高考文科数学数列专题讲解及高考真题精选含答案
高考数学压轴专题新备战高考《数列》全集汇编含答案解析
【高中数学】数学《数列》试卷含答案一、选择题1.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.2.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺 B .2.5尺C .3.5尺D .4.5尺【答案】C 【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.3.在数列{}n a 中,若10a =,12n n a a n +-=,则23111na a a +++L 的值 A .1n n- B .1n n+ C .11n n -+ D .1n n + 【答案】A 【解析】分析:由叠加法求得数列的通项公式(1)n a n n =-,进而即可求解23111na a a +++L 的和. 详解:由题意,数列{}n a 中,110,2n n a a a n +=-=,则112211()()()2[12(1)](1)n n n n n a a a a a a a a n n n ---=-+-++-+=+++-=-L L , 所以1111(1)1n a n n n n==--- 所以231111111111(1)()()12231n n a a a n n n n-+++=-+-++-=-=-L L ,故选A. 点睛:本题主要考查了数列的综合问题,其中解答中涉及到利用叠加法求解数列的通项公式和利用裂项法求解数列的和,正确选择方法和准确运算是解答的关键,着重考查了分析问题和解答问题的能力,以及推理与运算能力.4.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.5.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=-- 由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21xf x x =--,则()2ln 21xf x '=-在2x ≥上单调递增. 所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.6.已知公比为q 的等比数列{}n a 的首项10a >,则“1q >”是“53a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A 【解析】 【分析】根据等比数列的性质可得530,0a a >>,若53a a >,可得21q >,然后再根据充分条件和必要条件的判断方法即可得到结果. 【详解】由于公比为q 的等比数列{}n a 的首项10a >, 所以530,0a a >>,若53a a >,则233a q a >,所以21q >,即1q >或1q <-,所以公比为q 的等比数列{}n a 的首项10a >, 则“1q >”是“53a a >”的充分不必要条件, 故选:A. 【点睛】本题主要考查了等比数列的相关性质和充分必要条件的判断方法,熟练掌握等比数列的性质是解题的关键.7.已知数列{a n }的前n 项和为S n ,且a n +1=a n +a (n ∈N *,a 为常数),若平面内的三个不共线的非零向量OAOB OC u u u r u u u r u u u r,,满足10051006OC a OA a OB =+u u u r u u u r u u u r ,A ,B ,C 三点共线且该直线不过O点,则S 2010等于( ) A .1005 B .1006C .2010D .2012【答案】A 【解析】 【分析】根据a n +1=a n +a ,可判断数列{a n }为等差数列,而根据10051006OC a OA a OB =+u u u r u u u r u u u r,及三点A ,B ,C 共线即可得出a 1+a 2010=1,从而根据等差数列的前n 项和公式即可求出S 2010的值. 【详解】由a n +1=a n +a ,得,a n +1﹣a n =a ; ∴{a n }为等差数列;由10051006OC a OA a OB =+u u u r u u u r u u u r ,所以A ,B ,C 三点共线; ∴a 1005+a 1006=a 1+a 2010=1,∴S 2010()12010201020101100522a a +⨯===. 故选:A. 【点睛】本题主要考查等差数列的定义,其前n 项和公式以及共线向量定理,还考查运算求解的能力,属于中档题.8.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.9.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B. 【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.10.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.11.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( )A .3 971B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<, 解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.12.已知等差数列{}n a 的前n 项和为n S ,若23109a a a ++=,则9S =( ) A .3 B .9C .18D .27【答案】D 【解析】设等差数列{}n a 的首项为1a ,公差为d . ∵23109a a a ++=∴13129a d +=,即143a d += ∴53a = ∴1999()272a a S ⨯+== 故选D.13.对于实数,[]x x 表示不超过x 的最大整数.已知正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈,其中n S 为数列{}n a 的前n 项和,则[][][]1240S S S +++=L ( )A .135B .141C .149D .155【答案】D 【解析】 【分析】利用已知数列的前n 项和求其n S 得通项,再求[]n S 【详解】解:由于正项数列{}n a 满足112n n n S a a ⎛⎫=+ ⎪⎝⎭,*n N ∈, 所以当1n =时,得11a =, 当2n ≥时,111111[()]22n n n n n n n S a S S a S S --⎛⎫=+=-+ ⎪-⎝⎭ 所以111n n n n S S S S ---=-,所以2=n S n ,因为各项为正项,所以=n S因为[][][]1234851,1,[]1,[][]2S S S S S S =======L ,[]05911[][]3S S S ====L ,[]161724[][]4S S S ====L ,[]252635[][]5S S S ====L , []363740[][]6S S S ====L .所以[][][]1240S S S +++=L 13+25+37+49+511+65=155⨯⨯⨯⨯⨯⨯, 故选:D 【点睛】此题考查了数列的已知前n 项和求通项,考查了分析问题解决问题的能力,属于中档题.14.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---.其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-, 所以11222n n n n S n S nS n S n++++==++,又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.15.已知{}n a 为等差数列,135105a a a ++=,24699a a a ++=,则20a 等于( ). A .1- B .1C .3D .7【答案】B 【解析】 【分析】利用等差数列的通项公式,列出方程组,求出首项和公差,由此能求出20a . 【详解】解:{}n a Q 为等差数列,135105a a a ++=,24699a a a ++=,13533105a a a a ∴++==,2464399a a a a ++==,335a ∴=,433a =,4333352d a a =-=-=-, 13235439a a d =-=+=, 20139391921a a d ∴=+=-⨯=.故选:B 【点睛】本题考查等差数列的第20项的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.16.已知等差数列{}n a 的前n 项和为n S ,若816S =,61a =,则数列{}n a 的公差为( ) A .32B .32-C .23D .23-【答案】D 【解析】 【分析】根据等差数列公式直接计算得到答案. 【详解】 依题意,()()183********a a a a S ++===,故364a a +=,故33a =,故63233a a d -==-,故选:D . 【点睛】 本题考查了等差数列的计算,意在考查学生的计算能力.17.等差数列{}n a 中,1599a a a ++=,它的前21项的平均值是15,现从中抽走1项,余下的20项的平均值仍然是15,则抽走的项是( ) A .11a B .12aC .13aD .14a【答案】A 【解析】 【分析】由等差数列的性质可知5113,15a a ==,再根据前21项的均值和抽取一项后的均值可知抽取的一项的大小为15,故可确定抽走的是哪一项. 【详解】因为1952a a a +=,所以539a =即53a =. 有211521S =得1115a =,设抽去一项后余下的项的和为S ,则2015300S =⨯=,故抽取的一项的大小为11, 所以抽走的项为11a ,故选A.【点睛】一般地,如果{}n a 为等差数列,n S 为其前n 项和,则有性质:(1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a +=+;(2)()1,1,2,,2k n k n n a a S k n +-+==L 且()2121n n S n a -=- ; (3)2n S An Bn =+且n S n ⎧⎫⎨⎬⎩⎭为等差数列; (4)232,,,n n n n n S S S S S --L 为等差数列.18.在一个数列中,如果*n N ∀∈,都有12n n n a a a k ++=(k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{}n a 是等积数列,且11a =,22a =,公积为8,则122020a a a ++⋅⋅⋅+=( )A .4711B .4712C .4713D .4715 【答案】B【解析】【分析】计算出3a 的值,推导出()3n n a a n N*+=∈,再由202036731=⨯+,结合数列的周期性可求得数列{}n a 的前2020项和.【详解】由题意可知128n n n a a a ++=,则对任意的n *∈N ,0n a ≠,则1238a a a =,31284a a a ∴==, 由128n n n a a a ++=,得1238n n n a a a +++=,12123n n n n n n a a a a a a +++++∴=,3n n a a +∴=, 202036731=⨯+Q ,因此,()1220201231673673714712a a a a a a a ++⋅⋅⋅+=+++=⨯+=.故选:B.【点睛】本题考查数列求和,考查了数列的新定义,推导出数列的周期性是解答的关键,考查推理能力与计算能力,属于中等题.19.设函数()221x f x =+,利用课本(苏教版必修5)中推导等差数列前n 项和的方法,求得()()()()()54045f f f f f -+-+⋅⋅⋅++⋅⋅⋅++的值为( )A .9B .11C .92D .112【答案】B【解析】【分析】 先计算出()()f x f x +-的值,然后利用倒序相加法即可计算出所求代数式的值.【详解】()221x f x =+Q ,()()()22222212121221xx x x x x f x f x --⋅∴+-=+=+++++()2122222211221x x x x x +⋅=+==+++, 设()()()()()54045S f f f f f =-+-+⋅⋅⋅++⋅⋅⋅++,则()()()()()54045S f f f f f =+++++-+-L L ,两式相加得()()2115511222S f f ⎡⎤=⨯+-=⨯=⎣⎦,因此,11S =.故选:B.【点睛】本题考查函数值的和的求法,注意运用倒序相加法,求得()()2f x f x +-=是解题的关键,考查化简运算能力,属于中档题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >所以当1300n S =时,n 的最大值为49故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考求数列真题及答案解析
高考求数列真题及答案解析数列是高中数学中的重要概念,也是高考数学中的必考内容之一。
在高考数学试卷中,数列题目通常包括数列的概念、性质、递推公式、通项公式等方面的考查。
为了帮助广大考生更好地备考数列题目,在本文中,我们将对一些高考数列题目进行解析,希望对考生们有所帮助。
第一题:已知数列{an}的通项公式为an = 2^n + 3^n,求数列{an}的前n项和Sn。
解析:要求数列的前n项和Sn,我们需要先确定数列的通项公式。
题目中给出的通项公式为an = 2^n + 3^n,因此可以得到数列的前n项和Sn的表达式为:Sn = a1 + a2 + ... + an。
将通项公式代入到Sn的表达式中,我们可以得到:Sn = (2^1 + 3^1) + (2^2 + 3^2) + ... + (2^n + 3^n)。
这是一个等差数列求和的问题,由等差数列的求和公式Sn = (a1 + an) * n / 2,我们可以将Sn重新整理为:Sn = [(2^1 + 2^n) + (3^1 + 3^n)] * n / 2。
进一步化简,我们可以得到:Sn = [(2 + 2^n) + (3 + 3^n)] * n / 2。
至此,我们得到了数列{an}的前n项和Sn的表达式。
第二题:已知数列{an}满足an+1 = an + 2n + 3,a1 = 4,求数列{an}的通项公式。
解析:题目给出了数列的递推公式an+1 = an + 2n + 3,我们可以尝试寻找数列的递推关系。
观察递推公式可以得知,数字2n + 3可能是数列的公差。
我们可以将递推公式进行一下变换:an+1 - an = 2n + 3。
再次变形,我们可以得到:an+1 - an - (n + 3) = n。
将等式两边同时累加,可以得到:a2 - a1 - n - 3 = 1 + 2 + ... + (n - 1) + n。
根据等差数列的求和公式,1 + 2 + ... + (n - 1) + n 的等于n(n + 1)/2。
高考数列专题题型讲解及答案
数列题型一、数列的综合问题【例1】已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值. 解 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14. 又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1 =(-1)n -1·32n .(2)由(1)得S n =1-⎝ ⎛⎭⎪⎫-12n =⎩⎪⎨⎪⎧1+12n ,n 为奇数,1-12n ,n 为偶数,当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712.综上,对于n ∈N *,总有-712≤S n -1S n≤56. 所以数列{T n }最大项的值为56,最小项的值为-712.【分析】解决等差数列与等比数列的综合问题,既要善于综合运用等差数列与等比数列的相关知识求解,更要善于根据具体问题情境具体分析,寻找解题的突破口.【即时应用】已知数列{a n }是公差不为零的等差数列,其前n 项和为S n ,满足S 5-2a 2=25,且a 1,a 4,a 13恰为等比数列{b n }的前三项.(1)求数列{a n },{b n }的通项公式;(2)设T n 是数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1a n a n +1的前n 项和,是否存在k ∈N *,使得等式1-2T k =1b k 成立?若存在,求出k 的值;若不存在,请说明理由.解 (1)设等差数列{a n }的公差为d (d ≠0),∴⎩⎪⎨⎪⎧⎝ ⎛⎭⎪⎫5a 1+5×42d -2(a 1+d )=25,(a 1+3d )2=a 1(a 1+12d ),解得a 1=3,d =2,∴a n =2n +1.∵b 1=a 1=3,b 2=a 4=9,∴等比数列{b n }的公比q =3,∴b n =3n .(2)不存在.理由如下:∵1a n a n +1=1(2n +1)(2n +3)=12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫13-15+⎝ ⎛⎭⎪⎫15-17+…+⎝ ⎛⎭⎪⎫12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∴1-2T k =23+12k +3(k ∈N *), 易知数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫12k +3为单调递减数列, ∴23<1-2T k ≤1315,又1b k=13k ∈⎝ ⎛⎦⎥⎤0,13,∴不存在k ∈N *,使得等式1-2T k =1b k成立. 题型二、数列的通项、求和求和要善于分析通项的结构特征,选择合适的求和方法.常用求和方法有:错位相减法、裂项相消法、分组求和法等.【例2】设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q =d ,S 10=100.(1)求数列{a n },{b n }的通项公式;(2)当d >1时,记c n =a n b n,求数列{c n }的前n 项和T n . (1)解 由题意有⎩⎨⎧10a 1+45d =100,a 1d =2, 即⎩⎨⎧2a 1+9d =20,a 1d =2,解得⎩⎨⎧a 1=1,d =2或⎩⎪⎨⎪⎧a 1=9,d =29. 故⎩⎨⎧a n =2n -1,b n =2n -1或⎩⎪⎨⎪⎧a n =19(2n +79),b n =9·⎝ ⎛⎭⎪⎫29n -1. (2)解 由d >1,知a n =2n -1,b n =2n -1,故c n =2n -12n -1, 于是T n =1+32+522+723+924+…+2n -12n -1,① 12T n =12+322+523+724+925+…+2n -12n .②①-②可得12T n =2+12+122+…+12n -2-2n -12n =3-2n +32n ,故T n =6-2n +32n -1. 【分析】用错位相减法解决数列求和的模板第一步:(判断结构)若数列{a n ·b n }是由等差数列{a n }与等比数列{b n }(公比q )的对应项之积构成的,则可用此法求和.第二步:(乘公比)设{a n ·b n }的前n 项和为T n ,然后两边同乘以q .第三步:(错位相减)乘以公比q 后,向后错开一位,使含有q k (k ∈N *)的项对应,然后两边同时作差. 第四步:(求和)将作差后的结果求和,从而表示出T n .【即时应用】设数列{a n }的前n 项和为S n ,已知a 1=1,a 2=2,且a n +2=3S n -S n +1+3,n ∈N *.(1)证明:a n +2=3a n ;(2)求S 2n .(1)证明 由条件,对任意n ∈N *,有a n +2=3S n -S n +1+3,因而对任意n ∈N *,n ≥2,有a n +1=3S n -1-S n +3.两式相减,得a n +2-a n +1=3a n -a n +1,即a n +2=3a n ,n ≥2.又a 1=1,a 2=2,所以a 3=3S 1-S 2+3=3a 1-(a 1+a 2)+3=3a 1,故对一切n ∈N *,a n +2=3a n .(2)解 由(1)知,a n ≠0,所以a n +2a n=3.于是数列{a 2n -1}是首项a 1=1,公比为3的等比数列;数列{a 2n }是首项a 2=2,公比为3的等比数列.因此a 2n -1=3n -1,a 2n =2×3n -1.于是S 2n =a 1+a 2+…+a 2n=(a 1+a 3+…+a 2n -1)+(a 2+a 4+…+a 2n )=(1+3+…+3n -1)+2(1+3+…+3n -1)=3(1+3+…+3n -1)=32(3n -1).题型三、数列的综合应用3.1 数列与函数的综合问题【例3】 设等差数列{a n }的公差为d ,点(a n ,b n )在函数f (x )=2x 的图象上(n ∈N *).(1)若a 1=-2,点(a 8,4b 7)在函数f (x )的图象上,求数列{a n }的前n 项和S n ;(2)若a 1=1,函数f (x )的图象在点(a 2,b 2)处的切线在x 轴上的截距为2-1ln 2,求数列⎩⎨⎧⎭⎬⎫a n b n 的前n 项和T n . 解 (1)由已知,b 7=2a 7,b 8=2a 8=4b 7,有2a 8=4×2a 7=2a 7+2,解得d =a 8-a 7=2.所以,S n =na 1+n (n -1)2d =-2n +n (n -1)=n 2-3n . (2)函数f (x )=2x 在(a 2,b 2)处的切线方程为y -2a 2=(2a 2ln 2)(x -a 2),它在x 轴上的截距为a 2-1ln 2.由题意知,a 2-1ln 2=2-1ln 2,解得a 2=2.所以,d =a 2-a 1=1.从而a n =n ,b n =2n ,所以T n =12+222+323+…+n -12n -1+n 2n , 2T n =11+22+322+…+n 2n -1 因此,2T n -T n =1+12+122+…+12n -1-n 2n =2-12n -1-n 2n =2n +1-n -22n. 所以,T n =2n +1-n -22n. 热点3.2 数列与不等式的综合问题【例4】 在等差数列{a n }中,a 2=6,a 3+a 6=27.(1)求数列{a n }的通项公式;(2)记数列{a n }的前n 项和为S n ,且T n =S n 3·2n -1,若对于一切正整数n ,总有T n ≤m 成立,求实数m 的取值范围.解 (1)设公差为d ,由题意得:⎩⎨⎧a 1+d =6,2a 1+7d =27,解得⎩⎨⎧a 1=3,d =3,∴a n =3n .(2)∵S n =3(1+2+3+…+n )=32n (n +1),∴T n =n (n +1)2n ,T n +1=(n +1)(n +2)2n +1,∴T n +1-T n =(n +1)(n +2)2n +1-n (n +1)2n=(n +1)(2-n )2n +1,∴当n ≥3时,T n >T n +1,且T 1=1<T 2=T 3=32,∴T n 的最大值是32,故实数m 的取值范围是⎣⎢⎡⎭⎪⎫32,+∞.。
高考文科数学数列专题复习(附答案及解析)
高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考数学压轴专题新备战高考《数列》解析含答案
数学高考《数列》试题含答案一、选择题1.已知首项为1的正项等比数列{}n a 的前n 项和为n S ,4a -、3a 、5a 成等差数列,则2020S 与2020a 的关系是( )A .2020202021S a =+B .2020202021S a =-C .2020202041S a =+D .2020202043S a =-【答案】B 【解析】 【分析】求出等比数列{}n a 的公比q ,然后求出2020S 和2020a ,由此可得出结论. 【详解】设等比数列{}n a 的公比为q ,则0q >,4a -Q 、3a 、5a 成等差数列,3542a a a ∴=-,所以,220q q --=,0q >Q ,解得2q =,20192019202012a a q ∴==,()20201202020201211a q S q-==--,因此,2020202021S a =-. 故选:B. 【点睛】本题考查等比数列求和公式以及通项公式的应用,涉及等差中项的应用,考查计算能力,属于中等题.2.等差数列{}n a 中,1510a a +=,47a =,则数列{}n a 前6项和6S 为()A .18B .24C .36D .72【答案】C 【解析】 【分析】由等差数列的性质可得35a =,根据等差数列的前n 项和公式163466622a a a aS ++=⨯=⨯可得结果. 【详解】∵等差数列{}n a 中,1510a a +=,∴3210a =,即35a =,∴163465766636222a a a a S +++=⨯=⨯=⨯=, 故选C. 【点睛】本题主要考查了等差数列的性质以及等差数列的前n 项和公式的应用,属于基础题.3.已知等差数列{}n a 的前n 项和为n S ,若34322128,6a a S ⋅==,则数列{}(1)nn a -的前40项和为( ) A .0 B .20 C .40 D .80【答案】B 【解析】 【分析】先由题意求出34a +a =7,然后利用等差数列的前n 项和公式表示出134a a +=,前后两式作差,求出公差,进而代入求出首项,最后即得n a n =,代入题目中{}(1)nn a -,两两组合可求新数列前40项的和. 【详解】 依题意,()133362a a S +== ,∴134a a +=,①∵3422128a a ⋅=,即342128a a +=, ∴34a +a =7,② ②-①得33d =, ∴1d =, ∴11,n a a n ==, ∴(1)(1)n n n a n -=-,∴{}(1)nn a -的前40项和40(12)(34)(3940)20S -++-++⋅⋅⋅+-+==,故选:B . 【点睛】本题考查了指数运算:同底数幂相乘,底数不变,指数相加;主要考查等差数列的前n 和公式,等差中项的性质等等,以及常见的摆动数列的有限项求和,可以采用的方法为:分组求和法,两两合并的方法等等,对学生的运算能力稍有要求,为中等难度题4.已知数列{}n a 的前n 项和为n S ,若2n n S a n =-,则9S =( ) A .993 B .766 C .1013 D .885【答案】C 【解析】 【分析】计算11a =,()1121n n a a -+=+,得到21nn a =-,代入计算得到答案.【详解】当1n =时,11a =;当2n ≥时,1121n n n n a S S a --=-=+,∴()1121n n a a -+=+,所以{}1n a +是首项为2,公比为2的等比数列,即21nn a =-,∴1222n n n S a n n +=-=--,∴1092111013S =-=.故选:C . 【点睛】本题考查了构造法求通项公式,数列求和,意在考查学生对于数列公式方法的灵活运用.5.若{}n a 为等差数列,n S 是其前n 项和,且11223S π=,则6tan()a 的值为( )A B .C D .【答案】B 【解析】 【分析】由11162a a a +=,即可求出6a 进而求出答案. 【详解】∵()11111611221123a a S a π+===,∴623a π=,()62tan tan 3a π⎛⎫== ⎪⎝⎭故选B. 【点睛】本题主要考查等差数列的性质,熟记等差数列的性质以及等差数列前n 项和性质即可,属于基础题型.6.等差数列{}n a 的前n 项和为n S ,已知2611203a a a a --+=,则21S 的值为( ) A .63 B .21C .63-D .21【答案】C 【解析】 【分析】根据等差数列性质,原式可变为()220616113()a a a a a +-+-=,即可求得21112163S a ==-.【详解】∵261116203a a a a a ---+=, ∴()220616113()a a a a a +-+-=, ∴113a =-,∴21112163S a ==-, 故选:C .【点睛】此题考查等差数列性质和求和公式,需要熟练掌握等差数列基本性质,根据性质求和.7.已知等差数列{}n a 中,若311,a a 是方程2210x x --=的两根,单调递减数列{}()*n b n N ∈通项公式为27n b n a n λ=+.则实数λ的取值范围是( )A .(),3-∞-B .1,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-+∞ ⎪⎝⎭D .()3,-+∞【答案】B 【解析】 【分析】先求出71a =,再根据{}n b 是递减数列,得到121n λ<-+对*n N ∈恒成立,即得解. 【详解】∵311,a a 是方程220x x --=的两根,∴3112a a +=. ∵{}n a 是等差数列,∴311722a a a +==,∴71a =,∴2n b n n λ=+,又∵{}n b 是递减数列,∴10n n b b +-<对*n N ∈恒成立, 则()()()22110n n nn λλ+++-+<,∴()2110n λ++<,∴121n λ<-+对*n N ∈恒成立, ∴13λ<-.故选:B. 【点睛】本题主要考查等差中项的应用,考查数列的单调性和数列不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平.8.如果等差数列128,,,a a a L 的各项都大于零,公差0d ≠,则正确的关系为( ) A .1845a a a a > B .1845a a a a < C .1845a a a a +>+ D .1845a a a a =【答案】B 【解析】 【分析】先根据等差中项的性质,可排除C ,再利用作差比较,即可得到答案. 【详解】根据等差数列的性质,可得1845a a a a +=+,所以C 不正确;又由218451111(7)(3)(4)120a a a a a a d a d a d d -=+-++=-<,所以1845a a a a <.故选B . 【点睛】本题主要考查了等差数列的性质,等差数列的通项公式,以及作差比较法的应用,着重考查了推理与运算能力.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 的前n 项和()2*23n S n n n N=+∈,则{}na 的通项公式为( )A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C 【解析】 【分析】首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可. 【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立, 所以41n a n =+, 故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n n n S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.11.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A.4B .19 C .20 D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=, 解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.12.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.13.设首项为1的数列{}n a 的前n 项和为n S ,已知121n n S S n +=+-, 现有下面四个结论①数列{}n S n +为等比数列; ②数列{}n a 的通项公式为121n n a -=-;③数列{}1n a +为等比数列;④数列{}2n S 的前n 项和为2224n n n +---. 其中结论正确的个数是( ) A .1 B .2 C .3 D .4【答案】B 【解析】 【分析】根据递推关系可得1+12()n n S n S n ++=+,可得①正确,利用等比数列求出2nn S n =-,根据前n 项和求n a ,可判断②③,计算2n S ,并分组求和可判断④. 【详解】因为121n n S S n +=+-,所以11222n n n n S n S nS n S n++++==++, 又112S +=.所以数列{}n S n +为首项是2,公比是2的等比数列,所以2nn S n +=, 则2nn S n =-.当2n ≥时,1121n n n n a S S --=-=-, 但11121a -≠-,所以①正确,②③错误,因为1222n n S n +=-,所以{}2n S 的前n 项和为2224n n n +---, 所以④正确. 故选:B 【点睛】本题主要考查了数列的递推关系式,等比数列的证明,由n S 求数列的通项公式,属于中档题.14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 中,732,1a a ==,又数列11n a ⎧⎫⎨⎬+⎩⎭是等差数列,则11a 等于( ) A .0 B .12C .23D .1-【答案】B 【解析】 【分析】先根据条件得等差数列11n a ⎧⎫⎨⎬+⎩⎭公差以及通项公式,代入解得11a .【详解】 设等差数列11n a ⎧⎫⎨⎬+⎩⎭公差为d ,则731111144,112324d d d a a =-∴=-=++, 从而31115(3)11242424n n n a a =+-⋅=+++ 11111115211242432a a =+=∴=+,选B. 【点睛】本题考查等差数列通项公式,考查基本求解能力,属基本题.16.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1CD .2【答案】B 【解析】 【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得. 【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B 【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.17.已知数列{}n a 的前n 项和为n S ,且12a =,12n n n a S n++=(*n ∈N ),则n S =( ) A .121n -+ B .2n n ⋅C .31n -D .123n n -⋅【答案】B 【解析】 【分析】 由题得122,1n n a n a n ++=⨯+再利用累乘法求出1(1)2n n a n -=+⋅,即得n S . 【详解】 由题得111(1)(1),,,2121n n n nn n n na n a na n a S S a n n n n ++---=∴=∴=-++++(2n ≥) 所以122,1n n a n a n ++=⨯+(2n ≥) 由题得22166,32a a a =∴==,所以122,1n n a n a n ++=⨯+(1n ≥). 所以324123134512,2,2,2,234n n a a a a n a a a a n-+=⨯=⨯=⨯=⨯L , 所以11112,(1)22n n n n a n a n a --+=⋅∴=+⋅. 所以(2)222n n n nS n n n =⨯+⋅=⋅+. 故选:B 【点睛】本题主要考查数列通项的求法,考查数列前n 项和与n a 的关系,意在考查学生对这些知识的理解掌握水平.18.根据下面的程序框图,输出的S 的值为( )A .1007B .1009C .0D .-1【答案】A 【解析】 【分析】按照程序框图模拟运行即可得解. 【详解】1i =,1112x ==--,0(1)1S =+-=-;2i =,111(1)2x ==--, 11122S =-+=-;3i =,12112x ==-,13222S =-+=;4i =,1112x ==--,31(1)22S =+-=,…, 由此可知,运行程序过程中,x 呈周期性变化,且周期为3, 所以输出112672110072S ⎛⎫=-++⨯-= ⎪⎝⎭. 故选A 【点睛】本题主要考查程序框图和数列的周期性,意在考查学生对这些知识的理解掌握水平和分析推理能力.19.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N++=+∈且1300nS=,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】 【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n nS =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值.【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+ 2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n=,因为22485048+348503501224,132522S S ⨯+⨯====,所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+因为2491149349412722S a a +⨯-=+=+,2511151351413752S a a +⨯-=+=+,又因为23a <,125a a +=,所以 12a > 所以当1300n S =时,n 的最大值为49 故选:A 【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.20.执行如图所示的程序框图,若输入,则输出的S 的值是A.B.C.D.【答案】B【解析】【分析】本题首先可以通过程序框图明确输入的数值以及程序框图中所包含的关系式,然后按照程序框图所包含的关系式进行循环运算,即可得出结果.【详解】由程序框图可知,输入,,,第一次运算:,;第二次运算:,;第三次运算:,;第四次运算:,;第五次运算:,;第六次运算:,;第七次运算:,;第八次运算:,;第九次运算:,;第十次运算:,,综上所述,输出的结果为,故选B.【点睛】本题考查程序框图的相关性质,主要考查程序框图的循环结构以及裂项相消法的使用,考查推理能力,提高了学生从题目中获取信息的能力,体现了综合性,提升了学生的逻辑推理、数学运算等核心素养,是中档题.。
数列—高考真题文科数学分项汇编(解析版)
当d 0时,a1 d,∴3d 2a1 d 2d a1 0即b4 2 b2b8 0,所以b4 b2b8 0,D不正确.
