高考文科数学数列经典大题训练(附答案)
高考文科数学数列专题复习(附答案及解析)

高考文科数学数列专题复习数列常用公式数列的通项公式与前n 项的和的关系a n s , n 11s s ,n 2n n 1( 数列{a n} 的前n 项的和为s n a1 a2 a n ).等差数列的通项公式*a a1 (n 1)d dn a1 d(n N ) ;n等差数列其前n 项和公式为n(a a ) n(n 1)1 ns na1 d n2 2 d 12n (a d)n .12 2等比数列的通项公式an 1 1 n *a a1q q (n N )nq;等比数列前n 项的和公式为na (1 q )1s 1 qn , q 1或sna a q1 n1 q,q 1na ,q 1 1 na ,q 1 1一、选择题1.( 广东卷) 已知等比数列{a n} 的公比为正数,且a3 ·a9 =2 2a ,a2 =1,则a1 =5A. 12B.22C. 2D.22.(安徽卷)已知为等差数列,,则等于A. -1B. 1C. 3D.7 3(. 江西卷)公差不为零的等差数列{a n} 的前n项和为S n .若a4 是a3与a7 的等比中项, S8 32, 则S等于10A. 18B. 24C. 60D. 904(湖南卷)设S n 是等差数列a n 的前n 项和,已知a2 3,a6 11,则S7 等于【】第1页/ 共8页A .13 B.35 C.49 D.633.(辽宁卷)已知a为等差数列,且a7 -2 a4 =-1, a3 =0, 则公差d=n(A)-2 (B)-12 (C)12(D)24.(四川卷)等差数列{a n }的公差不为零,首项a1 =1,a2 是a1 和a5 的等比中项,则数列的前10 项之和是A. 90B. 100C. 145D. 1905.(湖北卷)设x R, 记不超过x 的最大整数为[ x ], 令{x }= x -[ x ],则{ 52 1} ,[ 521],521A.是等差数列但不是等比数列B.是等比数列但不是等差数列C.既是等差数列又是等比数列D.既不是等差数列也不是等比数列6.(湖北卷)古希腊人常用小石子在沙滩上摆成各种性状来研究数,例如:他们研究过图1 中的1,3,6,10,⋯,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中的1,4,9,16⋯这样的数成为正方形数。
高考文科数学数列经典大题训练(附答案)

1.〔此题总分值14 分〕设数列a的前n项和为S n,且S n4a n3(n1,2,),n〔1〕证明: 数列a n是等比数列;〔2〕假设数列b满足b n1a n b n(n1,2,),b12,求数列b n的通项公n式.2.〔本小题总分值12分〕等比数列a的各项均为正数,且n2 2a3a1,a9aa.123261.求数列a n的通项公式.2.设blogaloga......loga,求数列n31323n 1bn的前项和.3.设数列a满足n2n1 a12,a1a32nn〔1〕求数列a的通项公式;n〔2〕令b n na n,求数列的前n项和S n3.等差数列{a n}的前3项和为6,前8项和为﹣4.〕,求数列{b n}的前n项和S n.〔Ⅰ〕求数列{a n}的通项公式;n﹣1*〔Ⅱ〕设b n=〔4﹣a n〕q〔q≠0,n∈N× 5.数列{a n}满足,,n∈N.〔1〕令b n=a n+1﹣a n,证明:{b n}是等比数列;〔2〕求{a n}的通项公式....4.解:〔1〕证:因为S n4a n3(n1,2,),那么S n14a n13(n2,3,),所以当n2时,a SS14a4a1,nnnnn4整理得aa1.5分nn3由S43,令n1,得a14a13,解得a11.n an所以分a是首项为1,公比为n43的等比数列.7〔2〕解:因为4n1 a(),n3由b1ab(n1,2,),得nnn4n1 bb().9分n1n3由累加得()()()b n bbbbbbb12`132nn14n11()43n1=23()1,〔n2〕,43134n1 当n=1时也满足,所以)1b3(.n35.解:〔Ⅰ〕设数列{a n}的公比为q,由 2a39a2a6得32a39a4所以21q。
有条件9可知a>0,故1q。
311a。
故数列{a n}的通项式为a n=33由2a13a21得2a13a2q1,所以1n。
