中考-三角形知识点复习归纳总结

合集下载

初三数学三角形知识点总结归纳

初三数学三角形知识点总结归纳

初三数学三角形知识点总结归纳三角形是初中数学中的重要内容,掌握三角形的相关知识是理解和解决相关问题的基础。

在初三数学学习中,我们需要对三角形的性质、分类、定理等内容进行总结和归纳,以便更好地应对考试和日常学习中的问题。

一、三角形的基本概念三角形是由三条边和三个内角组成的图形。

常见的表示方法有三个顶点的大写字母或者使用线段AB、BC、CA表示。

三角形的顶点分别为A、B、C,三边分别为a、b、c,对应的内角为∠A、∠B、∠C。

二、三角形的分类1. 根据边的长度分类:- 等边三角形:三条边的长度相等,对应的内角也相等,记作∆ABC。

- 等腰三角形:两条边的长度相等,对应的两个内角也相等,记作∆ABC。

- 普通三角形:三条边的长度均不相等,对应的内角也均不相等,记作∆ABC。

2. 根据角度的大小分类:- 直角三角形:一个内角为直角(90度角),记作∆ABC。

- 钝角三角形:一个内角大于90度,记作∆ABC。

- 锐角三角形:三个内角均小于90度,记作∆ABC。

三、三角形的性质1. 三角形内角和定理:一个三角形的内角和等于180度。

∠A + ∠B + ∠C = 180度2. 三角形的外角和定理:一个三角形的外角和等于无关角的内角和或补角。

∠D = ∠A + ∠B 或∠D = 180度 - ∠C3. 三角形的边与角关系:- 三角形两边之和大于第三边。

- 三角形两边之差小于第三边。

- 三角形内角的关系:最大的内角对应最长的边,最小的内角对应最短的边。

四、常见的三角形定理1. 直角三角形的性质:- 勾股定理:直角三角形斜边的平方等于两直角边的平方和。

c^2 = a^2 + b^2- 余弦定理:直角三角形中,直角边的平方等于斜边的平方减去另一直角边的平方。

a^2 = c^2 - b^2 或 b^2 = c^2 - a^22. 等腰三角形的性质:- 等腰三角形的底角相等。

∠A = ∠C- 等腰三角形的高度和斜边关系:等腰三角形的高度是斜边平分线的垂直平分线。

初中中考三角形知识点总结

初中中考三角形知识点总结

初中中考三角形知识点总结一、三角形的定义三角形是平面上的一个图形,它由三条边和三个顶点组成。

三角形是一种基本的几何图形,也是平面几何中研究最多的图形之一。

二、三角形的分类根据三条边的长度,三角形可以分为等腰三角形、等边三角形和普通三角形。

1. 等腰三角形:两条边的长度相等的三角形。

2. 等边三角形:三条边的长度都相等的三角形。

3. 普通三角形:三条边的长度都不相等的三角形。

根据角的大小,三角形可以分为直角三角形、锐角三角形和钝角三角形。

1. 直角三角形:其中一个角是90度的三角形。

2. 锐角三角形:三个角都是锐角的三角形。

3. 钝角三角形:其中一个角是钝角的三角形。

三、三角形的性质1. 三角形的内角和恒为180度。

这是三角形的最基本的性质,也是很多三角形问题的关键。

2. 等腰三角形的性质(1) 两底角相等。

(2) 两边边相等。

3. 等边三角形的性质(1) 三个角均相等,每个角为60度。

(2) 三条边均相等。

4. 直角三角形的性质(1) 两个锐角的和等于90度。

(2) 三个角的和等于180度。

(3) 符合勾股定理:a²+b²=c²。

5. 三角形的外角和等于没有被包含的两个内角的和。

这个性质非常重要,经常和外角性质一起来进行三角形的运算。

6. 三角形的两边之和大于第三边,任意两边之差小于第三边。

这是三角形的一个重要性质,也是判断三角形是否存在的关键。

7. 经常包含的一些特殊的三角形关系(1) 在一个等腰三角形中,这个等腰三角形可以分成两个直角三角形。

(2) 30度和60度角的三角函数值,这种关系是初中数学中的重点内容。

四、初中中考三角形的运算1. 求三角形的周长和面积。

我们经常会遇到问周长或者面积的问题,对初中生来说,掌握好周长和面积的计算方法是非常重要的。

2. 利用三角形的性质进行求解。

在解三角形问题的时候,我们经常会利用三角形的性质,根据题目给出的条件进行运算。

3. 利用勾股定理求解。

中考-三角形知识点复习归纳总结

中考-三角形知识点复习归纳总结

中考三角形知识点复习归纳总结1.三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形. 三角形有三条边,三个内角,三个顶点 •组成三角形的线段叫做三角形的边 ;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点,三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示, AC 可用b 表示,BC 可用a 表示.2. 三角形的分类:(1) 按边分类:(2) 按角分类:底边和腰不相等的等腰三角形「等腰三角形J三角形彳 I 等边三角形i 不等边三角形直角三象形3. 三角形的主要线段的定义:(1) 三角形的中线三角形中,连结一个顶点和它对边中点的线段.表示法:1AD 是A ABC 的BC 上的中线•1 2.BD=DC=— BC.2 注意:①三角形的中线是线段;② 三角形三条中线全在三角形的内部;③ 三角形三条中线交于三角形内部一点;④ 中线把三角形分成两个面积相等的三角形. 三角形< 斜三角形锐角三角形i 钝角三角形(2) 三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1AD是△ABC的Z BAC的平分线.2. Z 1 = Z 2=Z BAC.2注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部;③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3) 三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1AD是△ABC的BC上的高线.2. AD 丄BC于D.3. Z ADB=Z ADC=90°.