故选:D ..
2
【点睛】本题主要考查等差数列的性质应用,属于基础题.
5.【2019年高考全国 III卷文数】已知各项均为正数的等比数列an的前
则a3
4项和为 15,且a 3a3 4a1, 5
i
由 TTi ai 1i 7,i N可知数列Tn不存在最小项,
i1
由于a1 9,a2 7,a3 5,a4 3,a5 1,a6 1,
故数列Tn中的正项只有有限项:
T 2
63,T4
6315
945
.
T
故数列Tn中存在最大项,且最大项为
4.
故选:B.
【点睛】本题主要考查等差数列的通项公式,等差数列中项的符号问题,分类讨论的数学思想等知识,
a1 7 .
故答案为: 7 .
【点睛】本题考查数列的递推公式的应用,以及数列的并项求和,考查分类讨论思想和数学计算能力, 属于较难题.
12.【2020年高考浙江】我国古代数学家杨辉,朱世杰等研究过高阶等差数列的求和问题,如数列{n(n 1) } 2
就是二阶等差数列.数列{n(n 1)}(nN*)的前 2
3,nN*),
则数列an是等比数列.
10.【2020年高考全国Ⅱ卷文数】记Sn为等差数列{an}的前n项和.若a1=−2,a2+a6=2,则S10=__________.
【答案】 25
【解析】 an是等差数列,且a1 2,a2 a6 2 设an等差数列的公差d
根据等差数列通项公式:an a1 n1 d
因此
an
2
n1
高考数学压轴专题专题备战高考《数列》全集汇编含答案解析
【高中数学】数学高考《数列》试题含答案一、选择题1.在正整数数列中,由1开始依次按如下规则,将某些数取出.先取1;再取1后面两个偶数2,4;再取4后面最邻近的3个连续奇数5,7,9;再取9后面的最邻近的4个连续偶数10,12,14,16;再取此后最邻近的5个连续奇数17,19,21,23,25.按此规则一直取下去,得到一个新数列1,2,4,5,7,9,10,12,14,16,17,…,则在这个新数列中,由1开始的第2 019个数是( ) A .3 971 B .3 972C .3 973D .3 974【答案】D 【解析】 【分析】先对数据进行处理能力再归纳推理出第n 组有n 个数且最后一个数为n 2,则前n 组共1+2+3+…+n ()12n n +=个数,运算即可得解.【详解】解:将新数列1,2,4,5,7,9,10,12,14,16,17,…,分组为(1),(2,4),(5,7,9,),(10,12,14,16),(17,19,21,23,25)… 则第n 组有n 个数且最后一个数为n 2, 则前n 组共1+2+3+…+n ()12n n +=个数,设第2019个数在第n 组中,则()()120192120192n n n n ⎧+≥⎪⎪⎨-⎪⎪⎩<,解得n =64,即第2019个数在第64组中,则第63组最后一个数为632=3969,前63组共1+2+3+…+63=2016个数,接着往后找第三个偶数则由1开始的第2019个数是3974, 故选:D . 【点睛】本题考查了对数据的处理能力及归纳推理能力,考查等差数列前n 项和公式,属中档题.2.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C【解析】 【分析】由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.3.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S ( ) A .3 B .9C .10D .13【答案】C 【解析】 【分析】设{}n a 的公比为0q >,由645,3,a a a -成等差数列,可得260,0q q q --=>,解得q ,再利用求和公式即可得结果. 【详解】设各项均为正数的等比数列{}n a 的公比为0q >,Q 满足645,3,a a a -成等差数列,()2465446,6,0a a a a a q q q ∴=-∴=->, 260,0q q q ∴--=>,解得3q =,则()()4124221313131103131a S S a --==+=--,故选C. 【点睛】本题主要考查等比数列的通项公式与求和公式,属于中档题. 等比数列基本量的运算是等比数列的一类基本题型,数列中的五个基本量1,,,,,n n a q n a S ,一般可以“知二求三”,通过列方程组所求问题可以迎刃而解,解决此类问题的关键是熟练掌握等比数列的有关性质和公式,并灵活应用,在运算过程中,还应善于运用整体代换思想简化运算过程.4.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2019这2019个数中,能被3除余2且被5整除余2的数按从小到大的顺序排成一列,构成数列{}n a ,则此数列所有项中,中间项的值为( ) A .992 B .1022C .1007D .1037【答案】C 【解析】 【分析】首先将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数.再写出{}n a 的通项公式,算其中间项即可. 【详解】将题目转化为2n a -即是3的倍数,也是5的倍数,也即是15的倍数. 即215(1)n a n -=-,1513n a n =-当135n =,135151351320122019a =⨯-=<, 当136n =,136151361320272019a =⨯-=>, 故1,2,n =……,135数列共有135项.因此数列中间项为第68项,681568131007a =⨯-=. 故答案为:C . 【点睛】本题主要考查数列模型在实际问题中的应用,同时考查了学生的计算能力,属于中档题.5.《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,则小满日影长为( ) A .1.5尺B .2.5尺C .3.5尺D .4.5尺【解析】 【分析】结合题意将其转化为数列问题,并利用等差数列通项公式和前n 项和公式列方程组,求出首项和公差,由此能求出结果. 【详解】解:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气其日影长依次成等差数列{}n a ,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为85.5尺,∴()()111913631.598985.52a a d a d S a d ⎧++++=⎪⎨⨯=+=⎪⎩, 解得113.5a =,1d =-,∴小满日影长为1113.510(1) 3.5a =+⨯-=(尺). 故选C . 【点睛】本题考查等差数列的前n 项和公式,以及等差数列通项公式的运算等基础知识,掌握各公式并能熟练运用公式求解,考查运算求解能力,考查化归与转化思想,属于基础题.6.数列{a n },满足对任意的n ∈N +,均有a n +a n +1+a n +2为定值.若a 7=2,a 9=3,a 98=4,则数列{a n }的前100项的和S 100=( ) A .132 B .299C .68D .99【答案】B 【解析】 【分析】由12n n n a a a ++++为定值,可得3n n a a +=,则{}n a 是以3为周期的数列,求出123,,a a a ,即求100S . 【详解】对任意的n ∈+N ,均有12n n n a a a ++++为定值,()()123120n n n n n n a a a a a a +++++∴++-++=,故3n n a a +=,{}n a ∴是以3为周期的数列,故17298392,4,3a a a a a a ======,()()()100123979899100123133S a a a a a a a a a a a ∴=+++++++=+++L()332432299=+++=.【点睛】本题考查周期数列求和,属于中档题.7.设函数()mf x x ax =+的导数为()21f x x '=+,则数列()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和是( ) A .1nn + B .21nn + C .21nn - D .()21n n+ 【答案】B 【解析】 【分析】函数()mf x x ax =+的导函数()21f x x '=+,先求原函数的导数,两个导数进行比较即可求出m ,a ,利用裂项相消法求出()()2N n f n *⎧⎫⎪⎪∈⎨⎬⎪⎪⎩⎭的前n 项和即可.【详解】Q 1()21m f x mx a x -'=+=+,1a \=,2m =,()(1)f x x x ∴=+,112()()(1)221f n n n n n ==-++, ∴111111122[()()()]2(1)1223111n n S n n n n =-+-++-=-=+++L ,故选:B . 【点睛】本题考查数列的求和运算,导数的运算法则,数列求和时注意裂项相消法的应用.8.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=( )A .4B .19C .20D .23【答案】D 【解析】 【分析】本题首先可以设出奇数项的公差以及偶数项的公比,然后对347a a +=、5613a a +=进行化简,得出公差和公比的数值,然后对78a a +进行化简即可得出结果. 【详解】设奇数项的公差为d ,偶数项的公比为q ,由347a a +=,5613a a +=,得127d q ++=,212213d q ++=,解得2d =,2q =,所以37813271623a a d q +=++=+=,故选D .【点睛】本题主要考查等差数列、等比数列的通项公式及性质等基础知识,考查运算求解能力,考查函数与方程思想、化归与转化思想等,体现基础性与综合性,提升学生的逻辑推理、数学运算等核心素养,是中档题.9.已知等比数列{}n a 的前n 项和为n S ,若1231112a a a ++=,22a =,则3S =( ) A .10 B .7C .8D .4【答案】C 【解析】 【分析】根据等比数列的性质可将已知等式变为12332224a a a S a ++==,解方程求得结果. 【详解】 由题意得:13123321231322111124a a a a a S a a a a a a a +++++=+=== 38S ∴= 本题正确选项:C 【点睛】本题考查等比数列性质的应用,关键是能够根据下角标的关系凑出关于3S 的方程,属于基础题.10.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2 B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.11.执行如图所示的程序框图,若输出的S 为154,则输入的n 为( )A .18B .19C .20D .21【答案】B 【解析】 【分析】找到输出的S 的规律为等差数列求和,即可算出i ,从而求出n . 【详解】由框图可知,()101231154S i =+++++⋯+-= , 即()1231153i +++⋯+-=,所以()11532i i -=,解得18i =,故最后一次对条件进行判断时18119i =+=,所以19n =. 故选:B 【点睛】本题考查程序框图,要理解循环结构的程序框图的运行,考查学生的逻辑推理能力.属于简单题目.12.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- , 因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.13.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用14.已知数列{}n a 是1为首项,2为公差的等差数列,{}n b 是1为首项,2为公比的等比数列,设n n b c a =,12...,(*)n n T c c c n N =+++∈,则当2019n T <时,n 的最大值是( ) A .9 B .10C .11D .12【答案】A 【解析】 【分析】由题设知21n a n =-,12n nb -=,由1121124222n n n b b bn T a a a a a a a n -+=++⋯+=+++⋯+=--和2019n T <,得1222019n n +--<,由此能求出当2019n T <时n 的最大值.【详解】{}n a Q 是以1为首项,2为公差的等差数列,21n a n ∴=-,{}n b Q 是以1为首项,2为公比的等比数列,12n n b -∴=,()()()()1121121242211221241221n n n n b b bn T c c c a a a a a a a --∴=++⋯+=++⋯+=+++⋯+=⨯-+⨯-+⨯-+⋯+⨯- ()121242n n -=+++⋯+- 12212nn -=⨯-- 122n n +=--,2019n T <Q ,1222019n n +∴--<,解得:10n <.则当2019n T <时,n 的最大值是9. 故选A . 【点睛】本题考查了等差数列、等比数列的通项公式,结合含两个变量的不等式的处理问题,易出错,属于中档题.15.已知数列{}n a 是等比数列,前n 项和为n S ,则“3152a a a >+”是“210n S -<”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件 D .既不充分也不必要条件【答案】B 【解析】 【分析】根据等比数列的通项公式与求和公式,即可判断命题间的关系. 【详解】因为数列{}n a 是等比数列,前n 项和为n S 若3152a a a >+,由等比数列的通项公式可得111242a a q a q >+,化简后可得()21210q a -<.因为()2210q -≥所以不等式的解集为10a < 若210n S -<当公比1q ≠±时, 210n S -<则10a <,可得3152a a a >+ 当公比1q =±时, 由210n S -<则10a <,可得3152a a a =+ 综上可知, “3152a a a >+”是“210n S -<”的充分不必要条件 故选:B 【点睛】本题考查了等比数列的通项公式与求和公式的应用,在应用等比数列求和公式时,需记得讨论公比是否为1的情况,属于中档题.16.科赫曲线是一种外形像雪花的几何曲线,一段科赫曲线可以通过下列操作步骤构造得到,任画一条线段,然后把它均分成三等分,以中间一段为边向外作正三角形,并把中间一段去掉,这样,原来的一条线段就变成了4条小线段构成的折线,称为“一次构造”;用同样的方法把每条小线段重复上述步骤,得到16条更小的线段构成的折线,称为“二次构造”,…,如此进行“n 次构造”,就可以得到一条科赫曲线.若要在构造过程中使得到的折线的长度达到初始线段的1000倍,则至少需要通过构造的次数是( ).(取lg30.4771≈,lg 20.3010≈)A .16B .17C .24D .25【答案】D 【解析】 【分析】由折线长度变化规律可知“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,由此得到410003n⎛⎫≥ ⎪⎝⎭,利用运算法则可知32lg 2lg 3n ≥⨯-,由此计算得到结果.【详解】记初始线段长度为a ,则“一次构造”后的折线长度为43a ,“二次构造”后的折线长度为243a ⎛⎫ ⎪⎝⎭,以此类推,“n 次构造”后的折线长度为43na ⎛⎫ ⎪⎝⎭,若得到的折线长度为初始线段长度的1000倍,则410003n a a ⎛⎫≥ ⎪⎝⎭,即410003n⎛⎫≥ ⎪⎝⎭, ()()44lg lg lg 4lg32lg 2lg3lg1000333n n n n ⎛⎫∴==-=-≥= ⎪⎝⎭, 即324.0220.30100.4771n ≥≈⨯-,∴至少需要25次构造. 故选:D .【点睛】 本题考查数列新定义运算的问题,涉及到对数运算法则的应用,关键是能够通过构造原则得到每次构造后所得折线长度成等比数列的特点.17.已知数列{}n a 的前n 项和()2*23n S n n n N =+∈,则{}na 的通项公式为( ) A .21n a n =+B .21n a n =-C .41n a n =+D .41n a n =-【答案】C【解析】【分析】 首先根据223n S n n =+求出首项1a 的值,然后利用1n n n a S S -=-求出2n ≥时n a 的表达式,然后验证1a 的值是否适合,最后写出n a 的式子即可.【详解】因为223n S n n =+,所以,当2n ≥时,22123[2(1)3(1)]41n n n a S S n n n n n -=-=+--+-=+,当1n =时,11235==+=a S ,上式也成立,所以41n a n =+,故选C.【点睛】该题考查的是有关数列的通项公式的求解问题涉及到的知识点有数列的项与和的关系,即11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,算出之后再判断1n =时对应的式子是否成立,最后求得结果.18.正项等比数列{}n a 中的1a 、4039a 是函数()3214633f x x x x =-+-的极值点,则2020a =( )A .1-B .1 CD .2【答案】B【解析】【分析】根据可导函数在极值点处的导数值为0,得出140396a a =,再由等比数列的性质可得.【详解】解:依题意1a 、4039a 是函数()3214633f x x x x =-+-的极值点,也就是()2860f x x x '=-+=的两个根∴140396a a =又{}n a是正项等比数列,所以2020a =∴20201a ==.故选:B【点睛】本题主要考查了等比数列下标和性质以应用,属于中档题.19.数列{}n a 满足11a =,对任意的*n N ∈都有11n n a a n +=++,则122016111a a a +++=L ( ) A .20152016B .40322017C .40342017D .20162017【答案】B【解析】【分析】 首先根据题设条件,由11n n a a n +=++,可得到递推关系为11n n a a n +-=+; 接下来利用累加法可求得()12n n n a +=,从而()1211211na n n n n ⎛⎫==- ⎪++⎝⎭,由此就可求得122016111a a a +++L 的值. 【详解】因为111n n n a a a n a n +=++=++,所以11n n a a n +-=+,用累加法求数列{}n a 的通项得:()()1211n n n a a a a a a -=+-+⋯+-()1122n n n +=++⋯+=, 所以()1211211n a n n n n ⎛⎫==- ⎪++⎝⎭,于是1232016111111111212222320162017a a a a ⎛⎫⎛⎫⎛⎫ +++⋯+=-+-+⋯+-⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ 121201*********⎛⎫==- ⎪⎝⎭. 故选:B.【点睛】本题是一道考查数列的题目,掌握数列的递推关系以及求解前n 项和的方法是解答本题的关键,属于常考题.20.设数列{}n a 的前n 项和为n S 已知()*123n n a a n n N ++=+∈且1300n S =,若23a <,则n 的最大值为( )A .49B .50C .51D .52【答案】A【解析】【分析】对n 分奇偶性分别讨论,当n 为偶数时,可得2+32n n n S =,发现不存在这样的偶数能满足此式,当n 为奇数时,可得21+342n n n S a -=+,再结合23a <可讨论出n 的最大值. 【详解】当n 为偶数时,12341()()()n n n S a a a a a a -=++++⋅⋅⋅++(213)(233)[2(1)3]n =⨯++⨯++⋅⋅⋅+-+2[13(1)]32n n =⨯++⋅⋅⋅+-+⨯2+32n n =, 因为22485048+348503501224,132522S S ⨯+⨯====, 所以n 不可能为偶数;当n 为奇数时,123451()()()n n n S a a a a a a a -=+++++⋅⋅⋅++1(223)(243)[2(1)3]a n =+⨯++⨯++⋅⋅⋅+-+21342n n a +-=+ 因为2491149349412722S a a +⨯-=+=+, 2511151351413752S a a +⨯-=+=+, 又因为23a <,125a a +=,所以 12a >S 时,n的最大值为49所以当1300n故选:A【点睛】此题考查的是数列求和问题,利用了并项求和的方法,考查了分类讨论思想,属于较难题.。
高考文科数学数列专题复习题及答案
高考文科数学数列专题复习题及答案专题复习题可以很好地巩固学生对高考文科数学的知识储备。
下面是店铺为大家整理的高考文科数学数列专题复习题,希望对大家有所帮助!高考文科数学数列专题复习习题及答案:一、选择题1.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1等于 ( ).A.13B.-13C.19D.-19解析设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q4=9,所以a1=19.答案 C2.在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10等于( ).A.9B.10C.11D.12解析设等差数列{an}的公差为d,则有(a4+a5)-(a2+a3)=4d=2,所以d=12.又(a9+a10)-(a4+a5)=10d=5,所以a9+a10=(a4+a5)+5=11.答案 C3.在正项等比数列{an}中,3a1,12a3,2a2成等差数列,则a2013+a2014a2011+a2012等于 ( ).A.3或-1B.9或1C.1D.9解析依题意,有3a1+2a2=a3,即3a1+2a1q=a1q2,解得q=3,q=-1(舍去),a2013+a2014a2011+a2012=a1q2012+a1q2013a1q2010+a1q20 11=q2+q31+q=9.答案 D4.(2014•郑州模拟)在等比数列{an}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是 ( ).A.3B.-3C.±3D.±3解析依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=a4a8=3.答案 A5.(2014•济南模拟)在等差数列{an}中,a1=-2 014,其前n项和为Sn,若S1212-S1010=2,则S2 014的值等于 ( ).A.-2 011B.-2 012C.-2 014D.-2 013解析根据等差数列的性质,得数列Snn也是等差数列,根据已知可得这个数列的首项S11=a1=-2 014,公差d=1,故S2 0142 014=-2 014+(2 014-1)×1=-1,所以S2 014=-2 014.答案 C6.(2013•辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为 ( ).A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析设an=a1+(n-1)d=dn+a1-d,它是递增数列,所以p1为真命题;若an=3n-12,则满足已知,但nan=3n2-12n并非递增数列,所以p2为假命题;若an=n+1,则满足已知,但ann=1+1n是递减数列,所以p3为假命题;设an+3nd=4dn+a1-d,它是递增数列,所以p4为真命题.答案 D7.(2013•新课标全国Ⅰ卷)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于 ( ).A.3B.4C.5D.6解析由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+m(m-1)2d=0,故a1=-m-12,因为am+am+1=5,故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.答案 C高考文科数学数列专题复习习题及答案:二、填空题8.(2013•新课标全国Ⅰ卷)若数列{an}的前n项和为Sn=23an+13,则数列{an}的通项公式是an=________.解析当n=1时,a1=1;当n≥2时,an=Sn-Sn-1=23an-23an-1,所以anan-1=-2,∴{an}是以1为首项,-2为公比的等比数列,故an=(-2)n-1.答案(-2)n-19.(2013•北京卷)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________.解析由题意q=a3+a5a2+a4=2,又a2+a4=20,故a1q+a1q3=20,解得a1=2,所以Sn=2n+1-2.答案 2 2n+1-210.(2014•新课标全国Ⅱ卷)数列{an}满足an+1=11-an,a8=2,则a1=________.解析先求出数列的周期,再进一步求解首项,∵an+1=11-an,∴an+1=11-an=11-11-an-1=1-an-11-an-1-1=1-an-1-an-1=1-1an-1=1-111-an-2=1-(1-an-2)=an-2,∴周期T=(n+1)-(n-2)=3.∴a8=a3×2+2=a2=2.而a2=11-a1,∴a1=12.答案1211.设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=________.解析设公差为d,由a1,a3,a6成等比数列,可得(1+2d)2=1×(1+5d),解得d=14,所以Sn=n+n(n-1)2×14=18n2+78n.答案18n2+78n12.(2014•天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.解析根据等差数列的前n项和公式求出S1,S2,S4的表达式,然后利用等比数列的性质求解.等差数列{an}的前n项和为Sn=na1+n(n-1)2d,所以S1,S2,S4分别为a1,2a1-1,4a1-6.因为S1,S2,S4成等比数列,所以(2a1-1)2=a1•(4a1-6),解方程得a1=-12.答案-12高考文科数学数列专题复习习题及答案:三、解答题13.(2014•北京卷)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.解(1)设等差数列{an}的公差为d,由题意得d=a4-a13=12-33=3,所以an=a1+(n-1)d=3n(n=1,2,…).设等比数列{bn-an}的公比为q,由题意得q3=b4-a4b1-a1=20-124-3=8,解得q=2.所以bn-an=(b1-a1)qn-1=2n-1.从而bn=3n+2n-1(n=1,2,…).(2)由(1)知bn=3n+2n-1(n=1,2,…).数列{3n}的前n项和为32n(n+1),数列{2n-1}的前n项和为1-2n1-2=2n-1.所以,数列{bn}的前n项和为32n(n+1)+2n-1.14.(2013•浙江卷)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+…+|an|.解(1)由题意得5a3•a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d<0,由(1)得d=-1,an=-n+11.当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-12n2+212n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=12n2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=-12n2+212n,n≤11,12n2-212n+110,n≥12.15.(2014•杭州模拟)已知数列{an}是首项为133,公比为133的等比数列,设bn+15log3an=t,常数t∈N*.(1)求证:{bn}为等差数列;(2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.(1)证明an=3-n3,bn+1-bn=-15log3an+1an=5,∴{bn}是首项为b1=t+5,公差为5的等差数列.(2)解cn=(5n+t) •3-n3,则ck=(5k+t)•3-k3,令5k+t=x(x>0),则ck=x•3-k3,ck+1=(x+5)•3-k+13,ck+2=(x+10)•3-k+23.①若c2k=ck+1ck+2,则x•3-k32=(x+5)•3-k+13•(x+10)•3-k+23.化简得2x2-15x-50=0,解得x=10,x=-52(舍去);进而求得k=1,t=5;②若c2k+1=ckck+2,同理可得(x+5)2=x(x+10),显然无解;③若c2k+2=ckck+1,同理可得13(x+10)2=x(x+5),方程无整数根.综上所述,存在k=1,t=5适合题意.。
