高中数学必修1 函数的值域练习

合集下载

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题(带答案)

高中数学必修一第五章三角函数必须掌握的典型题单选题1、若函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减,则ω=( ). A .1B .32C .2D .3答案:B分析:根据f (π3)=1以及周期性求得ω.依题意函数f(x)=sinωx (ω>0),在区间[0,π3]上单调递增,在区间[π3,π2]上单调递减, 则{f (π3)=sin π3ω=1T 2=πω≥π3, 即{π3ω=2kπ+π2,k ∈Z 0<ω≤3 ,解得ω=32.故选:B2、设函数f(x)=2sin (ωx +φ)−1(ω>0),若对于任意实数φ,f(x)在区间[π4,3π4]上至少有2个零点,至多有3个零点,则ω的取值范围是( ) A .[83,163)B .[4,163)C .[4,203)D .[83,203) 答案:B分析:t =ωx +φ,只需要研究sint =12的根的情况,借助于y =sint 和y =12的图像,根据交点情况,列不等式组,解出ω的取值范围. 令f(x)=0,则sin (ωx +φ)=12 令t =ωx +φ,则sint =12则问题转化为y =sint 在区间[π4ω+φ,3π4ω+φ]上至少有两个,至少有三个t ,使得sint =12,求ω的取值范围.作出y =sint 和y =12的图像,观察交点个数,可知使得sint =12的最短区间长度为2π,最长长度为2π+23π, 由题意列不等式的:2π≤(3π4ω+φ)−(π4ω+φ)<2π+23π 解得:4≤ω<163.故选:B小提示:研究y =Asin (ωx +φ)+B 的性质通常用换元法(令t =ωx +φ),转化为研究y =sint 的图像和性质较为方便.3、cos 2π12−cos 25π12=( ) A .12B .√33C .√22D .√32 答案:D分析:由题意结合诱导公式可得cos 2π12−cos 25π12=cos 2π12−sin 2π12,再由二倍角公式即可得解. 由题意,cos 2π12−cos 25π12=cos 2π12−cos 2(π2−π12)=cos 2π12−sin 2π12=cos π6=√32. 故选:D.4、已知α ∈(0,π),且3cos 2α−8cos α=5,则sin α=( ) A .√53B .23 C .13D .√59 答案:A分析:用二倍角的余弦公式,将已知方程转化为关于cosα的一元二次方程,求解得出cosα,再用同角间的三角函数关系,即可得出结论.3cos2α−8cosα=5,得6cos 2α−8cosα−8=0,即3cos 2α−4cosα−4=0,解得cosα=−23或cosα=2(舍去),又∵α∈(0,π),∴sinα=√1−cos 2α=√53. 故选:A.小提示:本题考查三角恒等变换和同角间的三角函数关系求值,熟记公式是解题的关键,考查计算求解能力,属于基础题.5、已知f (x )=2√3sinwxcoswx +2cos 2wx ,(w >0),若函数在区间(π2,π)内不存在对称轴,则w 的范围为( )A .(0,16]∪[13,34]B .(0,13]∪[23,34] C .(0,16]∪[13,23]D .(0,13]∪[23,56]答案:C分析:先通过三角恒等变换将f (x )化简成正弦型函数,再结合正弦函数性质求解即可. 函数化简得f (x )=√3sin2wx +cos2wx +1=2sin (2wx +π6)+1, 由2wx +π6=kπ+π2(k ∈Z ),可得函数的对称轴为x =kπ+π32w(k ∈Z ), 由题意知,kπ+π32w≤π2且(k+1)π+π32w≥π,即k +13≤w ≤3k+46,k ∈Z ,若使该不等式组有解, 则需满足k +13≤3k+46,即k ≤23,又w >0,故0≤3k+46,即k >−43,所以−43<k ≤23,又k ∈Z ,所以k =0或k =1,所以w ∈(0,16]∪[13,23].6、将一条闭合曲线放在两条平行线之间,无论这条闭合曲线如何运动,只要它与两平行线中的一条直线只有一个交点,就必与另一条直线也只有一个交点,则称此闭合曲线为等宽曲线,这两条平行直线间的距离叫等宽曲线的宽比.如圆所示就是等宽曲线.其宽就是圆的直径.如图所示是分别以A 、B 、C 为圆心画的三段圆弧组成的闭合曲线Γ(又称莱洛三角形),下列关于曲线Γ的描述中,正确的有( ) (1)曲线Γ不是等宽曲线;(2)曲线Γ是等宽曲线且宽为线段AB 的长; (3)曲线Γ是等宽曲线且宽为弧AB 的长; (4)在曲线Γ和圆的宽相等,则它们的周长相等; (5)若曲线Γ和圆的宽相等,则它们的面积相等.A .1个B .2个C .3个D .4个 答案:B分析:若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12,根据定义逐项判断即可得出结论. 若曲线Γ和圆的宽相等,设曲线Γ的宽为1,则圆的半径为12, (1)根据定义,可以得曲线Γ是等宽曲线,错误; (2)曲线Γ是等宽曲线且宽为线段AB 的长,正确; (3)根据(2)得(3)错误;(4)曲线Γ的周长为3×16×2π=π,圆的周长为2π×12=π,故它们的周长相等,正确; (5)正三角形的边长为1,则三角形对应的扇形面积为π×126=π6,正三角形的面积S =12×1×1×√32=√34, 则一个弓形面积S =π6−√34, 则整个区域的面积为3(π6−√34)+√34=π2−√32, 而圆的面积为π(12)2=π4,不相等,故错误;综上,正确的有2个, 故选:B.小提示:本题主要考查新定义,理解“等宽曲线”得出等边三角形是解题的关键.7、已知函数f(x)=2sin (x +π4)+m 在区间(0,π)上有零点,则实数m 的取值范围为( )A .(−√2,√2)B .(−√2,2]C .[−2,√2]D .[−2,√2) 答案:D分析:令f(x)=0,则2sin (x +π4)=−m ,令g (x )=2sin (x +π4),根据x 的取值范围求出g (x )的值域,依题意y =g (x )与y =−m 在(0,π)上有交点,即可求出参数的取值范围; 解:令f(x)=0,即2sin (x +π4)=−m ,令g (x )=2sin (x +π4), 因为x ∈(0,π),所以x +π4∈(π4,5π4),所以sin (x +π4)∈(−√22,1],即g (x )∈(−√2,2],依题意y =g (x )与y =−m 在(0,π)上有交点,则−√2<−m ≤2,所以−2≤m <√2,即m ∈[−2,√2); 故选:D8、已知函数f(x)=sin2x +√3cos2x 的图象向左平移φ个单位长度后,得到函数g(x)的图象,且g(x)的图象关于y 轴对称,则|φ|的最小值为( ) A .π12B .π6C .π3D .5π12 答案:A分析:首先将函数f (x )化简为“一角一函数”的形式,根据三角函数图象的平移变换求出函数g(x)的解析式,然后利用函数图象的对称性建立φ的关系式,求其最小值. f(x)=sin2x +√3cos2x =2sin (2x +π3),所以g(x)=f(x +φ)=2sin [2(x +φ)+π3] =2sin (2x +2φ+π3),由题意可得,g(x)为偶函数,所以2φ+π3=kπ+π2(k ∈Z), 解得φ=kπ2+π12(k ∈Z),又φ>0,所以φ的最小值为π12.故选:A. 多选题9、若函数f (x )=√2sinxcosx +√2cos 2x −√22,则下列说法正确的是( ) A .函数y =f (x )的图象可由函数y =sin2x 的图象向右平移π4个单位长度得到 B .函数y =f (x )的图象关于直线x =−3π8对称 C .函数y =f (x )的图象关于点(−3π8,0)对称D .函数y =x +f (x )在(0,π8)上为增函数 答案:BD分析:由三角函数的恒等变换化简f (x )=sin (2x +π4),再由三角函数的平移变换可判断A ;求出f (−3π8)=−1可判断B 、C ;先判断y =f (x )在(0,π8)上为增函数,即可判断y =x +f (x )在(0,π8)的单调性.由题意,f (x )=√2sinxcosx +√2cos 2x −√22=√22sin2x +√22cos2x =sin (2x +π4).函数y =sin2x 的图象向右平移π4个单位长度可得到f (x )=sin2(x −π4)=sin (2x −π2)=−cos2x ,故A 错误;f (−3π8)=sin [2×(−3π8)+π4]=−1,所以函数y =f (x )的图象关于直线x =−3π8对称,故B 正确,C 错误; 函数y =x 在(0,π8)上为增函数,x ∈(0,π8)时,2x +π4∈(π4,π2),故函数f (x )在(0,π8)上单调递增,所以函数y =x +f (x )在(0,π8)上为增函数,故D 正确. 故选:BD .10、已知函数f (x )=sinxcosx −cos 2x ,则( ) A .函数f (x )在区间(0,π8)上为增函数B .直线x =3π8是函数f (x )图像的一条对称轴C .函数f (x )的图像可由函数y =√22sin2x 的图像向右平移π8个单位得到 D .对任意x ∈R ,恒有f (π4+x)+f (−x )=−1 答案:ABD解析:首先利用二倍角的正弦与余弦公式可得f (x )=√22sin (2x −π4)−12,根据正弦函数的单调递增区间可判断A ;根据正弦函数的对称轴可判断B ;根据三角函数图像的平移变换的原则可判断C ;代入利用诱导公式可判断D. f (x )=12sin2x −1+cos2x2=√22sin (2x −π4)−12.当x ∈(0,π8)时,2x −π4∈(−π4,0),函数f (x )为增函数,故A 中说法正确;令2x −π4=π2+kπ,k ∈Z ,得x =3π8+kπ2,k ∈Z ,显然直线x =3π8是函数f (x )图像的一条对称轴,故B 中说法正确;函数y =√22⋅sin2x 的图像向右平移π8个单位得到函数y =√22⋅sin [2(x −π8)]=√22sin (2x −π4)的图像,故C 中说法错误; f (π4+x)+f(−x)=√22sin (2x +π4)−12+√22sin (−2x −π4) −12=√22sin (2x +π4)−√22sin (2x +π4)−1=−1,故D 中说法正确. 故选:ABD.小提示:本题是一道三角函数的综合题,考查了二倍角公式以及三角函数的性质、图像变换,熟记公式是关键,属于基础题.11、若角α的终边在直线y =−2x 上,则sinα的可能取值为( ) A .√55B .−√55C .2√55D .−2√55答案:CD分析:利用三角函数的定义,分情况讨论sinα的可能取值. 设角α的终边y =−2x 上一点(a,−2a ), 当a >0时,则r =√5a ,此时sinα=y r=−2√55, 当a <0时,则r =−√5a ,此时sinα=y r=2√55, 故选:CD 填空题12、若cos 2θ=14,则sin 2θ+2cos 2θ的值为____. 答案:138##158分析:利用二倍角公式后,代入求解.∵cos2θ=14,∴sin2θ+2cos2θ=1−cos2θ2+1+cos2θ=32+12cos2θ=32+12×14=138.所以答案是:138.13、求值:sin10°−√3cos10°cos40°=____________.答案:−2分析:应用辅助角公式及诱导公式化简求值即可.sin10°−√3cos10°cos40°=2(12sin10°−√32cos10°)cos40°=2sin(10°−60°)cos40°=−2sin50°cos40°=−2.所以答案是:−214、函数f(x)=sinx−√3cosx的严格增区间为________.答案:[2kπ−π6,2kπ+5π6],k∈Z分析:利用辅助角公式将f(x)化为f(x)=2sin(x+π3),然后由三角函数单调区间的求法,求得函数f(x)的单调区间.依题意f(x)=sinx−√3cosx=2sin(x−π3),由2kπ−π2≤x−π3≤2kπ+π2,k∈Z,解得2kπ−π6≤x≤2kπ+5π6,k∈Z,所以f(x)单调递增区间为[2kπ−π6,2kπ+π6](k∈Z).所以答案是:[2kπ−π6,2kπ+5π6](k∈Z)解答题15、设函数f(x)=sinx+cosx(x∈R).(1)求函数y=[f(x+π2)]2的最小正周期;(2)求函数y=f(x)f(x−π4)在[0,π2]上的最大值.答案:(1)π;(2)1+√22.分析:(1)由题意结合三角恒等变换可得y=1−sin2x,再由三角函数最小正周期公式即可得解;(2)由三角恒等变换可得y=sin(2x−π4)+√22,再由三角函数的图象与性质即可得解.(1)由辅助角公式得f(x)=sinx+cosx=√2sin(x+π4),则y=[f(x+π2)]2=[√2sin(x+3π4)]2=2sin2(x+3π4)=1−cos(2x+3π2)=1−sin2x,所以该函数的最小正周期T=2π2=π;(2)由题意,y=f(x)f(x−π4)=√2sin(x+π4)⋅√2sinx=2sin(x+π4)sinx=2sinx⋅(√22sinx+√22cosx)=√2sin2x+√2sinxcosx=√2⋅1−cos2x2+√22sin2x=√22sin2x−√22cos2x+√22=sin(2x−π4)+√22,由x∈[0,π2]可得2x−π4∈[−π4,3π4],所以当2x−π4=π2即x=3π8时,函数取最大值1+√22.。

高中数学必修一函数的值域求法

高中数学必修一函数的值域求法

最新精题高一数学必修一函数的值域2配方法]?3,5x??x2x?(求函数y?3例1. 的值域;2的表达式,f(a),记∈[0,1]f(a)为其最小值,求-练习已知函数y=-3x+2ax1,x 的最大值并求f(a)2?6x?5x函数y??求2. 的值域;例,的函数为常数d?且a0)、、、(????yaxbcxdabc换元法:形如;常用换元法求值域x?y214x?? 3. 例的值域求函数利用函数的单调性求函数的值域2?y6] 上的最大值和最小值.在区间例4求函数[2,1x?2)的取值范围是(在R上单调递增,且f(m )>f(-m),则实数m1练习函数y=f(x) )∞,-1 )∪( 0,+C.(-1,0 ) D. (-∞A. (-∞,-1 ) B. ( 0,+∞)2x+2-1-x 的最大值为,最小值为y= 。

[0,1]2.已知x∈,则函数3.若函数y=f(x)的值域是[-2,3],则函数y=∣f(x)∣的值域是()A.[-2,3] B.[2,3] C.[0,2] D.[0,3]2ax?bx?c;判别式法:形如111域y)的函数用判别式法求值不同时为零(a?,a212ax?bx?c2221的值域;求函数例4 ?y?x xcx?d(a?0)y?分离常数法:形如的函数也可用此法求值域;bax?13x??y例5求函数的值域;2x?数形结合法。

的值域?4|x?1|?|x|y? 6求函数(方法一可用到图象法)例2xxxy( ),3],的最大值、最小值分别为1.函数∈=4[0-当堂检测30 (D)4,0 (B)2,0 (C)3,(A)4,1( ).函数的最小值为2?y2xx?1(D)4(B)1(A)(C)2 232)(xy??)〕上的最大值、最小值分别是( 3、函数在区间〔0,52?x33333,,0,0 B.,无最小值。

D. A. C. 最大值72727)(ff(x)的值域为[a,b],则(x+a)的值域为.定义域为4R的函数y =] ba+[-a,a[0,b-a] C.[,b] D.[2A.a,a+b] B.)(-.函数5y=x+2x1的值域是11 0} |y≤.y.{y|y≤} C.{|y≥0} D{y B|A.{yy≥} 22252]?[?4,,则m,值域为的定义域为[0,m]的取值范围是()6.若函数y=x-3x-44333),??[,4]],[3(]0(,4 D A B C 2222xxyx (27.函数=4--1 ∈-.______3)2,的值域为2.______8.函数的值域为x?x2?y???2。

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

人教版高中数学必修一知识点与典型习题——第二部分-函数(含答案)

2015-2016高一上学期期末复习知识点与典型例题人教数学必修一 第二部分 函数1、函数的定义域、值域2、判断相同函数3、分段函数4、奇偶性5、单调性1.定义域 值域(最值) 1.函数()()3log 3f x x =++的定义域为____________________ 2.函数22()log (23)f x x x 的定义域是( )(A) [3,1] (B) (3,1) (C) (,3][1,)-∞-+∞ (D) (,3)(1,)-∞-+∞3.2()23,(1,3]f x x x x =-+∈-的值域为____________________ 4.若函数21()2f x x x a =-+的定义域和值域均为[1,](1)b b >,求a 、b 的值.2.函数相等步骤:1、看定义域是否相等; 2、看对应关系(解析式)能否化简到相同1.下列哪组是相同函数?2(1)(),()x f x x g x x ==(2)()()f x x g x ==,2(3)()2lg ,()lg f x x g x x ==(4)(),()f x x g x ==3.分段函数基本思路:分段讨论 (1)求值问题1.24(),(5)(1)4xx f x f f x x ⎧<==⎨-≥⎩已知函数则_______________ 2.设函数211()21x x f x x x⎧+≤⎪=⎨>⎪⎩,则=))3((f f ______________(2)解方程1.2log ,11(),()1,12x x f x f x x x >⎧==⎨-≤⎩已知函数则的解为_________________2.已知⎩⎨⎧>-≤+=)0(2)0(1)(2x x x x x f ,若()10f x =,则x = .(3)解不等式1.21,0(),()1,0x f x f x x x x ⎧>⎪=>⎨⎪≤⎩已知函数则的解集为__________________2.2log ,0(),()023,0x x f x f x x x >⎧=>⎨+≤⎩已知函数则的解集为__________________(4)作图、求取值范围(最值)1.24-x ,0()2,012,0x f x x x x ⎧>⎪==⎨⎪-<⎩已知函数.(1)作()f x 的图象;(2)求2(1)f a +,((3))f f 的值;(3)当43x -≤<,求()f x 的取值集合(5)应用题(列式、求最值)1.为方便旅客出行,某旅游点有50辆自行车供租赁使用,管理这些自行车的费用是每日115元.根据经验,若每辆自行车的日租金不超过6元,则自行车可以全部租出;若超过6元,则每超过1元,租不出去的自行车就增加3辆,为了便于结算,每辆自行车的日租金x(元)只取整数,并且要求出租自行车一日的总收入必须高于这一日的管理费用,用y (元)表示出租自行车的日净收入(即一日中出租自行车的总收入减去管理费用后的所得), (1)求函数f(x)的解析式及其定义域;(2)试问当每辆自行车的日租金定为多少元时,才能使一日的净收入最多?4.函数的单调性(1)根据图像判断函数的单调性——单调递增:图像上升 单调递减:图像下降 1.下列函数中,在区间(0,)+∞上为增函数的是( )A .ln(2)y x =+ B.y =.1()2xy = D .1y x x=+2.下列函数中,在其定义域内为减函数的是( )A .3y x =- B .12y x = C .2y x = D .2log y x =(2)证明函数的单调性步骤——取值、作差12()()f x f x -、变形、定号、下结论 1.已知函数11()(0,0)f x a x a x=->>. (1)求证:()f x 在(0,)+∞上是单调递增函数;(2)若()f x 在1[,2]2上的值域是1[,2]2,求a 的值.(3)利用函数的单调性求参数的范围1.2()2(1)2(2]f x x a x =+-+-∞在,上是减函数,则a 的范围是________2.若函数⎪⎩⎪⎨⎧<-≥-=2,1)21(,2,)2()(x x x a x f x 是R 上的单调递减函数,则实数a 的取值范围为( )A .)2,(-∞B .]813,(-∞ C .)2,0( D .)2,813[3.讨论函数223f(x)x ax =-+在(2,2)-内的单调性(4)利用函数的单调性解不等式1.()f x 是定义在(0,)+∞上的单调递增函数,且满足(32)(1)f x f -<,则实数x 的取值范围是( ) A . (,1)-∞ B . 2(,1)3 C .2(,)3+∞ D . (1,)+∞ 2.2()[1,1](1)(1)f x f m f m m --<-若是定义在上的增函数,且,求的范围(5)奇偶性、单调性的综合1.奇函数f(x)在[1,3]上为增函数,且有最小值7,则它在[-3,-1]上是____函数,有最___值___. 2.212()(11)()125ax b f x f x +=-=+函数是,上的奇函数,且. (1)确定()f x 的解析式;(2)用定义法证明()f x 在(1,1)-上递增;(3)解不等式(1)()0f t f t -+>.3.f(x)是定义在( 0,+∞)上的增函数,且()()()xf f x f y y=-(1)求f (1)的值.(2)若f (6)= 1,解不等式 f ( x +3 )-f (x1) <2 .5.函数的奇偶性(1)根据图像判断函数的奇偶性奇函数:关于原点对称;偶函数:关于y 轴对称 例:判断下列函数的奇偶性① y=x ³ ② y=|x|(2)根据定义判断函数的奇偶性一看定义域是否关于原点对称;二看()f x -与()f x 的关系1.设函数)(x f 和)(x g 分别是R 上的偶函数和奇函数,则下列结论恒成立的是( ) A .)()(x g x f +是偶函数 B .)()(x g x f -是奇函数 C .)()(x g x f +是偶函数 D .)()(x g x f -是奇函数 2.已知函数()log (1)log (1)(01)a a f x x x a a =+-->≠且 (1)求()f x 的定义域;(2)判断()f x 的奇偶性并予以证明。

