天线技术信道容量低的问题,提高通信系统的容量,所需成本低,整个系统地顽健性强。

MIMO技术因其覆盖能力强而成为5G采用的关键技术。

标签:MIMO;大规模MIMO天线一、多输入多输出天线技术(MIMO)MIMO技术指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。

它能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量,显示出明显的优势、被视为下一代移动通信的核心技术。

MIMO技术经历了从最初的点到点通信,到单小区多用户MIMO,再到多小区MIMO的发展历程。

点对点单用户MIMO由于在实际中天线数目是受限制的,所以信道容量不可能无限制增长。

多用户MIMO利用天线空间的自由度实现多用户分离,其核心思想就是在尽可能地提高用户接收功率的同时,降低不同用户之间的干扰。

MIMO技术之所以在4G系统中广泛应用,主要是因为MIMO 技术通过利用收发两端配置的多根天线,可以充分的利用空间资源,成倍的提高系统信道容量。

一方面,多根天线的应用可以形成分集效应,用来对抗多径效率及平坦性衰落,从而提高系统的顽健性,利用空间的自由度提高单位时间内的信息传播量,间接地提高频谱资源的利用效率。

大规模MIMO技术,又称大规模天线阵列,指在收发两端装备超大数目的天线以发送和接收信号,从而使通信系统可以在相同的时频资源块上同时服务数十个用户。

二、大规模MIMO技术的优势大规模MIMO能够提高系统容量及能量效率,主要特点是在基站侧装配了大量的天线,可以在基站和用户之间形成多条独立传输的数据链路,因此,可以获得更大的空间复用增益。

第三章 TD-LTE系统关键技术

第三章 TD-LTE系统关键技术

第三章 TD-LTE系统关键技术TD-LTE是TDD版本的LTE技术,相比3GPP之前制定的技术标准,其在物理层传输技术方面有较大的改进。

为了便于理解TD-LTE系统的核心所在,本章将重点介绍TD-LTE 系统中使用的关键技术,如多址接入技术、多天线技术、混合自动重传、链路自适应、干扰协调等。

希望读者通过本章的阅读,对TD-LTE的物理层技术有一个全面的了解。

3.1 TDD双工方式TDD(Time Division Duplexing)时分双工技术是一种通信系统的双工方式,与FDD相对应。

在TDD模式下,移动通信系统中的发送和接收位于同一载波下的不同时隙,通过将信号调度到不同时间段传输进行区分。

TDD模式可灵活配置于不对称业务中,以充分利用有限的频谱资源。

在原有的模拟和数字蜂窝系统中,均采用了FDD双工/半双工方式。

在3G的三大国际标准中,WCDMA和CDMA2000系统也采用了FDD双工方式,而TD-SCDMA系统采用的是TDD双工方式。

FDD双工采用成对频谱(Paired Spectrum)资源配置,上下行传输信号分布在不同频带内,并设置一定的频率保护间隔,以免产生相互间干扰。

由于TDD双工方式采用非成对频谱(Unpaired Spectrum)资源配置,具有更高的频谱效率,在未来的第四代移动通信系统IMT-Advanced中,将得到更广泛的应用,满足更高系统带宽的要求。

基于TDD技术的TD-LTE系统,与FDD方式相比,具有以下优势:(1)频谱效率高,配置灵活。

由于TDD方式采用非对称频谱,不需要成对的频率,能有效利用各种频率资源,满足LTE系统多种带宽灵活部署的需求。

(2)灵活地设置上下行转换时刻,实现不对称的上下行业务带宽。

TDD系统可以根据不同类型业务的特点,调整上下行时隙比例,更加灵活地配置信道资源,特别适用于非对称的IP型数据业务。

但是,这种转换时刻的设置必须与相邻基站协同进行。

LTE移动通信技术任务4 LTE关键技术

LTE移动通信技术任务4 LTE关键技术

LTE移动通信技术任务4 LTE关键技术LTE 移动通信技术任务 4:LTE 关键技术在当今数字化的时代,移动通信技术的发展日新月异,为人们的生活和工作带来了极大的便利。