高考文科数学数列试题与解析
高三数学(文科)专题训练二数列1.已知数列a n n N是等比数列,且a n 0,a1 2@ 8.(1)求数列a n的通项公式;(2)求证:—a11 1 1 ,1;a2 a3 a n⑶设b n 2log2a n 1,求数列b n的前100项和•2.数列{a n}中,:a1 8 , a4 2,且满足a n 2 a. 1常数C(1) 求常数C和数列的通项公式;⑵设 T20 |印| ai L |a20| ,(3) T n |a i| |a2| L |a n|, n N3.已知数列a n = 2n, n为奇数;求S2n-1, n 为偶数;,' n4 .已知数列a n的相邻两项a n,a n 1是关于X的方程x2 2n x b n 0 (n N*)的两根,且a i 1 .(1)求证:数列a n 3 2n是等比数列;3(2) 求数列bn的前n项和S n.5. 某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少£,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1.4(1)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元,写出a n ,b n的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?7. 在等比数列{a n}(n € N*)中,已知a i > 1 , >0 .设b n=log 2a n,且b i + b 3 + b5=6 , b i b3b5=0 .(1) 求数列{a n }、{b n}的通项公式a n、b n ;(2) 若数列{b n}的前n项和为S n,试比较S n与a n的大小.8. 已知数列{a n}的前n项和为S n,且a n是S1与2的等差中项,数列{b n}中,b i=1 , 点P (b n, b n+i)在直线x-y+2=0 上。
文科数学高考真题分类汇编 数列的综合应用答案
(n
N )
.
11.【解析】证明:(1)因为 an 是等差数列,设其公差为 d ,则an = a1 + (n −1)d ,
从而,当n≥4 时, an−k + an+k = a1 + (n − k − 1)d + a1 + (n + k −1)d
= 2a1 + 2(n −1)d = 2an , k =1, 2,3, 所以 an −3 + an −2 +an −1+an+1 + an+2 +an +3 = 6an ,
若 q ≤ −1,则 a1 + a2 + a3 + a4 = a1(1+ q)(1+ q2)≤0 ,
而a1 + a2 + a3 ≥ a1 1 ,所以 ln(a1 + a2 + a3 ) 0 ,
与 ln(a1 + a2 + a3 ) = a1 + a2 + a3 + a4 ≤ 0 矛盾,
所以 −1 q 0 ,所以 a1 − a3 = a1(1−q2) 0 , a2 − a4 = a1q(1− q2) 0 ,
所以 xn
≥
1 2n−1
得
由
xn
xn+1 2
≥
2xn
+1
−
xn
得
1 − 1 ≥2( 1 − 1) 0
xn+1 2
xn 2
所以 1 − 1 ≥ 2( 1 − 1)≥≥ 2n−1 ( 1 − 1) = 2n−2
xn 2
xn−1 2
x1 2
专题09 数列-五年(2017-2021)高考数学真题分项详解(新高考地区专用)(解析版)
专题09 数列【2021年】一、【2021·浙江高考】已知数列{}n a满足)111,N n a a n *+==∈.记数列{}n a 的前n 项和为n S ,则( ) A.100332S << B. 10034S << C. 100942S <<D.100952S << 【答案】A 【解析】【分析】显然可知,10012S >,利用倒数法得到21111124n n a a +⎛⎫==+-⎪⎪⎭,再放缩可得12<,由累加法可得24(1)n a n ≥+,进而由1n a +=113n n a n a n ++≤+,然后利用累乘法求得6(1)(2)n a n n ≤++,最后根据裂项相消法即可得到1003S <,从而得解.【详解】因为)111,N n a a n *+==∈,所以0n a >,10012S >.由211111124n n n a a a ++⎛⎫=⇒==+-⎪⎪⎭2111122n a +⎛⎫∴<+⇒<+⎪⎪⎭12<11122n n -+≤+=,当且仅当1n =时取等号,12412(1)311n n n n a n a a a n n n ++∴≥∴=≤=++++ 113n n a n a n ++∴≤+, 由累乘法可得6(1)(2)n a n n ≤++,当且仅当1n =时取等号,由裂项求和法得: 所以10011111111116632334451011022102S ⎛⎫⎛⎫≤-+-+-++-=-< ⎪ ⎪⎝⎭⎝⎭,即100321S <<. 故选:A .24(1)n a n ≥+,由题目条件可知要证100S 小于某数,从而通过局部放缩得到1,n n a a +的不等关系,改变不等式的方向得到6(1)(2)n a n n ≤++,最后由裂项相消法求得1003S <.【2021·浙江高考】已知数列{}n a 的前n 项和为n S ,194a =-,且1439n n S S +=-. (1)求数列{}n a 的通项;(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意N n *∈恒成立,求实数λ的取值范围.【答案】(1)33()4nn a =-⋅;(2)31λ-≤≤. 【解析】【分析】(1)由1439n n S S +=-,结合n S 与n a 的关系,分1,2n n =≥讨论,得到数列{}n a 为等比数列,即可得出结论;(2)由3(4)0n n b n a +-=结合(1)的结论,利用错位相减法求出n T ,n n T b λ≤对任意N n *∈恒成立,分类讨论分离参数λ,转化为λ与关于n 的函数的范围关系,即可求解. 【详解】(1)当1n =时,1214()39a a a +=-,229272749,4416a a =-=-∴=-, 当2n ≥时,由1439n n S S +=-①, 得1439n n S S -=-②,①-②得143n n a a +=122730,0,164n n n a a a a +=-≠∴≠∴=, 又213,{}4n a a a =∴是首项为94-,公比为34的等比数列, 1933()3()444n n n a -∴=-⋅=-⋅;(2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-, 所以234333333210(4)44444nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯⨯++-⋅ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎝+⎭⎭,2413333333321(5)(4)444444nn n T n n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯-⨯-⨯++-⋅+-⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得234113333333(4)4444444n n n T n +⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-⨯++++--⋅ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭1193116493(4)34414n n n -+⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎛⎫⎣⎦=-+-- ⎪⎝⎭-111993334(4)44444n n n n n +++⎛⎫⎛⎫⎛⎫=-+---⋅=-⋅ ⎪⎪⎪⎝⎭⎝⎭⎝⎭,所以134()4n nT n +=-⋅, 由n n T b λ≤得1334()(4)()44n nn n λ+-⋅≤-⋅恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式恒成立;4n <时,312344n n n λ≤-=----,得1λ≤; 4n >时,312344n n n λ≥-=----,得3λ≥-; 所以31λ-≤≤.【点睛】易错点点睛:(1)已知n S 求n a 不要忽略1n =情况;(2)恒成立分离参数时,要注意变量的正负零讨论,如(2)中(4)30n n λ-+≥恒成立,要对40,40,40n n n -=->-<讨论,还要注意40n -<时,分离参数不等式要变号.二、【2021·江苏高考】某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折.规格为20dm ×12dm 的长方形纸,对折1次共可以得到10dm ×12dm ,20dm ×6dm 两种规格的图形,它们的面积之和S 1=240dm 2,对折2次共可以得到5dm ×12dm ,10dm ×6dm ,20dm ×3dm 三种规格的图形,它们的面积之和S 2=180dm 2,以此类推.则对折4次共可以得到不同规格图形的种数为______ ;如果对折n 次,那么∑S k n k=1= ______ dm 2.【答案】5 240(3−n+32n)【知识点】数列求和方法【解析】解:易知有20dm ×34dm,10dm ×32dm,5dm ×3dm,52dm ×6dm ,54dm ×12dm ,共5种规格; 由题可知,对折k 次共有k +1种规格,且面积为2402k ,故S k =240(k+1)2k,则∑S k n k=1=240∑k+12kn k=1,记T n =∑k+12kn k=1,则12T n =∑k+12k+1n k=1, ∴12T n =∑k+12k n k=1−∑k+12k+1n k=1=1+(∑k+22k+1n−1k=1−∑k+22k+1n k=1)−n+12n+1=1+14(1−12n−1)1−12−n+12n+1=32−n+32n+1,∴T n =3−n+32n,∴∑S k n k=1=240(3−n+32n). 故答案为:5;240(3−n+32n).依题意,对折k 次共有k +1种规格,且面积为2402k ,则S k =240(k+1)2k,∑S k n k=1=240∑k+12knk=1,然后再转化求解即可.本题考查数列的求和,考查数学知识在生活中的具体运用,考查运算求解能力及应用意识,属于中档题.【2021·江苏高考】已知数列{a n }满足a 1=1,a n+1={a n +1,n 为奇数,a n +2,n 为偶数.(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式; (2)求{a n }的前20项和.【答案】解:(1)因为a 1=1,a n+1={a n +1,n 为奇数a n +2,n 为偶数,所以a2=a1+1=2,a3=a2+2=4,a4=a3+1=5,所以b1=a2=2,b2=a4=5,b n−b n−1=a2n−a2n−2=a2n−a2n−1+a2n−1−a2n−2=1+2=3,所以数列{b n}是以b1=2为首项,以3为公差的等差数列,所以b n=2+3(n−1)=3n−1.(2)由(1)可得a2n=3n−1,n∈N∗,则a2n−1=a2n−2+2=3(n−1)−1+2=3n−2,n≥2,当n=1时,a1=1也适合上式,所以a2n−1=3n−2,n∈N∗,所以数列{a n}的奇数项和偶数项分别为等差数列,×3+则{a n}的前20项和为a1+a2+...+a20=(a1+a3+⋯+a19)+(a2+a4+⋯+a20)=10+10×92×3=300.10×2+10×92【知识点】数列的递推关系、数列求和方法【解析】(1)由数列{a n}的通项公式可求得a2,a4,从而可得求得b1,b2,由b n−b n−1=3可得数列{b n}是等差数列,从而可求得数列{b n}的通项公式;(2)由数列{a n}的通项公式可得数列{a n}的奇数项和偶数项分别为等差数列,求解即可.本题主要考查数列的递推式,数列的求和,考查运算求解能力,属于中档题.【2020年】一、【2020·北京高考】在等差数列{a n}中,a1=−9,a5=−1.记T n=a1a2…a n(n=1,2,…),则数列{T n}()A. 有最大项,有最小项B. 有最大项,无最小项C. 无最大项,有最小项D. 无最大项,无最小项【答案】B【知识点】等差数列的通项公式、等差数列的性质、数列的函数特征【解析】【分析】本题考查等差数列的通项公式,考查数列的函数特性,考查分析问题与解决问题的能力,是中档题.由已知求出等差数列的通项公式,分析可知数列{a n}是单调递增数列,且前5项为负值,自第6项开始为正值,进一步分析得答案. 【解答】解:设等差数列{a n }的首项为d ,由a 1=−9,a 5=−1,得d =a 5−a 15−1=−1−(−9)4=2,∴a n =−9+2(n −1)=2n −11. 由a n =2n −11=0,得n =112,而n ∈N ∗,可知数列{a n }是单调递增数列,且前5项为负值,自第6项开始为正值. 可知T 1=−9<0,T 2=63>0,T 3=−315<0,T 4=945>0为最大项, 自T 5起均小于0,且逐渐减小. ∴数列{T n }有最大项,无最小项. 故选:B .【2020·北京高考】已知{a n }是无穷数列.给出两个性质:①对于{a n }中任意两项a i ,a j (i >j),在{a n }中都存在一项a m ,使得 a i2a j =a m ;②对于{a n }中任意一项a n (n ≥3),在{a n }中都存在两项a k ,a l (k >l),使得a n =a k2a l.(Ⅰ)若a n =n(n =1,2,…),判断数列{a n }是否满足性质①,说明理由;(Ⅱ)若a n =2n−1(n =1,2,…),判断数列{a n }是否同时满足性质①和性质②,说明理由; (Ⅲ)若{a n }是递增数列,且同时满足性质①和性质②,证明:{a n }为等比数列. 【答案】解:(Ⅰ)不满足,理由:a 32a 2=92∉N ∗,不存在一项a m 使得a 32a 2=a m .(Ⅱ)数列{a n }同时满足性质①和性质②,理由:对于任意的i 和j ,满足a i 2a j=22i−j−1,因为i ∈N ∗,j ∈N ∗且i >j ,所以2i −j ∈N ∗,则必存在m =2i −j ,此时,2m−1∈{a i }且满足a i 2a j=22i−j−1=a m ,性质①成立,对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,满足n =2k −l 即可,因为k ∈N ∗,l ∈N ∗,且k >l ,所以2k −l 可表示所有正整数,所以必有一组k ,l 使n =2k −l ,即满足a n =a k2a l,性质②成立.(Ⅲ)首先,先证明数列恒正或恒负, 反证法:假设这个递增数列先负后正,那么必有一项a l 绝对值最小或者有a l 与a l+1同时取得绝对值最小, 如仅有一项a l 绝对值最小,此时必有一项a m =a l2a j,此时|a m |<|a l |与前提矛盾,如有两项a l 与a l+1 同时取得绝对值最小值,那么必有a m =a i 2a i+1,此时|a m |<|a l |,与前提条件矛盾, 所以数列必然恒正或恒负,在数列恒正的情况下,由②知,存在k ,l 使得a k 2a l=a 3,因为是递增数列,a 3>a k >a l ,即3>k >l ,所以a 22a 1=a 3,此时a 1,a 2,a 3成等比数列,数学归纳法:(1)已证n =3时,满足{a n }是等比数列,公比q =a2a 1,(2)假设n =k 时,也满足{a k }是等比数列,公比q =a2a 1,那么由①知a k 2a k−1=qa k 等于数列的某一项a m ,证明这一项为a k+1即可,反证法:假设这一项不是a k+1,因为是递增数列,所以该项a m =a l2a l−1=qa k >a k+1,那么a k <a k+1<qa k ,由等比数列{a k }得a 1q k−1<a k+1<a 1q k , 由性质②得a 1q k−1<a m2a l<a 1q k ,同时a k+1=a m2a l>a m >a l ,所以k +1>m >l ,所以a m ,a l 分别是等比数列{a k }中两项,即a m =a 1q m−1,a l =a 1q l−1, 原式变为a 1q k−1<a 1q 2m−l−1<a 1q k ,所以k −1<2m −l −1<k ,又因为k ∈N ∗,m ∈N ∗,l ∈N ∗,不存在这组解,所以矛盾, 所以知a k 2ak−1=qa k =a k+1,前{a k+1}为等比数列,由数学归纳法知,{a n }是等比数列得证, 同理,数列恒负,{a n }也是等比数列. 【知识点】等比数列的性质、数列的函数特征 【解析】(Ⅰ)由a 32a 2=92∉N ∗,即可知道不满足性质.(Ⅱ)对于任意的i 和j ,满足a i2a j=22i−j−1,⇒2i −j ∈N ∗,必存在m =2i −j ,可得满足性质①;对于任意的n ,欲满足a n =2n−1=a k2a l=22k−l−1,⇒n =2k −l 即可,必存在有一组k ,l 使使得它成立,故满足性质②.(Ⅲ)先用反证法证明数列必然恒正或恒负,再用数学归纳法证明{a n}也是等比数列,即可.本题属于新定义题,考查等比数列的性质,数学归纳法等,考查逻辑思维能力,属于难题.二、【2020·浙江高考】已知等差数列{a n}的前n项和S n,公差d≠0,a1d⩽1.记b1=S2,b n+1=S n+2−S2n,n∈N∗,下列等式不可能成立的是()A. 2a4=a2+a6B. 2b4=b2+b6C. a42=a2a8D. b42=b2b8【答案】B【知识点】等差数列的通项公式、数列的递推关系、等差数列的求和【解析】【分析】本题考查数列递推式,等差数列的通项公式与前n项和,考查转化思想和计算能力,是中档题.由已知利用等差数列的通项公式判断A与C;由数列递推式分别求得b2,b4,b6,b8,分析B,D成立时是否满足公差d≠0,a1d⩽1判断B与D.【解答】解:在等差数列{a n}中,a n=a1+(n−1)d,S n+2=(n+2)a1+(n+2)(n+1)2d,S2n=2na1+2n(2n−1)2d,b1=S2=2a1+d,b n+1=S n+2−S2n=(2−n)a1−3n2−5n−22d.∴b2=a1+2d,b4=−a1−5d,b6=−3a1−24d,b8=−5a1−55d.A.2a4=2(a1+3d)=2a1+6d,a2+a6=a1+d+a1+5d=2a1+6d,故A正确;B.2b4=−2a1−10d,b2+b6=a1+2d−3a1−24d=−2a1−22d,若2b4=b2+b6,则−2a1−10d=−2a1−22d,即d=0不合题意,故B错误;C.若a42=a2a8,则(a1+3d)2=(a1+d)(a1+7d),即a12+6a1d+9d2=a12+8a1d+7d2,得a1d=d2,∵d≠0,∴a1=d,符合a1d⩽1,故C正确;D.若b42=b2b8,则(−a1−5d)2=(a1+2d)(−5a1−55d),即2(a1d )2+25a1d+45=0,则a1d有两不等负根,满足a1d⩽1,故D正确.∴等式不可能成立的是B.故选:B.【2020·浙江高考】我国古代数学家杨辉、宋世杰等研究过高阶等差数列求和问题,如数列{n(n+1)2}就是二阶等差数列,数列{n(n+1)2},(n∈N∗)的前3项和______.【答案】10【知识点】数列的通项公式、数列的函数特征【解析】【分析】本题考查数列求和,数列通项公式的应用,是基本知识的考查.求出数列的前3项,然后求解即可.【解答】解:数列{a n}满足a n=n(n+1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.故答案为:10.【2020·浙江高考】已知数列{a n},{b n},{c n}满足a1=b1=c1=1,c n+1=a n+1−a n,c n+1=b nb n+2⋅c n(n∈N∗).(1)若{b n}为等比数列,公比q>0,且b1+b2=6b3,求q的值及数列{a n}的通项公式;(2)若{b n}为等差数列,公差d>0,证明:c1+c2+c3+⋯+c n<1+1d,n∈N∗.【答案】(1)解:由题意,b2=q,b3=q2,∵b1+b2=6b3,∴1+q=6q2,整理,得6q2−q−1=0,解得q=−13(舍去),或q=12,∴c n+1=b nb n+2⋅c n=1b n+2b n⋅c n=1q2⋅c n=1(12)2⋅c n=4⋅c n,∴数列{c n}是以1为首项,4为公比的等比数列,∴c n=1⋅4n−1=4n−1,n∈N∗.∴a n+1−a n=c n+1=4n,则a1=1,a2−a1=41,a3−a2=42,……a n−a n−1=4n−1,各项相加,可得a n=1+41+42+⋯+4n−1=1−4n1−4=4n−13.(2)证明:依题意,由c n+1=b nb n+2⋅c n(n∈N∗),可得b n+2⋅c n+1=b n⋅c n,两边同时乘以b n+1,可得b n+1b n+2c n+1=b n b n+1c n,∵b1b2c1=b2=1+d,∴数列{b n b n+1c n}是一个常数列,且此常数为1+d,b n b n+1c n=1+d,∴c n=1+db n b n+1=1+dd⋅db n b n+1=(1+1d)⋅b n+1−b nb n b n+1=(1+1d)(1b n−1b n+1),∴c1+c2+⋯+c n=(1+1d)(1b1−1b2)+(1+1d)(1b2−1b3)+⋯+(1+1d)(1b n−1b n+1) =(1+1d)(1b1−1b2+1b2−1b3+⋯+1b n−1b n+1)=(1+1d)(1b1−1b n+1)=(1+1d)(1−1b n+1)<1+1d,∴c1+c2+⋯+c n<1+1d,故得证.