注意:①三角形的咼是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条咼所在直线交于一点.4. 在画三角形的三条角平分线,三条中线,三条高时应注意:(1) 如图3,三角形三条角平分线交于一点,交点都在三角形内部(2) 如图4,三角形的三条中线交点一点,交点都在三角形内部B如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上•图6 图75三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.图8 6.三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;⑵三角形的一个外角等于和它不相邻的两个内角的和;(3) 三角形的一个外角大于任何一个和它不相邻的内角(4) 直角三角形的两个锐角互余三角形的内角和定理 定理:三角形的内角和等于 180°.推论:直角三角形的两个锐角互余。

三角形的知识点归纳总结

三角形的知识点归纳总结

三角形的知识点归纳总结三角形是平面几何中最基本的图形之一,它有着丰富的性质和知识点。

下面将对三角形的知识点进行归纳总结。

一、基本概念1. 三角形的定义:三角形是由三条线段组成的闭合图形,它的边由三个非共线的点确定。

2. 三角形的元素:三角形有三条边和三个顶点,三角形的三个内角和为180度。

3. 三角形的分类:根据边长和角度的不同,三角形可以分为等边三角形、等腰三角形、直角三角形、锐角三角形和钝角三角形等多种类型。

二、边长关系1. 三角形边长的关系:在任意三角形中,任意两边之和大于第三边,任意两边之差小于第三边。

2. 等边三角形:等边三角形的三边长度相等。

3. 等腰三角形:等腰三角形的两边长度相等,两个底角也相等。

4. 直角三角形:直角三角形有一个内角是90度,满足勾股定理。

5. 锐角三角形:锐角三角形的三个内角都小于90度。

6. 钝角三角形:钝角三角形的一个内角大于90度。

三、角度关系1. 三角形内角和定理:任意三角形的三个内角和为180度。

2. 等角三角形:等角三角形的三个内角相等。

3. 外角和定理:三角形的一个内角的外角和等于180度。

4. 锐角三角形的性质:锐角三角形的三个内角都是锐角,且最小的内角对应最小的边。

5. 钝角三角形的性质:钝角三角形的一个内角是钝角,且最大的内角对应最长的边。

四、重要定理1. 三角形的中线定理:三角形的三条中线交于一点,且这个点到三个顶点的距离相等,且等于中线的一半。

2. 三角形的高线定理:三角形的三条高线交于一点,且这个点到三个顶点的距离相等。

3. 三角形的角平分线定理:三角形的三条角平分线交于一点,且这个点到三个顶点的距离相等。

五、面积公式1. 三角形面积的计算:三角形的面积可以使用海伦公式或底边高公式进行计算。

2. 海伦公式:设三角形的边长为a、b、c,半周长为s,则三角形的面积S等于sqrt(s(s-a)(s-b)(s-c))。

3. 底边高公式:设三角形的底边长为b,高为h,则三角形的面积S等于1/2 * b * h。

人教版数学中考知识点梳理-三角形的基本知识及全等三角形

人教版数学中考知识点梳理-三角形的基本知识及全等三角形

第15讲一般三角形及其性质镇海中学陈志海一、知识清单梳理中位线 平行于第三边,且等于第三边的一半5. 三角形中内、外角与角平分线的规律总结如图①,AD 平分∠BAC ,AE ⊥BC ,则∠α=12∠BAC-∠CAE=12(180°-∠B-∠C )-(90°-∠C )=12(∠C-∠B ); 如图②,BO 、CO 分别是∠ABC 、∠ACB 的平分线,则有∠O=12∠A+90°;如图③,BO 、CO 分别为∠ABC 、∠ACD 、∠OCD 的平分线,则∠O=12∠A ,∠O ’=12∠O ;如图④,BO 、CO 分别为∠CBD 、∠BCE 的平分线,则∠O=90°-12∠A.对于解答选择、填空题,可以直接通过结论解题,会起到事半功倍的效果.知识点二 :三角形全等的性质与判定6.全等三角形的性质(1)全等三角形的对应边、对应角相等.(2)全等三形的对应角平分线、对应中线、对应高相等. (3)全等三角形的周长等、面积等.失分点警示:运用全等三角形的性质时,要注意找准对应边与对应角.7.三角形全等的判定一般三角形全等SSS (三边对应相等)SAS (两边和它们的夹角对应相等)ASA (两和它们的夹角对应相等AAS (两角和其中一个角的对边对应相等)失分点警示 如图,SSA 和AAA 不能判定两个三角形全等.直角三角形全等(1)斜边和一条直角边对应相等(HL ) (2)证明两个直角三角形全等同样可以用 SAS,ASA 和AAS. 8.全等三(1)利用全等证明角、边相等或求线段长、求角度:将特征的或例:角形的运用角放到两个全等的三角形中,通过证明全等得到结论.在寻求全等的条件时,注意公共角、公共边、对顶角等银行条件.(2)全等三角形中的辅助线的作法:①直接连接法:如图①,连接公共边,构造全等.②倍长中线法:用于证明线段的不等关系,如图②,由SAS可得△ACD≌△EBD,则AC=BE.在△ABE中,AB+BE>AE,即AB+AC>2AD.③截长补短法:适合证明线段的和差关系,如图③、④.如图,在△ABC中,已知∠1=∠2,BE=CD,AB=5,AE=2,则CE=3.【素材积累】1、走近一看,我立刻被这美丽的荷花吸引住了,一片片绿油油的荷叶层层叠叠地挤摘水面上,是我不由得想起杨万里接天莲叶无穷碧这一句诗。