〔Ⅱ〕b logaloga...logan111111(12...n)n(n1)2故12112() bn(n1)nn1n111111112n ...2((1)()...()) bbb223nn1n1 12n...所以数列1{}bn2n 的前n 项和为n16.解:〔Ⅰ〕由,当n≥1 时,a1[(a1a)(a a1)(a2a1)]a1nnnnn2n12n33(222)222(n1)1。
高考文科数学数列专题复习题及答案

高考文科数学数列专题复习题及答案专题复习题可以很好地巩固学生对高考文科数学的知识储备。
下面是店铺为大家整理的高考文科数学数列专题复习题,希望对大家有所帮助!高考文科数学数列专题复习习题及答案:一、选择题1.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1等于 ( ).A.13B.-13C.19D.-19解析设等比数列{an}的公比为q,由S3=a2+10a1得a1+a2+a3=a2+10a1,即a3=9a1,q2=9,又a5=a1q4=9,所以a1=19.答案 C2.在等差数列{an}中,若a2+a3=4,a4+a5=6,则a9+a10等于( ).A.9B.10C.11D.12解析设等差数列{an}的公差为d,则有(a4+a5)-(a2+a3)=4d=2,所以d=12.又(a9+a10)-(a4+a5)=10d=5,所以a9+a10=(a4+a5)+5=11.答案 C3.在正项等比数列{an}中,3a1,12a3,2a2成等差数列,则a2013+a2014a2011+a2012等于 ( ).A.3或-1B.9或1C.1D.9解析依题意,有3a1+2a2=a3,即3a1+2a1q=a1q2,解得q=3,q=-1(舍去),a2013+a2014a2011+a2012=a1q2012+a1q2013a1q2010+a1q20 11=q2+q31+q=9.答案 D4.(2014•郑州模拟)在等比数列{an}中,若a4,a8是方程x2-4x+3=0的两根,则a6的值是 ( ).A.3B.-3C.±3D.±3解析依题意得,a4+a8=4,a4a8=3,故a4>0,a8>0,因此a6>0(注:在一个实数等比数列中,奇数项的符号相同,偶数项的符号相同),a6=a4a8=3.答案 A5.(2014•济南模拟)在等差数列{an}中,a1=-2 014,其前n项和为Sn,若S1212-S1010=2,则S2 014的值等于 ( ).A.-2 011B.-2 012C.-2 014D.-2 013解析根据等差数列的性质,得数列Snn也是等差数列,根据已知可得这个数列的首项S11=a1=-2 014,公差d=1,故S2 0142 014=-2 014+(2 014-1)×1=-1,所以S2 014=-2 014.答案 C6.(2013•辽宁卷)下面是关于公差d>0的等差数列{an}的四个命题:p1:数列{an}是递增数列;p2:数列{nan}是递增数列;p3:数列ann是递增数列;p4:数列{an+3nd}是递增数列.其中的真命题为 ( ).A.p1,p2B.p3,p4C.p2,p3D.p1,p4解析设an=a1+(n-1)d=dn+a1-d,它是递增数列,所以p1为真命题;若an=3n-12,则满足已知,但nan=3n2-12n并非递增数列,所以p2为假命题;若an=n+1,则满足已知,但ann=1+1n是递减数列,所以p3为假命题;设an+3nd=4dn+a1-d,它是递增数列,所以p4为真命题.答案 D7.(2013•新课标全国Ⅰ卷)设等差数列{an}的前n项和为Sn,Sm-1=-2,Sm=0,Sm+1=3,则m等于 ( ).A.3B.4C.5D.6解析由Sm-1=-2,Sm=0,Sm+1=3,得am=2,am+1=3,所以d=1,因为Sm=0,故ma1+m(m-1)2d=0,故a1=-m-12,因为am+am+1=5,故am+am+1=2a1+(2m-1)d=-(m-1)+2m-1=5,即m=5.答案 C高考文科数学数列专题复习习题及答案:二、填空题8.(2013•新课标全国Ⅰ卷)若数列{an}的前n项和为Sn=23an+13,则数列{an}的通项公式是an=________.解析当n=1时,a1=1;当n≥2时,an=Sn-Sn-1=23an-23an-1,所以anan-1=-2,∴{an}是以1为首项,-2为公比的等比数列,故an=(-2)n-1.答案(-2)n-19.