【知识点】数列的递推关系、数列求和方法、裂项相消法、等比数列的通项公式【解析】本题主要考查数列求通项公式,等差数列和等比数列的基本量的运算,以及和式不等式的证明问题.考查了转化与化归思想,整体思想,方程思想,累加法求通项公式,裂项相消法求和,放缩法证明不等式,以及逻辑推理能力和数学运算能力,属于综合题.(1)先根据等比数列的通项公式将b 2=q ,b 3=q 2代入b 1+b 2=6b 3,计算出公比q 的值,然后根据等比数列的定义化简c n+1=b nbn+2⋅c n 可得c n+1=4c n ,则可发现数列{c n }是以1为首项,4为公比的等比数列,从而可得数列{c n }的通项公式,然后将通项公式代入c n+1=a n+1−a n ,可得a n+1−a n =c n+1=4n ,再根据此递推公式的特点运用累加法可计算出数列{a n }的通项公式; (2)通过将已知关系式c n+1=b nbn+2⋅c n 不断进行转化可构造出数列{b n b n+1c n },且可得到数列{b n b n+1c n }是一个常数列,且此常数为1+d ,从而可得b n b n+1c n =1+d ,再计算得到c n =1+db n b n+1,根据等差数列的特点进行转化进行裂项,在求和时相消,最后运用放缩法即可证明不等式成立.三、【2020·天津高考】已知{a n }为等差数列,{b n }为等比数列,a 1=b 1=1,a 5=5(a 4−a 3),b 5=4(b 4−b 3). (Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)记{a n }的前n 项和为S n ,求证:S n S n+2<S n+12(n ∈N ∗);(Ⅲ)对任意的正整数n ,设c n ={(3a n −2)b na n a n+2,n 为奇数,a n−1bn+1,n 为偶数.求数列{c n }的前2n 项和.【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 由a 1=1,a 5=5(a 4−a 3),则1+4d =5d ,可得d =1, ∴a n =1+n −1=n , ∵b 1=1,b 5=4(b 4−b 3), ∴q 4=4(q 3−q 2), 解得q =2, ∴b n =2n−1; 证明(Ⅱ)由(Ⅰ)可得S n =n(n+1)2,∴S n S n+2=14n(n +1)(n +2)(n +3),(S n+1)2=14(n +1)2(n +2)2,∴S n S n+2−S n+12=−12(n +1)(n +2)<0, ∴S n S n+2<S n+12(n ∈N ∗);解:(Ⅲ),当n 为奇数时,c n =(3a n −2)b n a n a n+2=(3n−2)2n−1n(n+2)=2n+1n+2−2n−1n,当n 为偶数时,c n = a n−1b n+1=n−12n,对任意的正整数n ,有∑c 2k−1n k=1=∑(n k=122k 2k+1−22k−22k−1)=22n 2n+1−1,和∑c 2k n k=1=∑2k−14knk=1=14+342+543+⋯+2n−14n,①, 由①×14可得14∑c 2k n k=1=14+34+⋯+2n−34+2n−14,②,①−②得34∑c 2k n k=1=14+242+243+⋯+24 n −14--2n−14n+1, ∴∑c 2k n k=1=59−6n+59×4n ,因此∑c 2k 2n k=1=∑c 2k−1n k=1+∑c 2k n k=1=4n 2n+1−6n+59×4−49.数列{c n }的前2n 项和4n2n+1−6n+59×4n−49.【知识点】错位相减法、等差数列的通项公式、数列求和方法、等比数列的通项公式【解析】本题考查了等差数列等比数列的通项公式和求和公式,考查了不等式的大小比较,考查了数列求和的方法,考查了运算求解能力,转化与化归能力,分类与整合能力,属于难题. (Ⅰ)分别根据等差数列的通项公式和等比数列的通项公式即可求出; (Ⅱ)根据等差数列的求和公式和作差法即可比较大小,则可证明; (Ⅲ)分类讨论,再根据错位相减法即可求出前2n 项和.四、【2020·上海高考】计算:lim n→∞ n+13n−1=【答案】13【知识点】极限思想 【解析】 【分析】本题考查数列的极限的求法,注意运用极限的运算性质,考查运算能力,是一道基础题. 由极限的运算法则和重要数列的极限公式,可得所求值. 【解答】解:,故答案为:13.【2020·上海高考】已知数列{a n}是公差不为零的等差数列,且a1+a10=a9,则a1+a2+⋯+a9a10=.【答案】278【知识点】等差数列的通项公式、等差数列的求和【解析】【分析】本题考查等差数列的前n项和与等差数列通项公式的应用,注意分析a1与d的关系,属于基础题.根据等差数列的通项公式可由a1+a10=a9,得a1=−d,在利用等差数列前n项和公式化简a1+a2+⋯+a9a10即可得出结论.【解答】解:根据题意,等差数列{a n}满足a1+a10=a9,即a1+a1+9d=a1+8d,变形可得a1=−d,所以a1+a2+⋯+a9a10=9a1+9×8d2a1+9d=9a1+36da1+9d=−9d+36d−d+9d=278.故答案为:278.【2020·上海高考】已知数列{a n}为有限数列,满足|a1−a2|≤|a1−a3|≤⋯≤|a1−a m|,则称{a n}满足性质P.(1)判断数列3、2、5、1和4、3、2、5、1是否具有性质P,请说明理由;(2)若a1=1,公比为q的等比数列,项数为10,具有性质P,求q的取值范围;(3)若{a n}是1,2,3,…,m的一个排列(m≥4),{b n}符合b k=a k+1(k=1,2,…,m−1),{a n}、{b n}都具有性质P,求所有满足条件的数列{a n}.【答案】解:(1)对于数列3,2,5,1,有|2−3|=1,|5−3|=2,|1−3|=2,满足题意,该数列满足性质P;对于第二个数列4、3、2、5、1,|3−4|=1,|2−4|=2,|5−4|=1.不满足题意,该数列不满足性质P.(2)由题意:|a1−a1q n|≥|a1−a1q n−1|,可得:|q n−1|≥|q n−1−1|,n∈{2,3,…,9},两边平方可得:q2n−2q n+1≥q2n−2−2q n−1+1,整理可得:(q−1)q n−1[q n−1(q+1)−2]≥0,当q≥1时,得q n−1(q+1)−2≥0此时关于n恒成立,所以等价于n=2时,q(q+1)−2≥0,所以,(q+2)(q−1)≥0,所以q≤−2,或q≥1,所以取q≥1,当0<q≤1时,得q n−1(q+1)−2≤0,此时关于n恒成立,所以等价于n=2时,q(q+1)−2≤0,所以(q+2)(q−1)≤0,所以−2≤q≤1,所以取0<q≤1.当−1≤q<0时:q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,不恒成立;故当−1≤q<0时,矛盾,舍去.当q<−1时,得q n−1[q n−1(q+1)−2]≤0,当n为奇数时,得q n−1(q+1)−2≤0,恒成立,当n为偶数时,q n−1(q+1)−2≥0,恒成立;故等价于n=2时,q(q+1)−2≥0,所以(q+2)(q−1)≥0,所以q≤−2或q≥1,所以取q≤−2,综上.(3)设a1=p,p∈{3,4,…,m−3,m−2},因为a1=p,a2可以取p−1,或p+1,a3可以取p−2,或p+2,如果a2或a3取了p−3或p+3,将使{a n}不满足性质P;所以{a n}的前5项有以下组合:①a1=p,a2=p−1;a3=p+1;a4=p−2;a5=p+2;②a1=p,a2=p−1;a3=p+1;a4=p+2;a5=p−2;③a1=p,a2=p+1;a3=p−1;a4=p−2;a5=p+2;④a1=p,a2=p+1;a3=p−1;a4=p+2;a5=p−2;对于①,b1=p−1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;对于②,b1=p−1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=2与{b n}满足性质P矛盾,舍去;对于③,b1=p+1,|b2−b1|=2,|b3−b1|=3,|b4−b1|=1与{b n}满足性质P矛盾,舍去;对于④b1=p+1,|b2−b1|=2,|b3−b1|=1,与{b n}满足性质P矛盾,舍去;所以P∈{3,4,…,m−3,m−2},均不能同时使{a n}、{b n}都具有性质P.当p=1时,有数列{a n}:1,2,3,…,m−1,m满足题意.当p=m时,有数列{a n}:m,m−1,…,3,2,1满足题意.当p=2时,有数列{a n}:2,1,3,…,m−1,m满足题意.当p=m−1时,有数列{a n}:m−1,m,m−2,m−3,…,3,2,1满足题意.所以满足题意的数列{a n}只有以上四种.【知识点】等差数列与等比数列的综合应用、等比数列的通项公式【解析】本题考查数列的综合应用,不等式以及不等关系,二次函数的性质以及函数的相关性质的综合应用,考查分析问题解决问题的能力是难度大的题目,必须由高的数学思维逻辑修养才能解答.(1)根据定义,验证两个数列3、2、5、1和4、3、2、5、1是否具有性质P即可;(2)假设公比q的等比数列满足性质P,可得:|a1−a1q n|≥|a1−a1q n−1|,推出(q−1)q n−1[q n−1(q+1)−2]≥0,通过q≥1,0<q≤1时,−1≤q<0时:q<−1时,四种情况讨论求解即可.(3)设a1=p,分p=1时,当p=m时,当p=2时,当p=m−1时,以及P∈{3,4,…,m−3,m−2},五种情况讨论,判断数列{a n}的可能情况,分别推出{b n}判断是否满足性质P即可.【2019年】一、【2019·北京高考(理)】设等差数列{a n}的前n项和为S n,若a2=−3,S5=−10,则a5=(1),S n的最小值为(2).【答案】0 −10【知识点】等差数列的通项公式、数列的函数特征、等差数列的求和【解析】【分析】本题考查等差数列的性质,考查等差数列的前n项和的最小值的求法,属于基础题.利用等差数列{a n}的前n项和公式、通项公式列出方程组,能求出a1=−4,d=1,由此能求出a5的S n的最小值.【解答】解:设等差数列{a n}的前n项和为S n,a2=−3,S5=−10,∴{a1+d=−35a1+5×42d=−10,解得a1=−4,d=1,∴a5=a1+4d=−4+4×1=0,S n=na1+n(n−1)2d=−4n+n(n−1)2=12(n−92)2−818,∴n=4或n=5时,S n取最小值为S4=S5=−10.故答案为0,−10.【2019·北京高考(理)】已知数列{a n},从中选取第i1项、第i2项、…、第i m项(i1<i2<⋯<i m),若a i1<a i2<⋯<a im,则称新数列a i1,a i2,…,a im为{a n}的长度为m的递增子列.规定:数列{a n}的任意一项都是{a n}的长度为1的递增子列.(Ⅰ)写出数列1,8,3,7,5,6,9的一个长度为4的递增子列;(Ⅱ)已知数列{a n}的长度为p的递增子列的末项的最小值为a m0,长度为q的递增子列的末项的最小值为a n.若p<q,求证:a m0<a n;(Ⅲ)设无穷数列{a n}的各项均为正整数,且任意两项均不相等.若{a n}的长度为s的递增子列末项的最小值为2s−1,且长度为s末项为2s−1的递增子列恰有2s−1个(s=1,2,…),求数列{a n}的通项公式.【答案】解:(I)1,3,5,6.(II)证明:考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,∴a n0>该数列的第p项≥a m,∴a m0<a n.(III)解:考虑2s−1与2s这一组数在数列中的位置.若{a n}中有2s,2s在2s−1之后,则必然存在长度为s+1,且末项为2s的递增子列,这与长度为s的递增子列末项的最小值为2s−1矛盾,∴2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列.∵对于数列2n−1,2n,由于2n在2n−1之前,∴研究递增子列时,不可同时取2n与2n−1,∵对于1至2s的所有整数,研究长度为s+1的递增子列时,第1项是1与2二选1,第2项是3与4二选1,……,第s项是2s−1与2s二选1,故递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.∴2,1,4,3,6,5,……,是唯一构造.即a2k=2k−1,a2k−1=2k,k∈N∗.【知识点】数列的递推关系【解析】本题考查了数列递推关系、数列的单调性,考查了逻辑推理能力、分析问题与解决问题的能力,属于难题.(I)1,3,5,6.答案不唯一.(II)考虑长度为q的递增子列的前p项可以组成长度为p的一个递增子列,可得a n0>该数列的第p项≥a m,即可证明结论.(III)考虑2s−1与2s这一组数在数列中的位置,可得2s必在2s−1之前.继续考虑末项为2s+1的长度为s+1的递增子列,即可得出:递增子列最多有2s个.由题意,这s组数列对全部存在于原数列中,并且全在2s+1之前.可得2,1,4,3,6,5,……,是唯一构造.【2019·北京高考(文)】设{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)记{a n}的前n项和为S n,求S n的最小值.【答案】解:(Ⅰ)∵{a n}是等差数列,a1=−10,且a2+10,a3+8,a4+6成等比数列.∴(a3+8)2=(a2+10)(a4+6),∴(−2+2d)2=d(−4+3d),解得d=2,∴a n=a1+(n−1)d=−10+2n−2=2n−12.(Ⅱ)由a1=−10,d=2,得:S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,∴n=5或n=6时,S n取最小值−30.【知识点】等差数列的通项公式、等比数列的性质、等差数列的概念、等差数列的求和【解析】本题考查数列的通项公式、前n项和的最小值的求法,考查等差数列、等比数列的性质等基础知识,考查推理能力与计算能力,属于基础题.(Ⅰ)利用等差数列通项公式和等比数列的性质,列出方程求出d=2,由此能求出{a n}的通项公式;(Ⅱ)由a1=−10,d=2,得S n=−10n+n(n−1)2×2=n2−11n=(n−112)2−1214,由此能求出S n的最小值.二、【2019·浙江高考】设a,b∈R,数列{a n}满足a1=a,a n+1=a n2+b,n∈N∗,则()A. 当b=12时,a10>10 B. 当b=14时,a10>10C. 当时,a10>10D. 当时,a10>10【答案】A【知识点】数列的递推关系、数列的函数特征【解析】【分析】本题考查命题真假的判断,考查数列的性质等基础知识,考查化归与转化思想,考查推理论证能力,属于难题.逐项检验,可得结果.【解答】解:对于B,令λ2−λ+14=0,得λ=12,取a1=12,∴a2=12,…,a n=12<10,∴当b =14时,a 10<10,故B 错误;对于C ,令λ2−λ−2=0,得λ=2或λ=−1, 取a 1=2,∴a 2=2,…,a n =2<10, ∴当b =−2时,a 10<10,故C 错误; 对于D ,令λ2−λ−4=0,得λ=1±√172, 取a 1=1+√172,∴a 2=1+√172,…,a n =1+√172<10,∴当b =−4时,a 10<10,故D 错误;对于A ,a 2=a 2+12≥12,a 3=(a 2+12)2+12≥34, a 4=(a 4+a 2+34)2+12≥916+12=1716>1, a n+1−a n >0,{a n }递增, 当n ≥4时,a n+1a n=a n +12a n>1+12=32,∴{ a 5a 4>32a 6a 5>32⋅⋅⋅a 10a 9>32,∴a 10a 4>(32)6,∴a 10>72964>10.故A 正确. 故选:A .【2019·浙江高考】设等差数列{a n }的前n 项和为S n ,a 3=4,a 4=S 3.数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列. (Ⅰ)求数列{a n },{b n }的通项公式;(Ⅱ)记c n =√an2b n,n ∈N ∗,证明:c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【答案】解:(Ⅰ)设数列{a n }的公差为d , 由题意得{a 1+2d =4a 1+3d =3a 1+3d ,解得a 1=0,d =2, ∴a n =2n −2,n ∈N ∗. ∴S n =n 2−n ,n ∈N ∗,∵数列{b n }满足:对每个n ∈N ∗,S n +b n ,S n+1+b n ,S n+2+b n 成等比数列.∴(S n+1+b n )2=(S n +b n )(S n+2+b n ),解得b n =1d (S n+12−S n S n+2), 解得b n =n 2+n ,n ∈N ∗.证明:(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗, 用数学归纳法证明:①当n =1时,c 1=0<2,不等式成立;②假设n =k ,(k ∈N ∗)时不等式成立,即c 1+c 2+⋯+c k <2√k , 则当n =k +1时,c 1+c 2+⋯+c k +c k+1<2√k +√k (k +1)(k +2)<2√k +√1k +1<2√k +√k+1+√k=2√k +2(√k +1−√k)=2√k +1,即n =k +1时,不等式也成立.由①②得c 1+c 2+⋯+c n <2√n ,n ∈N ∗.【知识点】等差数列的通项公式、运用数学归纳法证明、数列的综合应用【解析】(Ⅰ)利用等差数列通项公式和前n 项和公式列出方程组,求出a 1=0,d =2,从而a n =2n −2,n ∈N ∗.S n =n 2−n ,n ∈N ∗,利用(S n+1+b n )2=(S n +b n )(S n+2+b n ),能求出b n .(Ⅱ)c n =√a n2b n=√2n−22n(n+1)=√n−1n(n+1),n ∈N ∗,用数学归纳法证明,得到c 1+c 2+⋯+c n <2√n ,n ∈N ∗.本题考查等差数列、等比数列、数列求和、数学归纳法等基础知识,考查运算求解能力和综合应用能力.三、 【2019·天津高考(理)】设{a n }是等差数列,{b n }是等比数列.已知a 1=4,b 1=6,b 2=2a 2−2,b 3=2a 3+4.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k,其中k ∈N ∗. (i)求数列{a2n(c2n−1)}的通项公式;(ii)求∑a i 2ni=1c i (n ∈N ∗).【答案】解:(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q , 依题意有:{6q =6+2d 6q 2=12+4d,解得{d =3q =2, ∴a n =4+(n −1)×3=3n +1,b n =6×2n−1=3×2n .(Ⅱ)(i)∵数列{c n }满足c 1=1,c n ={1,2k <n <2k+1,b k ,n =2k ,其中k ∈N ∗. ∴a 2n (c 2n−1)=a 2n (b n −1)=(3×2n +1)(3×2n −1)=9×4n −1, ∴数列{a 2n (c 2n −1)}的通项公式为:a2n (c 2n −1)=9×4n −1. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i ni=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1) =(3×22n−1+5×2n−1)+9×4(1−4n )1−4−n =27×22n−1+5×2n−1−n −12.(n ∈N ∗).【知识点】等差数列的通项公式、分组转化求和法、等比数列的求和、等比数列的通项公式、等差数列的求和【解析】本题考查等差数列、等比数列通项公式及前n 项和等基础知识,考查化归与转化思想和数列求和的基本方法以及运算求解能力.(Ⅰ)设等差数列{a n }的公差为d ,等比数列{b n }的公比为q ,利用等差数列、等比数列的通项公式列出方程组,能求出{a n }和{b n }的通项公式.(Ⅱ)(i)由a2n (c 2n −1)=a 2n (b n −1),能求出数列{a 2n (c 2n −1))}的通项公式. (ii)∑a i 2n i=1c i =∑[2n i=1a i +a i (c i −1)]=∑a i 2n i=1+∑a 2i n i=1(c 2i −1)=(2n ×4+2n (2n −1)2×3)+∑(n i=19×4i −1),由此能求出结果.【2019·天津高考(文)】设{a n }是等差数列,{b n }是等比数列,公比大于0.已知a 1=b 1=3,b 2=a 3,b 3=4a 2+3.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{c n }满足c n ={1,n 为奇数,b n 2,n 为偶数.求a 1c 1+a 2c 2+⋯+a 2n c 2n (n ∈N ∗).【答案】解:(Ⅰ){a n }是等差数列,{b n }是等比数列,公比大于0,设等差数列{a n}的公差为d,等比数列{b n}的公比为q,q>0,由题意可得:3q=3+2d①,3q2=15+4d②,解得:d=3,q=3,故a n=3+3(n−1)=3n,b=3×3n−1=3n,(Ⅱ)数列{c n}满足a1c1+a2c2+⋯+a2n c2n(n∈N∗)=(a1+a3+a5+⋯+a2n−1)+(a2b1+a4b2+a6b3+⋯+a2n b n)=[3n+n(n−1)2×6]+(6×3+12×32+18×33+⋯+6n×3n)=3n2+6(1×3+2×32+⋯+n×3n)令T n=(1×3+2×32+⋯+n×3n)①,则3T n=1×32+2×33+⋯+n3n+1②,②−①得:2T n=−3−32−33…−3n+n3n+1=−3×1−3n1−3+n3n+1=(2n−1)3n+1+32,故a1c1+a2c2+⋯+a2n c2n=3n2+6T n=(2n−1)3n+2+6n2+92(n∈N∗).【知识点】错位相减法、分组转化求和法、数列的递推关系【解析】本题主要考查等差等比数列通项公式和前n项和的求解,考查数列求和的基本方法分组和错位相减法的运算求解能力,属中档题.(Ⅰ)由等差等比数列通项公式和前n项和的求解{a n}和{b n}的通项公式即可.(Ⅱ)利用分组求和和错位相减法得答案.四、【2019·上海高考】已知数列{a n},a1=3,前n项和为S n.(1)若{a n}为等差数列,且a4=15,求S n;(2)若{a n}为等比数列,且limn→+∞S n<12,求公比q的取值范围.【答案】解:(1)设公差为d∵a4=a1+3d=3+3d=15,∴d=4,∴S n =3n +n(n−1)2×4=2n 2+n ;(2)设公比为q ,当q =1时,S n =3n ,显然不满足lim n→∞S n <12,故q ≠1, ∴S n =3(1−q n )1−q ,∵lim n→+∞S n 存在,∴−1<q <1,且q ≠0, ∴lim n→+∞S n =lim n→+∞3(1−q n )1−q=31−q , ∴31−q <12,∴q <34,∴−1<q <0或0<q <34, ∴公比q 的取值范围为(−1,0)∪(0,34).【知识点】等比数列的求和、极限思想、等差数列的求和【解析】本题考查了等差数列和等比数列的前n 项和及等差数列的通项公式,考查了极限的定义,考查了推理能力与计算能力,属于中档题.(1)求出公差即可求S n ;(2)当q =1时,显然不合题意,由lim n→+∞S n 存在得−1<q <1且q ≠0,由lim n→+∞S n <12得q <34,取交集可得公比q 的取值范围.【2019·上海高考】已知等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}.(1)若a 1=0,d =2π3,求集合S ; (2)若a 1=π2,求d 使得集合S 恰好有两个元素;(3)若集合S 恰好有三个元素:b n+T =b n ,T 是不超过7的正整数,求T 的所有可能的值.【答案】解:(1)∵等差数列{a n }的公差d ∈(0,π],数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}. ∴当a 1=0,d =2π3, 集合S ={−√32,0,√32}. (2)∵a 1=π2,数列{b n }满足b n =sin(a n ),集合S ={x|x =b n ,n ∈N ∗}恰好有两个元素,如图:根据三角函数线,①等差数列{a n }的终边落在y 轴的正负半轴上时,集合S 恰好有两个元素,此时d =π, ②a 1终边落在OA 上,要使得集合S 恰好有两个元素,可以使a 2,a 3的终边关于y 轴对称,如图OB ,OC ,此时d =2π3, 综上,d =23π或者d =π.