LTE(Long Term Evolution,长期演进)作为一种先进的移动通信技术,具有高速率、低延迟、大容量等显著优势。

而这些优势的实现,离不开一系列关键技术的支持。

接下来,让我们深入探讨一下 LTE 的关键技术。

一、正交频分复用(OFDM)技术OFDM 技术是 LTE 系统的核心技术之一。

它的基本原理是将高速的数据流分解为多个并行的低速子数据流,然后分别调制到相互正交的多个子载波上进行传输。

与传统的频分复用技术相比,OFDM 具有诸多优点。

首先,它能够有效地抵抗多径衰落。

在无线通信环境中,信号会因为建筑物、地形等障碍物的反射和散射而产生多个路径,导致接收端接收到的信号出现延迟和衰减。

OFDM 通过将宽带信道划分成多个窄带子信道,使得每个子信道的带宽小于信道的相干带宽,从而减少了多径衰落的影响。

其次,OFDM 具有较高的频谱利用率。

由于子载波之间相互正交,使得它们可以在频谱上紧密排列,从而提高了频谱资源的利用效率。

此外,OFDM 还便于实现动态频谱分配。

通过灵活地调整子载波的分配,可以根据用户的需求和信道状况,合理地分配频谱资源,提高系统的容量和性能。

二、多输入多输出(MIMO)技术MIMO 技术是 LTE 实现高速数据传输的另一个重要手段。

它通过在发射端和接收端使用多个天线,形成多个并行的空间信道,从而在不增加带宽和发射功率的情况下,显著提高系统的容量和频谱利用率。

MIMO 技术主要包括空间复用和空间分集两种工作模式。

空间复用模式下,多个数据流同时在不同的天线上传输,从而提高数据传输速率。

而空间分集模式则通过在多个天线上发送相同的数据,或者对接收端接收到的多个信号进行合并处理,来提高信号的可靠性和抗衰落能力。

在实际应用中,MIMO 技术可以根据信道条件和系统需求,灵活地切换工作模式,以达到最佳的性能。

LTE的关键技术MIMO

LTE的关键技术MIMO

MIMO 技术的关键是有效避免天线之间的干扰,以区分多个并行数据流。

众所周知,在水平衰落信道中可以实现更简单的MIMO 接收。

而在频率选择性信道中,由于天线间干扰和符号间干扰混合在一起,很难将MIMO 接收和信道均衡分开处理。

如果采用将MIMO 接收和信道均衡混合处理的MIMO 接收均衡的技术,则接收机会比较复杂。

因此,由于每个OFDM 子载波内的信道(带宽只有15KHz)可看作水平衰落信道,MIMO 系统带来的额外复杂度可以控制在较低的水平(随天线数量呈线性增加)。

相对而言,单载波MIMO 系统的复杂度与天线数量和多径数量的乘积的幂成正比,很不利于MIMO 技术的应。

MIMO 系统在一定程度上可以利用传播中多径分量,也就是说MIMO 可以抗多径衰落,但是对于频率选择性深衰落,MIMO 系统依然是无能为力。

目前解决MIMO 系统中的频率选择性衰落的方案一般是利用均衡技术,还有一种是利用OFDM。

4G 需要极高频谱利用率的技术,而OFDM 提高频谱利用率的作用毕竟是有限的,在OFDM 的基础上合理开发空间资源,也就是MIMO-OFDM,可以提供更高的数据传输速率。

另外ODFM 由于码率低和加入了时间保护间隔而具有极强的抗多径干扰能力。

由于多径时延小于保护间隔,所以系统不受码间干扰的困扰,这就允许单频网络(SFN)可以用于宽带OFDM系统,依靠多天线来实现,即采用由大量低功率发射机组成的发射机阵列消除阴影效应,来实现完全覆盖。

1、多普勒频移设手机发出信号频率为fT,基站收到的信号频率为fR,相对运动速度为V,C为电磁波在自由空间的传播速度(光速);fdoppler即为多普勒频移。

例360km/h车速,3GHz频率的多普勒频移:子载波间隔确定-多普勒频移影响■2GHz频段,350km/h带来648Hz的多普勒频移,对高阶调制(64QAM)造成显著影响。

■低速场景,多普勒频移不显著,子载波间隔可以较小■高速场景,多普勒频移是主要问题,子载波间隔要较大■仿真显示,子载波间隔大于11KHz,多普勒频移不会造成严重性能下降■当15KHz时,EUTRA系统和UTRA系统具有相同的码片速率,因此确定单播系统中采用15KHz的子载波间隔■独立载波MBMS应用场景为低速移动,应用更小的子载波间隔,以降低CP开销,提高频谱效率,采用7.5KHz子载波■Wimax的子载波间隔为10.98KHz,UMB的子载波间隔为9.6KHz2、OFDM(1)OFDM技术的优势■频谱效率高各子载波可以部分重叠,理论上可以接近Nyquist极限。

4G移动通信传输关键技术及应用优势

4G移动通信传输关键技术及应用优势

4G移动通信传输关键技术及应用优势4G是第四代移动通信技术,其传输速度和质量比3G高出许多,具有较高的带宽、更低的延迟和更好的网络可靠性。

在4G的技术中,涉及到多种关键技术和应用优势,下面将进行介绍。

一、关键技术1. OFDM技术OFDM技术是4G移动通信的核心技术之一。

OFDM技术能够将一个频带分成许多个子载波信号,不同子载波之间的间隔是非常小的,它们可以并行地传输数据。

每个子载波的调制方式和调制深度都是不同的,具有多重接入和抗多径衰落的特点。

OFDM技术能够有效地提高系统的频谱利用率和网络容量。

MIMO技术是一种利用多条天线来传输和接收数据的技术。

MIMO技术可以在同一频段上同时传输多条信号,从而提高了网络的吞吐量和数据传输的可靠性。

通过使用多个天线来发送和接收数据,MIMO技术可以提高系统的频谱效率和降低误码率。

MIMO技术需要支持多输入多输出的天线系统,并且需要在发送端和接收端实现一定的信号处理技术。

二、应用优势1.高速数据传输4G网络可以提供比3G网络更高的数据传输速率,使手机和其他设备可以更快地下载和上传大量数据。

4G网络的下载速度通常比3G网络快数倍,这使得视频、音乐和游戏等大型文件可以更快捷地下载,提高了用户的体验和便利性。

2.多媒体应用由于4G的高带宽和高速率,它能够实现高清视频和多媒体应用,如视频通话、高清流媒体、即时视频等。

这为用户提供了更多的选择和体验,也为企业提供了更好的商业机会。

3.智能手机和物联网发展4G网络为智能手机和物联网的发展提供了更多的机会。

智能手机可以使用更快的数据连接来支持更多的应用,而物联网设备也可以利用4G网络进行连接和数据传输。

这为企业创新和发展提供了新的机遇。

总之,4G网络通过多种技术和应用,实现了更快速、更稳定和更高效的数据传输,这不仅能够提高用户体验,还为商业创新和发展创造了更多的机遇。

随着5G网络发展的不断推进,4G网络仍然是我们日常生活和工作不可缺少的重要基础设施。

LTE和LTE-Advanced关键技术综述

LTE和LTE-Advanced关键技术综述
提高承载基于IP的语音(VolP)业务时的性能,普通
下面将逐一介绍LTE中使用的关键技术和
LTE—Advanced中考虑采用的关键技术。
模式是对单个子帧操作;两种模式所支持的HARQ
流程数也是不一样的,普通模式对应的流程数为8, 子帧捆绑模式的流程数为4。终端根据eNB在下行