高一数学必修一函数练习题

高一数学必修一函数练习题

高一数学必修一函数练习题函数是高中数学中非常重要的概念,它描述了两个集合之间的一种对应关系。

下面为高一学生准备了一系列函数练习题,以帮助学生更好地理解和掌握函数的基本概念和性质。

练习题一:函数的定义域与值域1. 给定函数 \( f(x) = \frac{1}{x - 2} \),求其定义域。

2. 对于函数 \( g(x) = x^2 - 4x + 3 \),找出其值域。

练习题二:函数的单调性1. 判断函数 \( h(x) = x^3 - 3x \) 在 \( x \in (-\infty,\infty) \) 上的单调性。

2. 若函数 \( k(x) = 2x - 1 \) 在 \( x \in [0, 2] \) 上单调递增,求 \( k(x) \) 在 \( x \in [2, 4] \) 上的单调性。

练习题三:函数的奇偶性1. 判断函数 \( f(x) = |x| \) 是否为奇函数或偶函数。

2. 若函数 \( g(x) = x^2 + 1 \) 是偶函数,求证。

练习题四:复合函数1. 已知 \( f(x) = x^2 \) 和 \( g(x) = x + 3 \),求复合函数\( (f \circ g)(x) \)。

2. 若 \( h(x) = \sqrt{x} \) 和 \( k(x) = x - 1 \),求 \( (h \circ k)(x) \)。

练习题五:反函数1. 若 \( f(x) = 2x + 1 \),求其反函数 \( f^{-1}(x) \)。

2. 对于函数 \( g(x) = x^2 \),讨论其反函数的存在性。

练习题六:函数的图像与性质1. 画出函数 \( y = |x - 1| \) 的图像,并标出其顶点坐标。

2. 对于函数 \( y = x^3 \),描述其在 \( x = 0 \) 附近的图像变化趋势。

练习题七:函数的实际应用1. 某工厂生产的产品数量与时间的关系为 \( P(t) = 100t - 5t^2 \),求出生产量达到最大时的时间。

高中数学求值域练习题

高中数学求值域练习题

高中数学求值域练习题1. 基础练习题- 求函数 \( f(x) = x^2 \) 的值域。

- 求函数 \( g(x) = 2x + 3 \) 的值域。

2. 中等难度练习题- 已知函数 \( h(x) = \sqrt{x - 1} \),求其值域。

- 求函数 \( k(x) = \frac{1}{x} \) 在 \( x > 0 \) 时的值域。

3. 高级难度练习题- 求函数 \( m(x) = \sin(x) \) 的值域。

- 求函数 \( n(x) = x^3 - 3x \) 的值域。

4. 应用题- 某公司产品的成本函数为 \( C(x) = 100 + 20x \),其中 \( x \) 表示生产数量。

求出当生产数量在 0 到 50 之间时,成本函数的值域。

- 某商品的售价与需求量成反比,即 \( P(x) = \frac{1000}{x} \),其中 \( x \) 表示需求量。

如果需求量在 10 到 100 之间,求售价函数的值域。

5. 综合练习题- 已知函数 \( f(x) = \sqrt{x + 1} + \frac{1}{x - 2} \),求其值域。

- 求函数 \( g(x) = \log_{2}(x - 1) \) 的值域。

解答提示:- 对于基础题,直接根据函数的性质判断其值域即可。

- 对于中等难度题,需要考虑函数的定义域,并利用函数的性质来求解。

- 高级难度题通常需要使用微积分知识,如导数,来找到函数的极值点,进而确定值域。

- 应用题需要结合实际情境,将函数与实际问题联系起来,求解其值域。

- 综合练习题需要综合运用以上知识,考虑函数的复合、变换等因素。

练习题答案:1. \( f(x) = x^2 \) 的值域是 \( [0, +\infty) \)。

2. \( g(x) = 2x + 3 \) 的值域是 \( (-3, +\infty) \)。

3. \( h(x) = \sqrt{x - 1} \) 的值域是 \( [0, +\infty) \)。

(必考题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

(必考题)高中数学必修一第二单元《函数》测试卷(答案解析)(1)

一、选择题1.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2D .3,24⎡⎫⎪⎢⎣⎭2.下列函数中既是奇函数,又在区间[]1,1-上单调递减的是( )A .1()()2xf x =B .()lg f x x =C .()f x x =-D .1()f x x=3.已知函数()y f x =是定义在R 上的单调函数,()0,2A ,()2,2B -是其函数图像上的两点,则不等式()12f x ->的解集为( ) A .()1,3 B .()(),31,-∞-⋃+∞ C .()1,1-D .()(),13,-∞+∞4.下列函数中,在其定义域内既是奇函数又是减函数的是( ) A .1y x=B.y =C .2x y =D .||y x x =-5.已知2()25x f x +=-,()()20g x ax a =+>,若对任意的[]11,2x ∈-,存在[]00,1x ∈,使()()10g x f x =,则a 的取值范围是( )A .1(0,]2B .1[,3]2C .[)3,+∞D .(]0,36.符号[]x 表示不超过x 的最大整数,如[]3π=,[]1.082-=-,定义函数{}[]x x x =-.给出下列结论:①函数{}x 的定义域是R ,值域为0,1;②方程{}12x =有无数个解;③函数{}x 是增函数;④函数{}x 为奇函数,其中正确结论的个数是( )A .0B .1C .2D .37.若函数2()34f x x x =--的定义域为[]0m ,,值域为2544⎡⎤--⎢⎥⎣⎦,,则m 的取值范围是( ) A .3,42⎡⎤⎢⎥⎣⎦B .3,32⎡⎤⎢⎥⎣⎦C .(]0,4 D .3,2⎡⎫+∞⎪⎢⎣⎭8.若函数()f x =的值域为0,,则实数m 的取值范围是( )A .()1,4B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 9.已知函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,则m 的值为( ) A .1或3B .3或134C .3D .13410.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃11.已知偶函数()f x 在 [0,)+∞上是增函数,且(2)0f =,则不等式 (1)0f x +<的解集是( ) A .[0,2)B .[]3,1-C .(1,3)-D .(2,2)-12.定义{},,max a b c 为,,a b c 中的最大值,设()28,,63⎧⎫=-⎨⎬⎩⎭h x max x x x ,则()h x 的最小值为( ) A .1811B .3C .4811D .4二、填空题13.已知函数211,0,22()13,,12x x f x x x ⎧⎡⎫+∈⎪⎪⎢⎪⎣⎭=⎨⎡⎤⎪∈⎢⎥⎪⎣⎦⎩,若存在12x x <,使得()()12f x f x =,则()12x f x ⋅的取值范围为_____________.14.函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数,则实数a 取值范围为________.15.()f x 为定义在R 上的偶函数,2()()2=-g x f x x 在区间[0,)+∞上是增函数,则不等式()1246()f x f x x +-+>--的解集为___________. 16.自然下垂的铁链;空旷的田野上,两根电线杆之间的电线等这些现象中都有相似的曲线形态.事实上,这些曲线在数学上常常被称为悬链线.悬链线的相关理论在工程、航海、光学等方面有广泛的应用.在恰当的坐标系中,这类函数的表达式可以为()xxf ae ex b -=+(其中a ,b 是非零常数,无理数 2.71828e =…)(1)如果()f x 为单调函数.写出满足条件的一-组值:a =______,b =______. (2)如果()f x 的最小值为2,则+a b 的最小值为______.17.定义在R 上的奇函数()f x 在(0,)+∞上是增函数,又(3)0f -=,则不等式()0xf x <的解集为______. 18.函数21y ax ax =++R ,则a 的取值范围是_________.19.已知函数()2()10f x x ax a =++>,若“()f x 的值域为[)0,+∞”为真命题,则()3f =________.20.若4183y x x =--y 的取值范围是________三、解答题21.已知函数()21axf x x =-(0a ≠). (1)判断函数()f x 的奇偶性并给予证明;(2)若函数()f x 满足()1242f f ⎛⎫-= ⎪⎝⎭,判断函数()f x 在区间()1,+∞的单调性,并用单调性的定义证明.22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式. 23.已知a R ∈,函数2()25f x x ax =-+.(1)若不等式()0f x >对任意的x ∈R 恒成立,求实数a 的取值范围; (2)若1a >,且函数()f x 的定义域和值域都是[1,]a ,求实数a 的值; (3)函数()f x 在区间[1,1]a +的最大值为()g a ,求()g a 的表达式. 24.已知定义在()0,∞+上的函数()f x 满足:①对任意的(),0,x y ∈+∞,都有()()()f xy f x f y =+;②当且仅当1x >时,()0f x <成立.(1)求()1f ;(2)设()12,0,x x ∈+∞,若()()12f x f x <,试比较1x ,2x 的大小关系,并说明理由;(3)若对任意的[]1,1x ∈-,不等式()()22333310xxxx f f m --⎡⎤+≤+-⎣⎦恒成立,求实数m 的取值范围.25.已知一次函数()y f x =满足()12f x x a -=+, . 在所给的三个条件中,任选一个补充到题目中,并解答. ①()5f a =,②142a f ⎛⎫=⎪⎝⎭,③()()41226f f -=. (1)求函数()y f x =的解析式;(2)若()()()g x x f x f x x λ=⋅++在[]0,2上的最大值为2,求实数λ的值. 26.已知函数6()f x x=,2()1g x x =+. (1)求函数()()f g x 的解析式; (2)关于x 的不等式()()af g x x>解集中正整数解恰有3个,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.2.C解析:C 【分析】根据函数的单调性和奇偶性,排除选项得到答案. 【详解】A. 1()()2xf x =,非奇非偶函数,排除;B. ()lg ||lg ||()f x x x f x -=-==,函数为偶函数,排除;C. ()()f x x f x -==-,函数为奇函数,且单调递减,正确;D. 1()()f x f x x-=-=-,函数为奇函数,在[1,0)-和(0,1] 单调递减,排除. 故选:C 【点睛】熟悉函数的单调性和奇偶性是解题关键.3.D解析:D 【分析】根据题意可得出(0)2,(2)2f f ==-,从而得出()f x 在R 上为减函数,从而根据不等式()12f x ->得,(1)(2)f x f -<或(1)(0)f x f ->,从而得出12x ->或10x -<,解出x 的范围 【详解】解:由题意得(0)2,(2)2f f ==-, 因为函数()y f x =是定义在R 上的单调函数, 所以()f x 在R 上为减函数,由()12f x ->,得(1)2f x ->或(1)2f x -<-, 所以(1)(0)f x f ->或(1)(2)f x f -<, 所以10x -<或12x ->, 解得1x <或3x >,所以不等式()12f x ->的解集为()(),13,-∞+∞,故选:D【点睛】关键点点睛:此题考查函数单调性的应用,考查绝对值不等式的解法,解题的关键是把()12f x ->转化为(1)(0)f x f ->或(1)(2)f x f -<,再利用()f x 在R 上为减函数,得10x -<或12x ->,考查数学转化思想,属于中档题4.D解析:D 【分析】利用奇函数的定义和常见基本初等函数的性质,对选项逐一判断即可. 【详解】 选项A 中,函数1y x =,由幂函数性质知1y x=是奇函数,且其在()(),0,0,-∞+∞两个区间上递减,不能说在定义域内是减函数,故错误;选项B 中,函数y =[)0,+∞,不对称,故不具有奇偶性,,且在定义域内是增函数,故错误;选项C 中,指数函数2x y =,22x x -≠,且22x x -≠-,故不是奇函数,故错误;选项D 中,函数22,0,0x x y x x x x ⎧-≥=-=⎨<⎩,记()y f x =,当0x >时,0x -<,故22(),()f x x f x x =--=,故()()f x f x -=-, 当0x =时,(0)0f =,故()()f x f x -=-,当0x <时,0x ->,故22(),()f x x f x x =-=-,故()()f x f x -=-,综上,()y f x =是奇函数,又0x ≥时,2()f x x =-是开口向下的抛物线的一部分,是减函数,由奇函数性质知()y f x =在定义域R 上是减函数,故正确. 故选:D. 【点睛】本题解题关键是熟练掌握常见的基本初等函数的性质,易错点是分段函数奇偶性的判断,分段函数必须判断定义域内的每一段均满足()()f x f x -=-(或()()f x f x -=)才能判定其是奇函数(或偶函数).5.A解析:A 【分析】根据指数函数的性质求出()f x 在[0,1]上的值域A ,利用一次函数的单调性求出()g x 在[1,2]-上的值域B ,由题得B A ⊆,再根据集合的包含关系即可求解.【详解】2()25x f x +=-,[]00,1x ∈,()()min 01f x f ∴==-,()()max 13f x f ==,∴()f x 在[0,1]上的值域为[]1,3A =-,又()2(0)g x ax a =+>在[1,2]-上单调递增,∴()g x 在[1,2]-上的值域为[]2,22B a a =-++,由题意可得B A ⊆,021223a a a >⎧⎪∴-+≥-⎨⎪+≤⎩,解得102a <≤.故选:A 【点睛】本题考查函数的单调性求值域、集合的包含关系求参数的取值范围.探讨方程()()0f x g m -=解的存在性,通常可将方程转化为()()f x g m =,通过确认函数()f x 或()g m 的值域,从而确定参数或变量的范围6.B解析:B 【分析】根据函数性质判断[]x 是一个常见的新定义的形式,按照新定义,符号[]x 表示不超过x 的最大整数,由此可以得到函数的性质,又定义函数{}[]x x x =-,当0x ≥时,表示x 的小数部分,由于①③是错误的,举例可判断②,根据单调性定义可判断④. 【详解】①函数{}x 的定义域是R ,但[]01x x ≤-<,其值域为)01⎡⎣,,故错误; ②由{}[]12x x x =-=,可得[]12x x =+,则 1.52.5x =,……都是方程的解,故正确; ③由②可得{}11.52=,{}12.52=……当 1.52.5x =,……时,函数{}x 的值都为12,故不是增函数,故错误; ④函数{}x 的定义域是R ,而{}[]{}x x x x -=---≠-,故函数不是奇函数,故错误;综上,故正确的是②. 故选:B. 【点睛】本题以新定义函数{}[]x x x =-的意义为载体,考查了分段函数和函数的值域、单调性等性质得综合类问题,在解答的过程中体现了分类讨论和数形结合的思想,还可以利用函数的图象进行解题.7.B解析:B 【分析】求出(0)4f =-,再计算出最小值为32524f ⎛⎫=- ⎪⎝⎭,然后求出()4f m =-的值后可得m 的范围. 【详解】2325()24f x x ⎛⎫=-- ⎪⎝⎭,()f x 在3,2⎛⎫-∞ ⎪⎝⎭上递减,在3,2⎛⎫+∞ ⎪⎝⎭上递增, (0)4f =-,又32524f ⎛⎫=- ⎪⎝⎭,所以32m ≥,由2()344f m m m =--=-解得0m =或3m =, 因此332m ≤≤. 故选:B . 【点睛】方程点睛:本题考查二次函数的性质,掌握其对称轴、单调性是解题关键.由此可得二次函数2()f x ax bx c =++在区间[,]m n 上的最值求法: 设0a >,函数的对称轴0x x =(02bx a=-), 当0x m <时,min ()()f x f m =,0m x n ≤≤时,min 0()()f x f x =,0x n >时,min ()()f x f n =,当02m n x +≤时,max ()()f x f n =,当02m nx +>时,max ()()f x f m =. 0a <类似讨论.8.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.9.D解析:D 【分析】依题意可得()f x 在[]0,2上的最大值为9,求出函数的对称轴,通过讨论m 的范围,求出函数的单调区间,求出函数的最大值,得到关于m 的方程,解出即可. 【详解】解:因为函数()()220f x x mx m =-+>满足:①[]()0,2,9x f x ∀∈≤;②[]()000,2,9x f x ∃∈=,即函数()()220f x x mx m =-+>在[]0,2上的最大值为9,因为222()2()f x x mx x m m =-+=--+,对称轴是x m =,开口向下, 当02m <<时,()f x 在[0,)m 递增,在(m ,2]递减, 故2()()9max f x f m m ===,解得:3m =,不合题意,2m 时,()f x 在[0,2]递增,故()()2449max f x f m ==-=,解得:134m =,符合题意, 故选:D . 【点睛】本题考查了二次函数的性质,考查函数的单调性、最值问题,考查导数的应用,属于中档题.10.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.11.B解析:B 【详解】由()f x 在[0,)+∞上是增函数,且(2)0f = 当0x >时,()0f x <的解集[0,2]; 当时()f x 为减函数,(2)0f -=,()0f x <的解集[2,0]-.综上()0f x <的解集[2,2]-,所以(1)0f x +<满足212,31x x -≤+≤∴-≤≤. 故选:B .12.C解析:C 【分析】首先根据题意画出()h x 的图象,再根据图象即可得到()h x 的最小值. 【详解】 分别画出2yx ,83y x =,6y x =-的图象, 则函数()h x 的图象为图中实线部分.由图知:函数()h x 的最低点为A ,836y x y x ⎧=⎪⎨⎪=-⎩,解得1848,1111⎛⎫⎪⎝⎭A .所以()h x 的最小值为4811. 故选:C. 【点睛】本题主要考查根据函数的图象求函数的最值,考查了数形结合的思想,属于中档题.二、填空题13.【分析】根据条件作出函数图象求解出的范围利用和换元法将变形为二次函数的形式从而求解出其取值范围【详解】由解析式得大致图象如下图所示:由图可知:当时且则令解得:又令则即故答案为:【点睛】思路点睛:根据解析:31,162⎡⎫⎪⎢⎣⎭【分析】根据条件作出函数图象求解出1x 的范围,利用()()12f x f x =和换元法将()12x f x ⋅变形为二次函数的形式,从而求解出其取值范围. 【详解】由解析式得()f x 大致图象如下图所示:由图可知:当12x x <时且()()12f x f x =,则令211322x ⎛⎫+=⋅ ⎪⎝⎭,解得:14x =, 111,42x ⎡⎫∴∈⎪⎢⎣⎭,又()()12f x f x =,221221333,124x x x ⎛⎫⎡⎫∴+=∈⎪ ⎪⎢⎣⎭⎝⎭,()2222121332x f x x x ⎛⎫∴⋅=⋅- ⎪⎝⎭,令2233,14x t ⎡⎫=∈⎪⎢⎣⎭,则()()2211113,124164x f x g t t t t t ⎛⎫⎛⎫⎛⎫⎡⎫⋅==-=--∈ ⎪ ⎪⎪ ⎪⎢⎝⎭⎝⎭⎣⎭⎝⎭, ()31,162g t ⎡⎫∴∈⎪⎢⎣⎭,即()2131,162x f x ⎡⋅⎫∈⎪⎢⎣⎭.故答案为:31,162⎡⎫⎪⎢⎣⎭ 【点睛】思路点睛:根据分段函数的函数值相等关系可将所求式子统一为一个变量表示的函数的形式,进而根据函数值域的求解方法求得结果;易错点是忽略变量的取值范围,造成值域求解错误.14.【分析】根据指数函数和一次函数的性质得出关于的不等式组即可求解【详解】由题意函数是上的单调递增函数可得解得即实数取值范围故答案为:【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性将题设条解析:8[,6)3【分析】根据指数函数和一次函数的性质,得出关于a 的不等式组,即可求解. 【详解】由题意,函数1,1()32,12x a x f x a x x ⎧+>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的单调递增函数, 可得13021322a aa a ⎧⎪>⎪⎪->⎨⎪⎪+≥-+⎪⎩,解得863a ≤<,即实数a 取值范围8[,6)3.故答案为:8[,6)3. 【点睛】利用函数的单调性求解参数的取值范围:根据函数的单调性,将题设条件转化为函数的不等式(组),即可求出参数的值或范围; 若分段函数是单调函数,则不仅要保证在各区间上单调性一致,还要确保在整个定义域内是单调的.15.;【分析】根据题意判断出为偶函数且在上先减再增把转化为进行求解即可【详解】由为偶函数可知也为偶函数且在上先减再增由可知即可知解得故答案为:【点睛】关键点睛利用函数的性质得到的单调性通过化简把问题转化解析:3,2⎛⎫-∞- ⎪⎝⎭; 【分析】根据题意,判断出()g x 为偶函数,且在R 上先减再增,把(1)(2)46f x f x x +-+>--转化为(1)(2)g x g x +>+,进行求解即可【详解】由()f x 为偶函数,可知()g x 也为偶函数,且在R 上先减再增, 由(1)(2)46f x f x x +-+>--,可知22(1)2(1)(2)2(2)f x x f x x +-+>+-+,即(1)(2)g x g x +>+, 可知12x x +>+,解得32x <-. 故答案为:3,2⎛⎫-∞- ⎪⎝⎭【点睛】关键点睛,利用函数的性质,得到()g x 的单调性,通过化简把问题转化为(1)(2)g x g x +>+,进而利用()g x 的单调性求解,属于中档题16.2【分析】(1)取结合函数是单调函数利用复合函数的单调性求解的值即可;(2)根据的最小值为2分类讨论确定结合基本不等式进行求解即可【详解】(1)令则是增函数是减函数要使是单调函数只需综上当时时为增函解析:1- 2 【分析】(1)取1a =,结合函数是单调函数,利用复合函数的单调性求解b 的值即可; (2)根据()f x 的最小值为2,分类讨论确定0a >,0b >,结合基本不等式进行求解即可. 【详解】(1)令1a =,则()x x f x e be -=+,x y e =是增函数,x y e -=是减函数,要使()x x f x e be -=+是单调函数, 只需1b =-.综上,当1a =时,1b =-时,()x x f x e e -=-为增函数. (2)当0ab 时,()f x 为单调函数,此时函数没有最小值, 当0a <,0b <,()f x 有最大值,无最小值, 所以,若()f x 有最小值为2,则必有0a >,0b >,此时()22x x x f x ae be ae be -=+⨯=,1=,即1ab =,则22a b ab +=,当1a b ==时等号成立, 即+a b 的最小值为2. 故答案为:1,1,2- 【点睛】利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).17.【分析】由条件确定原点两侧函数的单调性和零点由函数的草图确定不等式的解集【详解】在R 上是奇函数且在上是增函数∴在上也是增函数由得由得作出的草图如图所示:则或由图象得所以或所以的解集为故答案为:【点睛 解析:(3,0)(0,3)-⋃【分析】由条件确定原点两侧函数的单调性和零点,由函数()f x 的草图确定不等式的解集. 【详解】()f x 在R 上是奇函数,且()f x 在(0,)+∞上是增函数,∴()f x 在(,0)-∞上也是增函数,由(3)0f -=,得(3)0f =,由(0)(0)f f =--,得(0)0f =, 作出()f x 的草图,如图所示:()0xf x <,则0()0x f x >⎧⎨<⎩ 或0()0x f x <⎧⎨>⎩,由图象得,所以03x <<或30x -<<,所以()0xf x <的解集为(3,0)(0,3)-⋃. 故答案为:(3,0)(0,3)-⋃. 【点睛】本题考查函数奇偶性、单调性的综合应用,考查数形结合思想,灵活作出函数的草图是解题关键.属于中档题.18.【分析】根据函数的解析式可知当定义域为时说明在上恒成立则对进行分类讨论确定满足条件的的范围【详解】由题意可得在上恒成立①当时则恒成立符合题意;②当时则解得综上可得∴实数的取值范围为故答案为:【点睛】 解析:[)0,4【分析】根据函数的解析式,可知当定义域为R 时,说明210ax ax ++>在R 上恒成立,则对a 进行分类讨论,确定满足条件的a 的范围. 【详解】由题意可得210ax ax ++>在R 上恒成立. ①当0a =时,则10>恒成立,0a ∴=符合题意;②当0a ≠时,则2040a a a >⎧⎨-<⎩,解得04a <<.综上可得04a ≤<,∴实数a 的取值范围为[)0,4. 故答案为:[)0,4. 【点睛】不等式20ax bx c ++>的解是全体实数(或恒成立)的条件是:当0a =时,00b c >=,;当0a ≠时,00a >⎧⎨∆<⎩; 不等式20ax bx c ++<的解是全体实数(或恒成立)的条件是当0a =时,00bc <=,;当0a ≠时,00a <⎧⎨∆<⎩.19.16【分析】二次函数的值域为得到求得值得解【详解】因为的值域为所以则又所以故答案为:16【点睛】二次函数的值域为得到是解题关键解析:16 【分析】二次函数()f x 的值域为[)0,+∞得到240a ∆=-=求得a 值得解 【详解】因为()2()10f x x ax a =++>的值域为[0,)+∞,所以240a ∆=-=,则2a =±.又0a >,所以2,a =.22()21,(3)323116f x x x f ∴=++∴=+⨯+=故答案为:16 【点睛】二次函数()f x 的值域为[)0,+∞得到0∆=是解题关键.20.【分析】首先求出的取值范围令将函数转化为三角函数再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为所以解得令则所以因为所以所以所以故答案为:【点睛】本题考查函数的值域的计算换元法的应用三角解析:【分析】首先求出x 的取值范围,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦将函数转化为三角函数,再根据三角恒等变换及三角函数的性质计算可得;【详解】解:因为y 所以401830x x -≥⎧⎨-≥⎩解得46x ≤≤,令242sin x t =+,0,2t π⎡⎤∈⎢⎥⎣⎦则y t t ==+3t π⎛⎫=+ ⎪⎝⎭所以3y t π⎛⎫=+ ⎪⎝⎭, 因为0,2t π⎡⎤∈⎢⎥⎣⎦,所以5,336t πππ⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦,所以1sin ,132t π⎛⎫⎡⎤+∈ ⎪⎢⎥⎝⎭⎣⎦所以y ∈故答案为:【点睛】本题考查函数的值域的计算,换元法的应用,三角函数及三角恒等变换公式的应用,属于中档题.三、解答题21.(1)奇函数,证明见解析;(2)在区间()1,+∞单调递减,证明见解析. 【分析】(1)求出函数的定义域,直接得到()f x 和()f x -的关系即可得结果; (2)由题意解出a 的值,由单调性的定义即可得结果. 【详解】(1)函数()y f x =是奇函数,证明如下:()y f x =的定义域为{}1x x ≠±,又()()()()2211a x axf x f x x x --==-=--+-+ ∴()y f x =是定义在{}1x x ≠±的奇函数.(2)∵()1242f f ⎛⎫-= ⎪⎝⎭,即21242433112aa a -==⎛⎫- ⎪⎝⎭,解得:3a = ∴()231xf x x =-,1x ,()21,x ∈+∞且12x x <()()()()()()()()()()1212221222122112212222121231313111331111x x x x x x x x x x x x f x f x x x x x -=----+-=---=--- ∵1x ,()21,x ∈+∞且12x x <,∴2110x ->,2210x ->,1210x x ->,210x x ->∴()()12f x f x >,∴()y f x =在区间()1,+∞单调递减. 【点睛】利用定义证明函数单调性的步骤:(1)取值;(2)作差;(3)化简;(4)下结论.22.(1){}1x x ≥-;(2)()2,484416,8a x F a a a ⎧<<⎪=⎨⎪-≥⎩【分析】(1)由1a =-,得211x x x +≥-,进而分1x ≥-和1x <-两种情况,分别解不等式,进而可求出原不等式的解集;(2)由[]0,4x ∈,且4a >,可得()2f x x ax =-+,进而结合二次函数的性质,分类讨论,可求出()f x 在区间[]0,4上的最大值的表达式. 【详解】(1)当1a =-时,()1f x x x =+,则211x x x +≥-.①当1x ≥-时,不等式为221x x x +≥-,解得1x ≥-,所以1x ≥-; ②当1x <-时,不等式为221x x x --≥-,解得112x ≤≤-,所以解集为空集. 综上,不等式的解集为{}1x x ≥-.(2)因为[]0,4x ∈,且4a >,所以()()2f x x a x x ax =-=-+,①当48a <<时,242a <<,则()224a aF a f ⎛⎫== ⎪⎝⎭;②当8a ≥时,42a≥,则()()4416F a f a ==-. 综上()2,48{4416,8a a F a a a <<=-≥. 【点睛】方法点睛:“动轴定区间”型二次函数最值的方法: (2)根据对称轴与区间的位置关系,进行分类讨论;(2)根据二次函数的单调性,分别讨论参数在不同取值下的最值,必要时需要结合区间端点对应的函数值进行分析.23.(1)(a ∈;(2)2;(3)()g a 262,26,2a a a a ->⎧=⎨-⎩. 【分析】(1)利用二次函数的性质列出关系式求解即可.(2)根据二次函数定义域和值域之间的关系进行判断即可. (3)对对称轴分类讨论,得到最大值. 【详解】解:(1)a R ∈,函数2()25f x x ax =-+.开口向上,不等式()0f x >对任意的x ∈R 恒成立,可得:24200a -<,解得(a ∈.(2)函数2()25f x x ax =-+的对称轴为x a =,则函数在[1,]a 上为减函数, 函数的值域为[1,]a ,∴()1f a =,即22251a a -+=,即24a =, 解得2a =-(舍)或2a =.(3)函数2()25f x x ax =-+的对称轴为x a =,开口向上, ①当12aa +,即2a 时,()f x 在区间[1,1]a +上的最大值为2(1)6f a a +=-; ②2a >时,()f x 在区间[1,1]a +上的最大值为(1)f 62a =-.所以()g a 262,26,2a a a a ->⎧=⎨-⎩. 【点睛】方法点睛:求二次函数的最值或值域时,关键在于确定二次函数的对称轴与所求的区间的关系,也即是二次函数在所求区间上的单调性,利用单调性求得值域.24.(1)()10f =;(2)12x x >,理由见解析;(3)5m <≤ 【分析】(1)令1x y ==,代入可得(1)f ;(2)记12x kx =,代入已知等式,由12()()f x f x <可得()0f k <,从而有1k >,得结论12x x >;(3)根据函数的性质,不等式变形为()223333100xx x x m --+≥+->恒成立,然后设33x x t -=+后转化为一元二次不等式和一元不次不等式恒成立,再转化为求函数的最值,可求得参数范围. 【详解】(1)令1x y ==,则(1)(1)(1)f f f =+,所以()10f =.(2)12x x >,理由如下:记12x kx =,则()()()122()f x f kx f k f x ==+, 由()()12f x f x <可得:()0f k <,则1k >,故12x x >.(3)由(2)得()223333100xx x x m --+≥+->恒成立,令10332,3xxt -⎡⎤=+∈⎢⎥⎣⎦,则222332x x t -+=-,原不等式可化为:22100t mt -≥->, 由2210t mt -≥-恒成立可得:min 8m t t ⎛⎫≤+ ⎪⎝⎭,8t t +≥=,当且仅当8t t=,即t =m ≤ 由100mt ->恒成立可得:max 10m t ⎛⎫>⎪⎝⎭,102,3t ⎡⎤∈⎢⎥⎣⎦,则2t =时,max 105t ⎛⎫= ⎪⎝⎭,于是5m >.综上:实数m的取值范围是5m <≤ 【点睛】方法点睛:本题考查抽象函数的单调性,考查不等式恒成立问题,在解决不等式恒成立时,利用已求得的结论(函数的单调性),把问题进行转化,再用换元法转化为一元二次不等式和一元一次不等式恒成立,然后又由分离参数法转化为求函数的最值. 25.(1)()23f x x =+(2)2λ=- 【分析】利用待定系数法求出()22f x x a =++,(1)根据所选条件,都能求出1a =,可得()23f x x =+;(2)根据对称轴与区间中点值的大小分两种情况讨论求出最大值,结合已知最大值可求得λ的值.【详解】设()f x kx b =+(0)k ≠,则(1)2k x b x a -+=+,即2kx k b x a -+=+, 所以2k =,2b a ,所以()22f x x a =++,若选①,(1)由()5f a =得225a a ++=,得1a =,所以()23f x x =+. (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选②, (1)由142a f ⎛⎫=⎪⎝⎭得14222a a =⨯++,解得1a =,所以()23f x x =+; (2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 若选③,(1)由()()41226f f -=得4(22)2(42)6a a ++-++=,解得1a =,所以()23f x x =+;(2)()(23)(23)g x x x x x λ=++++=22(42)3x x λλ+++, 区间[]0,2的中点值为1,对称轴为()22x λ+=-,当()212λ+-≤,即4λ≥-时,max()(2)8843716f x f λλλ==+++=+,所以7162λ+=,解得2λ=-;当()212λ+->,即4λ<-时,max()(0)3f x f λ==,所以32λ=,解得23λ=(舍),综上所述:2λ=-. 【点睛】关键点点睛:第二问,讨论对称轴与区间中点值的大小求最大值是解题关键. 26.(1)()2()61f x xg =+;(2)249175a ≤<. 【分析】(1)代入函数解析式运算即可得解; (2)转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解,结合对勾函数的性质即可得解. 【详解】(1)因为函数6()f x x =,2()1g x x =+, 所以()()()2661f g x g x x ==+; (2)由(1)得()()a f g x x >即261a x x >+, 当0x >时,有261x a x <+恰有三个正整数解, 当0a ≤时,不合题意;当0a >时,则1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解, 设不等式1116x x a ⎛⎫>+ ⎪⎝⎭的解集为12(,)x x , 则由函数1y x x =+的性质可得(]12(0,1),3,4x x ∈∈, 所以11111346364a ⎛⎫⎛⎫+<≤+ ⎪ ⎪⎝⎭⎝⎭,解得249175a ≤<, 所以实数a 的取值范围为249175a ≤<. 【点睛】 关键点点睛:解决本题的关键是转化条件为1116x x a ⎛⎫>+ ⎪⎝⎭恰有三个正整数解及对勾函数性质的应用.。