(3)①当T =1时,b n+1=b n ,数列{b n }为常数列,S 仅有1个元素,显然不符合条件;②当T =2时,b n+2=b n ,,数列{b n }的周期为2,S 中有2个元素,显然不符合条件;③当T =3时,b n+3=b n ,集合S ={b 1,b 2,b 3},(1)情况满足,符合题意.④当T =4时,b n+4=b n ,sin(a n +4d)=sina n ,a n +4d =a n +2kπ,k ∈Z ,或者a n +4d =π+2kπ−a n ,k ∈Z ,当时,集合S ={−1,0,1},符合条件.⑤当T =5时,b n+5=b n ,sin(a n +5d)=sina n ,a n +5d =a n +2kπ,k ∈Z ,或者a n +5d =π+2kπ−a n ,k ∈Z ,因为d ∈(0,π],取,,集合S ={sin π10,1,−sin 3π10}满足题意.⑥当T =6时,b n+6=b n ,sin(a n +6d)=sina n ,所以a n+6d=a n+2kπ,k∈Z,或者a n+6d=π+2kπ−a n,k∈Z,d∈(0,π],取a1=0,,S={−√32,0,√32},满足题意.⑦当T=7时,b n+7=b n,sin(a n+7d)=sina n,所以a n+7d=a n+2kπ,k∈Z,或者a n+7d=π+2kπ−a n,k∈Z,d∈(0,π],故取,k=1,2,3,当k=1时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,,d=2πm−n =2π7,m−n=7,m>7,不符合条件.当k=2时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π,d=2πm−n =4π7,m−n不是整数,不符合条件.当k=3时,如果b1~b7对应着3个正弦值,故必有一个正弦值对应着3个点,必然存在1≤n<m≤7,有a m−a n=2π或者4π,d=2πm−n =6π7,或者d=4πm−n=6π7,此时,m−n均不是整数,不符合题意.综上,T=3,4,5,6.【知识点】数列综合、集合中元素的性质、正弦、余弦函数的图象与性质【解析】本题考查等差数列的相关知识、集合元素的性质以及三角函数的周期性,是一道综合题.(1)根据等差数列及三角函数周期性求解;(2)由集合S的元素个数,结合题意进而可求得答案;(3)分别令T=1,2,3,4,5,6,7进行验证,判断T的可能取值.【2018年】一、【2018·北京高考(理)】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为( )A. √23fB. √223fC. √2512fD. √2712f【答案】D 【知识点】等比数列的应用【解析】【分析】本题考查等比数列的应用,考查计算能力,属于基础题.根据题意,进行求解即可.【解答】解:由题意,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于√212.若第一个单音的频率为f ,则第八个单音的频率为:(√212)7⋅f =√2712f .故选:D .【2018·北京高考(理)】设{a n }是等差数列,且a 1=3,a 2+a 5=36,则{a n }的通项公式为______.【答案】a n =6n −3【知识点】等差数列的通项公式【解析】【分析】本题考查等差数列的通项公式,属于基础题.列出方程组,求出d ,由此能求出{a n }的通项公式.【解答】解:设数列{a n }的公差为d ,∵{a n }是等差数列,且a 1=3,a 2+a 5=36,∴{a 1=3a 1+d +a 1+4d =36, 解得a 1=3,d =6,∴a n =a 1+(n −1)d =3+(n −1)×6=6n −3.∴{a n }的通项公式为a n =6n −3.故答案为a n =6n −3.【2018·北京高考(文)】设{a n}是等差数列,且a1=ln2,a2+a3=5ln2.(Ⅰ)求{a n}的通项公式;(Ⅱ)求e a1+e a2+⋯+e a n.【答案】解:(Ⅰ){a n}是等差数列,且a1=ln2,a2+a3=5ln2.可得:2a1+3d=5ln2,可得d=ln2,{a n}的通项公式;a n=a1+(n−1)d=nln2,(Ⅱ)e a n=e ln2n=2n,∴e a1+e a2+⋯+e a n=21+22+23+⋯+2n=2(1−2n)=2n+1−2.1−2【知识点】等差数列的通项公式、等比数列的求和【解析】本题考查等差数列以及等比数列的应用,数列的通项公式以及数列求和,考查计算能力.(Ⅰ)求{a n}的通项公式;(Ⅱ)化简数列的通项公式,利用等比数列求和公式求解即可.二、【2018·浙江高考】已知a1,a2,a3,a4成等比数列,且若a1>1,则()A. a1<a3,a2<a4B. a1>a3,a2<a4C. a1<a3,a2>a4D. a1>a3,a2>a4【答案】B【知识点】等比数列的性质、对数与对数运算、对数函数及其性质、分类讨论思想【解析】【分析】本题考查等比数列的性质的应用,函数的值的判断,对数函数的性质,考查分类讨论思想,难度比较大.利用等比数列的性质以及对数函数的单调性,通过数列的公比的讨论分析判断即可.【解答】解:a1,a2,a3,a4成等比数列,由等比数列的性质可知,奇数项符号相同,偶数项符号相同,a1>1,设公比为q,当q>0时,有a1+a2+a3+a4>a1+a2+a3,所以a1+a2+a3+a4=ln(a1+a2+a3)不成立;当q=−1时,a1+a2+a3+a4=0,ln(a1+a2+a3)=ln(a1)>0,等式不成立,所以q≠−1;当q<−1时,a1+a2+a3+a4<0,ln(a1+a2+a3)>0,a1+a2+a3+a4=ln(a1+a2+a3)不成立;所以q ∈(−1,0),此时有a 1>a 3>0,a 2<a 4<0,并且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3),能够成立, 故选B .【2018·浙江高考】已知等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项 .数列{b n }满足b 1=1,数列{(b n+1−b n )a n }的前n 项和为2n 2+n .(Ⅰ)求q 的值;(Ⅱ)求数列{b n }的通项公式.【答案】解:(1)等比数列{a n }的公比q >1,且a 3+a 4+a 5=28,a 4+2是a 3,a 5的等差中项,可得2a 4+4=a 3+a 5=28−a 4,解得a 4=8,由8q +8+8q =28,可得q =2或q =12(舍去),则q 的值为2;(2)由q =2及a 3+a 4+a 5=28可得a 1(q 2+q 3+q 4)=28,解得a 1=1,故a n =1×2n−1=2n−1,设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,可得n =1时,c 1=2+1=3,n ≥2时,可得c n =2n 2+n −2(n −1)2−(n −1)=4n −1,上式对n =1也成立,则(b n+1−b n )a n =4n −1,即有b n+1−b n =(4n −1)⋅(12)n−1,可得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1)=1+3×(12)0+7×12+⋯+(4n −5)⋅(12)n−2,12b n=12+3×12+7×(12)2+⋯+(4n −5)⋅(12)n−1, 相减可得12b n =72+4[12+(12)2+⋯+(12)n−2]−(4n −5)⋅(12)n−1=72+4⋅12(1−12n−2)1−12−(4n −5)⋅(12)n−1,化简可得b n =15−(4n +3)⋅(12)n−2.【知识点】等差数列与等比数列的综合应用【解析】本题考查等比数列的通项公式、前n 项和公式及等差数列的性质、错位相减法的运用,考查运算能力,属于中档题.(1)运用等比数列的通项公式和等差数列中项性质,解方程可得公比q ;(2)设c n =(b n+1−b n )a n =(b n+1−b n )2n−1,运用数列的递推式可得c n =4n −1,再由数列的恒等式求得b n =b 1+(b 2−b 1)+(b 3−b 2)+⋯+(b n −b n−1),运用错位相减法,可得所求数列的通项公式.三、【2018·天津高考(理)】设{a n }是等比数列,公比大于0,其前n 项和为S n (n ∈N ∗),{b n }是等差数列.已知a 1=1,a 3=a 2+2,a 4=b 3+b 5,a 5=b 4+2b 6.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设数列{S n }的前n 项和为T n (n ∈N ∗),(i)求T n ;(ii)证明∑(T k +b k+2)b k (k+1)(k+2)n k=1=2n+2n+2−2(n ∈N ∗).【答案】(Ⅰ)解:设等比数列{a n }的公比为q ,由a 1=1,a 3=a 2+2,可得q 2−q −2=0.∵q >0,可得q =2.故a n =2n−1.设等差数列{b n }的公差为d ,由a 4=b 3+b 5,得b 1+3d =4,由a 5=b 4+2b 6,得3b 1+13d =16,∴b 1=d =1.故b n =n ;(Ⅱ)(i)解:由(Ⅰ),可得S n =1−2n 1−2=2n −1,故T n =∑(n k=12k −1)=∑2k n k=1−n =2×(1−2n )1−2−n =2n+1−n −2;(ii)证明:∵(T k +b k+2)b k (k+1)(k+2)=(2k+1−k−2+k+2)k (k+1)(k+2) =k⋅2k+1(k+1)(k+2)=2k+2k+2−2k+1k+1. ∴∑(T k +b k+2)b k (k +1)(k +2)n k=1=(233−222)+(244−233)+⋯+(2n+2n +2−2n+1n +1) =2n+2n+2−2.【知识点】等差数列与等比数列的综合应用、裂项相消法。
历年高考全国1卷文科数学真题分类汇编-数列含答案
历年高考新课标I 卷试题分类汇编(文)一数列1、(2010年第17题)设等差数列{q }满足4 =5,%。
=一9.(II )求{4}的前,项和S”及使得S 〃最大的序号〃的值。
「+2,/=5 9解:(1)由 am=aI+(.n-1) d 及 ai=5, aw=-9 得 i 4]+9d=_9 解得 t d=—2数列{am }的通项公式为a n =ll-2n o ... 6分(2)由(1)知 Sm=nai+———-d=10n-n 2因为 Sm=-(n-5)2+25. 所以n=5时,Sm 取得最大值。
……12分2、(20H 年第17题)已知等比数列{〃}中,6 =1,公比q = L.1 — </(I ) S 〃为{%}的前〃项和,证明:s n =——2(II ) h n = log 3 67, + log 3 «2 + .. - + log 3 ,求数列2 的通项公式。
(I )证明:因为q=L, q = L 所以数列{祗}的通项式为3 331(1-—)故 s.=T 1—3z IT x. 7J f , 八 八 c 、 n(n + l) .. , 〃(〃 + l) (II ) 解:b n = log 3+ log 3 a 2 + ... + log 3a n =一(1 + 2 + 3+—・ + 〃)=- --- 故a=-- -------- 223、(2012年第12题)数列{6}满足q*+(—l )〃氏=2〃 —1,则{«,}的前60项和为(D ) A. 3690 B. 3660 C. 1845 D. 18304、(2012年第14题)等比数列伯力的前n 项和为数,若S3+3Sz=0,则公比q= -2 ・5、(2013年第6题)设首项为1,公比为错误!未找到引用源。
的等比数列{〃〃}的前〃项和为S 〃,则(D )(A) S n = 2a n — 1 (B) S n = 3(0-2 (C) S 〃=4-3。
高考数学压轴专题新备战高考《数列》全集汇编及答案解析
【高中数学】数学《数列》高考知识点(1)一、选择题1.已知数列{}n a 的前n 项和为212343n S n n =++(*N n ∈),则下列结论正确的是( )A .数列{}n a 是等差数列B .数列{}n a 是递增数列C .1a ,5a ,9a 成等差数列D .63S S -,96S S -,129S S -成等差数列【答案】D 【解析】 【分析】由2*123()43n S n n n N =++∈,2n …时,1n n n a S S -=-.1n =时,11a S =.进而判断出正误. 【详解】解:由2*123()43n S n n n N =++∈,2n ∴…时,2211212153[(1)(1)3]4343212n n n a S S n n n n n -=-=++--+-+=+.1n =时,114712a S ==,1n =时,15212n a n =+,不成立.∴数列{}n a 不是等差数列.21a a <,因此数列{}n a 不是单调递增数列.5191547154322(5)(9)021*******a a a --=⨯⨯+--⨯+=-≠,因此1a ,5a ,9a 不成等差数列.631535(456)32124S S -=⨯+++⨯=.961553(789)32124S S -=⨯+++⨯=.1291571(101112)32124S S -=⨯+++⨯=.Q53235710444⨯--=, 63S S ∴-,96S S -,129S S -成等差数列.故选:D . 【点睛】本题考查了等差数列的通项公式与求和公式、数列递推关系,考查了推理能力与计算能力,属于中档题.2.数列{}n a 的通项公式为()n a n c n N*=-∈.则“2c <”是“{}na 为递增数列”的( )A .必要而不充分B .充要C .充分而不必要D .即不充分也不必要【答案】A 【解析】 【分析】根据递增数列的特点可知10n n a a +->,解得12c n <+,由此得到若{}n a 是递增数列,则32c <,根据推出关系可确定结果. 【详解】 若“{}n a 是递增数列”,则110n n a a n c n c +-=+--->, 即()()221n c n c +->-,化简得:12c n <+, 又n *∈N ,1322n ∴+≥,32c ∴<, 则2c <¿{}n a 是递增数列,{}n a 是递增数列2c ⇒<,∴“2c <”是“{}n a 为递增数列”的必要不充分条件.故选:A . 【点睛】本题考查充分条件与必要条件的判断,涉及到根据数列的单调性求解参数范围,属于基础题.3.若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足2131n n A n B n -=+,则371159a a ab b +++的值为( )A .3944B .58C .1516D .1322【答案】C 【解析】 【分析】利用等差中项的性质将371159a a ab b +++化简为7732a b ,再利用数列求和公式求解即可. 【详解】11337117131135971313()3333213115213()22223131162a a a a a a Ab b b b b B +++⨯-==⨯=⨯=⨯=++⨯+,【点睛】本题考查了等差中项以及数列求和公式的性质运用,考查了推理能力与计算能力,属于中档题.4.已知数列22333311313571351,,,,,,,...,,,, (2222222222)nn n ,则该数列第2019项是( ) A .1019892 B .1020192 C .1119892 D .1120192 【答案】C 【解析】 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11212m -, 所以第12个括号里的第995项是1119892. 故选:C. 【点睛】本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.5.定义“穿杨二元函数”如:(,)248n C a n a a a a =++++L 144424443个.例如:()3,436122445C =+++=.若a Z +∃∈,满足(),C a n n =,则整数n 的值为( )A .0B .1C .0或1D .不存在满足条件的n【答案】B 【解析】 【分析】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--,然后根据(),C a n n =结合条件分析得出答案.【详解】由(,)248n C a n a a a a =++++L 144424443个,得()()12,2112nn C a n a a -=⨯=--由(),C a n n =,可得()21na n -=.当0n =时,对任意a Z +∈都满足条件. 当0n ≠时, 21nna =-,由a Z +∈,当1n =时,1a =满足条件. 当2n ≥且n Z ∈时,设()21x f x x =--,则()2ln 21xf x '=-在2x ≥上单调递增.所以()()24ln 210f x f ''>=->,所以()f x 在2x ≥上单调递增. 所以()()24120f x f >=-->,即当2n ≥且n Z ∈时,恒有21n n ->.则()0,121nna =∈-这与a Z +∈不符合.所以此时不满足条件. 综上:满足条件的n 值为0或1.故选:B 【点睛】本题考查新定义,根据定义解决问题,关键是理解定义,属于中档题.6.设等差数列{}n a 的前n 项和为n S ,若150S >,160S <,则n S 取最大值时n 的值为( ) A .6 B .7C .8D .13【答案】C 【解析】 【分析】根据题意推导出数列{}n a 为单调递减数列,且当8n ≤时,0n a >,当9n ≥时,0n a <,由此可得出结果. 【详解】()115158151502a a S a +==>Q ,()()116168916802a a S a a +==+<,80a ∴>,90a <,所以,等差数列{}n a 的公差980d a a =-<,则数列{}n a 为单调递减数列. 当8n ≤时,0n a >,当9n ≥时,0n a <, 因此,当8n =时,n S 取最大值. 故选:C. 【点睛】本题考查利用等差数列前n 项和的最值求对应的n 的值,主要分析出数列的单调性,考查分析问题和解决问题的能力,属于中等题.7.设等比数列{}n a 的前n 项和为n S ,若105:1:2S S =,则155:S S 为( ) A .3∶4 B .4∶3 C .1∶2 D .2∶1【答案】A 【解析】 【分析】根据在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =,1534S x =,从而得到155:S S 的值. 【详解】解:在等比数列中,每5项的和仍然成等比数列,设5S x =,则由条件可得1012S x =, 1051122S S x x x ∴-=-=-,151014S S x ∴-=,15113244S x x x ∴=+=, 故155334:4xS S x ==, 故选:A . 【点睛】本题考查等比数列的性质,解题的关键是熟练掌握等比数列的性质k S ,2k k S S -,32k k S S -,成公比为k q 的等比数列,属于中档题.8.已知等比数列{}n a 满足13a =,13521a a a ++=,则357a a a ++=( ) A .21 B .42 C .63 D .84【答案】B 【解析】由a 1+a 3+a 5=21得242421(1)21172a q q q q q ++=∴++=∴=∴ a 3+a 5+a 7=2135()22142q a a a ++=⨯=,选B.9.已知数列{}n a 满足:()()2*112,10n n n a a S S n +=+-=∈N ,其中n S 为数列{}n a 的前n 项和.设()()()12111()1n S S S f n n +++=+L ,若对任意的n 均有(1)()f n kf n +<成立,则k 的最小整数值为( ) A .2B .3C .4D .5【答案】A 【解析】 【分析】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111n n S S +-=--,得出 11n S ⎧⎫⎨⎬-⎩⎭是首项、公差均为1的等差数列,从而求出n S 【详解】当1n ≥时,有条件可得()211n n n nS S S S +--=-,从而111n n nS S S +--=,故111111111n n n n n S S S S S +-=-=----,又1111121S ==--,11n S ⎧⎫∴⎨⎬-⎩⎭是首项、公差均为1的等差数列,11n n S ∴=-,1n n S n +=,由()()()12111()1n S S S f n n +++=+L , 得()1(1)1(1)23152,2()2223n n S f n n f n n n n +++++⎡⎫===-∈⎪⎢+++⎣⎭, 依题意知(1)()f n k f n +>, min 2k ∴=.故选:A 【点睛】本题考查数列的综合应用.属于中等题.10.在古希腊,毕达哥拉斯学派把1,3,6,10,15,21,28,36,45,…这些数叫做三角形数.设第n 个三角形数为n a ,则下面结论错误的是( ) A .1(1)n n a a n n --=> B .20210a =C .1024是三角形数D .123111121n n a a a a n +++⋯+=+ 【答案】C 【解析】 【分析】对每一个选项逐一分析得解. 【详解】∵212a a -=,323a a -=,434a a -=,…,由此可归纳得1(1)n n a a n n --=>,故A 正确;将前面的所有项累加可得1(1)(2)(1)22n n n n n a a -++=+=,∴20210a =,故B 正确; 令(1)10242n n +=,此方程没有正整数解,故C 错误; 1211111111212231n a a a n n ⎡⎤⎛⎫⎛⎫⎛⎫+++=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦L L 122111n n n ⎛⎫=-= ⎪++⎝⎭,故D 正确. 故选C 【点睛】本题主要考查累加法求通项,考查裂项相消法求和,意在考查学生对这些知识的理解掌握水平和分析推理能力.11.在数列{}n a 中,1112,1n na a a +=-=-,则2016a 的值为A .-2B .13 C .12 D .32【答案】B 【解析】由111n na a +=-,得2111111111n n n na a a a ++=-=-=--. 所以32111111n n n na a a a ++=-=-=-. 即数列{}n a 以3为周期的周期数列. 所以2016311113a a a ===-. 故选B.点睛:数列的递推关系是给出数列的一种方法,根据给出的初始值和递推关系可以依次写出这个数列的各项,由递推关系求数列的通项公式,常用的方法有:①求出数列的前几项,再归纳猜想出数列的一个通项公式;②将已知递推关系式整理、变形,变成等差、等比数列,或用累加法、累乘法、迭代法求通项,本题是通过迭代得到了数列的周期性.12.在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,则17S 的值是( ) A .41 B .51C .61D .68【答案】B 【解析】 【分析】由韦达定理得3156a a +=,由等差数列的性质得117315a a a a +=+,再根据等差数列的前n 项和公式求17S . 【详解】在等差数列{}n a 中,3a ,15a 是方程2650x x -+=的根,3156a a ∴+=.()()11731517171717651222a a a a S ++⨯∴====. 故选:B . 【点睛】本题考查等差数列的性质和前n 项和公式,属于基础题.13.已知等差数列{}n a 的公差0d ≠,且1313,,a a a 成等比数列,若11a =,n S 为数列{}n a 的前n 项和,则263n n S a ++的最小值为( )A .4B .3C.2D .2【答案】D 【解析】 【分析】由题意得2(12)112d d +=+,求出公差d 的值,得到数列{}n a 的通项公式,前n 项和,从而可得263n n S a ++,换元,利用基本不等式,即可求出函数的最小值.【详解】解:11a =Q ,1a 、3a 、13a 成等比数列,2(12)112d d ∴+=+. 得2d =或0d =(舍去),21n a n ∴=-,2(121)2n n n S n +-∴==, ∴()()22211426263322112n n n n S n n a n n n ++++++===+-+++. 令1t n =+,则2642223n n S t a t +=+-≥=+ 当且仅当2t =,即1n =时,∴263n n S a ++的最小值为2.故选:D .本题主要考查等比数列的定义和性质,等比数列的通项公式,考查基本不等式,属于中档题.14.在递减等差数列{}n a 中,21324a a a =-.