2.1
LTE的关键技术
能更有效地利用系统资源。在R8 LTE中,上行支持 64QAM对终端和eNB均为可选。
2.3 HARQ
工作,目标是成为IMT—Advanced的候选技术。通过 引入多载波聚合、上下行MIMO扩展、中继、分布式 天线等关键技术进行平滑演进,进一步发挥技术优 势提升网络性能,提高用户对移动通信业务的体验,
0FDM和SC-FDMA
PDCCH上的新数据指示(NDI)比特或物理HARQ
指示信道(PHICH)来判断是否需要重传,如果需要 重传,终端将会在固定数目子帧后重传。
2.4先进的多天线技术 LTE在下行采用OFDM,上行采用单载波一频分
多址(SC—FDMA)。OFDM使得同一小区中用户信号
之间可以保持正交性,SC—FDMA可以看成是对用户
使用OFDMA,因它调度更灵活,也可以简化演进的基
站(eNB)侧均衡器和上行使用MIMO时的实现。
2.2更高阶调制(64QAM) LTE中上、下行均可自适应使用正交相移键控
R8在上行只使用SDMA和多天线接收分集技术,未 来应该也会考虑MIMO技术。LTE标准目前最高支
凸、.-...M..S.T..T....S.e.ptember
LTE在下行灵活使用MIM0、空分多址(SD MA)、波束成型和接收/发送分集等多天线技术:对 信干比高和空间信道散列度高(信道矩阵值高和奇 异值高)的用户使用MIMO技术,以提供更高的数 据速率;当需要为更多用户服务时,利用SDMA技术 在同一时、频资源上为多个用户同时提供服务;对某 些用户使用波束成型技术,将发送/接收波束对准 用户,以提高用户的数据速率;当不需要使用 SDMA,MIMO也无法带来附加增益时,使用传统的

浅析LTE 系统的多天线技术

浅析LTE 系统的多天线技术

浅析LTE 系统的多天线技术摘要:多天线技术能够在不增加带宽的条件下,大幅提高系统容量和链路可靠性,因而成为LTE 的关键技术之一。

多天线技术性能不仅取决于空时信号处理,天线本身的指标也很大程度上影响其网络部署。

LTE的多天线技术包含了分集、空间复用和波束赋形技术。

与之相对应,LTE规定了8种传输模式。

文章介绍了多天线技术的分类,对TM3与TM7的切换做了简要分析,探讨了波束赋形与发送分集的性能对比。

关键词:LTE;多天线;传输模式;波束赋形1 LTE多天线技术的分类在下行链路,LTE的多天线发送方式可分为发射分集、空间复用和波束赋形等传输模式。

1.1发射分集发射分集方案有多种实现方法,例如延迟发射分集、循环延迟发射分集、切换发射分集、空时(频)编码等;LTE标准中采用空频编码(SFBC)作为两天线端口的发射分集方案、4天线端口的发射分集方案为SFBC+FSTD(空频编码+频率切换发射分集)。

其中,两天线端口的发射分集方案- 空频编码SFBC:待发送信息经过星座映射后,以两个符号为单位进入空频编码器。

在第一个频率(子载波),天线端口1传输符号c1,天线端口2传输符号c2;在另一个子载波上,天线端口1与天线端口2分别传输符号- c2与c1。

两天线端口的SFBC发射机结构如图1所示。

4天线端口的发射分集方案- SFBC+FSTD:在FSTD中,发射天线按照不同的子载波进行切换,不同的天线支路使用不同的子载波集合进行发送,减小了子载波之间的相关性,使等效信道产生了频率选择性。

SFBC+FSTD方案将待传输的数据符号以4个为一组进行编码操作,记为c1、c2、c3、c4,这4个符号按照表1所示的关系映射到子载波0、1、2、3和天线端口0、1、2、3上。

在子载波0和1上,天线端口0和2传输数据,端口1和3不传输数据;类似的,子载波2和3上,天线端口1和3传输数据,端口0和2不传输数据。

子载波0与1、2与3构成了两个子载波组,天线端口0与2、1与3构成了两个天线组,两个天线组使用不同的子载波,形成FSTD。

(完整版)LTE多天线技术

(完整版)LTE多天线技术

个人也是学习中,算不上高手,说下我的理解:1、最早的多天线技术出现在接收端多天线接收,由于在接收端有多天线,可以形成多条接收通道,从而可以对抗无线信道的深度衰落,显然嘛:多条接收通道同时处于深度衰落的可能性肯定是小于单条接收通道处于深度衰落的可能性,这样就能改善传输质量,提高无线传输的可靠性。

这种技术又叫“收分集”技术,可以应用在基站或手机侧,而且显然由于不涉及到互操作,所以也不用标准化。

从而最先在无线系统中使用。

因为不用标准化,所以在LTE中我们就没有看到这方面的内容。

2、“收分集”技术的应用又给了人们启发:如果手机接收端部署多天线,显然对手机的成本和复杂度是有提高的。

能否把多天线部署在发射端来提高接收端的信道可靠性呢?这样一来:手机只用单个天线,复杂度和成本都在基站一侧,由系统侧承担,岂不乐哉?然而问题随之而来:如果发射端单纯的用多天线发射相同的数据流,它们实际上是相互干扰的,不但起不了分集的作用,而且可能会相互抵消!要多天线发射起到提供增益,而不相互打架,就需要特别的信号处理技术。