中考三角形知识点总结

中考三角形知识点总结

中考三角形知识点总结一、三角形的概念与分类。

1. 概念。

- 由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

- 三角形有三个顶点、三条边和三个内角。

2. 分类。

- 按角分类。

- 锐角三角形:三个角都是锐角的三角形。

- 直角三角形:有一个角是直角的三角形。

直角三角形可以用“Rt△”表示,直角所对的边称为斜边,其余两条边称为直角边。

- 钝角三角形:有一个角是钝角的三角形。

- 按边分类。

- 不等边三角形:三边都不相等的三角形。

- 等腰三角形:有两边相等的三角形。

相等的两边叫做腰,另一边叫做底边;两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

- 等边三角形:三边都相等的三角形,等边三角形是特殊的等腰三角形,它的三个角都相等,且每个角都是60°。

二、三角形的性质。

1. 三角形内角和定理。

- 三角形的内角和为180°。

- 直角三角形的两个锐角互余。

2. 三角形的外角性质。

- 三角形的一个外角等于与它不相邻的两个内角的和。

- 三角形的一个外角大于任何一个与它不相邻的内角。

3. 三角形的三边关系。

- 三角形任意两边之和大于第三边。

- 三角形任意两边之差小于第三边。

4. 等腰三角形的性质。

- 等腰三角形的两腰相等。

- 等腰三角形的两底角相等(简称为“等边对等角”)。

- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。

5. 等边三角形的性质。

- 等边三角形的三条边相等。

- 等边三角形的三个角都相等,并且每个角都是60°。

三、三角形中的重要线段。

1. 中线。

- 连接三角形一个顶点和它对边中点的线段叫做三角形的中线。

- 三角形的三条中线相交于一点,这点叫做三角形的重心。

重心到顶点的距离是它到对边中点距离的2倍。

2. 角平分线。

- 三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

- 三角形的三条角平分线相交于一点,这点到三角形三边的距离相等。

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习

x tan 21°
8 3
x

B
D
第 19 题图

Rt△CEG 中, tan
CGE
CE GE
,则 GE
tan
CE CGE
x tan 37°
4 3
x
∵ EF FG EG,∴ 8 x 50 4 x . x 37.5 ,∴ CD CE ED 37.51.5 39 (米).
3
3
答:古塔的高度约是 39 米. ························ 6 分
a2 b2
a 由 Sin A=c,求∠A;∠B=90°-A,b=
c2 - a2
∠B=90°-A,a=b·Sin A,c=cosA
A bC 一

角 一锐角
锐角,对边 (如∠A,a)
∠B=90°-A,b=,c=
斜边,锐角(如 c,∠A)
∠B=90°-A,a=c·Sin A, b=c·cos A
2、测量物体的高度的常见模型
35º 40
CB
D
面 CD 有多长
º
(结果精确到 0.1m.参考数据:sin40º ≈,cos40º ≈,sin35º ≈,tan35º ≈
(2012)20.(8 分)
附历年真题标准答案:
(2007)19.(本小题满分 6 分)
解:过 C 作 AB 的垂线,交直线 AB 于点 D,得到 Rt△ACD 与 Rt△BCD.
数学模型
所用 应测数据
工具
α β x
h1
h
皮尺
αβ a
h x
侧倾 器
仰角α 俯角β 高度 a
俯角α 俯角β
高度
数量关系