若113a =,则数列11{}n n a a +的前n 项和的最大值为 ( ) A .24143B .1143C .2413D .613【答案】D 【解析】设公差为,0d d < ,所以由21324a a a =-,113a =,得213(132)(13)42d d d +=+-⇒=- (正舍),即132(1)152n a n n =--=- ,因为111111()(152)(132)2215213n n a a n n n n +==----- ,所以数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和等于1111116()()213213213261313n --≤--=-⨯- ,选D. 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.15.在等比数列{}n a 中,已知259,243a a ==,那么{}n a 的前4项和为( ). A .81 B .120C .121D .192【答案】B 【解析】 【分析】根据352a q a =求出公比,利用等比数列的前n 项和公式即可求出. 【详解】Q35227a q a ==, ∴ 3q =∴ 4414(1)3(13)120113a q S q --===--.故选:B本题主要考查了等比数列的通项公式,等比数列的前n 项和,属于中档题.16.等比数列{n a }的前n 项和为n S ,若103010,30,S S ==则20S = A .10 B .20 C .20或-10 D .-20或10【答案】B 【解析】 【分析】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列即(S 20﹣S 10)2=S 10•(S 30﹣S 20),代入可求. 【详解】由等比数列的性质可得,S 10,S 20﹣S 10,S 30﹣S 20成等比数列,且公比为10q∴(S 20﹣S 10)2=S 10•(S 30﹣S 20)即()()22020101030S S -=- 解20S =20或-10(舍去) 故选B . 【点睛】本题主要考查了等比数列的性质(若S n 为等比数列的前n 项和,且S k ,S 2k ﹣S k ,S 3k ﹣S 2k 不为0,则其成等比数列)的应用,注意隐含条件的运用17.已知等比数列{}n a 的前n 项和为n S ,若1220a a +=,334S =,且2n a S a ≤≤+,则实数a 的取值范围是( ) A .[]1,0- B .11,2⎡⎤-⎢⎥⎣⎦C .1,12⎡⎤⎢⎥⎣⎦D .[]0,1【答案】B 【解析】 【分析】先求得等比数列的首项和公比,得到n S ,分析数列的单调性得到n S 的最值,从而列不等式求解即可. 【详解】由1220,a a += 334S =,得11211,,1232nn a q S ⎡⎤⎛⎫==-=--⎢⎥ ⎪⎝⎭⎢⎥⎣⎦,当1n =时,n S 取最大值1,当2n =时,n S 取最小值12, 所以1221a a ⎧≤⎪⎨⎪+≥⎩,112a -≤≤,故选B.【点睛】本题主要考查了等比数列的单调性,结合首项和公比即可判断,属于中档题.18.已知数列{}n a 的首项112,9n n a a a +==+,则27a =( ) A .7268 B .5068C .6398D .4028【答案】C 【解析】 【分析】由19n n a a +=+得2123)n a ++=,所以构造数列为等差数列,算出22(31)n a n +=-,求出27a . 【详解】易知0n a >,因为19n n a a +=+,所以2123)n a ++=,3,是以3为公差,以2为首项的等差数列.231,2(31)n n a n =-+=-,即2278026398a =-=. 故选 :C 【点睛】本题主要考查由递推公式求解通项公式,等差数列的通项公式,考查了学生的运算求解能力.19.{}n a 为等差数列,公差为d ,且01d <<,5()2k a k Z π≠∈,223557sin 2sin cos sin a a a a +⋅=,函数()sin(4)(0)f x d wx d w =+>在20,3π⎛⎫⎪⎝⎭上单调且存在020,3x π⎛⎫∈ ⎪⎝⎭,使得()f x 关于0(,0)x 对称,则w 的取值范围是( ) A .20,3⎛⎤ ⎥⎝⎦B .30,2⎛⎤ ⎥⎝⎦C .24,33⎛⎤⎥⎝⎦D .33,42⎛⎤ ⎥⎝⎦【答案】D 【解析】 【分析】推导出sin4d =1,由此能求出d ,可得函数解析式,利用在203x π⎛⎫∈ ⎪⎝⎭,上单调且存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,,即可得出结论. 【详解】∵{a n }为等差数列,公差为d ,且0<d <1,a 52k π≠(k ∈Z ), sin 2a 3+2sin a 5•cos a 5=sin 2a 7, ∴2sin a 5cos a 5=sin 2a 7﹣sin 2a 3=2sin 372a a +cos 732a a -•2cos 372a a +sin 732a a -=2sin a 5cos2d •2cos a 5sin2d , ∴sin4d =1,∴d 8π=.∴f (x )8π=cosωx ,∵在203x π⎛⎫∈ ⎪⎝⎭,上单调 ∴23ππω≥, ∴ω32≤; 又存在()()0020203x f x f x x π⎛⎫∈+-= ⎪⎝⎭,,, 所以f (x )在(0,23π)上存在零点, 即223ππω<,得到ω34>. 故答案为 33,42⎛⎤⎥⎝⎦故选D 【点睛】本题考查等差数列的公差的求法,考查三角函数的图象与性质,准确求解数列的公差是本题关键,考查推理能力,是中档题.20.《九章算术·均输》中有如下问题:“今有五人分十钱,令上二人所得与下三人等,问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分10钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列,问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) A .43钱 B .73钱 C .83钱D .103钱 【答案】C 【解析】 【分析】依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,由题意求得a =﹣6d,结合a﹣2d+a﹣d+a+a+d+a+2d=5a=10求得a=2,则答案可求.【详解】解:依题意设甲、乙、丙、丁、戊所得钱分别为a﹣2d,a﹣d,a,a+d,a+2d,则由题意可知,a﹣2d+a﹣d=a+a+d+a+2d,即a=﹣6d,又a﹣2d+a﹣d+a+a+d+a+2d=5a=10,∴a=2,则a﹣2d=a48 333aa+==.故选:C.【点睛】本题考查等差数列的通项公式,考查实际应用,正确设出等差数列是计算关键,是基础的计算题.。
2024年高考真题汇总 数列(解析版)
专题数列一、单选题1(全国甲卷数学(文))等差数列a n 的前n 项和为S n ,若S 9=1,a 3+a 7=()A.-2B.73C.1D.29【答案】D【分析】可以根据等差数列的基本量,即将题目条件全转化成a 1和d 来处理,亦可用等差数列的性质进行处理,或者特殊值法处理.【详解】方法一:利用等差数列的基本量由S 9=1,根据等差数列的求和公式,S 9=9a 1+9×82d =1⇔9a 1+36d =1,又a 3+a 7=a 1+2d +a 1+6d =2a 1+8d =29(9a 1+36d )=29.故选:D 方法二:利用等差数列的性质根据等差数列的性质,a 1+a 9=a 3+a 7,由S 9=1,根据等差数列的求和公式,S 9=9(a 1+a 9)2=9(a 3+a 7)2=1,故a 3+a 7=29.故选:D 方法三:特殊值法不妨取等差数列公差d =0,则S 9=1=9a 1⇒a 1=19,则a 3+a 7=2a 1=29.故选:D2(全国甲卷数学(理))等差数列a n 的前n 项和为S n ,若S 5=S 10,a 5=1,则a 1=()A.-2B.73C.1D.2【答案】B【分析】由S 5=S 10结合等差中项的性质可得a 8=0,即可计算出公差,即可得a 1的值.【详解】由S 10-S 5=a 6+a 7+a 8+a 9+a 10=5a 8=0,则a 8=0,则等差数列a n 的公差d =a 8-a 53=-13,故a 1=a 5-4d =1-4×-13 =73.故选:B .3(新高考北京卷)记水的质量为d =S -1ln n,并且d 越大,水质量越好.若S 不变,且d 1=2.1,d 2=2.2,则n 1与n 2的关系为()A.n 1<n 2B.n 1>n 2C.若S <1,则n 1<n 2;若S >1,则n 1>n 2;D.若S <1,则n 1>n 2;若S >1,则n 1<n 2;【答案】C2024年高考真题【分析】根据题意分析可得n 1=eS -12.1n 2=eS -12.2,讨论S 与1的大小关系,结合指数函数单调性分析判断.【详解】由题意可得d 1=S -1ln n 1=2.1d 2=S -1ln n 2=2.2 ,解得n 1=e S -12.1n 2=e S -12.2,若S >1,则S -12.1>S -12.2,可得e S -12.1>e S -12.2,即n 1>n 2;若S =1,则S -12.1=S -12.2=0,可得n 1=n 2=1;若S <1,则S -12.1<S -12.2,可得e S -1 2.1<e S -12.2,即n 1<n 2;结合选项可知C 正确,ABD 错误;故选:C .二、填空题4(新课标全国Ⅱ卷)记S n 为等差数列{a n }的前n 项和,若a 3+a 4=7,3a 2+a 5=5,则S 10=.【答案】95【分析】利用等差数列通项公式得到方程组,解出a 1,d ,再利用等差数列的求和公式节即可得到答案.【详解】因为数列a n 为等差数列,则由题意得a 1+2d +a 1+3d =73a 1+d +a 1+4d =5,解得a 1=-4d =3 ,则S 10=10a 1+10×92d =10×-4 +45×3=95.故答案为:95.5(新高考上海卷)无穷等比数列a n 满足首项a 1>0,q >1,记I n =x -y x ,y ∈a 1,a 2 ∪a n ,a n +1 ,若对任意正整数n 集合I n 是闭区间,则q 的取值范围是.【答案】q ≥2【分析】当n ≥2时,不妨设x ≥y ,则x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,结合I n 为闭区间可得q -2≥-1q n -2对任意的n ≥2恒成立,故可求q 的取值范围.【详解】由题设有a n =a 1q n -1,因为a 1>0,q >1,故a n +1>a n ,故a n ,a n +1 =a 1q n -1,a 1q n ,当n =1时,x ,y ∈a 1,a 2 ,故x -y ∈a 1-a 2,a 2-a 1 ,此时I 1为闭区间,当n ≥2时,不妨设x ≥y ,若x ,y ∈a 1,a 2 ,则x -y ∈0,a 2-a 1 ,若y ∈a 1,a 2 ,x ∈a n ,a n +1 ,则x -y ∈a n -a 2,a n +1-a 1 ,若x ,y ∈a n ,a n +1 ,则x -y ∈0,a n +1-a n ,综上,x -y ∈0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n ,又I n 为闭区间等价于0,a 2-a 1 ∪a n -a 2,a n +1-a 1 ∪0,a n +1-a n 为闭区间,而a n +1-a 1>a n +1-a n >a 2-a 1,故a n +1-a n ≥a n -a 2对任意n ≥2恒成立,故a n +1-2a n +a 2≥0即a 1q n -1q -2 +a 2≥0,故q n -2q -2 +1≥0,故q -2≥-1qn -2对任意的n ≥2恒成立,因q >1,故当n →+∞时,-1q n -2→0,故q -2≥0即q ≥2.故答案为:q ≥2.【点睛】思路点睛:与等比数列性质有关的不等式恒成立,可利用基本量法把恒成立为转为关于与公比有关的不等式恒成立,必要时可利用参变分离来处理.三、解答题6(新课标全国Ⅰ卷)设m 为正整数,数列a 1,a 2,...,a 4m +2是公差不为0的等差数列,若从中删去两项a i 和a j i <j 后剩余的4m 项可被平均分为m 组,且每组的4个数都能构成等差数列,则称数列a 1,a 2,...,a 4m +2是i ,j -可分数列.(1)写出所有的i ,j ,1≤i <j ≤6,使数列a 1,a 2,...,a 6是i ,j -可分数列;(2)当m ≥3时,证明:数列a 1,a 2,...,a 4m +2是2,13 -可分数列;(3)从1,2,...,4m +2中一次任取两个数i 和j i <j ,记数列a 1,a 2,...,a 4m +2是i ,j -可分数列的概率为P m ,证明:P m >18.【答案】(1)1,2 ,1,6 ,5,6 (2)证明见解析(3)证明见解析【分析】(1)直接根据i ,j -可分数列的定义即可;(2)根据i ,j -可分数列的定义即可验证结论;(3)证明使得原数列是i ,j -可分数列的i ,j 至少有m +1 2-m 个,再使用概率的定义.【详解】(1)首先,我们设数列a 1,a 2,...,a 4m +2的公差为d ,则d ≠0.由于一个数列同时加上一个数或者乘以一个非零数后是等差数列,当且仅当该数列是等差数列,故我们可以对该数列进行适当的变形a k =a k -a 1d+1k =1,2,...,4m +2 ,得到新数列a k =k k =1,2,...,4m +2 ,然后对a 1,a 2,...,a 4m +2进行相应的讨论即可.换言之,我们可以不妨设a k =k k =1,2,...,4m +2 ,此后的讨论均建立在该假设下进行.回到原题,第1小问相当于从1,2,3,4,5,6中取出两个数i 和j i <j ,使得剩下四个数是等差数列.那么剩下四个数只可能是1,2,3,4,或2,3,4,5,或3,4,5,6.所以所有可能的i ,j 就是1,2 ,1,6 ,5,6 .(2)由于从数列1,2,...,4m +2中取出2和13后,剩余的4m 个数可以分为以下两个部分,共m 组,使得每组成等差数列:①1,4,7,10 ,3,6,9,12 ,5,8,11,14 ,共3组;②15,16,17,18 ,19,20,21,22 ,...,4m -1,4m ,4m +1,4m +2 ,共m -3组.(如果m -3=0,则忽略②)故数列1,2,...,4m +2是2,13 -可分数列.(3)定义集合A =4k +1 k =0,1,2,...,m =1,5,9,13,...,4m +1 ,B =4k +2 k =0,1,2,...,m =2,6,10,14,...,4m +2 .下面证明,对1≤i <j ≤4m +2,如果下面两个命题同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列:命题1:i ∈A ,j ∈B 或i ∈B ,j ∈A ;命题2:j -i ≠3.我们分两种情况证明这个结论.第一种情况:如果i ∈A ,j ∈B ,且j -i ≠3.此时设i =4k 1+1,j =4k 2+2,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+1<4k 2+2,即k 2-k 1>-14,故k 2≥k 1.此时,由于从数列1,2,...,4m +2中取出i =4k 1+1和j =4k 2+2后,剩余的4m 个数可以分为以下三个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+2,4k 1+3,4k 1+4,4k 1+5 ,4k 1+6,4k 1+7,4k 1+8,4k 1+9 ,...,4k 2-2,4k 2-1,4k 2,4k 2+1 ,共k 2-k 1组;③4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)故此时数列1,2,...,4m +2是i ,j -可分数列.第二种情况:如果i ∈B ,j ∈A ,且j -i ≠3.此时设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m .则由i <j 可知4k 1+2<4k 2+1,即k 2-k 1>14,故k 2>k 1.由于j -i ≠3,故4k 2+1 -4k 1+2 ≠3,从而k 2-k 1≠1,这就意味着k 2-k 1≥2.此时,由于从数列1,2,...,4m +2中取出i =4k 1+2和j =4k 2+1后,剩余的4m 个数可以分为以下四个部分,共m 组,使得每组成等差数列:①1,2,3,4 ,5,6,7,8 ,...,4k 1-3,4k 1-2,4k 1-1,4k 1 ,共k 1组;②4k 1+1,3k 1+k 2+1,2k 1+2k 2+1,k 1+3k 2+1 ,3k 1+k 2+2,2k 1+2k 2+2,k 1+3k 2+2,4k 2+2 ,共2组;③全体4k 1+p ,3k 1+k 2+p ,2k 1+2k 2+p ,k 1+3k 2+p ,其中p =3,4,...,k 2-k 1,共k 2-k 1-2组;④4k 2+3,4k 2+4,4k 2+5,4k 2+6 ,4k 2+7,4k 2+8,4k 2+9,4k 2+10 ,...,4m -1,4m ,4m +1,4m +2 ,共m -k 2组.(如果某一部分的组数为0,则忽略之)这里对②和③进行一下解释:将③中的每一组作为一个横排,排成一个包含k 2-k 1-2个行,4个列的数表以后,4个列分别是下面这些数:4k 1+3,4k 1+4,...,3k 1+k 2 ,3k 1+k 2+3,3k 1+k 2+4,...,2k 1+2k 2 ,2k 1+2k 2+3,2k 1+2k 2+3,...,k 1+3k 2 ,k 1+3k 2+3,k 1+3k 2+4,...,4k 2 .可以看出每列都是连续的若干个整数,它们再取并以后,将取遍4k 1+1,4k 1+2,...,4k 2+2 中除开五个集合4k 1+1,4k 1+2 ,3k 1+k 2+1,3k 1+k 2+2 ,2k 1+2k 2+1,2k 1+2k 2+2 ,k 1+3k 2+1,k 1+3k 2+2 ,4k 2+1,4k 2+2 中的十个元素以外的所有数.而这十个数中,除开已经去掉的4k 1+2和4k 2+1以外,剩余的八个数恰好就是②中出现的八个数.这就说明我们给出的分组方式满足要求,故此时数列1,2,...,4m +2是i ,j -可分数列.至此,我们证明了:对1≤i <j ≤4m +2,如果前述命题1和命题2同时成立,则数列1,2,...,4m +2一定是i ,j -可分数列.然后我们来考虑这样的i ,j 的个数.首先,由于A ∩B =∅,A 和B 各有m +1个元素,故满足命题1的i ,j 总共有m +1 2个;而如果j -i =3,假设i ∈A ,j ∈B ,则可设i =4k 1+1,j =4k 2+2,代入得4k 2+2 -4k 1+1 =3.但这导致k 2-k 1=12,矛盾,所以i ∈B ,j ∈A .设i =4k 1+2,j =4k 2+1,k 1,k 2∈0,1,2,...,m ,则4k 2+1 -4k 1+2 =3,即k 2-k 1=1.所以可能的k 1,k 2 恰好就是0,1 ,1,2 ,...,m -1,m ,对应的i ,j 分别是2,5 ,6,9 ,...,4m -2,4m +1 ,总共m 个.所以这m +1 2个满足命题1的i ,j 中,不满足命题2的恰好有m 个.这就得到同时满足命题1和命题2的i ,j 的个数为m +1 2-m .当我们从1,2,...,4m+2中一次任取两个数i和j i<j时,总的选取方式的个数等于4m+24m+12=2m+14m+1.而根据之前的结论,使得数列a1,a2,...,a4m+2是i,j-可分数列的i,j至少有m+12-m个.所以数列a1,a2,...,a4m+2是i,j-可分数列的概率P m一定满足P m≥m+12-m2m+14m+1=m2+m+12m+14m+1>m2+m+142m+14m+2=m+12222m+12m+1=18.这就证明了结论.【点睛】关键点点睛:本题的关键在于对新定义数列的理解,只有理解了定义,方可使用定义验证或探究结论.7(新课标全国Ⅱ卷)已知双曲线C:x2-y2=m m>0,点P15,4在C上,k为常数,0<k<1.按照如下方式依次构造点P n n=2,3,...,过P n-1作斜率为k的直线与C的左支交于点Q n-1,令P n为Q n-1关于y轴的对称点,记P n的坐标为x n,y n.(1)若k=12,求x2,y2;(2)证明:数列x n-y n是公比为1+k1-k的等比数列;(3)设S n为△P n P n+1P n+2的面积,证明:对任意的正整数n,S n=S n+1.【答案】(1)x2=3,y2=0(2)证明见解析(3)证明见解析【分析】(1)直接根据题目中的构造方式计算出P2的坐标即可;(2)根据等比数列的定义即可验证结论;(3)思路一:使用平面向量数量积和等比数列工具,证明S n的取值为与n无关的定值即可.思路二:使用等差数列工具,证明S n的取值为与n无关的定值即可.【详解】(1)由已知有m=52-42=9,故C的方程为x2-y2=9.当k=12时,过P15,4且斜率为12的直线为y=x+32,与x2-y2=9联立得到x2-x+322=9.解得x=-3或x=5,所以该直线与C的不同于P1的交点为Q1-3,0,该点显然在C的左支上.故P23,0,从而x2=3,y2=0.(2)由于过P n x n,y n且斜率为k的直线为y=k x-x n+y n,与x2-y2=9联立,得到方程x2-k x-x n+y n2=9.展开即得1-k2x2-2k y n-kx nx-y n-kx n2-9=0,由于P n x n,y n已经是直线y=k x-x n+y n和x2 -y2=9的公共点,故方程必有一根x=x n.从而根据韦达定理,另一根x =2k y n -kx n 1-k 2-x n =2ky n -x n -k 2x n1-k 2,相应的y =k x -x n +y n =y n +k 2y n -2kx n1-k 2.所以该直线与C 的不同于P n 的交点为Q n 2ky n -x n -k 2x n 1-k 2,y n +k 2y n -2kx n1-k 2,而注意到Q n 的横坐标亦可通过韦达定理表示为-y n -kx n 2-91-k 2x n,故Q n 一定在C 的左支上.所以P n +1x n +k 2x n -2ky n 1-k 2,y n +k 2y n -2kx n1-k 2.这就得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2.所以x n +1-y n +1=x n +k 2x n -2ky n 1-k 2-y n +k 2y n -2kx n1-k 2=x n +k 2x n +2kx n 1-k 2-y n +k 2y n +2ky n 1-k 2=1+k 2+2k 1-k2x n -y n =1+k1-k x n -y n .再由x 21-y 21=9,就知道x 1-y 1≠0,所以数列x n -y n 是公比为1+k 1-k 的等比数列.(3)方法一:先证明一个结论:对平面上三个点U ,V ,W ,若UV =a ,b ,UW=c ,d ,则S △UVW =12ad -bc .(若U ,V ,W 在同一条直线上,约定S △UVW =0)证明:S △UVW =12UV⋅UW sin UV ,UW =12UV ⋅UW 1-cos 2UV ,UW=12UV ⋅UW 1-UV ⋅UW UV ⋅UW2=12UV 2⋅UW 2-UV ⋅UW 2=12a 2+b 2 c 2+d 2 -ac +bd 2=12a 2c 2+a 2d 2+b 2c 2+b 2d 2-a 2c 2-b 2d 2-2abcd =12a 2d 2+b 2c 2-2abcd =12ad -bc 2=12ad -bc .证毕,回到原题.由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k2x n +y n =1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n-121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n=921-k 1+k m -1+k 1-k m.而又有P n +1P n =-x n +1-x n ,-y n +1-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 ,故利用前面已经证明的结论即得S n =S △P n P n +1P n +2=12-x n +1-x n y n +2-y n +1 +y n +1-y n x n +2-x n +1=12x n +1-x n y n +2-y n +1 -y n +1-y n x n +2-x n +1=12x n +1y n +2-y n +1x n +2 +x n y n +1-y n x n +1 -x n y n +2-y n x n +2=12921-k 1+k -1+k 1-k +921-k 1+k -1+k 1-k -921-k 1+k 2-1+k 1-k 2 .这就表明S n 的取值是与n 无关的定值,所以S n =S n +1.方法二:由于上一小问已经得到x n +1=x n +k 2x n -2ky n 1-k 2,y n +1=y n +k 2y n -2kx n1-k 2,故x n +1+y n +1=x n +k 2x n -2ky n 1-k 2+y n +k 2y n -2kx n 1-k 2=1+k 2-2k 1-k 2x n +y n=1-k1+k x n +y n .