新高中数学必修1求函数值域训练题(含详解)

新高中数学必修1求函数值域训练题(含详解)

1.函数()21,11,1x x x f x x x ⎧-+<⎪=⎨>⎪⎩的值域为( )A .3,4⎡⎫+∞⎪⎢⎣⎭B .()0,1C .3,14⎡⎫⎪⎢⎣⎭D .()0,∞+第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题 2.函数211()313x f x x x +⎛⎫=> ⎪-⎝⎭的值域为________.3.2211x x y x x -+=++的值域为________.4.函数2211x y x -=+的值域为________.5.函数y ________.三、解答题6.求下列函数值域: (1)y =2x 2-2x +3; (2)y =372x x ++; (3)y =2x ; (4)y =2.7.作出下列函数图象,并指出其值域. (1)y =x 2+x (-1≤x ≤1); (2)y =2x(-2≤x <1且x ≠0). 8.求下列函数的值域(1)1y x =+,{}1,2,3,4,5x ∈;(2)2211x y x -=+;(4)y x =+.9.求下列函数的值域:(1)322x y x +=-; (2)y =(3)2211x x y x ++=+.参考答案1.D 【解析】 【分析】分别求出当1,1x x <>时的值域,再取并集即可. 【详解】当1x <时,2213()1()24f x x x x =-+=-+,故3(),,(1)4f x x ⎡⎫∈+∞<⎪⎢⎣⎭. 当1x >时,1()(0,1)f x x =∈,故()21,11,1x x x f x x x⎧-+<⎪=⎨>⎪⎩的值域为()0,∞+.故选D. 【点睛】分段函数的值域只需每段函数单独求解值域再求并集即可.2.2,3⎛⎫+∞ ⎪⎝⎭【解析】 【分析】令2131x y x +=-,通过变形可得11323y x y +=>-,即可求出值域. 【详解】 解:令2131x y x +=-,则()321y x y -=+,当320y -=时,()321y x y -=+不成立, 则11323y x y +=>-,即()50332y >-,解得23>y , 故答案为: 2,3⎛⎫+∞ ⎪⎝⎭. 【点睛】本题考查了函数值域的求解,属于基础题.3.1,33⎡⎤⎢⎥⎣⎦【解析】 【分析】利用判别式法求得函数的值域. 【详解】由于22131024x x x ⎛⎫++=++> ⎪⎝⎭,所以函数2211x x y x x -+=++的定义域为R ,由2211x x y x x -+=++化简得221yx yx y x x ++=-+,即()()21110y x y x y -+++-=,关于x 的一元二次方程有解,所以()()221410y y ∆=+--≥,即231030y y -+≤,即()()3310y y --≤,解得133y ≤≤, 所以2211x x y x x -+=++的值域为1,33⎡⎤⎢⎥⎣⎦.故答案为:1,33⎡⎤⎢⎥⎣⎦【点睛】本小题主要考查分式型函数值域的求法,属于中档题. 4.(]1,1- 【解析】 【分析】化简函数22212111x y x x -==-++,根据211x +≥,得到22021x <≤+,即可求解. 【详解】由题意,函数222221(1)221111x x y x x x --++===-+++,因为211x +≥,所以22021x <≤+,所以22111x -<≤+, 即函数2211x y x-=+的值域为(]1,1-. 故答案为:(]1,1-. 【点睛】本题主要考查了函数的值域的求解,其中解答中合理化简函数的解析式,结合基本初等函数的性质求解是解答的关键,着重考查推理与运算能力. 5.[0,4] 【解析】 【分析】由题意结合二次函数、二次根式的性质可得04≤,即可得解. 【详解】因为20x ≥,所以21616x -≤,又要使函数有意义,则2160x -≥,所以261610x ≤≤-, 所以04≤,故函数y [0,4]. 故答案为:[0,4]. 【点睛】本题考查了具体函数值域的求解,考查了运算求解能力,属于基础题. 6.(1)5,2⎡⎫+∞⎪⎢⎣⎭;(2)()(),33,-∞+∞;(3)15,8⎡⎫+∞⎪⎢⎣⎭;(4)[]0,2. 【解析】 【分析】(1)由题意结合二次函数的性质即可得解;(2)由题意转化条件为132y x =++,再结合反比例函数的性质即可得解; (3)令0t =,转化条件为()21152,048y t t ⎛⎫=-+≥ ⎪⎝⎭,结合二次函数的性质即可得解;(4)由题意结合二次函数、二次根式的性质可得022≤≤,即可得解. 【详解】(1)由题意2215223222y x x x ⎛⎫=-+=-+ ⎪⎝⎭,所以函数2223y x x =-+的值域为5,2⎡⎫+∞⎪⎢⎣⎭;(2)由题意()3213713222x x y x x x +++===++++, 由102x ≠+可得函数372x y x +=+的值域为()(),33,-∞+∞;(3)令0t =,则21x t =+,所以()()221152212,048y x t t t t ⎛⎫==+-=-+≥ ⎪⎝⎭,所以当14t =时,函数取最小值158, 所以函数2y x =-15,8⎡⎫+∞⎪⎢⎣⎭; (4)由题意()22424x x x -+=--+,所以2044x x ≤-+≤, 所以02≤≤,022≤≤, 所以函数2y =的值域为[]0,2. 【点睛】本题考查了具体函数值域的求解,考查了换元法的应用及运算求解能力,属于基础题. 7.(1)图象见解析,值域为1,24⎡⎤-⎢⎥⎣⎦;(2)图象见解析,值域为(](),12,-∞-+∞.……装…………○…………订_______姓名:___________班级:___________……装…………○…………订【解析】 【分析】(1)由题意结合二次函数的图象与性质可得函数图象,数形结合即可得函数的值域; (2)由题意结合反比例函数的图象与性质可得函数图象,数形结合即可得函数的值域. 【详解】(1)由题意()2211,1124y x x x x ⎛⎫=+=+--≤≤ ⎪⎝⎭, 当1x =-时,211024y x ⎛⎫=+-= ⎪⎝⎭;当12x =-时,2111244y x ⎛⎫=+-=- ⎪⎝⎭;当1x =时,211224y x ⎛⎫=+-= ⎪⎝⎭;函数2y x x =+的图象为抛物线的一部分,如图:由图象可知,函数()2,11y x x x =+-≤≤的值域为1,24⎡⎤-⎢⎥⎣⎦;(2)由题意函数2y x = (-2≤x <1且x ≠0)的图象为反比例函数图象的一部分, 当2x =-时,21y x ==-;当1x =时,22y x==;所以该函数图象如图:…订…………○…………线…………○…____考号:___________…订…………○…………线…………○…由图象可知,函数2y x= (-2≤x <1且x ≠0)的值域为(](),12,-∞-+∞.【点睛】本题考查了常见函数图象的绘制及利用函数图象求函数的值域,考查了数形结合思想,属于基础题.8.(1){}2,3,4,5,6;(2)[)1,1-;(3)(]2,2-;(4)1,2⎡⎫-+∞⎪⎢⎣⎭. 【解析】 【分析】(1)直接计算函数值可得结果;(2)分离常数,利用不等式的性质可得结果; (3)画出函数图象,观察图像可得结果;(4)换元后,变为二次函数,根据二次函数的单调性可得结果. 【详解】(1)由于(1)2f =,(2)3f =,(3)4f =,(4)5f =,(5)6f =, 故值域为{}2,3,4,5,6.装…………○…………订………_姓名:___________班级:___________考号:______装…………○…………订………(2)y =2211x x -+=22121x x +-+=1-221x +, ∵x 2+1≥1,∴0<221x +≤2, ∴-1≤1-221x +<1, 故值域为[)1,1-.(3)因为2(1)2y x =-++,[)2,1x ∈-,画出其图象如图:观察图象可知值域为(]2,2-.(4)设t 0t ≥且x =212t -,∴y =212t -+t =()21112t +-,在[)0,+∞上为单调递增函数,所以12y ≥-, 所以函数的值域为1,2⎡⎫-+∞⎪⎢⎣⎭. 【点睛】本题考查了利用换元法、图象法、函数单调性法求函数值域,属于基础题.9.(1){3}y y ≠∣;(2)[0,3];(3)13,22⎡⎤⎢⎥⎣⎦.【解析】 【分析】(1)原函数可变成832y x =+-,这样即可看出802x ≠-,从而得出3y ≠,这便得出了原函数的值域;(2)将根号里面的配成顶点式,根据二次函数的性质即可求出函数的值域;(3)原函数可化为关于x 的方程2(1)10y x x y --+-=,再根据方程有解,求出y 的取值范围,即可得到函数的值域; 【详解】 解:(1)∵323(2)883222x x y x x x +-+===+---,且802x ≠-, ∴3y ≠,∴函数的值域是{|3}y y ≠. (2)∵y ==2(2)99x --+,∴3y 0≥,∴函数的值域是[0,3].(3)原函数可化为关于x 的方程2(1)10y x x y --+-=.当1y =时,0x =,满足题意;当1y ≠时,2(1)4(1)(1)0y y ∆=----,解得1322y . 综上所述,函数的值域为13,22⎡⎤⎢⎥⎣⎦.【点睛】考查函数值域的概念,分离常数求函数值域的方法,根据不等式的性质求函数的值域,以及配方法求二次函数的值域,属于基础题。