三角形知识点复习归纳总结

三角形知识点复习归纳总结

三角形知识点复习归纳总结三角形是几何学中的基本图形之一,其性质和特点的掌握对于解决与三角形相关的问题非常重要。

以下是对于三角形知识点的复习归纳总结:一、基本概念:1.三角形:由三条边和三个角组成的图形。

2.顶角:三角形的顶点所对应的角。

3.边:三角形的两个顶点所连接的线段。

4.外角:三角形的一个内角的补角。

二、分类:1.按边的关系分类:(1)等边三角形:三条边长度相等。

(2)等腰三角形:两条边长度相等。

(3)普通三角形:三边长度都不相等。

2.按角的关系分类:(1)钝角三角形:一个角度大于90°。

(2)直角三角形:一个角度等于90°。

(3)锐角三角形:三个角度都小于90°。

三、性质与定理:1.内角和定理:三角形的三个内角和等于180°。

2.外角和定理:三角形的一个内角与其相邻的外角补角相等。

3.外角定理:一个三角形的外角等于另外两个内角之和。

4.中位线定理:三角形的三条中位线交于一点。

5.高线定理:三角形的三条高线交于一点。

6.中心定理:三角形的三个角的内心、外心和重心都在一条直线上。

7.角平分线定理:三角形的三个内角的角平分线交于一点,且与该点到三个顶点的距离相等。

8.边平分线定理:三角形的三个内角的边平分线交于一点,且与该点到三个顶点的距离成比例。

9. 正弦定理:对于一个三角形ABC,AB=c,BC=a,AC=b,A、B、C分别为三角形的内角,那么有sinA=a/2R,sinB=b/2R,sinC=c/2R,其中R 为三角形外接圆的半径。

10. 余弦定理:对于一个三角形ABC,AB=c,BC=a,AC=b,A、B、C 分别为三角形的内角,那么有c^2=a^2+b^2-2ab*cosC。

11.面积公式:三角形的面积等于1/2底边乘以高。

12.海伦公式:对于一个三角形ABC,AB=c,BC=a,AC=b,s为三边之和的一半,那么三角形的面积等于根号下[s(s-a)(s-b)(s-c)]。

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习解直角三角形知识点复习一、定义直角三角形是指其中一个角是直角的三角形。

直角指的是一个角度为90°的角。

二、性质1.直角三角形的两条直角边的平方和等于斜边的平方,即勾股定理。

设直角三角形的两条直角边分别为a和b,斜边为c,则有a^2+b^2=c^22.直角三角形的斜边是两个直角边中最长的边,而且直角三角形中的直角边是两个锐角的对边。

3.直角三角形中的两个锐角互余。

4.在直角三角形中,两个锐角的正弦、余弦和正切值互为倒数。

三、特殊直角三角形1.等腰直角三角形:定义:顶角为90°的等腰三角形。

性质:两个直角边相等,斜边为直角边的根号2倍。

2.30°-60°-90°直角三角形:定义:一个锐角为30°,一个锐角为60°的直角三角形。

性质:-斜边是短直角边的2倍;-长直角边是短直角边的根号3倍;-高(垂直于短直角边的线段)是短直角边的根号3倍的一半。

3.45°-45°-90°直角三角形:定义:两个锐角都为45°的直角三角形。

性质:-斜边是任意一个直角边的根号2倍;-高(垂直于底边的线段)是底边的一半。

四、解直角三角形问题的步骤1.已知两条边,求第三条边。

a)如果已知两条直角边a和b,可以直接使用勾股定理求解斜边c:c=√(a^2+b^2)。

b)如果已知一条直角边a和斜边c,可以使用勾股定理求解另一条直角边b:b=√(c^2-a^2)。

2.已知一条直角边和一个锐角,求另一条直角边和斜边。

a) 如果已知一条直角边a和一个锐角θ,可以求出另一条直角边b:b = a * tanθ。

b)如果已知一条直角边a和斜边c,可以求出另一条直角边b:b=√(c^2-a^2)。

c) 如果已知一条直角边a和一个锐角θ,可以求出斜边c:c = a / cosθ。

3.已知两条直角边之间的比例,求两个直角边和斜边的长度。

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)