再由x 21-y 21=9,就知道x 1+y 1≠0,所以数列x n +y n 是公比为1-k 1+k的等比数列.所以对任意的正整数m ,都有x n y n +m -y n x n +m=12x n x n +m -y n y n +m +x n y n +m -y n x n +m -12x n x n +m -y n y n +m -x n y n +m -y n x n +m =12x n -y n x n +m +y n +m -12x n +y n x n +m -y n +m =121-k 1+k m x n -y n x n +y n -121+k 1-k m x n +y n x n -y n =121-k 1+k m -1+k 1-k m x 2n -y 2n =921-k 1+k m -1+k 1-k m.这就得到x n +2y n +3-y n +2x n +3=921-k 1+k -1+k1-k =x n y n +1-y n x n +1,以及x n +1y n +3-y n +1x n +3=921-k 1+k 2-1+k 1-k 2=x n y n +2-y n x n +2.两式相减,即得x n +2y n +3-y n +2x n +3 -x n +1y n +3-y n +1x n +3 =x n y n +1-y n x n +1 -x n y n +2-y n x n +2 .移项得到x n +2y n +3-y n x n +2-x n +1y n +3+y n x n +1=y n +2x n +3-x n y n +2-y n +1x n +3+x n y n +1.故y n +3-y n x n +2-x n +1 =y n +2-y n +1 x n +3-x n .而P n P n +3 =x n +3-x n ,y n +3-y n ,P n +1P n +2 =x n +2-x n +1,y n +2-y n +1 .所以P n P n +3 和P n +1P n +2平行,这就得到S △P n P n +1P n +2=S △P n +1P n +2P n +3,即S n =S n +1.【点睛】关键点点睛:本题的关键在于将解析几何和数列知识的结合,需要综合运用多方面知识方可得解.8(全国甲卷数学(文))已知等比数列a n 的前n 项和为S n ,且2S n =3a n +1-3.(1)求a n 的通项公式;(2)求数列S n 的通项公式.【答案】(1)a n =53n -1(2)3253 n -32【分析】(1)利用退位法可求公比,再求出首项后可求通项;(2)利用等比数列的求和公式可求S n .【详解】(1)因为2S n =3a n +1-3,故2S n -1=3a n -3,所以2a n =3a n +1-3a n n ≥2 即5a n =3a n +1故等比数列的公比为q =53,故2a 1=3a 2-3=3a 1×53-3=5a 1-3,故a 1=1,故a n =53n -1.(2)由等比数列求和公式得S n =1×1-53 n1-53=3253 n -32.9(全国甲卷数学(理))记S n 为数列a n 的前n 项和,且4S n =3a n +4.(1)求a n 的通项公式;(2)设b n =(-1)n -1na n ,求数列b n 的前n 项和为T n .【答案】(1)a n =4⋅(-3)n -1(2)T n =(2n -1)⋅3n +1【分析】(1)利用退位法可求a n 的通项公式.(2)利用错位相减法可求T n .【详解】(1)当n =1时,4S 1=4a 1=3a 1+4,解得a 1=4.当n ≥2时,4S n -1=3a n -1+4,所以4S n -4S n -1=4a n =3a n -3a n -1即a n =-3a n -1,而a 1=4≠0,故a n ≠0,故an a n -1=-3,∴数列a n 是以4为首项,-3为公比的等比数列,所以a n =4⋅-3 n -1.(2)b n =(-1)n -1⋅n ⋅4⋅(-3)n -1=4n ⋅3n -1,所以T n =b 1+b 2+b 3+⋯+b n =4⋅30+8⋅31+12⋅32+⋯+4n ⋅3n -1故3T n =4⋅31+8⋅32+12⋅33+⋯+4n ⋅3n所以-2T n =4+4⋅31+4⋅32+⋯+4⋅3n -1-4n ⋅3n=4+4⋅31-3n -11-3-4n ⋅3n =4+2⋅3⋅3n -1-1 -4n ⋅3n=(2-4n )⋅3n -2,∴T n =(2n -1)⋅3n +1.10(新高考北京卷)设集合M =i ,j ,s ,t i ∈1,2 ,j ∈3,4 ,s ∈5,6 ,t ∈7,8 ,2i +j +s +t .对于给定有穷数列A :a n 1≤n ≤8 ,及序列Ω:ω1,ω2,...,ωs ,ωk =i k ,j k ,s k ,t k ∈M ,定义变换T :将数列A 的第i 1,j 1,s 1,t 1项加1,得到数列T 1A ;将数列T 1A 的第i 2,j 2,s 2,t 2列加1,得到数列T 2T 1A ⋯;重复上述操作,得到数列T s ...T 2T 1A ,记为ΩA .(1)给定数列A :1,3,2,4,6,3,1,9和序列Ω:1,3,5,7 ,2,4,6,8 ,1,3,5,7 ,写出ΩA ;(2)是否存在序列Ω,使得ΩA 为a 1+2,a 2+6,a 3+4,a 4+2,a 5+8,a 6+2,a 7+4,a 8+4,若存在,写出一个符合条件的Ω;若不存在,请说明理由;(3)若数列A 的各项均为正整数,且a 1+a 3+a 5+a 7为偶数,证明:“存在序列Ω,使得ΩA 为常数列”的充要条件为“a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8”.【答案】(1)ΩA :3,4,4,5,8,4,3,10(2)不存在符合条件的Ω,理由见解析(3)证明见解析【分析】(1)直接按照ΩA 的定义写出ΩA 即可;(2)利用反证法,假设存在符合条件的Ω,由此列出方程组,进一步说明方程组无解即可;(3)分充分性和必要性两方面论证.【详解】(1)由题意得ΩA :3,4,4,5,8,4,3,10;(2)假设存在符合条件的Ω,可知ΩA 的第1,2项之和为a 1+a 2+s ,第3,4项之和为a 3+a 4+s ,则a 1+2 +a 2+6 =a 1+a 2+sa 3+4 +a 4+2 =a 3+a 4+s,而该方程组无解,故假设不成立,故不存在符合条件的Ω;(3)我们设序列T k ...T 2T 1A 为a k ,n 1≤n ≤8 ,特别规定a 0,n =a n 1≤n ≤8 .必要性:若存在序列Ω:ω1,ω2,...,ωs ,使得ΩA 为常数列.则a s ,1=a s ,2=a s ,3=a s ,4=a s ,5=a s ,6=a s ,7=a s ,8,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.根据T k ...T 2T 1A 的定义,显然有a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....所以不断使用该式就得到,a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,必要性得证.充分性:若a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8.由已知,a 1+a 3+a 5+a 7为偶数,而a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8,所以a 2+a 4+a 6+a 8=4a 1+a 2 -a 1+a 3+a 5+a 7 也是偶数.我们设T s ...T 2T 1A 是通过合法的序列Ω的变换能得到的所有可能的数列ΩA 中,使得a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 最小的一个.上面已经证明a k ,2j -1+a k ,2j =a k -1,2j -1+a k -1,2j ,这里j =1,2,3,4,k =1,2,....从而由a 1+a 2=a 3+a 4=a 5+a 6=a 7+a 8可得a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8.同时,由于i k +j k +s k +t k 总是偶数,所以a k ,1+a k ,3+a k ,5+a k ,7和a k ,2+a k ,4+a k ,6+a k ,8的奇偶性保持不变,从而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数.下面证明不存在j =1,2,3,4使得a s ,2j -1-a s ,2j ≥2.假设存在,根据对称性,不妨设j =1,a s ,2j -1-a s ,2j ≥2,即a s ,1-a s ,2≥2.情况1:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 =0,则由a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,知a s ,1-a s ,2≥4.对该数列连续作四次变换2,3,5,8 ,2,4,6,8 ,2,3,6,7 ,2,4,5,7 后,新的a s +4,1-a s +4,2 +a s +4,3-a s +4,4 +a s +4,5-a s +4,6 +a s +4,7-a s +4,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 减少4,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2:若a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 >0,不妨设a s ,3-a s ,4 >0.情况2-1:如果a s ,3-a s ,4≥1,则对该数列连续作两次变换2,4,5,7 ,2,4,6,8 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾;情况2-2:如果a s ,4-a s ,3≥1,则对该数列连续作两次变换2,3,5,8 ,2,3,6,7 后,新的a s +2,1-a s +2,2 +a s +2,3-a s +2,4 +a s +2,5-a s +2,6 +a s +2,7-a s +2,8 相比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 至少减少2,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.这就说明无论如何都会导致矛盾,所以对任意的j =1,2,3,4都有a s ,2j -1-a s ,2j ≤1.假设存在j =1,2,3,4使得a s ,2j -1-a s ,2j =1,则a s ,2j -1+a s ,2j 是奇数,所以a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8都是奇数,设为2N +1.则此时对任意j =1,2,3,4,由a s ,2j -1-a s ,2j ≤1可知必有a s ,2j -1,a s ,2j =N ,N +1 .而a s ,1+a s ,3+a s ,5+a s ,7和a s ,2+a s ,4+a s ,6+a s ,8都是偶数,故集合m a s ,m =N 中的四个元素i ,j ,s ,t 之和为偶数,对该数列进行一次变换i ,j ,s ,t ,则该数列成为常数列,新的a s +1,1-a s +1,2 +a s +1,3-a s +1,4 +a s +1,5-a s +1,6 +a s +1,7-a s +1,8 等于零,比原来的a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 更小,这与a s ,1-a s ,2 +a s ,3-a s ,4 +a s ,5-a s ,6 +a s ,7-a s ,8 的最小性矛盾.综上,只可能a s ,2j -1-a s ,2j =0j =1,2,3,4 ,而a s ,1+a s ,2=a s ,3+a s ,4=a s ,5+a s ,6=a s ,7+a s ,8,故a s ,n =ΩA 是常数列,充分性得证.【点睛】关键点点睛:本题第三问的关键在于对新定义的理解,以及对其本质的分析.11(新高考天津卷)已知数列a n 是公比大于0的等比数列.其前n 项和为S n .若a 1=1,S 2=a 3-1.(1)求数列a n 前n 项和S n ;(2)设b n =k ,n =a kb n -1+2k ,a k <n <a k +1,b 1=1,其中k 是大于1的正整数.(ⅰ)当n =a k +1时,求证:b n -1≥a k ⋅b n ;(ⅱ)求S ni =1b i .【答案】(1)S n =2n -1(2)①证明见详解;②S ni =1b i =3n -1 4n+19【分析】(1)设等比数列a n 的公比为q >0,根据题意结合等比数列通项公式求q ,再结合等比数列求和公式分析求解;(2)①根据题意分析可知a k =2k -1,b n =k +1,b n -1=k 2k -1 ,利用作差法分析证明;②根据题意结合等差数列求和公式可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1,再结合裂项相消法分析求解.【详解】(1)设等比数列a n 的公比为q >0,因为a 1=1,S 2=a 3-1,即a 1+a 2=a 3-1,可得1+q =q 2-1,整理得q 2-q -2=0,解得q =2或q =-1(舍去),所以S n =1-2n1-2=2n -1.(2)(i )由(1)可知a n =2n -1,且k ∈N *,k ≥2,当n =a k +1=2k≥4时,则a k =2k -1<2k -1=n -1n -1=a k +1-1<a k +1 ,即a k <n -1<a k +1可知a k =2k -1,b n =k +1,b n -1=b a k+a k +1-a k -1 ⋅2k =k +2k 2k -1-1 =k 2k -1 ,可得b n -1-a k ⋅b n =k 2k -1 -k +1 2k -1=k -1 2k -1-k ≥2k -1 -k =k -2≥0,当且仅当k =2时,等号成立,所以b n -1≥a k ⋅b n ;(ii )由(1)可知:S n =2n -1=a n +1-1,若n =1,则S 1=1,b 1=1;若n ≥2,则a k +1-a k =2k -1,当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列,可得∑2k -1i =2k -1b i =k ⋅2k -1+2k 2k -12k -1-1 2=k ⋅4k -1=193k -1 4k -3k -4 4k -1 ,所以∑S ni =1b i =1+195×42-2×4+8×43-5×42+⋅⋅⋅+3n -1 4n -3n -4 4n -1=3n -1 4n+19,且n =1,符合上式,综上所述:∑Sni =1b i =3n -1 4n +19.【点睛】关键点点睛:1.分析可知当2k -1<i ≤2k -1时,b i -b i -1=2k ,可知b i 为等差数列;2.根据等差数列求和分析可得∑2k -1i =2k -1b i =193k -1 4k -3k -4 4k -1.12(新高考上海卷)若f x =log a x (a >0,a ≠1).(1)y =f x 过4,2 ,求f 2x -2 <f x 的解集;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列,求a 的取值范围.【答案】(1)x |1<x <2 (2)a >1【分析】(1)求出底数a ,再根据对数函数的单调性可求不等式的解;(2)存在x 使得f x +1 、f ax 、f x +2 成等差数列等价于a 2=21x +342-18在0,+∞ 上有解,利用换元法结合二次函数的性质可求a 的取值范围.【详解】(1)因为y =f x 的图象过4,2 ,故log a 4=2,故a 2=4即a =2(负的舍去),而f x =log 2x 在0,+∞ 上为增函数,故f 2x -2 <f x ,故0<2x -2<x 即1<x <2,故f 2x -2 <f x 的解集为x |1<x <2 .(2)因为存在x 使得f x +1 、f ax 、f x +2 成等差数列,故2f ax =f x +1 +f x +2 有解,故2log a ax =log a x +1 +log a x +2 ,因为a >0,a ≠1,故x >0,故a 2x 2=x +1 x +2 在0,+∞ 上有解,由a 2=x 2+3x +2x 2=1+3x +2x 2=21x +34 2-18在0,+∞ 上有解,令t =1x ∈0,+∞ ,而y =2t +34 2-18在0,+∞ 上的值域为1,+∞ ,故a 2>1即a >1.一、单选题1(2024·重庆·三模)已知数列a n 的前n 项和为S n ,a 1=1,S n +S n +1=n 2+1n ∈N ∗ ,S 24=()A.276B.272C.268D.266【答案】A【分析】令n =1得S 2=1,当n ≥2时,结合题干作差得S n +1-S n -1=2n -1,从而利用累加法求解S 24=即可.【详解】∵a 1=S 1=1,又∵S n +S n +1=n 2+1,当n =1时,S 1+S 2=12+1=2,解得S 2=1;当n ≥2时,S n -1+S n =(n -1)2+1,作差得S n +1-S n -1=2n -1,∴S 24=S 24-S 22 +S 22-S 20 +⋯+S 4-S 2 +S 2=223+21+⋯+3 -11+1=276.故选:A2(2024·河北张家口·三模)已知数列a n的前n项和为S n,且满足a1=1,a n+1=a n+1,n为奇数2a n,n为偶数,则S100=()A.3×251-156B.3×251-103C.3×250-156D.3×250-103【答案】A【分析】分奇数项和偶数项求递推关系,然后记b n=a2n+a2n-1,n≥1,利用构造法求得b n=6×2n-1-3,然后分组求和可得.【详解】因为a1=1,a n+1=a n+1,n为奇数2a n,n为偶数 ,所以a2k+2=a2k+1+1=2a2k+1,a2k+1=2a2k=2a2k-1+2,k∈N*,且a2=2,所以a2k+2+a2k+1=2a2k+a2k-1+3,记b n=a2n+a2n-1,n≥1,则b n+1=2b n+3,所以b n+1+3=2b n+3,所以b n+3是以b1+3=a1+a2+3=6为首项,2为公比的等比数列,所以b n+3=6×2n-1,b n=6×2n-1-3,记b n的前n项和为T n,则S100=T50=6×20+6×21+6×22+⋅⋅⋅+6×249-3×50=3×251-156.故选:A【点睛】关键点点睛:本题解题关键在于先分奇数项和偶数项求递推公式,然后再并项得b n的递推公式,利用构造法求通项,将问题转化为求b n的前50项和.3(2024·山东日照·三模)设等差数列b n的前n项和为S n,若b3=2,b7=6,则S9=()A.-36B.36C.-18D.18【答案】B【分析】利用等差数列的前n项和公式,结合等差数列的性质求解.【详解】解:S9=b1+b9×92=b3+b7×92=36,故选:B.4(2024·湖北武汉·二模)已知等差数列a n的前n项和为S n,若S3=9,S9=81,则S12=() A.288 B.144 C.96 D.25【答案】B【分析】利用等差数列的前n项和列方程组求出a1,d,进而即可求解S12.【详解】由题意S3=3a1+3×22d=9S9=9a1+9×82d=81,即a1+d=3a1+4d=9,解得a1=1d=2.于是S12=12×1+12×112×2=144.故选:B.5(2024·江西赣州·二模)在等差数列a n中,a2,a5是方程x2-8x+m=0的两根,则a n的前6项和为()A.48B.24C.12D.8【答案】B【分析】利用韦达定理确定a2+a5=8,根据等差数列性质有a2+a5=a1+a6=8,在应用等差数列前n项和公式即可求解.【详解】因为a 2,a 5是方程x 2-8x +m =0的两根,所以a 2+a 5=8,又因为a n 是等差数列,根据等差数列的性质有:a 2+a 5=a 1+a 6=8,设a n 的前6项和为S 6,则S 6=a 1+a 6 ×62=3×8=24.故选:B6(2024·湖南永州·三模)已知非零数列a n 满足2n a n +1-2n +2a n =0,则a 2024a 2021=()A.8B.16C.32D.64【答案】D【分析】根据题意,由条件可得a n +1=4a n ,再由等比数列的定义即可得到结果.【详解】由2n a n +1-2n +2a n =0可得a n +1=4a n ,则a 2024a 2021=4×4×4a 2021a 2021=64.故选:D7(2024·浙江绍兴·二模)汉诺塔(Tower of Hanoi ),是一个源于印度古老传说的益智玩具. 如图所示,有三根相邻的标号分别为A 、B 、C 的柱子,A 柱子从下到上按金字塔状叠放着n 个不同大小的圆盘,要把所有盘子一个一个移动到柱子B 上,并且每次移动时,同一根柱子上都不能出现大盘子在小盘子的上方,请问至少需要移动多少次?记至少移动次数为H n ,例如:H (1)=1,H (2)=3,则下列说法正确的是()A.H (3)=5B.H (n ) 为等差数列C.H (n )+1 为等比数列D.H 7 <100【答案】C【分析】由题意可得H (3)=7,判断A ;归纳得到H n =2n -1,结合等差数列以及等比数列的概念可判断B ,C ;求出H 7 ,判断D .【详解】由题意知若有1个圆盘,则需移动一次:若有2个圆盘,则移动情况为:A →C ,A →B ,C →B ,需移动3次;若有3个圆盘,则移动情况如下:A →B ,A →C ,B →C ,A →B ,C →A ,C →B ,A →B ,共7次,故H (3)=7,A 错误;由此可知若有n 个圆盘,设至少移动a n 次,则a n =2a n -1+1,所以a n +1=2a n -1+1 ,而a 1+1=1+1=2≠0,故a n +1 为等比数列,故a n =2n -1即H n =2n -1,该式不是n 的一次函数,则H (n ) 不为等差数列,B 错误;又H n =2n -1,则H n +1=2n ,H n +1 +1H n +1=2,则H (n )+1 为等比数列,C 正确,H 7 =27-1=127>100,D 错误,故选:C8(2024·云南曲靖·二模)已知S n 是等比数列a n 的前n 项和,若a 3=3,S 3=9,则数列a n 的公比是()A.-12或1 B.12或1 C.-12D.12【答案】A【分析】分别利用等比数列的通项公式和前n 项和公式,解方程组可得q =1或q =-12.【详解】设等比数列a n 的首项为a 1,公比为q ,依题意得a 3=a 1q 2=3S 3=a 1+a 2+a 3=a 1+a 1q +a 1q 2=9 ,解得q =1或q =-12.故选:A .9(2024·四川·模拟预测)已知数列a n 为等差数列,且a 1+2a 4+3a 9=24,则S 11=()A.33B.44C.66D.88【答案】B【分析】将a 1,a 4,a 9用a 1和d 表示,计算出a 6的值,再由S 11=11a 6得S 11的值.【详解】依题意,a n 是等差数列,设其公差为d ,由a 1+2a 4+3a 9=24,所以a 1+2a 1+3d +3a 1+8d =6a 1+30d =6a 6=24,即a 6=4,S 11=11a 1+10×112d =11a 1+5d =11a 6=11×4=44,故选:B .10(2024·北京东城·二模)设无穷正数数列a n ,如果对任意的正整数n ,都存在唯一的正整数m ,使得a m =a 1+a 2+a 3+⋯+a n ,那么称a n 为内和数列,并令b n =m ,称b n 为a n 的伴随数列,则()A.若a n 为等差数列,则a n 为内和数列B.若a n 为等比数列,则a n 为内和数列C.若内和数列a n 为递增数列,则其伴随数列b n 为递增数列D.若内和数列a n 的伴随数列b n 为递增数列,则a n 为递增数列【答案】C【分析】对于ABD :举反例说明即可;对于C :根据题意分析可得a m 2>a m 1,结合单调性可得m 2>m 1,即可得结果.【详解】对于选项AB :例题a n =1,可知a n 即为等差数列也为等比数列,则a 1+a 2=2,但不存在m ∈N *,使得a m =2,所以a n 不为内和数列,故AB 错误;对于选项C :因为a n >0,对任意n 1,n 2∈N *,n 1<n 2,可知存在m 1,m 2∈N *,使得a m 1=a 1+a 2+a 3+⋯+a n 1,a m 2=a 1+a 2+a 3+⋯+a n 2,则a m 2-a m 1=a n 1+1+a n 1+2+⋯+a n 2>0,即a m 2>a m 1,且内和数列a n 为递增数列,可知m 2>m 1,所以其伴随数列b n 为递增数列,故C 正确;对于选项D :例如2,1,3,4,5,⋅⋅⋅,显然a n 是所有正整数的排列,可知a n 为内和数列,且a n 的伴随数列为递增数列,但an 不是递增数列,故D 错误;故选:C.