(以下都两天线发射为例,H表示复数的共轭,exp()表示一个复数,)牛人1: Alamouti天线1发射{x1, x2, .......}天线2发射{-H(x2),H(x1), .......}这种发射编码方案相当于在形成2个正交的信道(为啥?),从而可以提高传输可靠性这种发射编码方案被用在LTE中就是Mode 2“发射分集”方案牛人2: 无名天线1发射{x1, x2, .......}天线2发射{x1*exp(b1),x2*exp(b2), .......}这种发射编码方案天线1正常发射,天线2把数据加上一个大的相位偏移后再发射相当于在信道中人为造成多径效应(为啥?),从而可以提高传输可靠性这种发射编码方案被用在LTE中就是CDD“分集”方案,LTE中CDD不单独使用,只和空间复用技术结合在一起使用。

牛人3: 无名天线1发射{x1, x2, .......}天线2发射{x1*exp(B1),x2*exp(B2), .......}这种发射编码方案天线1正常发射,天线2把数据加上一个相位偏移后再发射。

MIMO与OFDM:无线局域网核心技术分析-电脑资料

MIMO与OFDM:无线局域网核心技术分析-电脑资料

MIMO与OFDM:无线局域网核心技术分析-电脑资料MIMO技术与OFDM技术相结合被视为下一代高速无线局域网的核心技术,。

本文全面分析了MIMO与OFDM技术在无线局域网中的应用,探讨了MIMO、OFDM中的关键技术,并展望了其发展前景。

1.引言无线通信作为新兴的通信技术在日常生活中的作用越来越大。

近年来,无线局域网技术发展迅速,但无线局域网的性能、速度与传统以太网相比还有一定距离,因此如何提高无线网络的性能和容量日益显得重要。

目前,IEEE802.11已成为无线局域网的主流标准。

1997年802.11标准的制定是无线局域网发展的里程碑,它是由大量的局域网以及计算机专家审定通过的标准。

其定义了单一的MAC层和多样的物理层,先后又推出了802.1lb,a和g物理层标准。

802.1lb使用了CCK调制技术来提高数据传输速率,最高可达11Mbit/s。

但是传输速率超过11Mbit/s,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。

因此,802.1l工作组为了推动无线局域网的发展,又引入0FDM调制技术。

最近,刚刚正式批准的802.1lg标准采用OFDM技术,和802.1la一样数据传输速率可达54Mbit/s。

另外,IEEE802.1la运行在5GHz的UNII频段上,采用OFDM技术。

但是,它不能兼容IEEE802.11b的产品,对于现在市场上占统治地位的IEEE802.11b来说,不能兼容就意味着推广存在着巨大的困难;其次,由于无线电波传输的特性,在5GHz上运行的IEEE802.1la覆盖范围相对较小。

IEEE802.11g工作在2.4GHz频段上,能够与802.1lb的WIFI系统互相连通,共存在同一AP的网络里,保障了后向兼容性。

这样原有的WLAN系统可以平滑地向高速无线局域网过渡,延长了IEEE802.1lb产品的使用寿命,降低用户的投资。

而对于今后要开展的在无线局域网中的多媒体业务来说,最高为54Mbit/s的数据速率还远远不够。

4G中的MIMO—OFDM原理及关键技术解析

4G中的MIMO—OFDM原理及关键技术解析

4G中的MIMO—OFDM原理及关键技术解析作者:黎碧霞来源:《科技视界》2016年第15期【摘要】4G移动通信是往代通信的技术进步,4G移动通信中所涉及的重要技术有OFDM技术、MIMO技术以及MIMO-OFDM技术相结合的关键技术。

技术专利的分布和发展应用就是MIMO技术与OFDM技术的完美结合,使得4G移动通信能够有效对抗频率选择性衰落问题、提高数据传输速率、还能增大系统容量。

【关键词】MIMO -OFDM原理;关键技术;4G0 前言近年,我们的手机网络在不断地更新换代,由原来的2G网络逐渐发展到4G网络,这既要归功于移动公司的推广,又要归功于网络研发工作者的辛勤工作。

虽然4G移动通信在描绘高速的数据传输,提供从语音到多媒体业务丰富业务美好前景,但是随着4G网络的不断推广,单一的MIMO技术或单一的OFDM技术已经不能满足人们对网络的需求,这就需要我们将MIMO-OFDM技术结合起来构成4G网络的核心。

1 MIMO-OFDM原理1.1 MIMO技术原理首先,MIMO技术原理在移动通信工程中的运用并不是近几年才提出的,所以对该技术的接受程度还是良性的。

MIMO技术原理就是将已经存在的多径传播和随机衰弱进行高效率的重新利用,达到更好的传输速度和效率。

MIMO的中文名称就是多输入和多输出,所以顾名思义就是通过对多天线的控制来减少信道衰弱问题的发生。

多并行的天线空间信道能够进行同时的发送和接收,就能够在不同的环境中,针对不同的用户,都提供最完美的技术体验。

1.2 OFDM技术原理频分复用、多载波并行传输等通信技术概念是在上个世纪50年代末中就予以提出的,所以OFDM的技术也是在不断发展的过程中,应用到各个领域、环节,也在移动通信中得以普及和成熟的。

OFDM技术从发展及应用角度上,大致可分为五个阶段:极低频谱效率的频率复用阶段,最早的高频谱效率的多载波通信系统阶段,多载波理论发展阶段,无线移动通信系统理论形成阶段,从理论到实用阶段。

4g网络的工作原理

4g网络的工作原理

4g网络的工作原理
4G网络的工作原理是基于第四代移动通信技术的网络架构和协议。

其主要特点是提供更高的数据传输速度、更低的延迟和更高的网络容量。

具体而言,4G网络的工作原理包括以下几个关键要素:
1. 正交频分多址(OFDMA)技术:OFDMA是一种多载波的调制技术,将可用的频谱划分为许多子载波,每个子载波可以与多个用户进行通信。