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

高中数学必修1(人教B版)第二章函数2.1知识点总结含同步练习题及答案

描述:高中数学必修1(人教B版)知识点总结含同步练习题及答案第二章 函数 2.1 函数一、学习任务1. 通过同一过程中的变量关系理解函数的概念;了解构成函数的要素(定义域、值域、对应法则),会求一些简单函数的定义域和值域;初步掌握换元法的简单应用.2. 了解映射的概念,能判断一些简单的对应是不是映射.3. 理解函数的三种表示方法(图象法、列表法、解析法),会选择恰当的方法表示简单情境中的函数.了解简单的分段函数,能写出简单情境中的分段函数,并能求出给定自变量所对应的函数值,会画函数的图象.4. 理解函数的单调性及其几何意义,会判断一些简单函数的单调性;理解函数最大(小)值的概念及其几何意义;了解函数奇偶性的含义.二、知识清单函数的相关概念函数的表示方法 映射函数的定义域的概念与求法函数的值域的概念与求法 函数的解析式的概念与求法分段函数复合函数 函数的单调性函数的最大(小)值 函数的奇偶性三、知识讲解1.函数的相关概念函数的概念设 , 是非空数集,如果按照某种确定的对应关系 ,使对于集合 中的任意一个数 ,在集合 中都有唯一确定的数 和它对应,那么就称 为从集合 到集合 的一个函数(function).记作:其中, 叫做自变量,自变量取值的范围(数集 )叫做这个函数的定义域. 叫做因变量,与 的值相对应的 值叫做函数在 处的函数值,所有函数值构成的集合叫做这个函数的值域.相同函数的概念A B f Ax B f (x )f :A →B A By =f (x ),x ∈A .x A y x y x {y | y =f (x ),x ∈A }N集合 的函数关系的有( )012.数轴表示为(2){x | 2⩽x⩽8 且8](3)函数 的图象是由 t 的映射的是( )N(2)函数图象如图所示:y的距离 与点y=f(x)如图为函数 的图象,试写出函数解: [1,2]2(5)(图象法)画出。

高中数学必修一练习题(4)函数(含详细答案)

高中数学必修一练习题(4)函数(含详细答案)

• 高中数学必修一复习练习(四)函数班 号 姓名 指数函数及其性质1.下列函数中指数函数的个数为( )①y =(12)x -1; ②y =2·3x ; ③y =a x (a >0且a ≠1,x ≥0); ④y =1x ; ⑤y =(12)2x -1.A .1个B .2个C .4个D .5个2.函数y =3x 与y =3-x 的图象关于下列哪条直线对称( )A .x 轴B .y 轴C .直线y =xD .直线y =-x3.若集合M ={y |y =2x ,x ∈R },N ={y |y =x 2,x ∈R },则集合M ,N 的关系为( ) A .M NB . M ⊆NC .N MD .M =N4.已知1>n >m >0,则指数函数①y =m x ,②y =n x 的图象为( )5.若函数y =(2a -1)x 为指数函数,则实数a 的取值范围是________. 6.函数y =a x +1(a >0且a ≠1)的图象必经过点________(填点的坐标). 7.已知函数f (x )=a x -1(x ≥0)的图象经过点(2,12),其中a >0且a ≠1.(1)求a 的值; (2)求函数y =f (x )(x ≥0)的值域.8.已知指数函数f (x )=a x 在区间[1,2]上的最大值比最小值大a2,求a 的值.1.若2x +1<1,则x 的取值范围是( )A .(-1,1)B .(-1,+∞)C .(0,1)∪(1,+∞)D .(-∞,-1)2.函数y =⎝⎛⎭⎫121-x的单调递增区间为( )A .(-∞,+∞)B .(0,+∞)C .(1,+∞)D .(0,1)3.下列不等关系中,正确的是( ) A .(12)23<1<(12)13B .(12)13<(12)23<1C .1<(12)13<(12)23D .(12)23<(12)13<14.函数f (x )=2|x |,则f (x )( )A .在R 上是减函数B .在(-∞,0]上是减函数C .在[0,+∞)上是减函数D .在(-∞,+∞)上是增函数 5.方程3x -1=19的解是________.6.已知函数y =(13)x 在[-2,-1]上的最小值是m ,最大值是n ,则m +n 的值为________.7.已知2x ≤(14)x -3,求函数y =(12)x 的值域.8.已知函数f (x )=a 2-3x(a >0,且a ≠1).(1)求该函数的图象恒过的定点坐标; (2)指出该函数的单调性.1.使式子log (x -1)(x 2-1)有意义的x 的值是( ) A .x <-1或x >1 B .x >1且x ≠2 C .x >1D .x ≠22.方程2log 3x =14的解是( )A.33B.3C.19D .93.化简:2lg (lg a 100)2+lg (lg a )的结果是( )A.12B .1C .2D .44.已知2x =3,log 483=y ,则x +2y 的值为( )A .3B .8C .4D .log 485.若log a x =2,log b x =3,log c x =6,则log abc x 的值为________.6.已知x ,y ∈(0,1),若lg x +lg y =lg(x +y ),则lg(1-x )+lg(1-y )=________. 7.计算下列各式的值:(1)lg12.5-lg 58+lg 12; (2)12lg25+lg2+lg 10+lg(0.01)-1; (3)log 2(log 264).8.方程lg 2x +(lg2+lg3)lg x +lg2lg3=0的两根之积为x 1x 2,求x 1x 2的值.1.下列函数中,定义域相同的一组是( ) A .y =a x 与y =log a x (a >0,a ≠1) B .y =x 与y =x C .y =lg x 与y =lg xD .y =x 2与y =lg x 22.函数y =2+log 2x (x ≥1)的值域为( )A .(2,+∞)B .(-∞,2)C .[2,+∞)D .[3,+∞) 3.函数y =log 12(3x -2)的定义域是( )A .[1,∞)B .(23,+∞)C .[23,1]D .(23,1]4.函数y =lg(x +1)的图象大致是( )5.函数y =log x (2-x )的定义域是________.6.若a >0且a ≠1,则函数y =log a (x -1)+1的图象恒过定点________. 7.求下列函数的定义域:(1)y =log 2(4x -3); (2)y =log 5-x (2x -2).8.已知f (x )=log 3x .(1)作出这个函数的图象;(2)当0<a <2时,有f (a )>f (2),利用图象求a 的取值范围.参考答案指数函数及其性质1.选A 由指数函数的定义可判定,只有③正确. 2.B3.选A x ∈R ,y =2x >0,y =x 2≥0,即M ={y |y >0},N ={y |y ≥0},所以M N. 4.选C 由0<m <n <1可知①②应为两条递减曲线,故只可能是选项C 或D , 进而再判断①②与n 和m 的对应关系,判断方法很多,不妨选择特殊点,令x =1, 则①②对应的函数值分别为m 和n ,由m <n 知选C.5.解析:函数y =(2a -1)x 为指数函数,则2a -1>0且2a -1≠1,∴a >12且a ≠1. 答案:a >12且a ≠16.∵指数函数y =a x 恒过定点(0,1).∴y =a x +1的图象必过点(0,2).答案:(0,2) 7.解:(1)函数图象过点(2,12),所以a 2-1=12,则a =12.(2)f (x )=(12)x -1(x ≥0),由x ≥0得,x -1≥-1,于是0<(12)x -1≤(12)-1=2.所以函数的值域为(0,2]. 8.解:由指数函数的概念知a >0,a ≠1.当a >1时,函数f (x )=a x 在区间[1,2]上是增函数,所以当x =2时,f (x )取最大值a 2,当x =1时,f (x )取最小值a , 由题意得a 2=a +a 2,即a 2=32a ,因为a >1,所以a =32;当0<a <1时,函数f (x )=a x 在区间[1,2]上是减函数,同理可以求得a =12.综上可知,a 的值为32或12✠✠指数函数及其性质的应用1.选D 不等式2x +1<1=20,∵y =2x 是增函数,∴x +1<0,即x <-1.2.选A 定义域为R.设u =1-x ,y =⎝⎛⎭⎫12u,∵u =1-x 在R 上为减函数,又∵y =⎝⎛⎭⎫12u在(-∞,+∞)上为减函数,∴y =⎝⎛⎭⎫121-x在(-∞,+∞)上是增函数.3.选D ∵函数y =(12)x 在R 上是减函数,而0<13<23,∴(12)23<(12)13<(12)0,即(12)23<(12)13<1.4.选B ∵y =2x 在R 上递增,而|x |在(-∞,0]上递减,在[0,+∞)是递增,∴f (x )=2|x |在(-∞,0]上递减,在[0,+∞)上递增.5.解析:∵3x -1=19,∴3x -1=3-2,∴x -1=-2,∴x =-1. 答案:-16.解析:函数y =(13)x 在定义域内单调递减,∴m =(13)-1=3,n =(13)-2=9, ∴m +n =12. 答案:127.解:∵2x ≤(14)x -3,即2x ≤26-2x ,∴x ≤6-2x ,∴x ≤2,∴y = (12)x ≥ (12)2=14,∴函数值域是[14,+∞).8.解:(1)当2-3x =0,即x =23时,a 2-3x =a 0=1. 所以,该函数的图象恒过定点(23,1)(2)∵u =2-3x 是减函数,∴当0<a <1时,f (x )在R 上是增函数;当a >1时,f (x )在R 上是减函数.❑❑对数与对数运算1.选B 由⎩⎪⎨⎪⎧x -1>0,x 2-1>0,x -1≠1,解得x >1且x ≠2.2.选C 由已知得log 3x =-2 ,∴ x =3-2=19.3.选C 由对数运算可知:lg(lg a 100)=lg(100lg a )=2+lg(lg a ),∴原式=2. 4.选A 由2x =3得:x =log 23.∴x +2y =log 23+2log 483=log 23+2log 283log 24=log 23+(3log 22-log 23)=3.5.解析:log a x =1log x a =2,∴log x a =12. 同理log x b =13,log x c =16.log abc x =1log x abc =1log x a +log x b +log x c =1. 答案:16.解析:lg(x +y )=lg x +lg y =lg(xy )⇒x +y =xy ,lg(1-x )+lg(1-y )=lg[(1-x )(1-y )]=lg(1-x -y +xy )=lg1=0. 答案:0 7.解:(1)原式=lg(252×85×12)=lg10=1.(2)原式=lg[2512×2×1012×(10-2)-1]=lg(5×2×1012×102)=lg1072=72.(3)原式=log 2(log 226)=log 26=1+log 23.8.解:因为lg2x +(lg2+lg3)lg x +lg2lg3=(lg x +lg2)(lg x +lg3),所以lg x =-lg2=lg2-1或lg x =-lg3=lg3-1,即x 1=12,x 2=13,所以x 1x 2=16.对数函数及其性质1.C2.选C 当x ≥1时,log 2x ≥0,所以y =2+log 2x ≥2.3.选D 由函数的解析式得log 12(3x -2)≥0=log 121.∴0<3x -2≤1,解得:23<x ≤1.4.选C 当x =0时y =0,而且函数为增函数,可见只有C 符合.5.解析:由对数函数的意义可得⎩⎪⎨⎪⎧2-x >0x >0x ≠1⇒⎩⎪⎨⎪⎧x <2x >0且x ≠1⇒0<x <2且x≠1. 答案:(0,1)∪(1,2)6.解析:当x =2时y =1. 答案:(2,1)7.解:(1)要使函数有意义,须满足:log 2(4x -3)≥0=log 21,⇒1≤ 4x -3⇒x ≥1,∴函数的定义域为[1,+∞).(2)要使函数有意义,须满足⎩⎪⎨⎪⎧2x -2>05-x >05-x ≠1⇒1<x <5且x ≠4. ∴函数的定义域为(1,4)∪(4,5).8.解:(1)作出函数y =log 3x 的图象如图所示.(2)令f (x )=f (2),即log 3x =log 32,解得x =2. 由如图所示的图象知:当0<a <2时,恒有f (a )<f (2). 故当0<a <2时,不存在满足f (a )>f (2)的a 的值.。

高中求值域练习题及讲解

高中求值域练习题及讲解

高中求值域练习题及讲解高中数学:求值域练习题及讲解在高中数学中,函数的值域是一个重要的概念,它描述了函数输出的所有可能值的集合。

掌握求值域的方法对于理解函数的性质至关重要。

以下是一些常见的求值域练习题,以及解题思路的详细讲解。

练习题1:已知函数 \( f(x) = \sqrt{x + 2} \),求其值域。

解题思路:- 首先确定函数的定义域,即 \( x \) 的取值范围使得 \( \sqrt{x+ 2} \) 有意义。

- 由于根号内的值必须非负,因此 \( x + 2 \geq 0 \),解得 \( x\geq -2 \)。

- 接下来,考虑 \( f(x) \) 的最小值。

当 \( x = -2 \) 时,\( f(x) = \sqrt{0} = 0 \)。

- 随着 \( x \) 的增加,\( f(x) \) 会无限增大,因此值域为\( [0, +\infty) \)。

练习题2:若函数 \( g(x) = \frac{1}{x} \),求其值域。

解题思路:- 确定函数的定义域,由于分母不能为零,所以 \( x \neq 0 \)。

- 分析函数的单调性,当 \( x > 0 \) 时,\( g(x) \) 随着 \( x \)的增大而减小;当 \( x < 0 \) 时,\( g(x) \) 随着 \( x \) 的减小而减小。

- 因此,\( g(x) \) 没有最大值,但有最小值,当 \( x \) 趋向于正无穷或负无穷时,\( g(x) \) 趋向于 0。

- 值域为 \( (-\infty, 0) \cup (0, +\infty) \)。

练习题3:给定函数 \( h(x) = x^3 - 3x \),求其值域。

解题思路:- 首先求导数 \( h'(x) = 3x^2 - 3 \),以确定函数的增减性。

- 解 \( h'(x) = 0 \) 得到 \( x = \pm 1 \),这两个点可能是极值点。

高中数学人教A版(2019)必修一 第三章 第一节 函数的值域

高中数学人教A版(2019)必修一 第三章 第一节 函数的值域

高中数学人教A版(2019)必修一第三章第一节函数的值域一、单选题(共7题;共35分)1.(5分)函数y =2+x4−3x的值域是()A.(﹣∞,+∞)B.(﹣∞,−12)∪(12,+∞)C.(﹣∞,−13)∪(13,+∞)D.(﹣∞,−13)∪(−13,+∞)2.(5分)函数y=x2−2x−1,x∈[−1,2]的值域是()A.[−2,2]B.[−1,2]C.[−2,1]D.[−1,1]3.(5分)函数y=1x2+x+1的值域为()A.(−∞,43]B.(−∞,34]C.(0,43]D.(0,34] 4.(5分)已知函数f(x)=x2−2x+3,则f(x)在区间[0,3]的值域为()A.[3,6]B.[2,6]C.[2,3]D.(3,6) 5.(5分)函数y=x2+2x﹣3在区间[﹣3,0]上的值域为()A.[﹣4,﹣3]B.[﹣4,0]C.[﹣3,0]D.[0,4]6.(5分)若函数y=f(x)的值域是[12,3],则函数F(x)=f(x)+1f(x)的值域是()A.[12,3]B.[2,103]C.[52,103]D.[3,103]7.(5分)已知函数f(x)=√ax2+bx+c的定义域与值域均为[0,4],则a=()A.-4B.-2C.-1D.1二、多选题(共2题;共10分)8.(5分)下列函数定义域和值域相同的是()A.f(x)=2x+1B.f(x)=x2+5C.f(x)=1xD.f(x)=√x 9.(5分)下列函数中,值域为[1,+∞)的是()A.y=x2−2x+2B.y=1x−1C.y=√x2+1D.y=1√x−1三、填空题(共7题;共35分)10.(5分)若函数y=2x+1x−3的值域是A,函数y=2x−√x−1的值域是B,则A∩B=.11.(5分)函数y=12−x2的值域是.12.(5分)函数y=2−√−x2+4x的值域是.13.(5分)写出一个定义域为(0,+∞)且值域为R的函数f(x)=.14.(5分)函数f(x)=√2x−3−x+3的值域是.15.(5分)函数f(x)=−x2+2x+3,x∈(−2,0)的值域为.16.(5分)函数f(x)=−2x2+4x+1,x∈(−3,2)的值域为.四、解答题(共2题;共30分)17.(10分)已知g(x)=x2−2ax+1在区间[1,3]上的值域为[0,4].(1)(5分)求实数a的值;(2)(5分)若不等式g(2x)−k⋅4x≥0当x∈[1,+∞)上恒成立,求实数k的取值范围. 18.(20分)求下列函数的值域(1)(5分)y=x+1,x∈{1,2,3,4,5};(2)(5分)y=x 2−1x2+1;(3)(5分)y=−x2−2x+1,x∈[−2,1);(4)(5分)y=x+√2x+1.答案解析部分1.【答案】D【解析】【解答】解:y=2+x4−3x =−13(4−3x)+1034−3x=−13+103(4−3x),∴y ≠−13,∴该函数的值域为(−∞,−13)∪(−13,+∞).故答案为:D.【分析】首先整理化简函数的解析式,然后由代数式的几何意义,即可得出函数的值域。

(必考题)高中数学必修一第二单元《函数》测试卷(有答案解析)(4)

(必考题)高中数学必修一第二单元《函数》测试卷(有答案解析)(4)