中考数学复习----《三角形之与三角形有关的线段》知识点总结与专项练习题(含答案解析)知识点总结1.三角形的定义:三条线段首尾顺次连接组成的图形。

2.三角形的分类:①按角分类:锐角三角形,直角三角形,钝角三角形。

②按边分类:不等边三角形,等腰三角形。

等腰三角形底和腰相等时叫做等边三角形。

3.三角形的中线、高线、角平分线:①中线:连接顶点与对边中点得到的线段。

平分三角形的面积。

②高线:过定点做对边的垂线,顶点与垂足之间的线段。

得到两个直角三角形。

③角平分线:作三角形角的平分线与对边相交,顶点与交点间的线段。

4.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。

三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。

专项练习题1.(2022•大庆)下列说法不正确的是()A.有两个角是锐角的三角形是直角或钝角三角形B.有两条边上的高相等的三角形是等腰三角形C.有两个角互余的三角形是直角三角形D.底和腰相等的等腰三角形是等边三角形【分析】根据直角三角形概念可判断A,C,由等腰三角形,等边三角形定义可判断B,D.【解答】解:∵有两个角是锐角的三角形,第三个角可能是锐角,直角或钝角,∴有两个角是锐角的三角形可能是锐角三角形,直角三角形或钝角三角形;故A不正确,符合题意;有两条边上的高相等的三角形是等腰三角形,故B正确,不符合题意;有两个角互余的三角形是直角三角形,故C正确,不符合题意;底和腰相等的等腰三角形是等边三角形,故D正确,不符合题意;故选:A.2.(2022•玉林)请你量一量如图△ABC中BC边上的高的长度,下列最接近的是()A.0.5cm B.0.7cm C.1.5cm D.2cm【分析】过点A作AD⊥BC于D,用刻度尺测量AD即可.【解答】解:过点A作AD⊥BC于D,用刻度尺测量AD的长度,更接近2cm,故选:D.3.(2022•杭州)如图,CD⊥AB于点D,已知∠ABC是钝角,则()A.线段CD是△ABC的AC边上的高线B.线段CD是△ABC的AB边上的高线C.线段AD是△ABC的BC边上的高线D.线段AD是△ABC的AC边上的高线【分析】根据三角形的高的概念判断即可.【解答】解:A、线段CD是△ABC的AB边上的高线,故本选项说法错误,不符合题意;B、线段CD是△ABC的AB边上的高线,本选项说法正确,符合题意;C、线段AD不是△ABC的BC边上高线,故本选项说法错误,不符合题意;D、线段AD不是△ABC的AC边上高线,故本选项说法错误,不符合题意;故选:B.4.(2022•广东)下列图形中有稳定性的是()A.三角形B.平行四边形C.长方形D.正方形【分析】根据三角形具有稳定性,四边形不具有稳定性即可得出答案.【解答】解:三角形具有稳定性,四边形不具有稳定性,故选:A.5.(2022•永州)下列多边形具有稳定性的是()A.B.C.D.【分析】根据三角形具有稳定性即可得出答案.【解答】解:三角形具有稳定性,其它多边形不具有稳定性,故选:D.6.(2022•常州)如图,在△ABC中,E是中线AD的中点.若△AEC的面积是1,则△ABD 的面积是.【分析】由题意可得CE是△ACD的中线,则有S△ACD=2S△AEC=2,再由AD是△ABC 的中线,则有S△ABD=S△ACD,即得解.【解答】解:∵E是AD的中点,∴CE是△ACD的中线,∴S△ACD=2S△AEC,∵△AEC的面积是1,∴S△ACD=2S△AEC=2,∵AD是△ABC的中线,∴S△ABD=S△ACD=2.故答案为:2.7.(2022•淮安)下列长度的三条线段能组成三角形的是()A.3,3,6 B.3,5,10 C.4,6,9 D.4,5,9【分析】根据三角形的三边关系判断即可.【解答】解:A、∵3+3=6,∴长度为3,3,6的三条线段不能组成三角形,本选项不符合题意;B、∵3+5<10,∴长度为3,5,10的三条线段不能组成三角形,本选项不符合题意;C、∵4+6>9,∴长度为4,6,9的三条线段能组成三角形,本选项符合题意;D、∵4+5=9,∴长度为4,5,9的三条线段不能组成三角形,本选项不符合题意;故选:C.8.(2022•衢州)线段a,b,c首尾顺次相接组成三角形,若a=1,b=3,则c的长度可以是()A.3 B.4 C.5 D.6【分析】根据三角形两边之和大于第三边,两边之差小于第三边直接列式计算即可.【解答】解:∵线段a=1,b=3,∴3﹣1<c<3+1,即2<c<4.观察选项,只有选项A符合题意,故选:A.9.(2022•南通)用一根小木棒与两根长分别为3cm,6cm的小木棒组成三角形,则这根小木棒的长度可以为()A.1cm B.2cm C.3cm D.4cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边;即可求第三根木条的取值范围.【解答】解:设第三根木棒长为xcm,由三角形三边关系定理得6﹣3<x<6+3,所以x的取值范围是3<x<9,观察选项,只有选项D符合题意.故选:D.10.(2022•益阳)如图1所示,将长为6的矩形纸片沿虚线折成3个矩形,其中左右两侧矩形的宽相等,若要将其围成如图2所示的三棱柱形物体,则图中a的值可以是()A.1 B.2 C.3 D.4【分析】本题实际上是长为6的线段围成一个等腰三角形.求腰长的取值范围.【解答】解:长为6的线段围成等腰三角形的腰长为a.则底边长为6﹣2a.由题意得,.解得<a<3.所给选项中分别为:1,2,3,4.∴只有2符合上面不等式组的解集.∴a只能取2.故选:B.11.(2022•西宁)若长度是4,6,a的三条线段能组成一个三角形,则a的值可以是()A.2 B.5 C.10 D.11【分析】根据三角形三边关系定理得出6﹣4<a<6+4,求出2<a<10,再逐个判断即可.【解答】解:∵长度是4,6,a的三条线段能组成一个三角形,∴6﹣4<a<6+4,∴2<a<10,∴只有选项B符合题意,选项A、选项C、选项D都不符合题意;故选:B.12.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.﹣5 B.4 C.7 D.8【分析】由实数与数轴与绝对值知识可知该三角形的两边长分别为3、4.然后由三角形三边关系解答.【解答】解:由题意知,该三角形的两边长分别为3、4.不妨设第三边长为a,则4﹣3<a<4+3,即1<a<7.观察选项,只有选项B符合题意.故选:B.13.(2022•邵阳)下列长度的三条线段能首尾相接构成三角形的是()A.1cm,2cm,3cm B.3cm,4cm,5cmC.4cm,5cm,10cm D.6cm,9cm,2cm【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【解答】解:根据三角形的三边关系,得:A、1+2=3,不能构成三角形;B、3+4>5,能构成三角形;C、4+5<10,不能构成三角形;D、2+6<9,不能构成三角形.故选:B.14.(2022•金华)已知三角形的两边长分别为5cm和8cm,则第三边的长可以是()A.2cm B.3cm C.6cm D.13cm【分析】由三角形的两边长分别为5cm和8cm,可得第三边x的长度范围即可得出答案.【解答】解:∵三角形的两边长分别为5cm和8cm,∴第三边x的长度范围为:3cm<x<13cm,∴第三边的长度可能是:6cm.故选:C.15.(2022•德阳)八一中学九年级2班学生杨冲家和李锐家到学校的直线距离分别是5km 和3km.那么杨冲,李锐两家的直线距离不可能是()A.1km B.2km C.3km D.8km【分析】根据三角形的三边关系得到李锐两家的线段的取值范围,即可得到选项.【解答】解:当杨冲,李锐两家在一条直线上时,杨冲,李锐两家的直线距离为2km或8km,当杨冲,李锐两家不在一条直线上时,设杨冲,李锐两家的直线距离为xkm,根据三角形的三边关系得5﹣3<x<5+3,即2<x<8,杨冲,李锐两家的直线距离可能为2km,8km,3km,故选:A.。