由于采用了正交技术,不同子载波之间的信号互不干扰。

2. 频域分集(FDD)和时域分集(TDD):4G网络可以采用频域分集或时域分集来提高信号的可靠性和容量。

在频域分集中,上行和下行通信使用不同的频段;在时域分集中,上行和下行通信在同一频段上交替进行。

3. 多天线技术:4G网络利用多输入多输出(MIMO)技术,通过使用多个天线来传输和接收信号。

这项技术可以提高数据传输速度和信号质量,并降低对信道的干扰。

4. 包交换技术:4G网络采用分组交换的方式进行数据传输,将数据分成小的数据包进行处理和传输。

这种方式可以提高网络的灵活性和效率,并支持高质量的多媒体传输。

5. IP网络:4G网络基于互联网协议(IP)进行通信,使用IP 地址来标识和路由数据包。

这种基于IP的网络架构可以实现
更好的互操作性,并支持各种类型的应用程序和服务。

通过以上的关键技术和网络架构,4G网络可以实现高速的移动数据传输,支持高质量的语音通话、视频流媒体和互联网访问等应用。

同时,4G网络还具备较低的延迟和更高的网络容量,可以满足大量用户同时使用网络的需求。

5G移动通信系统-关键技术

5G移动通信系统-关键技术
/link?url=JxRuidPQlh tRrtHZ038eHAkuGAIHUbh7hqqBbNTIiFzF_tFPP 7ieH-J5xMcY8F34Do7jdbkbqham53O0jbyKo0P7GnOo49_N aIdUkxf7im
/view/9f2ae6f1fab069 dc5022014a.html
中文: /link?url=PcQw4nO dK969lUbfNp2GK2rM29HWfPCPITCdbhOoA9kaKbl8 HTGZmvMLc5gb2WxJZUynHbzOCzTOs2leTam4KEYJ8dcidLUAH5lmltzGm
/link?url=JxRuidPQlh tRrtHZ038eHAkuGAIHUbh7hqqBbNTIiFzF_tFPP 7ieH-J5xMcY8F34Do7jdbkbqham53O0jbyKo0P7GnOo49_N aIdUkxf7im
2.(1)试推导MIMO系统容量
(2)简述MIMO在LTE中的应用
3.(1)简述OFDM的概念及优缺点
(2)如何克服OFDM高峰均比的问题?
(3)若在LTE中基于OFDM传输 实现?
,如何
4.推导协作通信系统容量,仿真验证协作与直传 模式相比的性能提升。
中文: /link?url=PcQw4nO dK969lUbfNp2GK2rM29HWfPCPITCdbhOoA9kaKbl8 HTGZmvMLc5gb2WxJZUynHbzOCzTOs2leTam4KEYJ8dcidLUAH5lmltzGm
柴蓉 通信与信息工程学院
5G移动通信系统关键技术
多天线技术 高频段传输电技术 全双工技术 终端直通(Device to Device, D2D) 技术 超密集网络架构

5G NR的三大关键技术

5G NR的三大关键技术

5G NR 三大关键技术一、Massive MIMO在2010年底,贝尔实验室的Thomas在《无线通信》中提出了5G中的大规模多天线的概念。

在Massive MIMO系统中,通过建立极大数目的信道实现信号的高速传输,并通过大规模天线简化MAC层设计来最终实现信号的低时延传输。

因为这些可实现的优点,Massive MIMO技术被认为是5G中的一项关键可行技术。

Massive MIMO是传统MIMO技术的扩展和延伸,其特征(集中式Massive MIMO)在于以大规模天线阵的方式集中放置数十根甚至数百根以上天线。

Massive MIMO技术可以直接通过增加天线数量来增加系统容量。

基站天线数量远大于其能够同时服务的终端天线数,形成了Massive MIMO无线通信系统,以达到更充分地利用空间维度,提供更高的数据速率,大幅度提升频谱效率的目的。