(2013•北京卷)若等比数列{an}满足a2+a4=20,a3+a5=40,则公比q=________;前n项和Sn=________.解析由题意q=a3+a5a2+a4=2,又a2+a4=20,故a1q+a1q3=20,解得a1=2,所以Sn=2n+1-2.答案 2 2n+1-210.(2014•新课标全国Ⅱ卷)数列{an}满足an+1=11-an,a8=2,则a1=________.解析先求出数列的周期,再进一步求解首项,∵an+1=11-an,∴an+1=11-an=11-11-an-1=1-an-11-an-1-1=1-an-1-an-1=1-1an-1=1-111-an-2=1-(1-an-2)=an-2,∴周期T=(n+1)-(n-2)=3.∴a8=a3×2+2=a2=2.而a2=11-a1,∴a1=12.答案1211.设数列{an}是公差不为0的等差数列,a1=1且a1,a3,a6成等比数列,则数列{an}的前n项和Sn=________.解析设公差为d,由a1,a3,a6成等比数列,可得(1+2d)2=1×(1+5d),解得d=14,所以Sn=n+n(n-1)2×14=18n2+78n.答案18n2+78n12.(2014•天津卷)设{an}是首项为a1,公差为-1的等差数列,Sn 为其前n项和.若S1,S2,S4成等比数列,则a1的值为________.解析根据等差数列的前n项和公式求出S1,S2,S4的表达式,然后利用等比数列的性质求解.等差数列{an}的前n项和为Sn=na1+n(n-1)2d,所以S1,S2,S4分别为a1,2a1-1,4a1-6.因为S1,S2,S4成等比数列,所以(2a1-1)2=a1•(4a1-6),解方程得a1=-12.答案-12高考文科数学数列专题复习习题及答案:三、解答题13.(2014•北京卷)已知{an}是等差数列,满足a1=3,a4=12,数列{bn}满足b1=4,b4=20,且{bn-an}为等比数列.(1)求数列{an}和{bn}的通项公式;(2)求数列{bn}的前n项和.解(1)设等差数列{an}的公差为d,由题意得d=a4-a13=12-33=3,所以an=a1+(n-1)d=3n(n=1,2,…).设等比数列{bn-an}的公比为q,由题意得q3=b4-a4b1-a1=20-124-3=8,解得q=2.所以bn-an=(b1-a1)qn-1=2n-1.从而bn=3n+2n-1(n=1,2,…).(2)由(1)知bn=3n+2n-1(n=1,2,…).数列{3n}的前n项和为32n(n+1),数列{2n-1}的前n项和为1-2n1-2=2n-1.所以,数列{bn}的前n项和为32n(n+1)+2n-1.14.(2013•浙江卷)在公差为d的等差数列{an}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(1)求d,an;(2)若d<0,求|a1|+|a2|+…+|an|.解(1)由题意得5a3•a1=(2a2+2)2,即d2-3d-4=0.故d=-1或d=4.所以an=-n+11,n∈N*或an=4n+6,n∈N*.(2)设数列{an}的前n项和为Sn.因为d<0,由(1)得d=-1,an=-n+11.当n≤11时,|a1|+|a2|+|a3|+…+|an|=Sn=-12n2+212n.当n≥12时,|a1|+|a2|+|a3|+…+|an|=-Sn+2S11=12n2-212n+110.综上所述,|a1|+|a2|+|a3|+…+|an|=-12n2+212n,n≤11,12n2-212n+110,n≥12.15.(2014•杭州模拟)已知数列{an}是首项为133,公比为133的等比数列,设bn+15log3an=t,常数t∈N*.(1)求证:{bn}为等差数列;(2)设数列{cn}满足cn=anbn,是否存在正整数k,使ck,ck+1,ck+2按某种次序排列后成等比数列?若存在,求k,t的值;若不存在,请说明理由.(1)证明an=3-n3,bn+1-bn=-15log3an+1an=5,∴{bn}是首项为b1=t+5,公差为5的等差数列.(2)解cn=(5n+t) •3-n3,则ck=(5k+t)•3-k3,令5k+t=x(x>0),则ck=x•3-k3,ck+1=(x+5)•3-k+13,ck+2=(x+10)•3-k+23.①若c2k=ck+1ck+2,则x•3-k32=(x+5)•3-k+13•(x+10)•3-k+23.化简得2x2-15x-50=0,解得x=10,x=-52(舍去);进而求得k=1,t=5;②若c2k+1=ckck+2,同理可得(x+5)2=x(x+10),显然无解;③若c2k+2=ckck+1,同理可得13(x+10)2=x(x+5),方程无整数根.综上所述,存在k=1,t=5适合题意.。