一、选择题1.我们把定义域为[)0,+∞且同时满足以下两个条件的函数()f x 称为“Ω函数”:①对任意的[)0,x ∈+∞,总有()0f x ≥;②若0x ≥,0y ≥,则有()()()f x y f x f y +≥+成立,给出下列四个结论:(1)若()f x 为“Ω函数”,则()00f =;(2)若()f x 为“Ω函数”,则()f x 在[)0,+∞上为增函数;(3)函数()0,1,x Qg x x Q∈⎧=⎨∉⎩在[)0,+∞上是“Ω函数”(Q 为有理数集);(4)函数()2g x x x =+在[)0,+∞上是“Ω函数”;其中正确结论的个数是( ) A .1B .2C .3D .42.已知函数f (x )满足f (x -1)=2f (x ),且x R ∈,当x ∈[-1,0)时,f (x )=-2x -2x +3,则当x ∈[1,2)时,f (x )的最大值为( ) A .52B .1C .0D .-13.已知函数f (x )的定义域为R ,满足f (x )=2f (x +2),且当x ∈[2-,0) 时,19()4f x x x =++,若对任意的m ∈[m ,+∞),都有1()3f x ≤,则m 的取值范围为( ) A .11,5⎡⎫-+∞⎪⎢⎣⎭ B .10,3⎡⎫-+∞⎪⎢⎣⎭C .)5,2⎡-+∞⎢⎣ D .11,4⎡⎫-+∞⎪⎢⎣⎭4.对x R ∀∈,用()M x 表示()f x ,()g x 中较大者,记为()()()max{,}M x f x g x =,若()()2{3,1}M x x x =-+-,则()M x 的最小值为( )A .-1B .0C .1D .45.已知函数224()3f x x x =-+,()2g x kx =+,若对任意的1[1,2]x ∈-,总存在2[1x ∈,使得12()()g x f x >,则实数k 的取值范围是( ).A .1,12⎛⎫ ⎪⎝⎭B .12,33⎛⎫- ⎪⎝⎭C .1,12⎛⎫- ⎪⎝⎭D .以上都不对6.已知()f x 在[],x a b ∈的最大值为M ,最小值为m ,给出下列五个命题:( ) ①若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],m -∞. ②若对任何[],x a b ∈都有()p f x ≤,则p 的取值范围是(],M -∞. ③若关于x 的方程()p f x =在区间[],a b 有解,则p 的取值范围是[],m M . ④若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],m -∞. ⑤若关于x 的不等式()p f x ≤在区间[],a b 有解,则p 的取值范围是(],M -∞.A .4B .3C .2D .17.若函数()f x =0,,则实数m 的取值范围是( ) A .()1,4 B .()(),14,-∞⋃+∞C .(][)0,14,+∞D .[][)0,14,+∞ 8.已知函数()2f x x ax b =-+-(a ,b 为实数)在区间[]22-,上最大值为M ,最小值为m ,则M m -( ) A .与a 有关,且与b 有关 B .与a 有关,但与b 无关 C .与a 无关,但与b 有关D .与a 无关,且与b 无关9.若函数()y f x =为奇函数,且在(),0∞-上单调递增,若()20f =,则不等式()0f x >的解集为( )A .()()2,02,∞-⋃+B .()(),22,∞∞--⋃+C .()(),20,2∞--⋃D .()()2,00,2-⋃10.若函数()()12311ax f x x a x x ⎧>⎪=⎨⎪-+≤⎩是R 上的减函数,则实数a 的取值范围是( )A .2,13⎛⎫⎪⎝⎭B .3,14⎡⎫⎪⎢⎣⎭C .23,34⎛⎤⎥⎝⎦D .2,3⎛⎫+∞⎪⎝⎭11.函数()()2212f x x a x =+--在(],4-∞上是减函数,则实数a 的取值范围是( ) A .3a ≤-B .3a ≥-C .5a ≥D .3a ≥12.已知函数()f x 是定义在()0,∞+上的增函数,且()21f =,()()()f xy f x f y =+,则不等式()()23f x f x +-≤( )A .()1,2B .[)1,3C .()2,4D .(]2,4二、填空题13.已知函数(3)5,1()2,1a x x f x a x x--≤⎧⎪=⎨->⎪⎩是R 上的增函数,则a 的取值范围是________.14.已知函数()()1f x a =-[]0,2上是减函数,则实数a 的取值范围是_____.15.已知函数()225f x x ax =-+在(],2-∞上是减函数,且对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则实数a 的取值范围是________.16.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________17.已知函数()1f x x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭.若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥,则实数m 的取值范围是______. 18.已知()()21353m f x m m x+=++是幂函数,对12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,若,a b ∈R ,0a b +<,0ab <,则()()f a f b +________0(填>,<).19.已知函数2()2f x x x a =-++,21()7log g x x=+,若对任意1[0,3]x ∈,总存在24x ⎤∈⎦,使得12()()f x g x ≤成立,则实数a 的取值范围是___________.20.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.三、解答题21.已知函数()2112f x a a x=+-,实数a R ∈且0a ≠. (1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;(2)设0m n <<且0a > 时,()f x 的定义域和值域都是[],m n ,求n m -的最大值; (3)若1≥x 时不等式()22a f x x ≤恒成立,求实数a 的取值范围.22.已知函数()221x mf x x +=+,x ∈R 是奇函数. (1)求实数m 的值;(2)讨论函数()f x 在[]2,3上的单调性,并求函数()f x 在[]2,3上的最大值和最小值. 23.设函数12ax y x +=-. (1)当1a =时,在区间[)(]2,22,6-⋃上画出这个函数的图像;(2)是否存在整数a ,使该函数在[4,)+∞上是严格减函数,且当4x ≥时,都有4y ≤,如果存在,求出所有符合条件的a ,若不存在,请说明理由.24.已知函数()y f x =的定义域为D ,如果存在区间[],a b D ⊆,使得[]{}[]|(),,,=∈=y y f x x a b a b ,则称区间,a b 为函数()y f x =的一个和谐区间.(1)直接写出函数3()f x x =的所有和谐区间;(2)若区间[]0,m 是函数3()22=-f x x 的一个和谐区间,求实数m 的值;(3)若函数2()2()=-+∈f x x x m m R 存在和谐区间,求实数m 的取值范围.25.已知函数21.2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,(1)求(5)f -,(f ,5(())2f f -的值; (2)若()3f a =,求实数a 的值. 26.已知函数()f x =+ (1)求()f x 的定义域和值域; (2)设()h x =231()42h x m am ≤-对于任意[1,1]x ∈-及任意[1,1]a ∈-都恒成立,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用“Ω函数”的定义依次判断即可,必须同时满足“Ω函数”的两个条件,才是“Ω函数”. 【详解】解:对(1),由①得()00f ≥, 在②中令0x y ==, 即()()020f f =, 解得:()00f ≤,()00f ∴=,故(1)正确;对(2),当()0f x =时,满足①②,但在[)0,+∞不是增函数,故(2)错误; 对(3),当x ,y 都为正无理数时,不满足②,故(3)错误; 对(4),()2g x x x =+,当[)0,x ∈+∞时,min ()(0)00g x g ==≥, 即满足条件①,222()()()()20g x y g x g y x y x y x x y y xy +--=+++----=≥,即满足条件②,∴函数2()g x x x =+在[0,)+∞上是“Ω函数”,故(4)正确.故选:B. 【点睛】关键点点睛:本题解题的关键是理解“Ω函数”的定义,必须同时满足“Ω函数”的两个条件,才是“Ω函数”.2.B解析:B 【分析】 首先设[)1,2x ∈,利用函数满足的关系式,求函数的解析式,并求最大值.【详解】 设[)1,2x ∈,[)21,0x -∈-,()()()222222323f x x x x x ∴-=----+=-++, ()()()()211214f x f x f x f x -=--=-=⎡⎤⎣⎦, ()()()()2211122311444f x f x x x x ∴=-=-++=--+, [)1,2x ∈,()f x ∴在区间[)1,2单调递减,函数的最大值是()11f =.故选:B 【点睛】思路点睛:一般利用函数的周期,对称性求函数的解析式时,一般求什么区间的解析式,就是将变量x 设在这个区间,根据条件,转化为已知区间,再根据关系时,转化求函数()f x 的解析式. 3.D解析:D 【分析】求出[2,0)x ∈-时,()f x 的值域,满足1()3f x ≤,根据函数的定义,[0,2)x ∈时,满足1()3f x ≤,同时可得0x ≥时均满足1()3f x ≤,然后求得[4,2)x ∈--时的解析式,解不等式1()3f x ≤得解集,分析后可得m 的范围. 【详解】[2,0)x ∈-时,19()4f x x x =++在[]2,1--上递增,在[1,)-+∞上递减,1(),4f x ⎛⎤∈-∞ ⎥⎝⎦,满足1()3f x ≤,当[0,2)x ∈时,2[2,0)x -∈-,11()(2)[,)28f x f x =-∈-∞,满足满足1()3f x ≤, 按此规律,2x ≥时,()f x 均满足1()3f x ≤, 当[4,2)x ∈--时,29()2(2)2(2)22f x f x x x =+=++++,由2912(2)223x x +++≤+, 解得1043x -≤≤-或1124x -≤<-,当101134x -<<-时,1()3f x >. 因此当114x ≥-时,都有1()3f x ≤, 所以114m ≥-. 故选:D . 【点睛】关键点点睛:本题考查函数不等式恒成立问题,解题关键是依照周期函数的性质,根据函数的定义求出()f x 在[2,22)k k +(k ∈N )满足1()3f x ≤,在[2,0)-上直接判断,求出[4,2)--上的解析式,确定1()3f x ≤的范围,此时有不满足1()3f x ≤的x 出现,于是可得结论m 的范围.4.C解析:C 【分析】根据定义求出()M x 的表达式,然后根据单调性确定最小值. 【详解】由23(1)x x -+=-解得:1x =-或2x =,2(1)3x x -≥-+的解集为1x ≤-或2x ≥,2(1)3x x -<-+的解为12x -<<,∴2(1),12()3,12x x x M x x x ⎧-≤-≥=⎨-+-<<⎩或,∴2x ≤时,()M x 是减函数,2x >时,()M x 是增函数,∴min ()(2)1M x M ==. 故选:C . 【点睛】关键点点睛:本题考查新定义函数,解题关键是确定新定义函数的解析式,根据新定义通过求最大值得出新函数的解析式,然后根据分段函数研究新函数的性质.5.C【分析】根据题意得1min 2min ()()g x f x >,再分别求函数的最小值即可得答案. 【详解】解:∵x ∈,∴2[1,3]x ∈, ∴224()3[1,2]f x x x =-∈+. 当0k >时,()[2,22]g x k k ∈-++,所以只需满足:12k <-+,解得01k <<; 当0k =时,()2g x =.满足题意.当0k <时,()[22,2]g x k k ∈-++,所以只需满足:122k <+,解得102k >>-. ∴1,12k ⎛⎫∈- ⎪⎝⎭.故选:C . 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .6.B解析:B 【分析】这是一个对不等式恒成立,方程或不等式解集非空的理解,概念题.对各个选项分别加以判断,在①②中,得出①正确②错误,④⑤中得出⑤正确④错误,而不难发现③是一个真命题,由此可得正确答案. 【详解】对任何x ∈[a ,b]都有()p f x ≤,说明p 小于等于()f x 的最小值,①是正确的; 由于①正确,所以②是一个错误的理解,故不正确;关于x 的方程p =f (x )在区间[a ,b ]上有解,说明p 应属于函数f (x )在[a ,b ]上的值域[m ,M ]内,故③是正确的;关于x 的不等式p ≤f (x )在区间[a ,b ]上有解,说明p 小于或等于的最大值,所以④是错误的,而⑤是正确的 正确的选项应该为①③⑤ 故选: B.关键点点睛:本题考查了命题的真假判断与应用,属于基础题.不等式或方程解集非空,只要考虑有解;而不等式恒成立说明解集是一切实数,往往要考虑函数的最值了.7.D解析:D 【分析】令t =()0,t ∈+∞()0,+∞,记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,进而分0m =和0m ≠两种情况,分别讨论,可求出m 的取值范围. 【详解】令t =1y t=的值域为0,,根据反比例函数的性质,可知()0,t ∈+∞()0,+∞, 记函数()22(2)1g x mx m x =+-+的值域为A ,则()0,A +∞⊆,若0m =,则()41g x x =-+,其值域为R ,满足()0,A +∞⊆;若0m ≠,则00m >⎧⎨∆≥⎩,即()24240m m m >⎧⎪⎨--≥⎪⎩,解得4m ≥或01m <≤. 综上所述,实数m 的取值范围是[][)0,14,+∞.故选:D.8.B解析:B 【解析】函数()2f x x ax b =-+-的图象是开口朝上且以直线2ax =-为对称轴的抛物线, ①当22a -> 或22a-<-,即4a -< ,或4a >时, 函数f x () 在区间[]2,2-上单调, 此时224M m f f a -=--=()(), 故M m - 的值与a 有关,与b 无关 ②当022a≤-≤ ,即40a -≤≤ 时, 函数f x ()在区间[2]2a --, 上递增,在[2]2a -, 上递减, 且22f f -<()() , 此时2322424a a M m f f a -=---=--()(),故M m - 的值与a 有关,与b 无关③当202a-≤-≤,即04a ≤≤时, 函数f x ()在区间[2]2a -,上递减,在[2]2a --,上递增, 且22f f <-()()此时222424a a M m f f a -=--=-+()(),故M m - 的值与a 有关,与b 无关 综上可得M m - 的值与a 有关,与b 无关 故选B【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解答的关键.9.A解析:A 【分析】根据题意,由奇函数的性质可得f (﹣2)=﹣f (2)=0,结合函数的单调性分析可得在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0,再结合函数的奇偶性可得在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0,综合即可得答案. 【详解】根据题意,函数y=f (x )为奇函数,且f (2)=0, 则f (﹣2)=﹣f (2)=0,又由f (x )在(﹣∞,0)上单调递增,则在区间(﹣∞,﹣2)上,f (x )<0,在(﹣2,0)上,f (x )>0, 又由函数y=f (x )为奇函数,则在区间(0,2)上,f (x )<0,在(2,+∞)上,f (x )>0, 综合可得:不等式f (x )>0的解集(﹣2,0)∪(2,+∞); 故选A . 【点睛】本题考查函数单调性奇偶性的应用,关键是掌握函数的奇偶性与单调性的定义,属于基础题.10.C解析:C 【分析】由函数是R 上的减函数,列出不等式,解出实数a 的取值范围. 【详解】因为()f x 是R 上的减函数,故023033a a a a>⎧⎪-<⎨⎪-≥⎩,故2334a <≤,故选:C 【点睛】本题考查函数的单调性的应用,考查分段函数,属于中档题.11.A解析:A 【分析】分析函数()()2212f x x a x =+--的图象和性质,结合已知可得41a ≤-,解得答案.【详解】函数()()2212f x x a x =+--的图象是开口朝上,且以直线1x a =-为对称轴的抛物线,若函数()()2212f x x a x =+--在(],4-∞上是减函数,41a ∴≤-, 解得: 3a ≤-, 故选:A 【点睛】本题考查的知识点是二次函数的图象和性质,熟练掌握二次函数的图象和性质是解答的关键.12.D解析:D 【分析】根据()()()f xy f x f y =+且()21f =可得()42f =,83f ,则()()23f x f x +-≤可化为()()28f x x f -≤⎡⎤⎣⎦,然后根据单调性求解.【详解】根据()()()f xy f x f y =+可得,()()23f x f x +-≤可转化为()23f x x -≤⎡⎤⎣⎦, 又()()()()422222f f f f =+==,所以()()()842213f f f =+=+=,即()()28f x x f -≤⎡⎤⎣⎦,因为()f x 是定义在()0,∞+上的增函数,所以只需满足()28020x x x x ⎧-≤⎪>⎨⎪->⎩,解得:24x <≤.故选:D. 【点睛】本题考查抽象函数的应用,考查利用函数的单调性解不等式,难度一般,根据题目条件将问题灵活转化是关键.二、填空题13.【分析】函数是增函数可得且即可求解【详解】因为函数为上的增函数所以当时递增即当时递增即且解得∴综上可知实数的取值范围是故答案为:【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围需满足分段函数 解析:(]0,2【分析】函数是增函数可得30a ->,0a >且2(3)151aa -⨯-≤-,即可求解. 【详解】因为函数()f x 为R 上的增函数,所以当1x ≤时,()f x 递增,即30a ->,当1x >时,()f x 递增,即0a >, 且2(3)151aa -⨯-≤-,解得2a ≤,∴02a <≤, 综上可知实数a 的取值范围是(]0,2. 故答案为:(]0,2. 【点睛】易错点睛:本题考查根据分段函数的单调性求参数范围,需满足分段函数每部分分别单调,还应注意在分段处的函数值大小问题,这是容易漏掉的地方.14.【分析】根据f (x )定义在02上且4﹣ax≥0即可得出a≤2然后讨论:①1<a≤2时满足条件;②a=1时不合题意;③0<a <1时不合题意;④a=0时不合题意;⑤a <0时满足条件这样即可求出实数a 的取 解析:012a a <<≤或【分析】根据f (x )定义在[0,2]上,且4﹣ax≥0,即可得出a≤2,然后讨论:①1<a≤2时,满足条件;②a=1时,不合题意;③0<a <1时,不合题意;④a=0时,不合题意;⑤a <0时,满足条件,这样即可求出实数a 的取值范围. 【详解】∵f (x )定义在[0,2]上;∴a >2时,x=2时,4﹣ax <0,不满足4﹣ax≥0; ∴a≤2;①1<a≤2时,a ﹣1>0;∴()(1f x a =-[0,2]上是减函数; ②a=1时,f (x )=0,不满足在[0,2]上是减函数; ∴a≠1;③0<a <1时,a ﹣1<0; ∵[0,2]上是减函数;∴()(1f x a =-[0,2]上是增函数;∴0<a <1不合题意;④a=0时,f (x )=﹣2,不满足在[0,2]上是减函数; ∴a≠0;⑤a <0时,a ﹣1<0;[0,2]上是增函数;∴()(1f x a =-[0,2]上是减函数; ∴综上得,实数a 的取值范围为012a a <<≤或. 故答案为012a a <<≤或. 【点睛】考查函数定义域的概念,函数单调性的定义及判断.15.【分析】根据二次函数的单调性求得求得函数在区间上的最大值和最小值由题意可得出可得出关于实数的不等式进而可求得实数的取值范围【详解】二次函数的图象开口向上对称轴为直线由于函数在上是减函数则则所以函数在 解析:[]2,3【分析】根据二次函数()y f x =的单调性求得2a ≥,求得函数()y f x =在区间[]1,1a +上的最大值和最小值,由题意可得出()()max min 4f x f x -≤,可得出关于实数a 的不等式,进而可求得实数a 的取值范围. 【详解】二次函数()225f x x ax =-+的图象开口向上,对称轴为直线x a =,由于函数()225f x x ax =-+在(],2-∞上是减函数,则2a ≥,则()1,1a a ∈+,所以,函数()y f x =在区间[)1,a 上单调递减,在区间(],1a a +上单调递增, 所以,()()2min 5f x f a a ==-,又()162f a =-,()216f a a +=-,则()()()211220f f a a a a a -+=-=-≥,()()max 162f x f a ∴==-,对任意的1x 、[]21,1x a ∈+,总有()()124f x f x -≤,则()()()()22max min 625214f x f x a a a a -=---=-+≤,即2230a a --≤,解得13a -≤≤, 又2a ≥,则23a ≤≤,因此,实数a 的取值范围是[]2,3.故答案为:[]2,3. 【点睛】本题考查利用不等式恒成立求参数值,同时也考查了利用二次函数在区间上的单调性求参数,考查计算能力,属于中等题.16.【分析】当时可得可求出结合可求出时的表达式进而可得出答案【详解】当时;当时所以则所以故答案为:【点睛】本题考查分段函数解析式的求法考查学生的推理能力属于中档题解析:1,023,20x x x x +≤≤⎧⎨---≤<⎩【分析】当[)2,0x ∈-时,可得[)20,2x +∈,可求出(2)3f x x +=+,结合()(2)f x f x =-+,可求出[)2,0x ∈-时,()f x 的表达式,进而可得出答案.【详解】当[]0,2x ∈时,()1f x x =+;当[)2,0x ∈-时,[)20,2x +∈,所以(2)3f x x +=+, 则()(2)3f x f x x =-+=--. 所以1,02()3,20x x f x x x +≤≤⎧=⎨---≤<⎩.故答案为:1,023,20x x x x +≤≤⎧⎨---≤<⎩.【点睛】本题考查分段函数解析式的求法,考查学生的推理能力,属于中档题.17.【分析】转化为可求得结果【详解】因为在上单调递增所以当时因为在上单调递减所以当时若使只要使即可即解得所以实数的取值范围为故答案为:【点睛】结论点睛:本题考查不等式的恒成立与有解问题可按如下规则转化:解析:3,2⎡⎫-+∞⎪⎢⎣⎭【分析】转化为()()12min min f x g x ≥可求得结果. 【详解】因为()f x 在[1,2]上单调递增, 所以当[]11,2x ∈时,()1522f x ≤≤, 因为()12xg x m ⎛⎫=- ⎪⎝⎭在[1,1]-上单调递减, 所以当[]21,1x ∈-时,()2122m g x m -≤≤-. 若[]11,2x ∀∈,[]21,1x ∃∈-,使()()12f x g x ≥, 只要使()()12min min f x g x ≥即可.即122m -≤,解得32m ≥-,所以实数m 的取值范围为3,2⎡⎫-+∞⎪⎢⎣⎭. 故答案为:3,2⎡⎫-+∞⎪⎢⎣⎭.【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .18.【分析】先根据是幂函数求出的值再根据且有得出为增函数进而得到函数解析式再根据函数的奇偶性即可求解【详解】解:是幂函数解得:或当时当时又对且时都有在上单调递增易知的定义域为且为上的奇函数且在上单调递增 解析:<【分析】先根据()()21353m f x m m x+=++是幂函数,求出m 的值,再根据12,(0,)x x ∈+∞且12x x ≠有()()12120f x f x x x ->-,得出()f x 为增函数,进而得到函数解析式,再根据函数的奇偶性即可求解. 【详解】 解:()()21353m f x m m x +=++是幂函数,23531m m +∴+=,解得:23m =-或1m =-, 当23m =-时,()13f x x =,当1m =-时,()01f x x ==,又对12,(0,)x x ∈+∞且12x x ≠时,都有()()12120f x f x x x ->-,()f x ∴在(0,)+∞上单调递增,()13f x x∴=,易知()f x 的定义域为R ,且()()()1133f x x x f x -=-=-=-,()f x ∴为R 上的奇函数,且在R 上单调递增, 0a b <+, a b ∴<-,()()()f a f b f b ∴<-=-,()()0f a f b ∴+<.故答案为:<. 【点睛】关键点点睛:本题解题的关键是利用幂函数以及单调性得出函数的解析式.19.【分析】由和的单调性求得它们的最大值由题意可得解不等式可得所求范围【详解】在递增递减可得在递减可得由对任意总存在使得成立可得则解得所以的取值范围是故答案为:【点睛】结论点睛:本题考查不等式的恒成立与解析:13,15⎛⎤-∞-⎥⎝⎦【分析】由()f x 和()g x 的单调性求得它们的最大值,由题意可得()()max max f x g x ≤,解不等式可得所求范围. 【详解】2()2f x x x a =-++在[0]1,递增,[1]3,递减,可得()()11max f x f a ==+, 21()7log g x x=+在⎤⎦递减,可得()max 215g x g ===,由对任意1[0,3]x ∈,总存在24x ⎤∈⎦,使得12()()f x g x ≤成立,可得()()max max f x g x ≤, 则2115a +≤,解得1315a ≤-, 所以a 的取值范围是13,15⎛⎤-∞- ⎥⎝⎦, 故答案为:13,15⎛⎤-∞- ⎥⎝⎦. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集.20.5【分析】由二次函数的图象与性质得到函数在区间递减递增即可求得在区间函数的最值得解【详解】由题意函数可得函数在区间递减递增所以函数在递减递增所以故答案为:5【点睛】熟记二次函数的图象与性质是解答的关解析:5 【分析】由二次函数的图象与性质,得到函数()f x 在区间(,1]-∞递减[1,)+∞递增,即可求得在区间[]0,3函数的最值得解. 【详解】由题意,函数()222f x x x =-+,可得函数()f x 在区间(,1]-∞递减[1,)+∞递增[]0,3,所以函数()f x 在[0,1]递减,[1,3]递增(1)1,(3)5f f ∴==所以max (3)5y f == 故答案为:5 【点睛】熟记二次函数的图象与性质是解答的关键,着重考查推理与运算能力.三、解答题21.(1)单调递增,理由见解析;(2)3;(3)312a -≤≤且0a ≠.【分析】(1)根据函数单调性的定义先设120<m x x n ≤<≤,然后化简判断()()12f x f x -的正负,即可判断单调性;(2)由函数单调性可得,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围,进而求出n m -的最大值; (3)不等式等价于211222x a a x x x-≤+≤+对1≥x 恒成立,求出1()2h x x x =+最小值和1()2g x x x=-的最大值即可解出.【详解】(1)设120<m x x n ≤<≤, 则()()1212222121211x x f x f x a x a x a x x --=-+=, 120<m x x n ≤<≤,12120,0x x x x ∴>-<,()()12f x f x ∴<,故()f x 在[],m n 上单调递增;(2)由(1)可得0m n <<时,()f x 在[],m n 上单调递增,()f x 的定义域和值域都是[],m n ,(),()f m m f n n ∴==,则,m n 是方程2112x a a x+-=的不相等的两个正数根, 即()222210a x a a x -++=有两个不相等的正数根,则()2222122122Δ2402010a a a a a x x a x x a ⎧=+->⎪⎪+⎪+=>⎨⎪⎪=>⎪⎩,解得12a >,n m ∴-=== 1,2a ∞⎛⎫∈+ ⎪⎝⎭,32a ∴=时,n m -(3)221()2a f x a a x=+-,则不等式()22a f x x ≤对1≥x 恒成立, 即21222x a a x x -≤+-≤,即211222x a a x x x-≤+≤+对1≥x 恒成立, 令1()2h x x x=+,则()h x 在[1,)+∞单调递增,min ()(1)3h x h ∴==,令1()2g x x x=-,则()g x 在[1,)+∞单调递减,max ()(1)1g x g ∴==-, 222321a a a a ⎧+≤∴⎨+≥-⎩,解得312a -≤≤且0a ≠.【点睛】关键点睛:由函数单调性得出,m n 是方程()222210a x a a x -++=的不相等的两个正数根,利用韦达定理可求出a 的范围是解决第二问的关键,第三问不等式的恒成立问题需要分离参数求最值.22.(1)0m =;(2)函数()221x f x x =+在[]2,3上单调递减;最大值45,最小值35. 【分析】(1)根据奇函数性质()00f =求解计算即可;(2)用单调性的定义证明函数的单调性,由单调性即可证明函数在闭区间上的最值. 【详解】 (1)∵()22,1x mf x x R x +=∈+是奇函数,所以()00f m ==, 检验知,0m =时,()221xf x x =+,x ∈R 是奇函数,所以0m =; (2)[]12,2,3x x ∀∈,且12x x <,有()()()()()()()()()()2212211212121222222212121221212122111111x x x x x x x x x x f x f x x x x x x x +-+---=-==++++++, ∵1223x x ≤<≤,∴12120,1x x x x -<>,即1210x x -<,又()()2212110x x ++>,所以()()120f x f x ->,即()()12f x f x >,所以函数()221xf x x =+在[]2,3上单调递减, 所以当2x =时,()f x 取得最大值45;当3x =时,()f x 取得最小值35. 【点睛】本题主要考查奇函数的性质,以及定义法证明函数单调性,最值的求法,属于中档题. 23.(1)答案见解析;(2)存在0a =或1. 【分析】(1)直接作出图象即可;(2)利用分离常数的方法结合反比例函数的单调性得出a 的范围,化简4y ≤将恒成立问题转化为求最值得出a 的范围,再由a 是整数求值即可. 【详解】(1)当1a =时,1233=1222x x y x x x +-+==+---(2)存在0a =或1符合题意.()212112=222a x a ax ay a x x x -++++==+--- 函数在[4,)+∞上是严格减函数,则120a +>,解得12a >-当4x ≥时,都有124ax y x =-≤+,等价于49ax x ≤-,即min 94a x ⎛⎫≤- ⎪⎝⎭又94y x =-在[)4,+∞上单调递增,则97444a ≤-= 故a 的取值范围是1724a -<≤,a 为整数,则符合条件的a 有0,1. 【点睛】关键点点睛:本题考查函数的图象,考查函数单调性的应用,以及函数的恒成立问题,解决本题的关键是将当4x ≥时,都有4y ≤进行去分母化简,并分离参变量,将不等式恒成立转化为函数的最值问题,结合反比例函数的单调性求出参数的范围,考查了学生逻辑思维能力和计算能力,属于中档题. 24.(1) 1.0,0,1,[]1,1-;(2)4m =或2;(3)904≤<m . 【分析】(1)本题可令3x x =,解得0x =或±1,然后根据函数()3f x x =的单调性以及“和谐区间”定义即可得出结果;(2)本题首先可将函数转化为()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,然后令322x x -=,解得45x =或4,最后绘出函数图像,结合函数图像即可得出结果;(3)讨论1a b <≤或1a b ≤<或1a b <<,根据二次函数的性质确定函数的单调区间,再由单调性求出函数的值域,根据题干,函数的新定义即可求解. 【详解】解:(1)函数()3f x x =是增函数,定义域为R ,令3x x =,解得0x =或±1,故函数()3f x x =的所有“和谐区间”为[]1,0-、0,1、[]1,1-.(2)因为()322f x x =-,所以()342,23342,23x x f x x x ⎧-≥⎪⎪=⎨⎪-+<⎪⎩,因为[]()0,0m m >为函数()322f x x =-的一个“和谐区间”, 所以可令322x x -=,解得45x =或4,如图所示,绘出函数图像:结合“和谐区间”的定义易知,当4x =时满足题意,因为()02f =,所以当2m =时,()min max 2,()0f x f x ==,满足题意, 故m 的值为4或2.(3)①当1a b <≤时,()f x 在,a b 上时单调递减函数,由题意有()()f a bf b a =⎧⎨=⎩,2222a a m b b b m a⎧-+=⎨-+=⎩得1a b +=,因为1a b <≤,所以110,122≤<<≤a b ,且221-+=-a a m a ,即210-+-=a a m,解得1122+=≥a 舍去,或12=<a,1=-=b a 由211(0)2=-++≤<m a a a ,得514m ≤<,所以当514m ≤<时,和谐区间为⎣⎦. ②1a b ≤<时,()f x 在,a b 上时单调递增函数,由题意有()()f a af b b=⎧⎨=⎩,所以,a b 是方程22-+=x x m x 的两个不等实根.因为3a b +=,又1a b ≤<,得2b ≤,因而有3122≤<<≤a b ,故方程2()30=-+=g x x x m 在31,2⎡⎫⎪⎢⎣⎭和3,22⎛⎤⎥⎝⎦内各有一个实根,即302≤<且322<≤, 解得924≤<m ,故当924≤<m时,和谐区间为3322⎡+⎢⎣⎦. ③当1a b <<时,min ()(1)11==-=<f x f m a ,得2m < 当12a b+≤时,即2a b +≤,则max ()()==f x f a b ,得22-+=a a m b , 又1a m =-,得2331=-+>b m m ,得 2m >或1m <, 又由2222+=-+≤a b m m 及2m <,解得01m ≤<,此时和谐区间为21,33⎡⎤--+⎣⎦m m m . 当12+≥a b时,即2a b +≥,则max ()()==f x f b b ,得22-+=b b m b ,解得=b .若=b 则由2m <知12+=-+<a b m ,舍去;若=b,12+=-≥a b m ,解得904≤≤m ,又2m <,所以02m ≤<,此时和谐区间为⎡-⎢⎣⎦m ,综上,所求范围是904≤<m . 【点睛】关键点点睛:本题考查函数新定义,能否结合题意明确函数新定义的含义是解决本题的关键,在解决函数类的问题时,合理利用函数图像可以给解题带来很大帮助,考查数形结合思想,是中档题.25.(1)(5)4f -=-,(3f =-53(())24f f -=-;(2)1a =或2a =. 【分析】(1)本题首先可以根据题意明确函数()f x 在各段的解析式,然后代入值进行计算即可; (2)本题可分为2a ≤-、22a -<<、2a ≥三种情况进行讨论,依次求解()3f a =,即可得出结果. 【详解】(1)因为函数21,2()2,2221,2x x f x x x x x x +≤-⎧⎪=+-<<⎨⎪-≥⎩,所以()5514f -=-+=-,(((223f =+⨯=-5531222f ⎛⎫-=-+=- ⎪⎝⎭,253339323222244f f f ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=-=-+⨯-=-=- ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦. (2)当2a ≤-时,(13)f a a +==,解得2a =,不合题意,舍去; 当22a -<<时,2(3)2f a a a ,即()()130a a -+=,解得1a =或3a =-(舍去),故此时1a =; 当2a ≥时,()213f a a =-=,即2a =, 综上所述,1a =或2a =. 【点睛】本题考查分段函数值的求法以及根据分段函数值求自变量,能否明确分段函数在各段的解析式是解决本题的关键,根据分段函数值求自变量时要注意求出的自变量是否在取值范围内,考查分类讨论思想,是中档题.26.(1)定义域为[1,1]-,值域为2](2)1m ≤-或1m ≥ 【分析】(1)由1010x x +≥⎧⎨-≥⎩可得定义域,先求出2()f x 的值域,再开方求出()f x 的值域;(2)换元,令t =2]∈,根据对勾函数的单调性求出2()()4t h x g t t ==+的最大值,则不等式转化为21310244am m -+-≥对任意[1,1]a ∈-都恒成立,利用一次函数的图象列式可解得结果.【详解】(1)由函数有意义得1010x x +≥⎧⎨-≥⎩,解得11x -≤≤,所以函数()f x 的定义域为[1,1]-,因为22()2f x ==+[2,4]∈, 又()0f x ≥,所以()2]f x ∈. (2)()h x ==令t =2]∈,则22t =-,所以2()()4t h x g t t ==+14t t=+, 因为()g t在2]上递增,所以当2t =时,()g t 取得最大值221(2)244g ==+,即max 1()4h x =, 所以不等式231()42h x m am ≤-对于任意[1,1]x ∈-恒成立,转化为2311424m am -≥对任意[1,1]a ∈-都恒成立,即21310244am m -+-≥对任意[1,1]a ∈-都恒成立, 所以2213102441310244m m m m ⎧+-≥⎪⎪⎨⎪-+-≥⎪⎩,即2232103210m m m m ⎧+-≥⎨--≥⎩,解得113113m m m m ⎧≤-≥⎪⎪⎨⎪≤-≥⎪⎩或或,所以1m ≤-或1m ≥. 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化: ①若()k f x ≥在[,]a b 上恒成立,则max ()k f x ≥; ②若()k f x ≤在[,]a b 上恒成立,则min ()k f x ≤; ③若()k f x ≥在[,]a b 上有解,则min ()k f x ≥; ④若()k f x ≤在[,]a b 上有解,则max ()k f x ≤;。