中考数学三角形知识点总结

中考数学三角形知识点总结

中考数学三角形知识点总结初中数学三角形知识点总结一、三角形的有关概念1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。

三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。

2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。

二、等腰三角形的性质和判定(1)性质1.等腰三角形的两个底角相等(简写成等边对等角)。

2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成等腰三角形的三线合一)。

3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。

4.等腰三角形底边上的垂直平分线到两条腰的距离相等。

5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。

6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。

7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

(2)判定在同一三角形中,有两条边相等的三角形是等腰三角形(定义)。

在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。

三、直角三角形和勾股定理有一个角是直角的三角形是直角三角形,在直角三角形中,斜边中线等于斜边的一半;30度所对的直角边等于斜边的一半;直角三角形常用面积法求斜边上的高。

勾股定理:直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2。

中考解直角三角形知识点整理复习

中考解直角三角形知识点整理复习

中考解直角三角形考点一、直角三角形的性质1、直角三角形的两个锐角互余:可表示如下:∠C=90°⇒∠A+∠B=90°2、在直角三角形中,30°角所对的直角边等于斜边的一半。

3、直角三角形斜边上的中线等于斜边的一半4、勾股定理: 如果直角三角形的两直角边长分别为a ,b ,斜边长为c ,那么a 2+b 2=c 2. 即直角三角形两直角边的平方和等于斜边的平方ABCa b c弦股勾勾:直角三角形较短的直角边 股:直角三角形较长的直角边 弦:斜边勾股定理的逆定理:如果三角形的三边长a ,b ,c 有下面关系:a 2+b 2=c 2,那么这个三角形是直角三角形。

考点二、直角三角形的判定1、有一个角是直角的三角形是直角三角形、有两个角互余的三角形是直角三角形2、如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。

3、勾股定理的逆定理:如果三角形的三边长a 、b 、c 满足a 2+b 2=c 2 ,那么这个三角形是直角三角形。

(经典直角三角形:勾三、股四、弦五)用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c );(2)若c 2=a 2+b 2,则△ABC 是以∠C 为直角的三角形;若a 2+b 2<c 2,则此三角形为钝角三角形(其中c 为最大边); 若a 2+b 2>c 2,则此三角形为锐角三角形(其中c 为最大边)4. 勾股定理的作用:(1)已知直角三角形的两边求第三边。

(2)已知直角三角形的一边,求另两边的关系。

(3)用于证明线段平方关系的问题。

(4)利用勾股定理,作出长为n 的线段考点三、锐角三角函数的概念 1、如图,在△ABC 中,∠C=90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即c asin=∠=斜边的对边A A②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cosA ,即c bcos =∠=斜边的邻边A A③锐角A 的对边与邻边的比叫做∠A 的正切,记为tanA ,即batan =∠∠=的邻边的对边A A A④锐角A 的邻边与对边的比叫做∠A 的余切,记为cotA ,即abcot =∠∠=的对边的邻边A A A2、锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数 3、一些特殊角的三角函数值三角函数 30°45°60°sin α21 22 23cos α 23 22 21 tan α 33 13cot α31334、各锐角三角函数之间的关系(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A) ; (2)平方关系:1cos sin22=+A A(3)倒数关系:tanA •tan(90°—A)=1 (4)商(弦切)关系:tanA=AAcos sin5、锐角三角函数的增减性 当角度在0°~90°之间变化时,(1)正弦值随着角度的增大(或减小)而增大(或减小);(2)余弦值随着角度的增大(或减小)而减小(或增大);(3)正切值随着角度的增大(或减小)而增大(或减小);(4)余切值随着角度的增大(或减小)而减小(或增大)考点四、解直角三角形 1、解直角三角形的概念在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素求出所有未知元素的过程叫做解直角三角形。