高考文科数学数列试题与解析

高三数学(文科)专题训练二数列1.已知数列a n n N是等比数列,且a n 0,a1 2@ 8.(1)求数列a n的通项公式;(2)求证:—a11 1 1 ,1;a2 a3 a n⑶设b n 2log2a n 1,求数列b n的前100项和•2.数列{a n}中,:a1 8 , a4 2,且满足a n 2 a. 1常数C(1) 求常数C和数列的通项公式;⑵设 T20 |印| ai L |a20| ,(3) T n |a i| |a2| L |a n|, n N3.已知数列a n = 2n, n为奇数;求S2n-1, n 为偶数;,' n4 .已知数列a n的相邻两项a n,a n 1是关于X的方程x2 2n x b n 0 (n N*)的两根,且a i 1 .(1)求证:数列a n 3 2n是等比数列;3(2) 求数列bn的前n项和S n.5. 某种汽车购车费用10万元,每年应交保险费、养路费及汽油费合计9千元,汽车的维修费平均为第一年2千元,第二年4千元,第三年6千元,…,各年的维修费平均数组成等差数列,问这种汽车使用多少年报废最合算(即使用多少年时,年平均费用最少)?6. 从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业,根据规划,本年度投入800万元,以后每年投入将比上年减少£,本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加1.4(1)设n年内(本年度为第一年)总投入为a n万元,旅游业总收入为b n万元,写出a n ,b n的表达式;(2)至少经过几年,旅游业的总收入才能超过总投入?7. 在等比数列{a n}(n € N*)中,已知a i > 1 , >0 .设b n=log 2a n,且b i + b 3 + b5=6 , b i b3b5=0 .(1) 求数列{a n }、{b n}的通项公式a n、b n ;(2) 若数列{b n}的前n项和为S n,试比较S n与a n的大小.8. 已知数列{a n}的前n项和为S n,且a n是S1与2的等差中项,数列{b n}中,b i=1 , 点P (b n, b n+i)在直线x-y+2=0 上。
人教数学高考题分类文科数列试题含答案全套精

文科人教版数学数列姓名:院、系:数学学院专业: 数学及应用数学数 列1、(2021年高考重庆卷 文2) 在等差数列{}n a 中,12a =,3510a a +=,那么7a =〔 〕A . 5B . 8C . 10D . 141、解:∵数列{}n a 是等差,3510a a +=,∴45a =,74128a a a =-=,∴选B.2、(2021年高考天津卷 文5) 设{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项与,假设124S S S ,,成等比数列,那么1a =〔 〕 A . 2 B . -2 C .21 D . -21 2、解:∵{}n a 是首项为1a ,公差为1-的等差数列,n S 为其前n 项与,又∵124S S S ,,成等比数列, ∴212()a a +=1a 1234()a a a a +++,即21(21)a -=1a 1(46)a -,解得1a =-21,∴选D3、(2021年高考新课标2卷 文5) 等差数列{}n a 的公差为2,假设2a ,4a ,8a 成等比数列,那么{}n a 的前n 项n S =〔 〕 A . ()1n n + B . ()1n n - C .()12n n + D .()12n n -3、解:∵等差数列{}n a 的公差为2,且2a ,4a ,8a 成等比数列,∴24a =2a 8a ,即21(6)a +=1(2)a +1(14)a +,解得12a =,那么2n a n =,∴选A4、(2021年高考全国卷 文8). 