高中数学必修一函数的最大(小)值练习题测试题及答案解析

高中数学必修一函数的最大(小)值练习题测试题及答案解析

1.3.1.2函数的最大(小)值双基限时练 新人教A 版必修11.函数y =1x -1在[2,3]上的最小值为( ) A.13 B .-12C .1 D.12解析 函数y =1x -1在[2,3]上是减函数,∴当x =3时,取最小值为12. 答案 D2.若f (x )=⎩⎪⎨⎪⎧2x +6,x ∈[1,2],x +7,x ∈[-1,1,则函数f (x )的最大值和最小值分别为( )A .8,6B .8,8C .10,6D .10,8解析 当x ∈[1,2]时,f (x )∈[8,10];当x [-1,1)时,f (x )∈[6,8),∴f (x )的最大值和最小值分别为10,6.答案 C3.函数y =|x +1|+2的最小值是( ) A .0 B .-1 C .2D .3解析 y =|x +1|+2的图象如下:所以最小值为2. 答案 C4.函数f (x )=x 2+2x -1,x ∈[-3,2]的最大值、最小值分别为( ) A .9,0 B .7,3 C .2,-2D .7,-2解析 f (x )=x 2+2x -1=(x +1)2-2,∴当x =-1时,有最小值-2,当x =2时,有最大值7.答案 D5.函数f (x )=2x -1+x 的值域是( ) A.⎣⎢⎡⎭⎪⎫12,+∞ B.⎝⎛⎦⎥⎤-∞,12C .(0,+∞)D .[1,+∞)解析 易知当x ≥12时,函数f (x )为增函数,故值域为⎣⎢⎡⎭⎪⎫12,+∞.答案 A6.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,若该公司在两地共销售15辆(销售量单位:辆),则能获得的最大利润为( )A .90万元B .60万元C .120万元D .120.25万元解析 设在甲地销售x 辆,则在乙地销售(15-x )辆,则利润y =-x 2+21x +2(15-x )=-x 2+19x +30=-⎝⎛⎭⎪⎫x -1922+4814∴当x =9或10时,可获最大利润120万元. 答案 C7.函数y =1x 在[1,a ]上的最小值为14,则a =______.解析 ∵y =1x在[1,a ]上是减函数,∴最小值为f (a )=1a =14,∴a =4.答案 4 8.函数f (x )=xx -1在区间[2,5]上的值域为________.解析 f (x )=xx -1=1+1x -1,易知f (x )在[2,5]上为减函数,∴最小值为f (5)=54,最大值为f (2)=2,故f (x )的值域为⎣⎢⎡⎦⎥⎤54,2.答案 ⎣⎢⎡⎦⎥⎤54,2 9.已知函数y =x 2-2x +3在闭区间[0,m ]上有最大值3,最小值2,则实数m 的取值范围是________.解析 y =x 2-2x +3=(x -1)2+2,作出图象,由图象知,1≤m ≤2.答案 [1,2]10.函数f (x )=ax 2-2ax +2+b (a ≠0)在[2,3]上有最大值5和最小值2,求a ,b 的值. 解 由f (x )=ax 2-2ax +2+b 的对称轴为x =1知,无论f (x )的单调性怎样,f (x )在[2,3]上存在最值的情况有两种:⎩⎪⎨⎪⎧f =2,f=5,或⎩⎪⎨⎪⎧f =5,f=2.解得⎩⎪⎨⎪⎧a =1,b =0,或⎩⎪⎨⎪⎧a =-1,b =3.11.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最值; (2)若f (x )是单调函数,求实数a 的取值范围.解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1,∵x ∈[-5,5],∴当x =1时,f (x )取得最小值1;当x =-5时,f (x )取得最大值37.(2)函数f (x )=x 2+2ax +2的图象是抛物线,其对称轴为x =-a . 若函数f (x )=x 2+2ax +2,x ∈[-5,5]. 是单调函数,则有-a ≤-5,或-a ≥5, ∴a ≥5,或a ≤-5.故所求实数a 的取值范围是(-∞,-5]∪[5,+∞). 12.若二次函数满足f (x +1)-f (x )=2x 且f (0)=1. (1)求f (x )的解析式;(2)若在区间[-1,1]上不等式f (x )>2x +m 恒成立,求实数m 的取值范围. 解 (1)设f (x )=ax 2+bx +c (a ≠0), 由f (0)=1,∴c =1, ∴f (x )=ax 2+bx +1. ∵f (x +1)-f (x )=2x , ∴2ax +a +b =2x ,∴⎩⎪⎨⎪⎧2a =2,a +b =0.∴⎩⎪⎨⎪⎧a =1,b =-1.∴f (x )=x 2-x +1.(2)由题意:x 2-x +1>2x +m 在[-1,1]上恒成立, 即x 2-3x +1-m >0在[-1,1]上恒成立.令g (x )=x 2-3x +1-m =⎝ ⎛⎭⎪⎫x -322-54-m ,其对称轴为x =32,∴g (x )在区间[-1,1]上是减函数, ∴g (x )min =g (1)=1-3+1-m >0, ∴m <-1.。

高中数学函数的概念课堂练习题(附解析)

高中数学函数的概念课堂练习题(附解析)

高中数学函数的概念课堂练习题(附解析)必修一人教A版函数的概念课堂练习题(附答案)一、选择题:1.下列四个图象中,不是函数图象的是().2.已知函数,则().A. 0B. 1C. 3D. 23.已知函数的值为().A. 1B. 2C. 3D. 4.集合,,给出下列四个图形,其中能表示以M为定义域,N 为值域的函数关系的是().5.下列式子中不能表示函数y=f(x)的是().A.x=y2+1 B.y =2x2+1C.x-2y=6 D.x=y6.函数y=1-x+x的定义域是().A .{x|x B.{x |x1}C.{x|x{0} D .{x|01}二、填空题:7.函数的定义域为.8.函数的值域是.三、解答题:9.下列哪一组中的函数f(x)与g(x)相等?(1)f(x)=x-1,g(x)= ;(2)f(x)=x2,g(x)= ;10*. 若f(1)=f(2)=0,(1)求f(-2)的值;(2)若f(x)=6,求x的值.1 .2.1(1)函数的概念(课时练)答案一、选择题:1.B2.B3.C4.B5.A6.D二、填空题:7. 8.三、解答题:9.(2)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也专门难做到恰如其分。

什么缘故?依旧没有完全“记死”的缘故。

要解决那个问题,方法专门简单,每天花3-5分钟左右的时刻记一条成语、一则名言警句即可。

能够写在后黑板的“积存专栏”上每日一换,能够在每天课前的3分钟让学生轮番讲解,也可让学生个人搜集,每天往笔记本上抄写,教师定期检查等等。

如此,一年就可记300多条成语、30 0多则名言警句,日积月累,终究会成为一笔不小的财宝。

这些成语典故“贮藏”在学生脑中,自然会出口成章,写作时便会为所欲为地“提取”出来,使文章增色添辉。

10.(1)12,“教书先生”可能是市井百姓最为熟悉的一种称呼,从最初的门馆、私塾到晚清的学堂,“教书先生”那一行当如何说也确实是让国人景仰甚或敬畏的一种社会职业。