中考 三角形知识点复习归纳总结

中考 三角形知识点复习归纳总结

21D CB AD C B A中考三角形知识点复习归纳总结 ⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC ,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.⒉ 三角形的分类:(1)按边分类:(2)按角分类:⒊ 三角形的主要线段的定义:(1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段.表示法:1.AD 是△ABC 的BC 上的中线.2.BD=DC=12BC. 注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部;③三角形三条中线交于三角形内部一点;④中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12∠BAC. 注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部; ③三角形三条角平分线交于三角形内部一点;④用量角器画三角形的角平分线.(3)三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.表示法:1.AD 是△ABC 的BC 上的高线.2.AD ⊥BC 于D.3.∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;③三角形三条高所在直线交于一点.⒋ 在画三角形的三条角平分线,三条中线,三条高时应注意:(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部. 三角形 等腰三角形 不等边三角形 底边和腰不相等的等腰三角形等边三角形三角形 直角三象形 斜三角形 锐角三角形 钝角三角形(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.5 三角形的三边关系三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段是短;(2)围成三角形的条件是任意两边之和大于第三边.6. 三角形的角与角之间的关系:(1)三角形三个内角的和等于180 ;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.三角形的内角和定理定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳

初中数学必背几何知识点总结归纳初中数学几何的知识点三角形知识点、概念总结1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2.三角形的三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。

5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6.高线、中线、角平分线的意义和做法7.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

8.三角形内角和定理:三角形三个内角的和等于180°推论1直角三角形的两个锐角互余推论2三角形的一个外角等于和它不相邻的两个内角和推论3三角形的一个外角大于任何一个和它不相邻的内角;三角形的内角和是外角和的一半9.三角形的外角:三角形的一条边与另一条边延长线的夹角,叫做三角形的外角。

10.三角形外角的性质(1)顶点是三角形的一个顶点,一边是三角形的一边,另一边是三角形的一边的延长线;(2)三角形的一个外角等于与它不相邻的两个内角和;(3)三角形的一个外角大于与它不相邻的任一内角;(4)三角形的外角和是360°。

四边形(含多边形)知识点、概念总结一、平行四边形的定义、性质及判定1.两组对边平行的四边形是平行四边形。

2.性质:(1)平行四边形的对边相等且平行(2)平行四边形的对角相等,邻角互补(3)平行四边形的对角线互相平分3.判定:(1)两组对边分别平行的四边形是平行四边形(2)两组对边分别相等的四边形是平行四边形(3)一组对边平行且相等的四边形是平行四边形(4)两组对角分别相等的四边形是平行四边形(5)对角线互相平分的四边形是平行四边形4.对称性:平行四边形是中心对称图形二、矩形的定义、性质及判定1.定义:有一个角是直角的平行四边形叫做矩形2.性质:矩形的四个角都是直角,矩形的对角线相等3.判定:(1)有一个角是直角的平行四边形叫做矩形(2)有三个角是直角的四边形是矩形(3)两条对角线相等的平行四边形是矩形4.对称性:矩形是轴对称图形也是中心对称图形。

初中数学中考一轮复习专题6 三角形 重点、考点知识、方法总结及真题练习

初中数学中考一轮复习专题6  三角形 重点、考点知识、方法总结及真题练习

A.
B.
【答案】A.
C.
D.
【解析】解:三角形具有稳定性.
故选:A.
知识点 2 等腰三角形
等腰三角形的概念不性质
1、等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两边叫做三角形的腰,第三
边叫做三角形的底.
2、等腰三角形的性质
①等腰三角形的腰相等
②等腰三角形的两个底角相等(简记为”等边对等角“)
2.如图,在△ABC 中,AB=AC.以点 C 为圆心,以 CB 长为半径作圆弧,交 AC 的延长线于
点 D,连结 BD.若∠A=32°,则∠CDB 的大小为 度.
【答案】37 【解析】解:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°, 又∵BC=DC,∴∠CDB=∠CBD= ∠ACB=37°.

【答案】40° 【解析】解:∵BO、CO 分别平分∠ABC、∠ACB, ∴∠OBC= ∠ABC,∠OCB= ∠ACB,
而∠BOC+∠OBC+∠OCB=180°, ∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣ (∠ABC+∠ACB),
∵∠A+∠ABC+∠ACB=180°,
∴∠ABC+∠ACB=180°﹣∠A, ∴∠BOC=180°﹣ (180°﹣∠A)=90°+ ∠A,
3.如图,在△ABC 中,∠A=36°,AB=AC,BD 平分∠ABC,则图中等腰三角形的个数


【答案】3
【解析】解:∵AB=AC,∠A=36°∴△ABC 是等腰三角形,
∠ABC=∠ACB=
=72°,
BD 平分∠ABC,∴∠EBD=∠DBC=36°,
∴在△ABD 中,∠A=∠ABD=36°,AD=BD,△ABD 是等腰三角形,