设等比数列{}n a 的前n 项与为n S ,假设23S =,415S =,那么6S =〔 〕A .31B .32C .63D .644、解:∵由等比数列{}n a 的前n 项与n S 的性质得:2S ,4S -2S ,6S -4S 成等比数列,即 3,12,6S -15成等比数列,∴122=3(6S -15),解得:6S =63,∴选C5、(2021年高考辽宁卷 文9) .设等差数列{}n a 的公差为d ,假设数列1{2}na a 为递减数列,那么〔 〕DA .0d <B .0d >C .10a d <D .10a d >6、(2021年高考江苏卷 文7) 在各项均为正数的等比数列}{n a 中,,12=a 4682a a a +=,那么6a 的值是 ▲ .7、(2021年高考江西卷 文13) 在等差数列{}n a 中,17a =,公差为d ,前n 项与为n S ,当且仅当8n = 时n S 取最大值,那么d 的取值范围_________. 7、解: 因为170a =>,当且仅当8n =时n S 取最大值,可知0d <且同时满足890,0a a ><,∴89770780a d a d =+>⎧⎨=+<⎩,解得718d -<<-,∴答案718d -<<-8、(2021年高考广东卷 文13). 等比数列{}n a 的各项均为正数,且154a a =,那么2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则9、(2021年高考新课标2卷 文16) 数列{}n a 满足111n na a +=-,2a =2,那么1a =______.9、解:由得2111a a =-,解得1a =12, 答案1210、(2021年高考北京卷 文15) 〔本小题总分值13分〕{}n a 是等差数列,满足13a =,412a =,数列{}n b 满足14b =,420b =,且{}n n b a -是等比数列.〔1〕求数列{}n a 与{}n b 的通项公式; 〔2〕求数列{}n b 的前n 项与.11、 (2021年高考重庆卷 文16) 〔本小题总分值13分.〔I 〕小问6分,〔II 〕小问5分〕{}n a 是首相为1,公差为2的等差数列,n S 表示{}n a 的前n 项与.〔I 〕求n a 及n S ;〔II 〕设{}n b 是首相为2的等比数列,公比q 满足()01442=++-S q a q ,求{}n b 的通项公式及其前n 项与n T .12、(2021年高考湖南卷 文16).〔本小题总分值12分〕数列{}n a 的前n 项与*∈+=N n nn S n ,22. 〔I 〕求数列{}n a 的通项公式;〔II 〕设()n n a n a b n12-+=,求数列{}n b 的前n 2项与.13、(2021年高考福建卷 文17). 〔本小题总分值12分〕等比数列}{n a 中,23a =,581a =.〔I 〕求数列}{n a 的通项公式; 〔II 〕假设数列n n a b 3log =,求数列}{n b 的前n 项与n S .13、考察等差、等比数列等根底知识,考察运算求解能力,考察化归及转化思想解:〔I 〕设{n a }的公比为q ,依题意得 141381a q a q =⎧⎨=⎩,解得113a q =⎧⎨=⎩,因此,13n n a -=.〔II 〕 ∵ 数列n n a b 3log ==1n -,∴数列}{n b 的前n 项与n S =1()2n n b b +=22n n -.14、 (2021年高考江西卷 文17) 〔本小题总分值12分〕数列{}n a 的前n 项与*∈-=N n nn S n ,232. (1)求数列{}n a 的通项公式; (2)证明:对任意1>n ,都有*∈Nm ,使得m n a a a ,,1成等比数列.14、解析:〔1〕当1n =时111a S == 当2n ≥时()22131133222n n n n n n n a S S n ---+-=-=-=-检验 当1n =时11a = 32n a n ∴=-〔2〕使m n a a a ,,1成等比数列. 那么21n m a a a = ()23232n m ∴--=即满足()2233229126m n n n =-+=-+ 所以2342m n n =-+ 那么对任意1>n ,都有2342n n N *-+∈所以对任意1>n ,都有*∈N m ,使得m n a a a ,,1成等比数列. 15、(2021年高考全国卷 文17). 〔本小题总分值10分〕数列{}n a 满足12212,2,22n n n a a a a a ++===-+. 〔1〕设1n n n b a a +=-,证明{}n b 是等差数列; 〔2〕求{}n a 的通项公式.16、(2021年高考新课标1卷 文17) 〔本小题总分值12分〕{}n a 是递增的等差数列,2a ,4a 是方程2560x x -+=的根。