高考第5课函数的定义域与值域

高考第5课函数的定义域与值域

高中数学学习材料 (灿若寒星 精心整理制作)第5课 函数的定义域与值域【自主学习】第5课 函数的定义域与值域(本课时对应学生用书第 页)自主学习 回归教材1.(必修1P93习题1改编)函数f (x )=-1x +14x +的定义域为 . 【答案】[1,+∞)【解析】由-1040x x ≥⎧⎨+≠⎩,,解得x ≥1.2.(必修1P93习题5改编)已知函数y=x 2-x 的定义域为{0,1,2,3},那么其值域为 . 【答案】{0,2,6}【解析】当x=0时,y=0;当x=1时,y=0;当x=2时,y=2;当x=3时,y=6,所以值域为{0,2,6}.3.(必修1P27练习7改编)函数f(x)=x2-2x-3,x∈[-1,2]的最大值为.【答案】0【解析】因为f(x)=(x-1)2-4,所以当x=-1时,函数f(x)取得最大值0.4.(必修1P32例2改编)函数f(x)=11-(1-)x x的最大值是.【答案】4 3【解析】1-x(1-x)=x2-x+1=21-2x⎛⎫⎪⎝⎭+34≥34.因此,有0<11-(1-)x x≤43,所以f(x)的最大值为4 3.5.(必修1P36习题13改编)已知函数f(x)=x2的值域为{1,4},则这样的函数有个.【答案】9【解析】定义域为两个元素有{-2,-1},{-2,1},{-1,2},{1,2};定义域为三个元素有{-2,-1,1},{-2,-1,2},{-1,1,2},{-2,1,2};定义域为四个元素有{-2,-1,1,2},故这样的函数一共有9个.1.函数的定义域(1)函数的定义域是构成函数的非常重要的部分,若没有标明定义域,则认为定义域是使得函数解析式有意义的x的取值范围.(2)分式中分母应不等于0;偶次根式中被开方数应为非负数,奇次根式中被开方数为一切实数;零指数幂中底数不等于0.(3)对数式中,真数必须大于0,底数必须大于0且不等于1,含有三角函数的角要使该三角函数有意义等.(4)实际问题中还需考虑自变量的实际意义,若解析式由几个部分组成,则定义域为各个部分相应集合的交集.2.求函数值域的主要方法(1)函数的定义域与对应法则直接制约着函数的值域,对于一些比较简单的函数可直接通过观察法求得值域.(2)二次函数或可转化为二次函数形式的问题,常用配方法求值域.(3)分子、分母是一次函数或二次齐次式的有理函数常用分离变量法求值域;分子、分母中含有二次项的有理函数,常用判别式法求值域(主要适用于定义域为R的函数).(4)单调函数常根据函数的单调性求值域.(5)很多函数可拆配成基本不等式的形式,利用基本不等式求值域.(6)有些函数具有明显的几何意义,可根据几何意义的方法求值域.(7)只要是能求导数的函数常采用导数的方法求值域.【要点导学】要点导学各个击破求函数的定义域例1 (1)函数y=216--x x 的定义域是 .(2)设函数f (x )=ln 22-xx +,则函数g (x )=f 2x ⎛⎫ ⎪⎝⎭+f 1x ⎛⎫ ⎪⎝⎭的定义域是 .【思维引导】(1)分式函数中分母不等于零;偶次根式函数,被开方式大于或等于0;(2)对数式中真数大于0,列出不等式组,求解,对应法则“f ”作用下的12x x 和是f (x )的定义域内的值,同时要记住函数的定义域要用集合或区间表示.【答案】(1)(-3,2) (2)1-4-2⎛⎫ ⎪⎝⎭,∪142⎛⎫ ⎪⎝⎭,【解析】(1)由函数解析式可知6-x-x 2>0, 即x 2+x-6<0,故-3<x<2.(2)由22-xx +>0,得f (x )的定义域为-2<x<2,故-2221-22xx ⎧<<⎪⎪⎨⎪<<⎪⎩,,解得-4<x<-12或12<x<4.【精要点评】(1)求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集.(2)已知f (x )的定义域是[a ,b ],求f (g (x ))的定义域,是指满足a ≤g (x )≤b 的x 的取值范围,而已知f (g (x ))的定义域是[a ,b ],指的是x ∈[a ,b ].【高频考点·题组强化】1.(2016·苏州期中)函数y=ln(x2-x-2)的定义域是.【答案】(-∞,-1)∪(2,+∞)【解析】由题意知,x2-x-2>0,解得x>2或x<-1,故函数的定义域为(-∞,-1)∪(2,+∞).2.函数f(x)=2-11114-1x xxx⎧<≤⎪⎨<≤⎪⎩,,,的定义域是.【答案】(-1,4]【解析】两个分段区间是(-1,1]和(1,4],取它们的并集得所求函数的定义域为(-1,4].3.(2014·山东卷)函数f(x)=221(log)-1x的定义域为.【答案】12⎛⎫⎪⎝⎭,∪(2,+∞)【解析】由题意得22(log)-10xx>⎧⎨>⎩,,解得1202xx x>⎧⎪⎨><<⎪⎩,或,所以f(x)的定义域为12⎛⎫⎪⎝⎭,∪(2,+∞).4.(2014·珠海模拟)函数y=(1)21xx++的定义域为.【答案】1-2∞⎛⎫+⎪⎝⎭,【解析】由题意得10210x x +≠⎧⎨+>⎩,,解得x>-12,所以函数的定义域为1-2∞⎛⎫+ ⎪⎝⎭,.5.已知函数f (x )的定义域是[3,10],则函数f (x+1)的定义域是 . 【答案】[2,9]【解析】因为f (x )的定义域是[3,10],所以使f (x+1)有意义的条件是3≤x+1≤10,即2≤x ≤9,所以函数f (x+1)的定义域是[2,9].求函数的值域微课1 ● 问题提出函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域,都应先考虑其定义域.有时我们需要求函数在某个区间上的值域,结合函数图象,根据函数图象的分布得出函数的值域.那么,求函数值域的方法有哪些呢?● 典型示例例2 求下列函数的值域.(1)y=3x 2-x+2,x ∈[1,3];(2)y=31-2x x +;(3)y=x+41-x ;(4)y=22-112-12x x x x +⎛⎫> ⎪⎝⎭.【思维导图】【规范解答】(1)(配方法)因为y=3x 2-x+2=321-6x ⎛⎫ ⎪⎝⎭+2312,所以函数y=3x 2-x+2在[1,3]上单调递增, 所以当x=1时,原函数取得最小值4; 当x=3时,原函数取得最大值26,所以函数y=3x 2-x+2(x ∈[1,3])的值域为[4,26].(2)(分离常数法)y=31-2x x +=3(-2)7-2x x +=3+7-2x , 因为7-2x ≠0,所以3+7-2x ≠3,所以函数y=31-2x x +的值域为{y|y ≠3}.(3)(换元法)设t=1-x ,t ≥0,则x=1-t 2,所以原函数可化为y=1-t 2+4t=-(t-2)2+5(t ≥0),所以y ≤5, 所以原函数的值域为(-∞,5].(4)(基本不等式法)y=22-12-1x x x +=(2-1)12-1x x x +=x+12-1x =x-12+121-2x +12,因为x>12,所以x-12>0,所以x-12+121-2x≥2112-12-2xx⎛⎫⋅⎪⎛⎫⎝⎭⎪⎝⎭=2,当且仅当x-12=121-2x,即x=122+时等号成立,所以y ≥2+12,即原函数的值域为122∞⎡⎫++⎪⎢⎣⎭,.【精要点评】配方法、分离常数法和换元法是求常见函数值域的有效方法,但要注意各种方法所适用的函数形式,还要注意函数定义域的限制.换元法多用于无理函数,换元的目的是进行化归,把无理式转化为有理式来解;二次分式型函数求值域,多采用分离出整式利用基本不等式法求解.● 总结归纳(1)首先我们要掌握初中学过的基本初等函数,y=kx,y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(k≠0)的值域.(2)求函数值域的常用方法有:直接法、逆求法、换元法、配方法、基本不等式法、判别式法、单调性法等.● 题组强化1.(2016·苏州期中)函数f(x)=3sin x-cos x-2(x>0)的值域是.【答案】[-4,0]【解析】因为f(x)=3sin x-cos x-2=2sinπ-6x⎛⎫⎪⎝⎭-2,且x>0,所以sinπ-6x⎛⎫⎪⎝⎭∈[-1,1],所以函数f(x)的值域是[-4,0].2.(2015·扬州调研)函数y=x-1-2x的值域为.【答案】1 -2∞⎛⎤ ⎥⎝⎦,【解析】方法一:(换元法)令1-2x=t,t≥0,x=21-2t,于是y=21-2t-t=-12(t+1)2+1,由于t≥0,所以y≤12,故函数的值域为1-2∞⎛⎤⎥⎝⎦,.方法二:(单调性法)函数的定义域为1-2∞⎛⎤⎥⎝⎦,,且函数y=x-1-2x在1-2∞⎛⎤⎥⎝⎦,上单调递增,所以y≤12,故函数的值域为1-2∞⎛⎤⎥⎝⎦,.3.(2014·海门中学)函数f(x)=2log01-2(-1)(-3)1x xx x x<<⎧⎨≥⎩,,,的值域是.【答案】(-∞,2]【解析】当0<x<1时,值域为(-∞,0);当x≥1时,值域为(-∞,2].故原函数的值域为(-∞,2].4.(2015·南通中学)函数y=252-43x x+的值域是. 【答案】(0,5]【解析】因为2x2-4x+3=2(x-1)2+1≥1,所以0<212-43x x+≤1,所以0<y≤5,所以值域为(0,5].5.(2014·青阳中学)若函数y=x2-3x-4的定义域为[0,m],值域为25--44⎡⎤⎢⎥⎣⎦,,则实数m的取值范围是.【答案】33 2⎡⎤⎢⎥⎣⎦,【解析】因为f(x)=x2-3x-4=23-2x⎛⎫⎪⎝⎭-254,所以f32⎛⎫⎪⎝⎭=-254.又f(0)=f(3)=-4,故由二次函数图象可知32≤m≤3.已知函数定义域(值域)求参数的取值范围例3若函数y=222(-1)(-1)1a x a xa+++的定义域为R,求实数a的取值范围.【思维引导】可先求出使函数有意义的不等式(组),再对其中的参数进行分类讨论即可.【解答】由题意知当x∈R时,(a2-1)x2+(a-1)x+21a+≥0恒成立.①当a2-1=0,即2-1010aa⎧=⎨+≠⎩,时,得a=1,此时有(a2-1)x2+(a-1)x+21a+=1.可知当x∈R时,(a2-1)x2+(a-1)x+21a+≥0恒成立.②当a2-1≠0,即222-102(-1)-4(-1)01aa aa⎧>⎪⎨∆=⋅≤⎪+⎩,时,有221-1090aa a⎧>⎨+≤⎩,,解得1<a≤9.综上所述,实数a的取值范围是[1,9].【精要点评】解决本题的关键是理解函数的定义域是R的意义,并会对函数式进行分类讨论,特别要注意不要遗漏对第一种情况a2-1=0的讨论.变式(1)(2014·常州一中)若函数f(x)=2-443 xmx mx++的定义域为R,则实数m 的取值范围是.(2)若函数y=lg(x2+2x+m)的值域是R,则实数m的取值范围是.【答案】(1)34⎡⎫⎪⎢⎣⎭,(2)(-∞,1]【解析】(1)f(x)的定义域为R,即mx2+4mx+3≠0恒成立.①当m=0时,符合题意.②当m≠0时,Δ=(4m)2-4×m×3<0,即m(4m-3)<0,所以0<m<3 4.综上所述,实数m的取值范围是34⎡⎫⎪⎢⎣⎭,.(2)由题意可知x2+2x+m能取遍一切正实数,从而可知Δ=4-4m≥0,则m≤1.新定义下的函数值域创新问题例4 已知函数f M (x )的定义域为实数集R ,满足f M (x )=10x M x M ∈⎧⎨∉⎩,,,(M 是R 的非空真子集).在R 上有两个非空真子集A ,B ,且A ∩B=∅,则F (x )=()1()()1A B A B f x f x f x +++的值域为 .【思维引导】求F (x )的值域→确定f A (x ),f B (x )以及ABf (x )的取值−−−−→函数定义探讨x 与A ,B ,A ∪B 的关系.【答案】{1}(例4)【解析】因为A ,B 是R 的两个非空真子集,且A ∩B=∅,画出韦恩图如图所示,则实数x 与集合A ,B 的关系可分为x ∈A ,x ∈B ,x ∉A 且x∉B 三种.①当x ∈A 时,根据定义, 得f A (x )=1. 因为A ∩B=∅, 所以x ∉B ,故f B (x )=0.又因为A ⊆(A ∪B ),则必有x ∈A ∪B , 所以f A ∪B (x )=1.所以F (x )=()1()()1A B A B f x f x f x +++=11101+++=1. ②当x ∈B 时,根据定义,得f B (x )=1. 因为A ∩B=∅,所以x ∉A ,故f A (x )=0. 又因为B ⊆(A ∪B ),则必有x ∈A ∪B ,所以f A∪B(x)=1.所以F(x)=()1()()1A BA Bf xf x f x+++=11011+++=1.③当x∉A且x∉B时,根据定义,得f A(x)=0,f B(x)=0.由图可知,显然x∉A∪B,故f A∪B(x)=0,所以F(x)=()1()()1A BA Bf xf x f x+++=01001+++=1.综上,函数的值域中只有一个元素1,即函数的值域为{1}.【精要点评】(1)如果函数f(x)的定义域为A,那么f(g(x))的定义域是使函数g(x)∈A的x的取值范围.(2)如果f(g(x))的定义域为A,那么函数f(x)的定义域是函数g(x)的值域.(3)f(g(x))与f(h(x))联系的纽带是g(x)与h(x)的值域相同.本题以集合之间的关系为背景考查新定义函数值的计算,所以准确利用已知条件梳理各个集合之间的关系是解决该题的关键.可借助韦恩图表示出各个集合,再根据图形的直观性进行分类,简单又直接.变式把本例中“A∩B=∅”变为x∈A∩B,其他条件不变,试求之.【解答】当x∈A∩B时,因为(A∩B)⊆(A∪B),所以必有x∈A∪B.由定义,可知f A(x)=1,f B(x)=1,f A∪B(x)=1,所以F(x)=()1()()1A BA Bf xf x f x+++=11111+++=23.故函数F(x)的值域为23⎧⎫⎨⎬⎩⎭.1.(2014·苏北四市期末)函数f(x)=lg(2x-3x)的定义域为. 【答案】(-∞,0)【解析】由2x-3x>0得23x⎛⎫⎪⎝⎭>1,所以x<0,即函数f(x)的定义域为(-∞,0).2.(2014·江西卷)函数f(x)=ln(x2-x)的定义域为. 【答案】(-∞,0)∪(1,+∞)【解析】由x2-x>0,得x>1或x<0.3.函数f(x)=log2(3x+1)的值域为.【答案】(0,+∞)【解析】因为3x+1>1,所以f(x)=log2(3x+1)>log21=0.4.若函数f(x)=21(2-1)4ax a x++的值域为[0,+∞),则实数a的取值范围是.【答案】1 |104 a a a⎧⎫≥≤≤⎨⎬⎩⎭或【解析】当a=0时,符合要求;当a>0时,方程ax2+(2a-1)x+14=0一定有解,所以Δ=(2a-1)2-4a×14≥0,所以a≥1或0<a≤1 4.综上,实数a的取值范围是1|104a a a⎧⎫≥≤≤⎨⎬⎩⎭或.5.已知函数f(x)=22(1-)3(1-)6 a x a x++.(1)若f(x)的定义域为R,求实数a的取值范围;(2)若f(x)的定义域为[-2,1],求实数a的值.【解答】(1)①若1-a2=0,即a=±1.当a=1时,f(x)=6,定义域为R,符合题意;当a=-1时,f(x)=66x+,定义域为[-1,+∞),不合题意.②若1-a2≠0,则g(x)=(1-a2)x2+3(1-a)x+6为二次函数.由题意知g(x)≥0对x∈R恒成立,所以21-0a⎧>⎨∆≤⎩,,即-11(-1)(115)0aa a<<⎧⎨+≤⎩,,解得-511≤a<1.综上,实数a的取值范围是5,111⎡⎤-⎢⎥⎣⎦.(2)由题意知,不等式(1-a2)x2+3(1-a)x+6≥0的解集为[-2,1],显然1-a2≠0且-2,1是方程(1-a2)x2+3(1-a)x+6=0的两个根,所以222221-03(1-)-21-16-21-[3(1-)]-24(1-)0aaaaa a⎧<⎪⎪+=⎪⎨⎪=⎪⎪∆=>⎩,,,,解得a=2,即实数a的值为2.趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》中的练习第9~10页.【检测与评估】第5课 函数的定义域与值域一、 填空题1.(2014·江苏压题卷)函数y = 12x +的定义域是 .2.函数y =2ln(1)--34x x x ++的定义域是 .3.函数y =2-2-4x x +的值域是 .4.若函数f (x )=2-6(8)kx kx k ++的定义域是R ,则实数k 的取值范围为 .5.已知函数y =21mx mx ++的值域为[0,+∞),那么实数m 的取值范围是 .6.若函数y =f (x )的值域是[1,3],则函数F(x )=1-2f (x +3)的值域是 .7.(2015·福建卷)若函数f (x )=-623log 2a x x x x +≤⎧⎨+>⎩,,, (a >0 且a ≠1)的值域是[4,+∞),则实数a 的取值范围是 .8.已知对于函数f (x )=2ax bx +,存在一个正数b ,使得f (x )的定义域和值域相同,则非零实数a 的值为 .二、解答题9.已知全集U=R,函数f(x )=12x++lg(3-x)的定义域为集合A,集合B={x|-2<x<a}.(1)求集合∁U A;(2)若A∪B=B,求实数a的取值范围.10.(2015·镇江中学)已知函数f(x)=x2-4ax+2a+6(a∈R).(1)若函数f(x)的值域为[0,+∞),求实数a的值;(2)若函数f(x)的值域为非负数,求函数g(a)=2-a|a+3|的值域.11.已知函数g(x )=x+1,函数h(x)=13x+,x∈(-3,a],其中a>0,令函数f(x)=g(x)·h(x).(1)求函数f(x)的解析式,并求其定义域;(2)当a=14时,求函数f(x)的值域.三、选做题(不要求解题过程,直接给出最终结果)12.已知函数f(x)=|x+2|-|x-1|.(1)试求f(x)的值域;(2)设函数g(x)=2-33ax xx+(a>0),若对∀s∈(0,+∞),∀t∈(-∞,+∞)恒有g(s)≥f(t)成立,试求实数a的取值氛围.【检测与评估答案】第5课 函数的定义域与值域1.(-2,+∞) 【解析】由题意得12x +≥0,解得x>-2,故所求定义域为(-2,+∞).2.(-1,1) 【解析】函数y=2ln(1)--34x x x ++的定义域需满足210--340x x x +>⎧⎨+>⎩,, 解得-1<x<1.3. [0,2] 【解析】-x 2+4x=-(x-2)2+4≤4,所以0≤2-4x x +≤2,所以0≤2-2-4x x+≤2,所以0≤y ≤2.4.[0,1] 【解析】由题意知kx 2-6kx+(k+8)≥0在R 上恒成立.当k=0时,显然成立;当k>0时,有Δ=(-6k )2-4k (k+8)≤0,得0<k ≤1.综上,0≤k ≤1.5. [4,+∞) 【解析】当m=0时,不符合题意,所以20-40m m m >⎧⎨∆=≥⎩,,即m ≥4.6.[-5,-1] 【解析】因为1≤f (x )≤3,所以1≤f (x+3)≤3,所以-6≤-2f (x+3)≤-2,所以-5≤F (x )≤-1.7.(1,2] 【解析】当x ≤2时,-x+6≥4,要使得函数f (x )的值域为[4,+∞),只需f 1(x )=3+log a x (x>2)的值域包含于[4,+∞)即可,故a>1,所以f 1(x )>3+log a 2,所以3+log a 2≥4,解得1<a ≤2,所以实数a 的取值范围是(1,2].8.-4 【解析】若a>0,对于正数b ,f (x )的定义域为D=--b a ∞⎛⎤⎥⎝⎦,∪[0,+∞), 但f (x )的值域A ⊆[0,+∞),故D ≠A ,不合要求.若a<0,对于正数b ,f (x )的定义域为D=0-b a ⎡⎤⎢⎥⎣⎦,.由于此时f (x )max =f -2b a ⎛⎫ ⎪⎝⎭=2-b a ,故函数的值域A=02-b a ⎡⎤⎢⎥⎣⎦,.由题意得-ba =2-b a ,由于b>0,所以a=-4.9.(1) 因为集合A 表示y=12x ++lg(3-x )的定义域,所以203-0x x +>⎧⎨>⎩,,,即A=(-2,3),所以∁U A=(-∞,-2]∪[3,+∞).(2) 因为A ∪B=B , 所以A ⊆B ,所以a ≥3. 即实数a 的取值范围是[3,+∞).10.(1)因为函数的值域为[0,+∞), 所以Δ=16a 2-4(2a+6)=0, 所以2a 2-a-3=0,解得a=-1或a=32.(2)因为对一切x ∈R ,函数值均为非负数,所以Δ=16a 2-4(2a+6)=8(2a 2-a-3)≤0,所以-1≤a ≤32,所以a+3>0,所以g (a )=2-a|a+3|=-a 2-3a+2=-232a ⎛⎫+ ⎪⎝⎭+174. 因为二次函数g (a )在3-12⎡⎤⎢⎥⎣⎦,上单调递减,所以g 32⎛⎫ ⎪⎝⎭≤g (a )≤g (-1),即-194≤g (a )≤4.所以函数g (a )的值域为19-44⎡⎤⎢⎥⎣⎦,.11. (1) f (x )=13x x ++,x ∈[0,a ](a>0). (2) 由(1)知函数f (x )的定义域为104⎡⎤⎢⎥⎣⎦,. 令x +1=t ,则x=(t-1)2,t ∈312⎡⎤⎢⎥⎣⎦,,则f (x )=F (t )=2-24tt t +=14-2t t +.因为当t=4t 时,t=±2∉312⎡⎤⎢⎥⎣⎦,, 又当t ∈312⎡⎤⎢⎥⎣⎦,时,y=t+4t 单调递减, 故F (t )单调递增,所以F (t )∈16313⎡⎤⎢⎥⎣⎦,.所以函数f (x )的值域为16313⎡⎤⎢⎥⎣⎦,.12.(1)f (x )∈[-3,3].(2) 当x>0时,g (x )=2-33ax x x +=ax-3+3x ≥23a -3,当且仅当ax 2=3时等号成立,即g (x )min =23a -3.由(1)知f (x )max =3. 对∀s ∈(0,+∞),∀t ∈(-∞,+∞)恒有g (s )≥f (t )成立,即g (x )min ≥f (x )max , 由23a -3≥3,得a ≥3,所以实数a 的取值范围是[3,+∞).。

(典型题)高中数学必修一第二单元《函数》测试题(答案解析)

(典型题)高中数学必修一第二单元《函数》测试题(答案解析)