随着基站天线数的增加,Massive MIMO可以通过终端移动的随机性以及信道衰落的不相关性,利用不同用户间信道的近似正交性降低用户间干扰,实现多用户空分复用。

由于Massive MIMO技术的上述特点,在近年来5G新空口的研究中,Massive MIMO技术是非常重要的关键技术之一。

Massive MIMO的优势1. 相较于传统的MIMO系统,Massive MIMO系统的空间分辨率被极大地提升了。

Massive MIMO技术可以在没有基站分裂的条件下实现空间资源的深度挖掘。

2. 波束赋形技术能够让能量极小的波束集中在一块小型区域,因此干扰能够被极大地减少。

波束赋形技术可以与小区分裂、小区分簇相结合,并与毫米波高频段共同应用于无线短距离传输系统中,将信号强度集中于特定方向和特定用户群,实现信号的可靠高速传输。

3. Massive MIMO技术能够通过不同的维度(空域、时域、频域、极化域)提升频谱利用效率和能量利用效率。

与4G的差异5G新空口Massive MIMO技术的显著特点之一是天线数量远高于LTE系统。

《5G移动通信系统及关键技术》第03章 5G无线技术3.2-3.3

《5G移动通信系统及关键技术》第03章 5G无线技术3.2-3.3
1-9
3.2.1 灵活双工技术
载波聚合(Carrier Aggregation,CA)——将多个不同频率(或者相同) 的载波聚合成一个更宽的频谱,同时也可以把一些不连续的 频谱碎片聚合到一起,从而达到提高带宽的效果 载波聚合、非载波聚合都可以采用灵活双工技术。 载波聚合应用场景中,网络可将原用于上行传输的频带用于 下行传输,并将该频带配置成辅载波辅小区; 非载波聚合应用场景中,网络可将原用于上行传输的频带用 于下行传输,并将该频带和上行频带配置成配对的频带。
1-17
3.2.2 同频同时双工
双工干扰分两类:
➢ 发射天线到接收天线的直达波 ➢ 经过多物体反射的多径到达波
全双工技术包括两方面:
➢ 全双工系统的自干扰抑制技术 ➢ 组网技术
双工干扰消除越多,系统频谱效率增益越大, 双工干扰被完全消除,则系统容量提升1倍。
1-18
3.2.2 同频同时双工
3、同时同频全双工中的干扰消除技术
简单,用户间干扰较小,但是受传输中信道衰落的影响比较 大。 – 间隔扩展子载波(Comb Spread Subcarriers),其特点是 通过频域扩展,增加频率分集,从而减少了信道衰落的影响。
多载波技术
(a) 分组子载波方式 (b) 间隔扩展thogonal Frequency Division Multiplexing)技 术是主流无线通信所采用的信号形式
Duplex,CCFD ——通信双方能够使用相同的时间、相同的频 率,同时发射和接收无线信号,从而将频谱效 率翻倍。 同频同时全双工的关键在于干扰的有效消除。
1-16
3.2.2 同频同时双工
2、同频同时全双工节点
节点基带信号经射频调制,从发射天线发出,而接收天线正在 接收来自期望信源的通信信号。

多天线信号联合接收处理关键技术研究

多天线信号联合接收处理关键技术研究

多天线信号联合接收处理关键技术研究随着无线通信的迅猛发展,以可靠信息传输为前提,低发射功率,高数据速率和高频谱效率等要求越来越迫切。

多变的传输环境、复杂的通信网络以及不断降低的信号功率,使得接收技术面临着愈发严峻的挑战。

在传统单路信号接收技术中,多个同参数的估计与符号检测通常基于逐层处理的结构,然而为了进一步降低同步门限提高接收性能,.多个同步参数与符号信息的联合处理方法与实现结构是接收技术的一个重要研究方向。

同时,多天线信号联合接收是一种能够有效提升接收性能的多数据流联合处理结构,’在深空通信、低轨卫星通信以及分集接收等系统中得到广泛的研究与应用。

本文的主要研究工作围绕通信信号接收中多参数及多信号间的联合处理技术展开。

针对同步参数与符号信息的联合处理问题,多天线信号接收中的联合同步、联合信道参数估计以及联合符号检测问题进行了深入的分析研究。

论文的主要内容以及主要创新点概括为如下几方面:1、针对小样本、低信噪比条件下符号定时与符号信息的联合处理问题,基于非完整数据集下的最大似然估计模型,提出了一种无须定时恢复的最大似然符号检测算法。

算法直接利用匹配滤波器输出序列求解,在EM算法框架下通过迭代计算实现最大似然符号检测。

利用理论结果,‘推导得到了基于过采样信号离散化求和的估计式与低采样率下基于多项式函数积分的估计式,并在此基础上给出一种新的迭代实现结构,与传统基于定时恢复的符号检测算法相比避免了对最佳采样点进行内插恢复。

仿真分析表明,算法输出误码率能够逼近理想联合最大似然解,优于传统非数据辅助类算法,与判决反馈类联合处理算法相比在短数据条件下误码率更低,且收敛更快。

2、针对同步参数未知条件下的符号信息提取问题,在最大似然准则下提出一种无须同步参数估计的迭代符号检测算法。

与传统接收处理中逐级同步处理的结构不同,该算法将符号定时、载波频偏与载波相位等同步参数作为缺失信息在EM 算法框架下与符号信息联合处理,得到一种新的最大似然符号检测算法。

otfs波形类别

otfs波形类别

otfs波形类别OTFS波形类别是一种新兴的通信波形,它具有许多优点,包括高频率选择性、低峰均比(PAPR)和高容量。

OTFS波形被广泛应用于无线通信系统中,特别是在高速移动通信和物联网方面。

本文将介绍OTFS波形的几种常见类别及其特点。

1. 单载波OTFS(SC-OTFS)单载波OTFS是最简单的OTFS波形类别之一。

它使用单个载波频率,通过在时间和频率域中进行信号调制和解调来实现高容量和低PAPR。

单载波OTFS适用于频谱效率要求较低的应用,例如低速移动通信和物联网设备。

2. 多载波OTFS(MC-OTFS)多载波OTFS是一种在OTFS波形中引入多个载波频率的扩展。

通过在频率域中分配多个载波,MC-OTFS可以实现更高的频谱效率和更低的PAPR。

它适用于高速移动通信和大容量数据传输。

3. 码分OTFS(CD-OTFS)码分OTFS是一种结合了编码技术的OTFS波形类别。

它使用编码器对原始数据进行编码,并在发射端将编码后的数据与OTFS波形调制为信号。

在接收端,解调器首先对接收到的信号进行OTFS解调,然后利用解码器对解调后的数据进行解码。

码分OTFS可以提高系统的抗干扰性能和误码率性能,特别适用于无线通信中的高噪声环境。

4. 多天线OTFS(MIMO-OTFS)多天线OTFS是一种利用多个天线进行信号传输和接收的OTFS波形类别。

通过利用多天线的空间多样性,MIMO-OTFS可以提高系统的容量和可靠性。

它适用于需要高容量和高可靠性的无线通信系统,如5G和物联网。

5. 多用户OTFS(MU-OTFS)多用户OTFS是一种支持多用户同时传输的OTFS波形类别。

它通过在时间和频率域中分配不同的资源给不同的用户,实现了多用户之间的独立传输。

MU-OTFS适用于需要支持大量用户的多用户无线通信系统,如蜂窝网络和卫星通信。

OTFS波形类别包括单载波OTFS、多载波OTFS、码分OTFS、多天线OTFS和多用户OTFS。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多入多出-正交频分复用未来的宽带无线通信系统,将在高稳定性和高数据传输速率的前提下,满足从语音到多媒体的多种综合业务需求。