高考文科数学试题分类汇编:数列(全国各地高考)【真题分类汇总、含参考答案】

an 的前 n 项和, S8 4a3 , a7 2 ,则 a9 =
B. 4 C. 2 D.2
A. 6
3 .设首项为 1 ,公比为
2 的等比数列 {an } 的前 n 项和为 S n ,则 3
B. S n 3an 2 C. S n 4 3an D. S n 3 2an
C. p2 , p3
D. p1 , p4
二、填空题 5 .若 2、 a 、 b 、 c 、9 成等差数列,则 c a ____________. 6 .若等比数列 an 满足 a2
a4 20, a3 a5 40 ,则公比 q =__________;前 n 项 Sn =_____.
4 S 2 , a 2 n 2a n 1
(Ⅰ)求数列 a n 的通项公式 (Ⅱ)设数列 bn 满足
b b1 b2 1 n 1 n , n N * ,求 bn 的前 n 项和 Tn a1 a2 an 2
20.在公差为 d 的等差数列{an}中,已知 a1=10,且 a1,2a2+2,5a3 成等比数列.
高考文科数学试题分类汇编 5:数列
一、选 择题 1 .已知数列 an 满足 3an 1 an
4 0, a2 , 则an 的前10项和等于 3
C. 3 1-3
A. -6 1-3
-10
B.
1 1-3-10 9
-10
D. 3 1+3
-10
2 .设 S n 为等差数列
d1 , d 2 ,, d n 1 是等比数列;
(Ⅲ)设 d1 , d 2 ,, d n 1 是公差大于 0 的等差数列,且 d1 0 ,证明: a1 , a2 ,, an 1 是等差 数列
高中数学--数列大题专项训练(含详解)

高中数学--数列大题专项训练(含详解)一、解答题(本大题共16小题,共192.0分)1.已知{}n a 是等比数列,满足12a =,且2a ,32a +,4a 成等差数列,数列{}n b 满足*1231112()23n b b b b n n N n+++⋅⋅⋅+=∈(1)求{}n a 和{}n b 的通项公式;(2)设(1)()n n n n c a b =--,求数列{}n c 的前2n 项和2.n S 2.已知数列{}n a 的前n 项和为n S ,且233.n n S a +=(1)求数列{}n a 的通项公式;(2)若32log n n n b a a +=⋅,求数列{}n b 的前n 项和.n T 3.在数列{}n a 中,111,(1n n n a a a c c a +==⋅+为常数,*)n N ∈,且1a ,2a ,5a 成公比不为1的等比数列.(1)求证:数列1{}na 是等差数列;(2)求c 的值;(3)设1n n n b a a +=,求数列{}n b 的前n 项和.n S4.在ABC 中,已知三内角A ,B ,C 成等差数列,且11sin().214A π+=()Ⅰ求tan A 及角B 的值;()Ⅱ设角A ,B ,C 所对的边分别为a ,b ,c ,且5a =,求b ,c 的值.5.在数列{}n a 中,11a =,11(1)(1)2nn n a a n n +=+++⋅(1)设n n a b n=,求数列{}n b 的通项公式(2)求数列{}n a 的前n 项和nS 6.已知数列的各项均为正数,前项和为,且()Ⅰ求证数列是等差数列;()Ⅱ设求7.已知数列{}n a 的前n 项和为n S ,且22n n a a S S =+对一切正整数n 都成立.(1)求1a ,2a 的值;(2)设10a >,数列110lg n a a ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,当n 为何值时,n T 最大?并求出n T 的最大值.8.已知等差数列{}n a 的前四项和为10,且2a ,3a ,7a 成等比数列.