【点睛】方法点睛:对于新定义问题,要充分理解定义,把定义转化为已经学过的内容,简化理解和运算.11(2024·广东茂名·一模)已知T n为正项数列a n的前n项的乘积,且a1=2,T2n=a n+1n,则a5=() A.16 B.32 C.64 D.128【答案】B【分析】利用给定的递推公式,结合对数运算变形,再构造常数列求出通项即可得解.【详解】由T2n=a n+1n,得T2n+1=a n+2n+1,于是a2n+1=T2n+1T2n=a n+2n+1a n+1n,则a n n+1=a n+1n,两边取对数得n lg a n+1=(n+1)lg a n,因此lg a n+1n+1=lg a nn,数列lg a nn是常数列,则lg a nn=lg a11=lg2,即lg a n=n lg2=lg2n,所以a n=2n,a5=32.故选:B12(2024·湖南常德·一模)已知等比数列a n中,a3⋅a10=1,a6=2,则公比q为()A.12B.2 C.14D.4【答案】C【分析】直接使用已知条件及公比的性质得到结论.【详解】q=1q3⋅q4=a3a6⋅a10a6=a3⋅a10a26=122=14.故选:C.二、多选题13(2024·湖南长沙·三模)设无穷数列a n的前n项和为S n,且a n+a n+2=2a n+1,若存在k∈N∗,使S k+1 >S k+2>S k成立,则()A.a n≤a k+1B.S n≤S k+1C.不等式S n<0的解集为n∈N∗∣n≥2k+3D.对任意给定的实数p,总存在n0∈N∗,当n>n0时,a n<p【答案】BCD【分析】根据题意,得到a k+2<0,a k+1>0,a k+1+a k+2>0且a n是递减数列,结合等差数列的性质以及等差数列的求和公式,逐项判定,即可求解.【详解】由S k+1>S k+2>S k,可得a k+2=S k+2-S k+1<0,a k+1=S k+1-S k>0,且a k+1+a k+2=S k+2-S k>0,即a k+2<0,a k+1>0,a k+1+a k+2>0又由a n+a n+2=2a n+1,可得数列a n是等差数列,公差d=a k+2-a k+1<0,所以a n是递减数列,所以a1是最大项,且随着n的增加,a n无限减小,即a n≤a1,所以A错误、D正确;因为当n≤k+1时,a n>0;当n≥k+2时,a n<0,所以S n的最大值为S k+1,所以B正确;因为S2k+1=(2k+1)(a1+a2k+1)2=(2k+1)a k+1>0,S2k+3=(2k+3)a k+2<0,且S 2k +2=a 1+a 2k +22×2k +2 =k +1 ⋅a k +1+a k +2 >0,所以当n ≤2k +2时,S n >0;当n ≥2k +3时,S n <0,所以C 正确.故选:BCD .14(2024·山东泰安·模拟预测)已知数列a n 的通项公式为a n =92n -7n ∈N *,前n 项和为S n ,则下列说法正确的是()A.数列a n 有最大项a 4B.使a n ∈Z 的项共有4项C.满足a n a n +1a n +2<0的n 值共有2个D.使S n 取得最小值的n 值为4【答案】AC【分析】根据数列的通项公式,作差判断函数的单调性及项的正负判断A ,根据通项公式由整除可判断B ,根据项的正负及不等式判断C ,根据数列项的符号判断D .【详解】对于A :因为a n =92n -7n ∈N *,所以a n +1-a n =92n -5-92n -7=-182n -5 2n -7,令a n +1-a n >0,即2n -5 2n -7 <0,解得52<n <72,又n ∈N *,所以当n =3时a n +1-a n >0,则当1≤n ≤2或n ≥4时,a n +1-a n <0,令a n =92n -7>0,解得n >72,所以a 1=-95>a 2=-3>a 3=-9,a 4>a 5>a 6>⋯>0,所以数列a n 有最大项a 4=9,故A 正确;对于B :由a n ∈Z ,则92n -7∈Z 又n ∈N *,所以n =2或n =3或n =4或n =5或n =8,所以使a n ∈Z 的项共有5项.故B 不正确;对于C :要使a n a n +1a n +2<0,又a n ≠0,所以a n 、a n +1、a n +2中有1个为负值或3个为负值,所以n =1或n =3,故满足a n a n +1a n +2<0的n 的值共有2个,故C 正确;对于D :因为n ≤3时a n <0,n ≥4时a n >0,所以当n =3时S n 取得最小值,故D 不正确.故选:AC .15(2024·山东临沂·二模)已知a n 是等差数列,S n 是其前n 项和,则下列命题为真命题的是()A.若a 3+a 4=9,a 7+a 8=18,则a 1+a 2=5B.若a 2+a 13=4,则S 14=28C.若S 15<0,则S 7>S 8D.若a n 和a n ⋅a n +1 都为递增数列,则a n >0【答案】BC【分析】根据题意,求得d =98,结合a 1+a 2=a 3+a 4 -4d ,可判定A 错误;根据数列的求和公式和等差数列的性质,可判定B 正确;由S 15<0,求得a 8<0,可判定C 正确;根据题意,求得任意的n ≥2,a n >0,结合a 1的正负不确定,可判定D 错误.【详解】对于A 中,由a 3+a 4=9,a 7+a 8=18,可得a 7+a 8 -a 3+a 4 =8d =9,所以d =98,又由a 1+a 2=a 3+a 4 -4d =9-4×98=92,所以A 错误;对于B 中,由S 14=14a 1+a 14 2=14a 2+a 132=28,所以B 正确;对于C 中,由S 15=15(a 1+a 15)2=15a 8<0,所以a 8<0,又因为S 8-S 7=a 8<0,则S 7>S 8,所以C 正确;对于D 中,因为a n 为递增数列,可得公差d >0,因为a n a n +1 为递增数列,可得a n +2a n +1-a n a n +1=a n +1⋅2d >0,所以对任意的n ≥2,a n >0,但a 1的正负不确定,所以D 错误.故选:BC .16(2024·山东泰安·二模)已知等差数列a n 的前n 项和为S n ,a 2=4,S 7=42,则下列说法正确的是()A.a 5=4B.S n =12n 2+52n C.a nn为递减数列 D.1a n a n +1 的前5项和为421【答案】BC【分析】根据给定条件,利用等差数列的性质求出公差d ,再逐项求解判断即可.【详解】等差数列a n 中,S 7=7(a 1+a 7)2=7a 4=42,解得a 4=6,而a 2=4,因此公差d =a 4-a 24-2=1,通项a n =a 2+(n -2)d =n +2,对于A ,a 5=7,A 错误;对于B ,S n =n (3+n +2)2=12n 2+52n ,B 正确;对于C ,a n n =1+2n ,a n n 为递减数列,C 正确;对于D ,1a n a n +1=1(n +2)(n +3)=1n +2-1n +3,所以1a n a n +1 的前5项和为13-14+14-15+⋯+17-18=13-18=524,D 错误.故选:BC17(2024·江西·三模)已知数列a n 满足a 1=1,a n +1=2a n +1,则()A.数列a n 是等比数列B.数列log 2a n +1 是等差数列C.数列a n 的前n 项和为2n +1-n -2D.a 20能被3整除【答案】BCD【分析】利用构造法得到数列a n +1 是等比数列,从而求得通项,就可以判断选项,对于数列求和,可以用分组求和法,等比数列公式求和完成,对于幂的整除性问题可以转化为用二项式定理展开后,再加以证明.【详解】由a n +1=2a n +1可得:a n +1+1=2a n +1 ,所以数列a n +1 是等比数列,即a n =2n -1,则a 1=1,a 2=3,a 3=7,显然有a 1⋅a 3≠a 22,所以a 1,a 2,a 3不成等比数列,故选项A 是错误的;由数列a n +1 是等比数列可得:a n +1=2n ,即log 2a n +1 =log 22n =n ,故选项B 是正确的;由a n =2n -1可得:前n 项和S n =21-1+22-1+23-1+⋅⋅⋅+2n-1=21-2n 1-2-n =2n +1-n -2,故选项C是正确的;由a 20=220-1=3-1 20-1=C 020320+C 120319⋅-1 +C 220318⋅-1 2+⋅⋅⋅+C 19203⋅-1 19+C 2020-1 20-1=3×C 020319+C 120318⋅-1 +C 220317⋅-1 2+⋅⋅⋅+C 1920-1 19 ,故选项D 是正确的;方法二:由210=1024,1024除以3余数是1,所以10242除以3的余数还是1,从而可得220-1能补3整除,故选项D 是正确的;故选:BCD .18(2024·湖北·二模)无穷等比数列a n 的首项为a 1公比为q ,下列条件能使a n 既有最大值,又有最小值的有()A.a 1>0,0<q <1B.a 1>0,-1<q <0C.a 1<0,q =-1D.a 1<0,q <-1【答案】BC【分析】结合选项,利用等比数列单调性分析判断即可.【详解】a 1>0,0<q <1时,等比数列a n 单调递减,故a n 只有最大值a 1,没有最小值;a 1>0,-1<q <0时,等比数列a n 为摆动数列,此时a 1为大值,a 2为最小值;a 1<0,q =-1时,奇数项都相等且小于零,偶数项都相等且大于零,所以等比数列a n 有最大值,也有最小值;a 1<0,q <-1时,因为q >1,所以a n 无最大值,奇数项为负无最小值,偶数项为正无最大值.故选:BC 三、填空题19(2024·山东济南·三模)数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则数列a n 的前20项的和为.【答案】210【分析】数列a n 的奇数项、偶数项都是等差数列,结合等差数列求和公式、分组求和法即可得解.【详解】数列a n 满足a n +2-a n =2,若a 1=1,a 4=4,则a 2=a 4-2=4-2=2,所以数列a n 的奇数项、偶数项分别构成以1,2为首项,公差均为2的等差数列所以数列a n 的前20项的和为a 1+a 2+⋯+a 20=a 1+a 3+⋯+a 19 +a 2+a 4+⋯+a 20=10×1+10×92×2+10×2+10×92×2=210.故答案为:210.20(2024·云南·二模)记数列a n 的前n 项和为S n ,若a 1=2,2a n +1-3a n =2n ,则a 82+S 8=.【答案】12/0.5【分析】构造得a n +12n -1-4=34a n2n -2-4,从而得到a n 2n -2=4,则a n =2n ,再利用等比数列求和公式代入计算即可.【详解】由2a n +1-3a n =2n ,得a n +12n -1=34×a n 2n -2+1,则a n +12n -1-4=34a n2n -2-4,又a 12-1-4=0,则a n 2n -2=4,则a n =2n ,a 8=28,S 8=21-28 1-2=29-2,a 82+S 8=2829=12,故答案为:12.21(2024·上海·三模)数列a n 满足a n +1=2a n (n 为正整数),且a 2与a 4的等差中项是5,则首项a 1=。
历年高考文科数学真题汇编+答案解析(4):数列
历年高考文科数学真题汇编+答案解析专题4数列(2020年版)考查频率:一般为1个大题(2019年1卷为1个小题1个大题,2019年3卷为2个小题)考试分值:10分~17分知识点分布:必修5一、选择题和填空题(每题5分)1.(2019全国I 卷文14)记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________.【解析】由题意可得,323(1)3114q S q q q -==++=-,∴12q =-.∴343431315(488S S a S a q =+=+=+-=.【答案】58【考点】必修5等比数列2.(2019全国III 卷文6)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=A .16B .8C .4D .2【解析】由题意可得,23142111(1)1534a q q q a q a q a ⎧+++=⎨=+⎩,解得2q =,11a =.∴2314a a q ==.【答案】C【考点】必修5等比数列3.(2019全国III 卷文14)记S n 为等差数列{a n }的前n 项和,若375,13a a ==,则10S =___________.【解析】∵7348a a d -==,∴2d =.∵311245a a d a =+=+=,∴11a =.∴10110910910101210022S a d ⨯⨯=+=⨯+=.【答案】100【考点】必修5等差数列二、简单题(每题12分)4.(2019全国I 卷文18)记S n 为等差数列{a n }的前n 项和,已知S 9=-a 5.(1)若a 3=4,求{a n }的通项公式;(2)若a 1>0,求使得S n ≥a n 的n 的取值范围.【解析】(1)设{}n a 的公差为d .由95S a =-得119364a d d a +=--,即140a d +=.由a 3=4得124a d +=.于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.【另解】由95S a =-结合19959()92a a S a +==,得50a =.又∵34a =,∴5324d a a =-=-,∴2d =-.因此{}n a 的通项公式为5(5)102n a a n d n =+-=-.(2)由50a =得14a d =-,故(5)n a n d =-,(9)2n n n d S -=.由10a >知0d <,故n n S a 等价于211100n n -+ ,解得1≤n≤10.所以n 的取值范围是{|110,}n n n ≤≤∈N .【考点】必修5等差数列5.(2019全国II 卷文18)已知{}n a 是各项均为正数的等比数列,1322,216a a a ==+.(1)求{}n a 的通项公式;(2)设2log n n b a =,求数列{}n b 的前n 项和.【解析】(1)设{}n a 的公比为q ,由题设得22416q q =+,即2280q q --=.解得2q =-(舍去)或4q =.因此{}n a 的通项公式为121242n n n a --=⨯=.(2)由(1)得2(21)log 221n b n n =-=-,因此数列{}n b 的前n 项和为21321n n +++-= .【考点】必修5等比数列6.(2018全国I 卷文17)已知数列{}n a 满足11a =,()121n n na n a +=+,设n n a b n=.(1)求123b b b ,,;(2)判断数列{}n b 是否为等比数列,并说明理由;(3)求{}n a 的通项公式.【解析】(1)由条件可得a n +1=2(1)n n a n +.将n =1代入得,a 2=4a 1,而a 1=1,所以,a 2=4.将n =2代入得,a 3=3a 2,所以,a 3=12.从而b 1=1,b 2=2,b 3=4.(2){b n }是首项为1,公比为2的等比数列.由条件可得121n n a a n n+=+,即b n +1=2b n ,又b 1=1,所以{b n }是首项为1,公比为2的等比数列.(3)由(2)可得12n n a n -=,所以a n =n ·2n -1.【考点】必修5等比数列7.(2018全国II 卷文17)记n S 为等差数列{}n a 的前n 项和,已知17a =-,315S =-.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【解析】(1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.【考点】必修5等差数列8.(2018全国III 卷文17)等比数列{}n a 中,15314a a a ==,.(1)求{}n a 的通项公式;(2)记n S 为{}n a 的前n 项和.若63m S =,求m .【解析】(1)设{}n a 的公比为q ,由题设得1n n a q -=.由已知得424q q =,解得0q =(舍去),2q =-或2q =.故1(2)n n a -=-或12n n a -=.(2)若1(2)n n a -=-,则1(2)3n n S --=.由63m S =得(2)188m -=-,此方程没有正整数解.若12n n a -=,则21n n S =-.由63m S =得264m =,解得6m =.综上,6m =.【考点】必修5等比数列9.(2017全国I 卷文17)记S n 为等比数列{}n a 的前n 项和,已知S 2=2,S 3=-6.(1)求{}n a 的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列。
高考求数列真题及解析答案
高考求数列真题及解析答案数学作为高考中最为重要的科目之一,对于考生来说是一道必考题。
而在数学中,数列是一个相对较难的章节,常常考察学生对数列的理解和应用能力。
本文将为大家提供一些高考中常见的数列真题及解析答案,希望对广大考生有所帮助。
一、等差数列等差数列是指一个数列中的每个数与它前面的数之差都相等的数列。
它是数学中最常见的数列形式之一。
下面是一个关于等差数列的高考题:【例题】已知一个等差数列的首项为 3,公差为 2,前 n 项和为 S_n。
若 S_7 = 84,求 n。
解析:我们首先利用等差数列的通项公式 a_n = a_1 + (n - 1)d,其中 a_n 表示第 n 项,a_1 表示首项,d 表示公差。
根据题目中给出的信息,我们可以得到等差数列的第 7 项为 3 + (7 - 1) × 2 = 17。
根据等差数列的前 n 项和公式 S_n = (n/2)(a_1 + a_n),我们可以得到 S_7 = (7/2)(3 + 17) = 84。
解这个方程可以得到 n = 12。
因此,答案为 n = 12。
二、等比数列等比数列是指一个数列中的每一项与它前面的一项的比值都相等的数列。
等比数列在高考中常常被用来考察考生对等比数列的性质和应用的理解。
下面是一个关于等比数列的高考题:【例题】已知一个等比数列的首项为 2,公比为 3/4,前 n 项和为 S_n。
若 S_4 = 56/3,求 n。
解析:我们首先利用等比数列的通项公式a_n = a_1 × r^(n - 1),其中 a_n 表示第 n 项,a_1 表示首项,r 表示公比。
根据题目中给出的信息,我们可以得到等比数列的第 4 项为2 × (3/4)^(4 - 1) = 27/16。
根据等比数列的前 n 项和公式S_n = a_1 × (1 - r^n) / (1 - r),我们可以得到S_4 = 2 × (1 - (3/4)^4) / (1 - 3/4)= 56/3。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
*
),
则 am an a p aq
则 am an a p aq
3. Sn , S2n Sn , S3n S2n 成等差数列 3. Sn , S2 n Sn , S3n S2 n 成等比数列
6.在等差数列{ an }中 ,有关 Sn 的最值问题: (1)当 a1 >0,d<0 时,满足
am am 1
0
【解析】可分别求得
51 2
5 1 , [ 5 1] 1 . 则等比数列性质易得三者构成等比数列
2
2
( 2009.10 ) 古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:
他们研究过图 1 中的 1, 3, 6, 10,…,由于这些数能够表示成三角形,将其称为三角形数
称图 2 中的 1, 4, 9,16,…这样的数成为正方形数。下列数中及时三角形数又是正方形数的是
设公差为 d ,则由 a6
a3 3d ,得 d
2. Sn
n a1 an 2
nn 1
na1
d
2
2. Sn
na 1 q 1 a1 1 q n
1q
a1 an q q 1 1q
1. a, b, c成等差 2b a c ,
1. a,b,c成等比
2
b ac ,
称 b 为 a 与 c 的等差中项
称 b 为 a 与 c 的等比中项
2.若 m n p q( m 、n 、p 、q * ), 2.若 m n p q( m 、n 、p 、q
) ,求数列
{
bn } 的前
n 项和 Sn
(Ⅰ)解法一:设等差数列 an 的公差为 d,则依题设 d>0
由 a2 a7 16 ,得 2a1 7 d 16
①
由 a3 a6 55, 得 (a1 2d )( a1 5d ) 55
②
由①得 2a1 16 7d 将其代入②得 (16 3d )(16 3d ) 220 ,
an
S1 , ( n 1) an
S n S n 1 , ( n 2)
5.等差数列与等比数列对比小结:
等差数列
等比数列
一、定 义
an an 1 d ( n 2)
an an 1
q ( n 2)
1. an a1 n 1 d
1. an a1qn 1
二、公 式
三、性 质
an am n m d, n m
an amqn m ,( n m)
学习好资料
欢迎下载
数列
1.数列的有关概念: ( 1) 数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数
N* 或它的有限子集 {1,2,3, … ,n }
上的函数。
( 2) ( 3)
通项公式:数列的第 n 项 an 与 n 之间的函数关系用一个公式来表示,这个公式即是该数列的通项公式。
解析法:用通项公式表示。
( 4)递推法:用递推公式表示。
3.数列的分类:
有穷数列 按项数
无穷数列
4.数列 {a n} 及前 n 项和之间的关系 :
按单调性
常数列 : a n 2
递增数列 : an 2 n 1, a n 2 n
递减数列 : an
n2 1
摆动数列
: an
n
( 1) 2 n
Sn a1 a2 a3
如 : an 2n2 1。
递推公式:已知数列 {a n} 的第 1 项(或前几项),且任一项 an 与他的前一项 an-1(或前几项)可以用一个公
式来表示,这个公式即是该数列的递推公式。
如: a1 1,a2 2, an an 1 an 2 ( n 2) 。
2.数列的表示方法:
( 1) ( 3)
列举法:如 1,3,5, 7, 9,… ( 2)图象法:用( n, an)孤立点表示。
4) 12 22 32
n2
1 n(n 1)( 2n 1)
6
1
11
5)
n(n 1) n n 11Biblioteka 11 111 11
(
) 6)
(
) ( p q)
n( n 2) 2 n n 2
pq q p p q
[ 注 ]:熟悉常用通项: 9, 99, 999, … an 10 n 1; 5, 55, 555,… an 5 10n 1 . 9
即 256 9d 2 220
d 2 4,又 d 0, d 2,代入 ①得a1 1 an 1 (n 1) 2 2n 1
解法二:由等差数列的性质得:
a2 a7
a3a6 55 a3 a6 ,∴ a3 a6 16
由韦达定理知, a3, a6 是方程 x2 16x 55 0 的根,
解方程得 x 5 或 x 11
09-13 高考真题
( 2009.9 ) 设 x R, 记不超过 x 的最大整数为 [ x ], 令{ x }= x -[ x ] ,则 { 5 1 } ,[ 5 1 ],
2
2
A. 是等差数列但不是等比数列
B.
是等比数列但不是等差数列
51 2
C. 既是等差数列又是等比数列 【答案】 B
D.
既不是等差数列也不是等比数列
A.289 【答案】 C
B.1024
C.1225
D.1378
; 类似地,
学习好资料
欢迎下载
【解析】由图形可得三角形数构成的数列通项
an
n (n
1) ,同理可得正方形数构成的数列通项
2
bn
n2 ,则由 bn
n 2 (n N ) 可排除 A、 D,又由 a n
n (n 1) 知 a n 必为奇数,故选 C.
含阶乘的数列等。
3.错位相减法 :适用于 a nbn 其中 { an } 是等差数列, bn 是各项不为 0 的等比数列。
4.倒序相加法 : 类似于等差数列前 n 项和公式的推导方法 .
8.常用结论 1) 1+2+3+...+n =
n(n 1) 2
3) 13 23
2
n3
1 n( n 1)
2
2) 1+3+5+...+(2n-1) = n2
的项数
0
m 使得 sm 取最
大值 . (2) 当 a1 <0,d>0 时,满足
am am 1
0
的项数
0
m 使得
sm 取最小值。在解含绝对值的数列最值问题时
,
注意转化思想的应用。
7.数列求和的常用方法 1. 公式法 : 适用于等差、等比数列或可转化为等差、等比数列的数列。
学习好资料
欢迎下载
c 2.裂项相消法 :适用于 an an 1 其中 { an } 是各项不为 0 的等差数列, c 为常数;部分无理数列、
2
( 2009.19 )(本小题满分 12 分)
已知 { an } 是一个公差大于 0 的等差数列,且满足 a3a6 55, a2 a7 16
(Ⅰ)求数列 { an } 的通项公式:
(Ⅱ)若数列 { an } 和数列 { bn } 满足等式: an = b1 2
b2 22
b3 23
...
bn 2n
(n为正整数