一、选择题1.令[]x 表示不超过x 的最大整数,例如,[]3.54-=-,[]2.12=,若函数()[][]32f x x x =-,则函数()f x 在区间[]0,2上所有可能取值的和为( )A .1B .2C .3D .42.已知函数()1,0112,12x x x f x x +≤<⎧⎪=⎨-≥⎪⎩,若0a b >≥,()()f a f b =,则()bf a 的取值范围是( )A .3,24⎛⎤⎥⎝⎦B .1,22⎡⎤⎢⎥⎣⎦C .(]1,2 D .3,24⎡⎫⎪⎢⎣⎭3.已知函数()32f x x =-,2()2g x x x =-,(),()()()(),()()g x f x g x F x f x f x g x ≥⎧=⎨<⎩,则( )A .()F x 的最大值为3,最小值为1B .()F x的最大值为2 C .()F x的最大值为7- D .()F x 的最大值为3,最小值为-14.已知函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+.设()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =(其中{}max ,p q 表示p ,q中较大值,{}min ,p q 表示p ,q 中较小值),记()1H x 的最小值为A ,()2H x 的最大值为B ,则A B -=( ) A .16-B .16C .8aD .816a -5.已知函数()f x 的定义域是[]2,3-,则()23f x -的定义域是( ) A .[]7,3-B .[]3,7-C .1,32⎡⎤⎢⎥⎣⎦D .1,32⎡⎤-⎢⎥⎣⎦6.下列命题中正确的是( )A .若函数()f x 的定义域为(1,4),则函数()2f x 的定义域为(2,1)(1,2)--⋃B .1y x =+和y =C .定义在R 上的偶函数()f x 在(0,)+∞和(,0)-∞上具有相反的单调性D .若不等式220ax bx ++>恒成立,则280b a -<且0a >7.已知函数(2)f x 的定义域为3(0,)2,则函数(13)f x -的定义域是( ) A .21(,)33-B .11(,)63-C .(0,3)D .7(,1)2-8.若函数22,2 ()13,22x ax xf xa xx⎧-≤⎪=⎨->⎪⎩是R上的单调减函数,则实数a的取值范围为()A.115,24⎡⎤⎢⎥⎣⎦B.4,215⎡⎤⎢⎥⎣⎦C.41,152⎡⎤⎢⎥⎣⎦D.152,4⎡⎤⎢⎥⎣⎦9.设二次函数2()()f x x bx b=+∈R,若函数()f x与函数(())f f x有相同的最小值,则实数b的取值范围是()A.(,2]-∞B.(,0]-∞C.(,0][2,)-∞+∞D.[2,)+∞10.已知函数224()3f x xx=-+,()2g x kx=+,若对任意的1[1,2]x∈-,总存在2[1,3]x∈,使得12()()g x f x>,则实数k的取值范围是().A.1,12⎛⎫⎪⎝⎭B.12,33⎛⎫- ⎪⎝⎭C.1,12⎛⎫-⎪⎝⎭D.以上都不对11.已知函数()f x的定义域为R,(1)f x-是奇函数,(1)f x+为偶函数,当11x-≤≤时,()13131xxf x+-=+,则以下各项中最小的是()A.()2018f B.()2019f C.()2020f D.()2021f12.如图是定义在区间[]5,5-上的函数()y f x=的图象,则下列关于函数()f x的说法错误的是()A.函数在区间[]53-,-上单调递增B.函数在区间[]1,4上单调递增C.函数在区间][3,14,5⎡⎤⋃⎣⎦-上单调递减D.函数在区间[]5,5-上没有单调性二、填空题13.函数()2f x x a=-在区间[]1,1-上的最大值()M a的最小值是__________.14.已知函数(3)5,1()2,1a x xf x axx--≤⎧⎪=⎨->⎪⎩是R上的增函数,则a的取值范围是________.15.已知1()1x f x x +=-,则135199()()()()100100100100f f f f ++++=______________16.若函数()()21,f x ax bx a b =++∈R 满足:()()123f x f x x +-=+.设()f x 在[](),2t t t R +∈上的最小值为()g t ,则()g t =____.17.已知函数(31)4,2(),2a x a x f x ax x -+<⎧=⎨-≥⎩满足对任意的实数12x x ≠,都有1212()()0f x f x x x -<-,则a 的取值范围是______________.18.已知函数()f x 的定义域为[]2,2-,当[]0,2x ∈时,()1f x x =+,当[)2,0x ∈-时,()(2)f x f x =-+,求()f x =___________19.二次函数()222f x x x =-+在区间[]0,3上的最大值为________.20.若233()1x x f x x -+=-,()2g x x =+,求函数()()y f g x =的值域________.三、解答题21.已知函数2()7f x x mx m =++-,m R ∈.(1)若()f x 在区间[2,4]上单调递增,求m 的取值范围; (2)求()f x 在区间[1,1]-上的最小值()g m ;22.已知函数()f x x x a =-,a ∈R ,()21g x x =-.(1)当1a =-时,解不等式()()f x g x ≥;(2)当4a >时,记函数()f x 在区间[]0,4上的最大值为()F a ,求()F a 的表达式.23.定义在[]1,1-上的奇函数()f x ,当10x -≤<时,23()6x x xf x +=. (1)求()f x 在[]1,1-上的解析式;(2)求()f x 的值域; (3)若实数a 满足1()()0a f f a a-+<,求实数a 的取值范围. 24.已知函数()0ky x k x=+>在区间(k 单调递减,在区间),k +∞单调递增.(1)求函数2y x x=+在区间(),0-∞的单调性;(只写出结果,不需要证明) (2)已知函数()()2131x ax f x a x ++=∈+R ,若对于任意的x N *∈,有()5f x ≥恒成立,求实数a 的取值范围.25.已知二次函数()2f x ax bx =+满足()20f =,且方程()f x x =有两个相等实根.(1)求()f x 的解析式;(2)是否存在实数(),m n m n <,使()f x 的定义域是[],m n ,值域是[]3,3m n .若存在,求,m n 的值,若不存在,请说明理由.26.已知二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)的图象过()0,1A ,()1,5B 两点,且它的对称轴的方程为12x =-.(1)求该二次函数的表达式;(2)当26x ≤≤时,函数()22y ax b m x c =+-+的最大值为()G m ,最小值为()H m ,令()()()h m G m H m =-,求()h m 的表达式.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据[]x 表示不超过x 的最大整数,分5种情况讨论,分别求出[]x 和[2]x 的值,即可以计算()3[][2]f x x x =-的函数值,相加即可得答案. 【详解】因为[]x 表示不超过x 的最大整数,所以: 当102x <时,有021x <,则[]0x =,则3[]0x =,[2]0x =,此时()0f x =, 当112x <时,有122x <,则[]0x =,则3[]0x =,[2]1x =,此时()1f x =-, 当312x <时,有223x <,则[]1x =,则3[]3x =,[2]2x =,此时()1f x =, 当322x <时,有324x <,则[]1x =,则3[]3x =,[2]3x =,此时()0f x =, 当2x =时,24=x ,则[]2x =,则3[]6x =,[2]4x =,此时()2f x =, 函数()f x 在区间[0,2]上所有可能取值的和为011022-+++=; 故选:B . 【点睛】结论点睛:分类讨论思想的常见类型(1)问题中的变量或含有需讨论的参数的,要进行分类讨论的; (2)问题中的条件是分类给出的;(3)解题过程不能统一叙述,必须分类讨论的;(4)涉及几何问题时,由几何元素的形状、位置的变化需要分类讨论的.2.D解析:D 【分析】由()f x 在每一段上单调递增可知01b a ≤<≤,由()f x 每一段上的值域可知()3,22f b ⎡⎫∈⎪⎢⎣⎭,进一步确定112b ≤<,由()()()1bf a bf b b b ==+,根据二次函数的值域得到结果. 【详解】()f x 在[)0,1和[)1,+∞上单调递增,∴由()()f a f b =得:01b a ≤<≤,当[)0,1x ∈时,()[)1,2f x ∈;当[)1,x ∈+∞时,()3,2f x ⎡⎫∈+∞⎪⎢⎣⎭, 若()()f a f b =,则()3,22f x ⎡⎫∈⎪⎢⎣⎭,即()31,22f b b ⎡⎫=+∈⎪⎢⎣⎭,解得:112b ≤<, ()()()2211124bf a bf b b b b b b ⎛⎫==+=+=+- ⎪⎝⎭,∴当112b ≤<时,()3,24bf a ⎡⎫∈⎪⎢⎣⎭. 故选:D. 【点睛】易错点点睛:本题解题关键是能够将()bf a 转化为关于b 的函数,易错点是没有对b 的范围进行细化,造成函数值域求解错误.3.C解析:C 【分析】在同一坐标系中先画出()f x 与()g x 的图象,然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值,解出两个函数的交点,即可求得最大值. 【详解】在同一坐标系中先画出()f x 与()g x 的图象,如图然后根据定义画出()F x ,就容易看出()F x 有最大值,无最小值. 由图象可知,当0x <时,()y F x =取得最大值,所以由232||2x x x -=-得2x =2x =结合函数图象可知当2x =()F x 有最大值7- 故选:C .【点睛】关键点睛:本题主要考查了函数的图象,以及利用函数求最值,解答本题的关键是在同一坐标系中画出()f x 与()g x 的图象,根据图象得出函数的最值,由232||2x x x -=-得27x =+或27x =-,得出答案,属于中档题. 4.A解析:A 【分析】根据()()22()244,()2412f x x a a g x x a a =----=-+-+,由()(){1max ,H x f x =}()g x .()()(){}2min ,H x f x g x =,得到max ()412B g x a ==-+,min ()44A f x a ==--求解.【详解】因为函数22()2(2)f x x a x a =-++,23()2(2)8g x x a x a =-+--+, 所以()()22()244,()2412f x x a a g x x a a =----=-+-+, 如图所示:当2x a =+时,()()44f x g x a ==--, 当2=-x a 时,()()412f x g x a ==-+, 因为max ()412g x a =-+,所以()()2max ()412H x g x g x a ≤≤=-+, 因为min ()44f x a =--,所以()()1min ()44H x f x f x a ≥≥=--, 所以44,412A a B a =--=-+, 所以16A B -=-, 故选:A 【点睛】方法点睛:(1)识别二次函数的图象主要从开口方向、对称轴、特殊点对应的函数值这几个方面入手.(2)用数形结合法解决与二次函数图象有关的问题时,要尽量规范作图,尤其是图象的开口方向、顶点、对称轴及与两坐标的交点要标清楚,这样在解题时才不易出错.5.C解析:C 【分析】由2233x -≤-≤解得结果即可得解. 【详解】因为函数()f x 的定义域是[]2,3-,所以23x -≤≤, 要使()23f x -有意义,只需2233x -≤-≤,解得132x ≤≤。

高中数学求函数的值域基础知识与专项练习题(含答案解析)

高中数学求函数的值域基础知识与专项练习题(含答案解析)

高中数学求函数的值域基础知识与专项练习题(含答案解析)作为函数三要素之一,函数的值域也是高考中的一个重要考点,并且值域问题通常会渗透在各类题目之中,成为解题过程的一部分。

所以掌握一些求值域的基本方法,当需要求函数的取值范围时便可抓住解析式的特点,寻找对应的方法从容解决。

一、基础知识: 1、求值域的步骤: (1)确定函数的定义域(2)分析解析式的特点,并寻找相对应的方法(此为关键步骤) (3)计算出函数的值域2、求值域的常用工具:尽管在有些时候,求值域就像神仙施法念口诀一样,一种解析式特点对应一个求值域的方法,只要掌握每种方法并将所求函数归好类即可操作,但也要掌握一些常用的思路与工具。

(1)函数的单调性:决定函数图像的形状,同时对函数的值域起到决定性作用。

若()f x 为单调函数,则在边界处取得最值(临界值)。

(2)函数的图像(数形结合):如果能作出函数的图像,那么值域便一目了然(3)换元法:()f x 的解析式中可将关于x 的表达式视为一个整体,通过换元可将函数解析式化归为可求值域的形式。

(4)最值法:如果函数()f x 在[],a b 连续,且可求出()f x 的最大最小值,M m ,则()f x 的值域为[],m M注:一定在()f x 连续的前提下,才可用最值来解得值域3、常见函数的值域:在处理常见函数的值域时,通常可以通过数形结合,利用函数图像将值域解出,熟练处理常见函数的值域也便于将复杂的解析式通过变形与换元向常见函数进行化归。

(1)一次函数(y kx b =+):一次函数为单调函数,图像为一条直线,所以可利用边界点来确定值域(2)二次函数(2y ax bx c =++):二次函数的图像为抛物线,通常可进行配方确定函数的对称轴,然后利用图像进行求解。

(关键点:①抛物线开口方向,②顶点是否在区间内) 例:()[]223,1,4f x x x x =−−∈−解:()()214f x x =−−∴对称轴为:1x = ()[]4,5f x ∴∈−(3)反比例函数:1y x=(1)图像关于原点中心对称 (2)当,0x y →+∞→ 当,0x y →−∞→(4)对勾函数:()0ay x a x=+> ① 解析式特点:x 的系数为1;0a > 注:因为此类函数的值域与a 相关,求a 的值时要先保证x的系数为1,再去确定a 的值 例:42y x x =+,并不能直接确定4a =,而是先要变形为22y x x ⎛⎫=+ ⎪⎝⎭,再求得2a = ② 极值点:,x a x a ==− ③ 极值点坐标:()(),2,,2a a a a −−④ 定义域:()(),00,−∞+∞⑤ 自然定义域下的值域:(),22,a a ⎤⎡−∞−+∞⎦⎣(5)函数:()0ay x a x=−> 注意与对勾函数进行对比 ① 解析式特点:x 的系数为1;0a > ② 函数的零点:x a =± ③ 值域:R(5)指数函数(xy a =):其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(6)对数函数(log a y x =)其函数图像分为1a >与01a <<两种情况,可根据图像求得值域,在自然定义域下的值域为()0,+∞(7)分式函数:分式函数的形式较多,所以在本节最后会对分式函数值域的求法进行详细说明(见附)二、典型例题:将介绍求值域的几种方法,并通过例题进行体现1、换元法:将函数解析式中关于x 的部分表达式视为一个整体,并用新元t 代替,将解析式化归为熟悉的函数,进而解出值域(1)在换元的过程中,因为最后是要用新元解决值域,所以一旦换元,后面紧跟新元的取值范围(2)换元的作用有两个:① 通过换元可将函数解析式简化,例如当解析式中含有根式时,通过将根式视为一个整体,换元后即可“消灭”根式,达到简化解析式的目的② 化归:可将不熟悉的函数转化为会求值域的函数进行处理(3)换元的过程本质上是对研究对象进行重新选择的过程,在有些函数解析式中明显每一项都是与x 的某个表达式有关,那么自然将这个表达式视为研究对象。

高中数学必修一-专题三-函数的定义域与值域(含详解).docx

高中数学必修一-专题三-函数的定义域与值域(含详解).docx

专题三函数的定义域和值域一.选择题(共12小题)1.函数f(J二応的定义域是( )A. ( - 1, +00)B. ( 一1, 1) U (1, +8) C・[一1, +00) D. [ - 1, 1)U (1, +oo)2.已知函数f (x)二换的定义域为(1, 2),则函数f(X?)的定义域是()A. (1, 2) B・(1, 4) C. R D・(一伍,-1) U (1, ^2)3. 已知函数f (x)二圻孑的定义域是R,则实数a 的取值范围是()ax +ax~3A. a>丄B・ - 12VaW0 C・ - 12<a<0 D・ aW丄3 34. 集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是5. 下列图形中,不能表示以x为自变量的函数图象的是()A./°►x x^y=2 x C.C6. 下列函数与函数y二x相等的是()._ 2A・尸(换)2 B.尸存C・尸(饭)$ D.宀下列四组函数,表示同一函数的是(f (x)二J X 2-4‘ £(X )二2f(x)二x, g(x)仝—X{1, V3> B ・(-8, 0] C ・[1, +8) D. R10・若函数y=7ax 2+2ax+3的值域为〔0,+°°),则a 的取值范围是( )A. (3, +8) B ・[3, +8) C ・(-8, 0] U [3, +00)D.(・8,0)U[3, + oo )11. 二次函数 f (x) =x 2 - 4x+l (xe [3, 5])的值域为( )A ・[-2, 6]B ・[一3, +8)C ・[-3, 6]D ・[一 3, - 2] 12. 若函数f(x)=1/-2x+4的定义域、值域都是[2, 2b],则()乙A. b=2B. bG [1, 2]C. be (1, 2) D ・ b 二 1 或 b 二2二. 填空题(共4小题)13. 函数f (x)二(3-2X _ * $的定义域为 _______ ,值域为 _______ ・ 14. 函数f(x)二JI3+佑忑-1的定义域是 __________ .15. 函数y=Vkx 2-4kx+k+6的定义域为R ,则k 的取值范围 _________ 16. 函数f(x)二的值域为 ______________ ・三. 解答题(共6小题)A. ①B-A. f(x)二g Cx) =xB. C. D. f (x) = |x+l | , g (x) =4x+l, -X-1, X-l9. 己知函数 f (x) =V2x-l ,xe {1, 2, 3}.则函数f (x)的值域是( )A. ②③④C. ①③④D.17.求下列函数的定义域:(1)尸厶+8&3-x;(2) 18・已知函数f (x)1+x2(1) 求 f (1) +f (2) +f (3) +f (丄)+f (丄)的值;2 3(2) 求f (x)的值域.19. 已知函数y=V x2+6inx+in+8的定义域为R,求实数m的取值范围.220. 当x>0吋,求函数yz:3+x+x的值域.1+x21-已知函数f (x)二"*+3+』2 '(1)求函数的定义域;(2)求f(-3), f(春)的值.322.求函数f(X)=x2+ x - 2 | , xe [0, 4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1. 函数f(£二仮石占的定义域是( )A. ( - 1, +8)B.(・ 1, 1) U (1, +8) C・[一1, +8) D. [ - 1, 1) U (1, +8)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由卩+1空0,解得x^_i且X"Ix-lT^O・・・函数f(£二頁石的定义域是[-1,1)U (1, +oo)・故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2. 已知函数f (x)二仄的定义域为(1, 2),则函数f(X?)的定义域是( )A. (1, 2) B・(1, 4) C. R D・(一典,-1) U (1, ^2)【分析】由已知函数的定义域可得1<X2<2,求解不等式组得答案.【解答】解:・・•数f (x)二换的定义域为(1, 2),・・・由1<X2<2,得- V2<x< - 1或1 <x<“^・即函数f 2)的定义域是(-辺,-1) U (1,V2). 故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f (x)二圻孑的定义域是R,则实数a的取值范围是( )ax +ax~3A. a>丄B・一12VaW0 C・-12<a<0 D・ aW丄3 3【分析】由函数f (x)二申*一1的定义域是R,表示函数的分母恒不为零,即ax+ax~3方程ax2+ax - 3=0无解,根据-•元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.f曲工o【解答】解:由护0或2,、/-4aX (-3X0可得-12VaW0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给岀时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给岀时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集•若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f下的量"x〃"x+a〃"x - 所要满足的范围是一样的;②函数g(X)中的自变量是x,所以求g (x)的定义域应求g (x)中的x的范围.4.集合A二{x|0WxW4}, B二{y|0WyW2},下列不能表示从A到B的函数的是A. f:B・ f: x->y=2 x C・ f:D・巳【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f: xTy二Zx,可得f (4)二邑B,不满足映射的定 3 3义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给岀集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5. 下列图形中,不能表示以x为自变量的函数图象的是( )【分析】利用函数定义,根据X取值的任意性,以及y的唯一性分别进行判断. 【解答】解:B中,当x>0吋,y有两个值和x对应,不满足函数y的唯一性,A, C, D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6. 下列函数与函数y二x相等的是()._ 2A・尸(依)2 B・尸F C・y=(Vx)3 D・尸*■【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和己知函数一致即可.【解答】解:A.函数的定义域为{x|xNO},两个函数的定义域不同.B. 函数的定义域为R, y=|x|,对应关系不一致.C. 函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D. 函数的定义域为{x|xHO},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7. 如图所示,可表示函数图象的是()【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一 个变量y 与x 对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图彖中,当x>0时,一个x 对应着两个y,所以不满足函数 取值的唯一性.所以不能表示为函数图象的是②. 故选:C.【点评】木题主要考查了函数的定义以及函数的应用.要求了解,对于一对一, 多对一是函数关系,一对多不是函数关系.&下列四组函数,表示同一函数的是()A ・ f(x)二g (X )二x氏 f(x)二厶2-4‘ £(X )二V7巨依R2C ・ f(x)二x, g(x)^—X「/、 | | /、 fx+1, X 》-1D. f (x) = |x+l |,g (x)=< l^-x-1, x-1【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数. 【解答】解:对于A, f (x)二{尹二|x|,与g (x) =x 的对应关系不同,.••不是 同一函数;对于 B, f (x)二J*2-4(x$2 或 xW - 2),与 g (x)二代巨厶-2=厶2-4(x$2) 的定义域不同, ・•・不是同一函数;2对于C, f (x) =x (xWR),与g (x) =—=x (xHO)的定义域不同,・••不是同一A.①B.②③④C.①③④D.②函数;对于D, f (x) =|x+l|=f X+1, xjl ,与(X)二< x+1, 的定义域相同,l^-X-1 , x\ ~1 [~x~l, x<. -1对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f (x) =V2x-l,xe {1, 2, 3}.则函数f (x)的值域是( )A. {1,品、B・(一8, o] C・[1, +8) D. R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f (x) =V2x-l,xe {1, 2, 3},当x=l 时,f (1) =1;当x=2 时,f (2) =V3;当x=3 时,f (3)二祈.・・・函数f (x)的值域是{1,岳V5).故选:A.【点评】木题考查函数值域的求法,是基础的计算题.10・若函数y=7ax2+2ax+3的值域为+°°),则a的取值范围是( ) A. (3, +°°) B. [3, +°°) C・(-g, 0] U [3, +°°) D・(一oo, Q) U [3, + 8 )【分析】由题意:函数y是一个复合函数,值域为[0, +°° ),则函数f(x)=ax2+2ax+3 的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=V ax2+2ax+3是一个复合函数,要使值域为[0, +8),则函数f (x) =ax2+2ax+3的值域要包括0,即最小值要小于等于0・(a>0 = ( a>0则有:(f(-l)<0 ta-2a+3<0解得:a^3 所以a的取值范围是[3, +°°).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基础题.二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为( )A・[一2, 6] B・[一3, +8) C・[一3, 6] D. [ - 3, - 2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f (x) =x2 - 4x+l,其对称轴x=2,开口向上,Vxe [3, 5],・•・函数f (x)在[3, 5]单调递增,当x=3时,f (x)取得最小值为-2.当x=5时,f(X)取得最小值为6・••二次函数 f (x) =x2 - 4x+l (xe [3, 5])的值域为[・2, 6]. 故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题, 较容易.12.若函数f(x)二丄x2-2x+4的定义域、值域都是[2, 2b],则( )乙A. b=2B. be [1, 2] C・ be (1, 2) D・ b二 1 或b二2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数仏)二知2-2X+4乙其对称轴x=2,・•・函数f (x)在定义域[2, 2b]是递增函数,且2b>2,即b>l.那么:f (2b) =2b即2b=— x 4b2 " 4b+42解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f (x)二寸3-b-/的定义域为[一3, 1],值域为[0, 2]【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3-2X-X2^0,即X2+2X - 3W0,解得故函数的定义域为[-3, 1],设t=3 - 2x - x2,贝!J t=3 - 2x - x2= - (x+1) ?+4,则0WtW4,即0W五W2,即函数的值域为[0, 2],故答案为:[-3, 1], [0, 2]【点评】木题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14. 函数f (x) = Vl_x +Vx+3T的定义域是[- 3, 1] •【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数f(x)二石+后-1的解析式有意义自变量x须满足(id。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档