(1)求通项公式na (2)设2n a nb =,求数列n b 的前n 项和.n S 9.已知在数列{}n a 中,13a =,1(1)1n n n a na ++-=,*.n N ∈(1)证明数列{}n a 是等差数列,并求n a 的通项公式;(2)设数列11{}n n a a +的前n 项和为n T ,证明:1.(126n T <分)10.已知函数2(1)4f x x +=-,在等差数列{}n a 中,1(1)a f x =-,232a =-,3().a f x =(1)求x 的值;(2)求数列{}n a 的通项公式.n a 11.已知数列{}n a 是公比大于1的等比数列,1a ,3a 是函数2()109f x x x =-+的两个零点.(1)求数列{}n a 的通项公式;(2)若数列{}n b 满足3log n n b a n =+,求数列{}n b 的前n 项和n S 。
高考数学数列大题训练50题含答案解析

高考数学《数列》大题训练50题1 .数列{n a }的前n 项和为n S ,且满足11a =,2(1)n n S n a =+.(1)求{n a }的通项公式; (2)求和T n =1211123(1)na a n a ++++.2 .已知数列}{n a ,a 1=1,点*))(2,(1N n a a P n n ∈+在直线0121=+-y x 上. (1)求数列}{n a 的通项公式;(2)函数)2*,(1111)(321≥∈++++++++=n N n a n a n a n a n n f n且 ,求函数)(n f 最小值. 3 .已知函数xab x f =)( (a ,b 为常数)的图象经过点P (1,81)和Q (4,8)(1) 求函数)(x f 的解析式;(2) 记a n =log 2)(n f ,n 是正整数,n S 是数列{a n }的前n 项和,求n S 的最小值。
4 .已知y =f (x )为一次函数,且f (2)、f (5)、f (4)成等比数列,f (8)=15.求n S =f (1)+f (2)+…+f (n )的表达式.5 .设数列{}n a 的前n 项和为n S ,且1n n S c ca =+-,其中c 是不等于1-和0的实常数.(1)求证: {}n a 为等比数列;(2)设数列{}n a 的公比()q f c =,数列{}n b 满足()()111,,23n n b b f b n N n -==∈≥,试写出1n b ⎧⎫⎨⎬⎩⎭的通项公式,并求12231n n b b b b b b -+++的结果.6 .在平面直角坐标系中,已知A n (n,a n )、B n (n,b n )、C n (n -1,0)(n ∈N *),满足向量1+n n A A 与向量n n C B 共线,且点B n (n,b n ) (n ∈N *)都在斜率为6的同一条直线上. (1)试用a 1,b 1与n 来表示a n ;(2)设a 1=a ,b 1=-a ,且12<a ≤15,求数列{a n }中的最小项.7 .已知数列{}n a 的前三项与数列{}n b 的前三项对应相同,且212322a a a +++ (1)2n n a -+8n =对任意的∈n N*都成立,数列1{}n n b b +-是等差数列.(1)求数列{}n a 与{}n b 的通项公式;(2)问是否存在k ∈N *,使得(0,1)k k b a -∈?请说明理由.8 .已知数列),3,2(1335,}{11 =-+==-n a a a a nn n n 且中(I )试求a 2,a 3的值;(II )若存在实数}3{,nn a λλ+使得为等差数列,试求λ的值. 9 .已知数列{}n a 的前n 项和为n S ,若()1,211++=⋅=+n n S a n a n n ,(1)求数列{}n a 的通项公式;(2)令n nn S T 2=,∈当n 为何正整数值时,1+>n n T T :∈若对一切正整数n ,总有m T n ≤,求m 的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.(本题满分14分)设数列{}n a 的前n 项和为n S ,且34-=n n a S (1,2,)n =, (1)证明:数列{}n a 是等比数列;
(2)若数列{}n b 满足1(1,2,)n n n b a b n +=+=,12b =,求数列{}n b 的通项公式.