而要在有限的频谱资源上实现综合业务内容的快速传输,需要频谱效率极高的技术。

多入多出技术充分开发空间资源,利用多个天线实现多发多收,在不需要增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。

正交频分复用(正交频分复用)技术是多载波窄带传输的一种,其子载波之间相互正交,可以高效地利用频谱资源。

二者的有效结合可以克服多径效应和频率选择性衰落带来的不良影响,实现信号传输的高度可靠性,还可以增加系统容量,提高频谱利用率,是第四代移动通信的热点技术。

正交频分复用技术原理及实现无线信道的频率响应曲线大多是非平坦的,而正交频分复用技术的主要思想就是在频域内将给定信道分成多个正交子信道,然后将高速数据信号转换成多个并行的低速子数据流,调制到每个信道的子载波上进行窄带传输。

每个子信道上的信号带宽小于信道的相关带宽,因此每个子信道可以看成平坦性衰落,从而可以消除信道波形间的干扰。

由于正交频分复用是一种多载波调制技术,正交频分复用系统采用正交方法来区分不同子载波,子载波间的频谱可以相互重叠,这样不但减小了子载波间的相互干扰,同时又极大地提高了频谱利用率。

如图1可见正交频分复用的正交性。

图1 正交频分复用信号频谱由于正交频分复用系统中有大量载波,所以在实际应用中不可能像传统的处理方法一样,使用几十个甚至几百个振荡器和锁相环进行相干解调。

因此,Weinstein提出了一种用离散傅里叶变换实现正交频分复用的方法。

设正交频分复用信号发射周期为[0,T],在一个周期内传输的N个符号为(D0,D1,…,DN-1)。

第k个符号Dk 调制第k个载波fk,所以合成的正交频分复用信号为:由式⑤可见,以fs对C(t)采样所得的N个样值(C0,C1,…,CN-1)刚好为(D0,D1,…,DN-1)的N点反向离散傅里叶变换(IDFT)。

因此正交频分复用系统可以这样实现:在发射端,先由(D0,D1,…,DN-1)的IDFT求得(C0,C1,…,CN-1),再经过低通滤波器即得所需的正交频分复用信号C(t);在接收端,先对C(t)采样得到(C0,C1,…,CN-1),再对(C0,C1,…,CN-1)求DFT,即得(D0,D1,…,DN-1)。

在实际应用中,可以使用DFT的快速算法FFT来实现,采用易于实现的FFT和IFFT技术,可以快速实现调制与解调,而且容易利用DSP电路简单实现,大大降低了正交频分复用系统的复杂性。

随着大规模集成电路技术与数字信号处理技术的迅速发展,许多DSP芯片的运算能力越来越快,显著改善了系统的性能,更进一步推动了正交频分复用技术的发展。

目前,正交频分复用技术已被普遍认为是新一代无线通信系统必须采用的关键技术。

尽管正交频分复用有着种种优势,但是对于高速无线通信时代,单纯的正交频分复用系统传输容量仍无法大幅提高,因此,多入多出与正交频分复用技术的结合成为一种优化组合。

原理及其技术实现多入多出技术是针对多径无线信道来说的,是指在发射端和接收端分别使用多个发射天线和接收天线,从而提高数据速率、减少误比特率,改善无线信号传送质量。

如图2所示,多入多出系统同时利用信道编码和多天线技术,信号S(t)经过空时编码形成N个发射子流Wk(t),(k=0,1,……,N-1)。

这N个子流由N个天线发射出去,经空间传输后由M个接收天线接收。

多入多出接收机通过空时解码处理这些子数据流,对其进行区分和解码,从而实现最佳的信号处理。

多入多出系统正是依靠这种同时使用空域和时域分集的方法来降低信道误码率,提高无线链路的可靠性。

图2 多入多出系统信道模型另一方面,这N个子流同时发射时,只占用同一传输信道,并不会增加使用带宽。

在自由空间里,多入多出系统占用比普通天线系统更多的传输空间,用来在各发射和接收天线间构筑多条相互独立的通道,产生多个并行空间信道,并通过这些并行的空间信道独立地传输信息,达到了空间复用的目的,以此方式来提高系统的传输容量。

对于天线数与信道容量的关系,我们可以假设在发射端,各天线发射独立的等功率信号,而且各信号满足Rayleigh(瑞利)分布,根据多入多出系统的信道传输特性和香农信道容量计算方法,推导出平衰落多入多出系统信道容量近似表达式为:⑥。

其中B为信号带宽,SNR为接收端平均信噪比,min(N,M)为发射天线数量N和接收天线数量M中的最小者。

式⑥表明,在同等传输带宽,而且接收端信噪比不变化的情况下(基本取决于外界条件和发射功率的变化),多入多出系统的信道容量随最小天线数目的增加而线性增加。

而在同样条件下,在接收端或发射端采用多天线或天线阵列的普通智能天线系统,其容量仅随天线数量的对数增加而增加。

相对而言,在不占用额外的带宽,也不消耗额外的发射功率的情况下,利用多入多出技术可以成倍地提高系统传输容量,大大提高了频谱利用率,这是无线通信领域智能天线技术的重大突破。

多入多出-正交频分复用系统3.1 多入多出、正交频分复用系统组合的必要性在高速宽带无线通信系统中,多径效应、频率选择性衰落和带宽效率是信号传输过程中必须考虑的几个关键问题。