2.(本小题满分12分)
等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== 1.求数列{}n a 的通项公式.
2.设 31323log log ......log ,n n b a a a =+++求数列1n b ⎧⎫
⎨⎬⎩⎭
的前项和.
3.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式; (2) 令n n b na =,求数列的前n 项和n S
4.已知等差数列{a n}的前3项和为6,前8项和为﹣4.
(Ⅰ)求数列{a n}的通项公式;
(Ⅱ)设b n=(4﹣a n)q n﹣1(q≠0,n∈N*),求数列{b n}的前n项和S n.
5.已知数列{a n}满足,,n∈N×.
(1)令b n=a n+1﹣a n,证明:{b n}是等比数列;
(2)求{a n}的通项公式.
1.解:(1)证:因为34-=n n a S (1,2,)n =,则3411-=--n n a S (2,3,)n =, 所以当2n ≥时,1144n n n n n a S S a a --=-=-, 整理得14
3
n n a a -=
. 5分 由34-=n n a S ,令1n =,得3411-=a a ,解得11=a .
所以{}n a 是首项为1,公比为4
3
的等比数列. 7分
(2)解:因为14
()3
n n a -=,
由1(1,2,)n n n b a b n +=+=,得114
()3
n n n b b -+-=. 9分
由累加得)()()(1231`21--++-+-+=n n n b b b b b b b b
=1)34(33
41)34(1211
-=--+--n n ,
(2≥n ),
当n=1时也满足,所以1)3
4
(31-=-n n b .
2.解:(Ⅰ)设数列{a n }的公比为q ,由23269a a a =得32
34
9a a =所以21
9
q =。
有条件可知a>0,故13
q =。
由12231a a +=得12231a a q +=,所以113a =。
故数列{a n }的通项式为a n =1
3
n 。
(Ⅱ )111111log log ...log n b a a a =+++
(12...)
(1)
2
n n n =-++++=-
故
12112()(1)1
n b n n n n =-=--++ 12111111112...2((1)()...())22311
n n b b b n n n +++=--+-++-=-++
所以数列1
{}n
b 的前n 项和为21n n -+
3.解:
(Ⅰ)由已知,当n ≥1时,
111211[()()()]n n n n n a a a a a a a a ++-=-+-+
+-+
21233(222)2n n --=++
++
2(1)12n +-=。
而 12,a =
所以数列{n a }的通项公式为212n n a -=。
(Ⅱ)由212n n n b na n -==⋅知
35211222322n n S n -=⋅+⋅+⋅+
+⋅ ①
从而
23572121222322n n S n +⋅=⋅+⋅+⋅++⋅ ②
①-②得
2352121(12)22222n n n S n -+-⋅=+++
+-⋅ 。
即 211
[(31)22]9
n n S n +=-+
4.解:(1)设{a n }的公差为d ,
由已知得
解得a 1=3,d=﹣1 故a n =3+(n ﹣1)(﹣1)=4﹣n ;
(2)由(1)的解答得,b n =n•q n ﹣
1,于是
S n =1•q 0+2•q 1+3•q 2+…+(n ﹣1)•q n ﹣
1+n•q n . 若q≠1,将上式两边同乘以q ,得
qS n =1•q 1+2•q 2+3•q 3+…+(n ﹣1)•q n +n•q n+1. 将上面两式相减得到
(q ﹣1)S n =nq n ﹣(1+q+q 2+…+q n ﹣
1)
=nq n﹣
于是S n=
若q=1,则S n=1+2+3+…+n=
所以,S n=
5.解:(1)证b1=a2﹣a1=1,
当n≥2时,
所以{b n}是以1为首项,为公比的等比数列.
(2)解由(1)知,
当n≥2时,a n=a1+(a2﹣a1)+(a3﹣a2)++(a n﹣a n﹣1)=1+1+(﹣)+…+ ===,当n=1时,.
所以.。