多径效应会引起信号的衰落,因而被视为有害因素。

然而多入多出系统是针对多径无线信道而产生的,在一定程度上可以利用传播过程中产生的多径分量,多径效应对其影响并不大,反而可以作为一个有利因素加以使用。

但多入多出对于频率选择性衰落仍无法避免,而解决频率选择性衰落问题恰恰正是正交频分复用的一个长处。

正交频分复用技术实质上是一种多载波窄带调制,可以将宽带信道转化成若干个平坦的窄带子信道,每个子信道上的信号带宽小于信道的相关带宽,所以每个子信道上的频率选择性衰落可以看作是平坦性衰落。

正交频分复用被认为是第四代移动通信中的核心技术,然而4G需要高的频谱利用技术和高速传输系统,为了进一步提高系统传输速率,使用正交频分复用技术的无线通信网就必须增加载波的数量,而这种方法会造成系统复杂度的增加,并增大系统的占用带宽。

而多入多出多天线技术能在不增加带宽的情况下,在每一个窄带平坦子信道上获得更大的信道容量,可以成倍地提高通信系统的容量和频谱效率,是一种利用空间资源换取频谱资源的技术。

因此多入多出-正交频分复用系统的提出是无线通信领域的重大突破,其频谱利用率高、信号传输稳定、高传输速率等基本特性能够满足下一代无线传输网发展要求。

多入多出-正交频分复用系统内组合了多输入和多输出天线和正交频分复用调制两大关键技术。

这种系统通过空间复用技术可以提供更高的数据传输速率,又可以通过空时分集和正交频分复用达到很强的可靠性和频谱利用率。

3.2 多入多出-正交频分复用系统模型在典型的多入多出-正交频分复用系统模型中,发射端(N个发射天线)工作流程如下:输入的数据符号流经串/并电路分成N个子符号流,采用信道编码技术对每个符号流进行无失真压缩并加入冗余信息,调制器对编码后的数据进行空时调制;调制后的信号在IFFT电路中实现正交频分复用调制处理,完成将频域数据变换为时域数据的过程,然后输出的每个正交频分复用符号前加一个循环前缀以减弱信道延迟扩展产生的影响,每个时隙前加前缀用以定时,这些处理过的正交频分复用信号流相互平行地传输,每一个信号流对应一个指定的发射天线,并经数模转换及射频模块处理后发射出去。

图3 带自适应方案的多入多出-正交频分复用系统基本结构接收端进行与发射端相反的信号处理过程,首先通过接收端的M根接收天线接收信号,这些信号经过放大、变频、滤波等射频处理后,得到基带模拟接收信号;并分别通过模数转换将模拟信号转换为数字信号后进行同步,在去循环前缀后通过FFT解调剩下的正交频分复用符号;此时,时延数据变换成为频域数据,接下来在频域内,从解调后的正交频分复用符号中提取出频率导频,然后通过精细的频率同步和定时,准确地提取出导频和数据符号,实现数据还原。

如上说明,IFFT/FFT和循环前缀的添加和去除过程都在每一个独立的发送和接收模块内完成,而多入多出的空时编码和空间复用处理技术也可以应用于正交频分复用的每个子载波上(对应平衰落信道)。

总而言之,在多入多出-正交频分复用系统中,增加了频域的分集和复用作用,带来了更大的系统增益和系统容量。

多入多出-正交频分复用系统的关键技术4.1 多入多出空时信号处理技术空时信号处理是随着多入多出技术而诞生的一个崭新的概念,与传统信号处理方式的不同之处在于其同时从时间和空间两方面研究信号的处理问题。

空时信号处理包括发射端的信令方案和接收端的检测算法。

从信令方案的角度看,多入多出可以大致分为空时编码(STC:Space Time Coding)和空间复用(SM:Spatial Multiplexing)两种。

(1)空时编码技术空时编码技术在发射端对数据流进行联合编码以减小由于信道衰落和噪声所导致的符号错误率,通过在发射端的联合编码增加信号的冗余度,从而使信号在接收端获得最大的分集增益和编码增益;但它的缺点是无法提高数据传输速率。

一般而言,空时编码包括空时格码(STTC: Space-Time Trellis Code)和空时分组码(STBC:Space-Time Block Code)。

空时格码可以实现满分集增益,并且具有相应的编码增益,抗衰落性能比较好。

空时分组码也可以获得满分集增益,而且这种技术只需在接收端进行简单的线性处理,大大简化了接收机的结构。

(2)空间复用技术空间复用是通过不同的天线尽可能多地在空间信道上传输相互独立的数据。

多入多出技术的空间复用就是在接收端和发射端使用多个天线,充分利用空间传播中的多径分量,在同一信道上使用多个数据通道(多入多出子信道)发射信号,从而使得信道容量随着天线数量的增加而线性增加。

这种信道容量的增加不占用额外的带宽,也不消耗额外的发射功率,因此是增加信道和系统容量的一种非常有效的手段。

目前,该技术主要的解码方法有ZF、MMSE、ML、BLAST等。

典型的空间复用技术是贝尔实验室的空时分层结构(BLAST),包括V-BLAST, H-BLAST和D-BALST三种。

其中最基本的形式是针对平衰落信道的V-BLAST结构,它没有得到空间分集,而是纯粹的多入多出多路传输,可获得最大速率或流量增益。

空间复用能最大化多入多出系统的平均发射速率,但只能获得有限的分集增益。

将空间复用和空时编码相结合,能在保证每个数据流获得最小分集增益的条件下,最大化平均数据率,从而得到高频谱效率和传输质量的良好折中。

目前将空间复用和空时编码相结合的方案主要有两种,即链接编码和使用块码映射的自适应多入多出系统。

4.2 同步对于无线通信来说,无线信道存在时变性,在传输中存在的频率偏移会使多入多出-正交频分复用系统子载波之间的正交性遭到破坏,相位噪声对系统也有很大的损害。

相关文档
最新文档