中考数学三角形知识点总结

中考数学三角形知识点总结

中考数学三角形知识点总结一、三角形的定义和性质1.三角形是由三条边和三个内角组成的封闭图形。

2.三角形的内角和等于180度。

3.三条边的和大于第三边,任意两边之差小于第三边。

二、三角形的分类1.根据角度分类:(1)锐角三角形:三个内角都是锐角的三角形。

(2)直角三角形:有一个内角为直角的三角形。

(3)钝角三角形:有一个内角为钝角的三角形。

2.根据边长分类:(1)等边三角形:三条边长度相等的三角形。

(2)等腰三角形:有两条边长度相等的三角形。

(3)普通三角形:三条边长度都不相等的三角形。

三、三角形的重要性质1.三角形的内角和定理:三角形的三个内角和等于180度。

2.三角形的外角和定理:三角形的一个外角等于其两个不相邻内角。

3.三角形的角平分线:三角形的内角平分线上的点到三条边的距离相等。

4.三角形的中线:三角形的中线连接相邻顶点的中点,长度相等。

5.三角形的高:三角形的高是从顶点到底边的垂直线段。

6.三角形的面积公式:S=1/2*底边长*高。

四、三角形的相似性质1.相似三角形的性质:(1)对应角相等:相似三角形的对应角相等。

(2)对应边成比例:相似三角形的对应边成比例。

(3)边角对应:相似三角形的角与边成比例。

2.判定相似三角形的定理:(1)AA相似判定定理:如果两个三角形的两个角分别相等,则它们相似。

(2)SAS相似判定定理:如果两个三角形的一个角相等,并且两个对应边的比值相等,则它们相似。

(3)SSS相似判定定理:如果两个三角形的三条边的比值相等,则它们相似。

五、三角形的勾股定理1.勾股定理的形式:直角三角形中,较长的斜边的平方等于两直角边的平方和。

(1)a²=b²+c²(2)b²=a²-c²(3)c²=a²-b²2.利用勾股定理求三角形的边长:(1)已知直角边和斜边,可以求另一个直角边的长度。

(2)已知两个直角边的长度,可以求斜边的长度。

2023年九年级中考数学复习讲义 三角形及其全等

2023年九年级中考数学复习讲义  三角形及其全等

2023年中考数学复习讲义三角形及其全等第一部分:知识点精准记忆一、三角形的基础知识1.三角形的概念:由三条线段首尾顺次相接组成的图形,叫做三角形.2.三角形的三边关系(1)三角形三边关系定理:三角形的两边之和大于第三边.推论:三角形的两边之差小于第三边.(2)三角形三边关系定理及推论的作用:①判断三条已知线段能否组成三角形;②当已知两边时,可确定第三边的范围;③证明线段不等关系.3.三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°.推论:①直角三角形的两个锐角互余;②三角形的一个外角等于和它不相邻的两个内角的和;③三角形的一个外角大于任何一个和它不相邻的内角.4.三角形中的重要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线.(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线.(3)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高).(4)连接三角形两边中点的线段叫做三角形的中位线,三角形的中位线平行于第三边,且等于第三边一半.二、全等三角形1.三角形全等的判定定理:(1)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”);(2)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”);(3)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”);(4)角角边定理:有两角和它们所对的任意一边对应相等的两个三角形全等(可简写成“角角边”或“AAS ”);(5)对于特殊的直角三角形,判定它们全等时,还有HL 定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL ”).2.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的周长相等,面积相等;(3)全等三角形对应的中线、高线、角平分线、中位线都相等.三、线段垂直平分线与角平分线1.线段的轴对称性:线段是轴对称图形,垂直并且平分线段的直线是它的一条对称轴.2.定义:垂直于一条线段,并且平分这条线段的直线,叫做这条线段的垂直平分线.注:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.3.性质:线段垂直平分线上的点到这条线段两个端点的距离相等.注:对于含有垂直平分线的题目,首先考虑将垂直平分线上的点与线段两端点连接起来.4.角是轴对称图形,角平分线所在的直线是它的对称轴.5.性质:角的平分线上的点到这个角的两边的距离相等.第二部分:考点典例剖析考点一: 三角形的三边关系【例1-1】(2021·广西柳州市·中考真题)若长度分别为3,4,a 的三条线段能组成一个三角形,则整数a 的值可以是________.(写出一个即可)【例1-2】(2021·江苏淮安·中考真题)一个三角形的两边长分别是1和4,若第三边的长为偶数,则第三边的长是___.考点二: 三角形的内角和外角【例2-1】(2021·河北中考真题)下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B ,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.【例2-2】(2021·江苏宿迁市·中考真题)如图,在△ABC 中,∠A =70°,∠C =30°,BD 平分∠ABC 交AC 于点D ,DE ∥AB ,交BC 于点E ,则∠BDE 的度数是( )A .30°B .40°C .50°D .60°【例2-3】(2021·浙江绍兴市·中考真题)如图,在中,,点D ,E 分別在边AB ,AC 上,,连结CD ,BE .(1)若,求,的度数.(2)写出与之间的关系,并说明理由.考点三:三角形中的重要线段【例3-1】(2022•大庆)下列说法不正确的是( )A .有两个角是锐角的三角形是直角或钝角三角形B .有两条边上的高相等的三角形是等腰三角形C .有两个角互余的三角形是直角三角形D .底和腰相等的等腰三角形是等边三角形ABC 40A ∠=︒BD BC CE ==80ABC ∠=︒BDC ∠ABE ∠BEC ∠BDC∠【例3-2】(2021·江苏泰州市·中考模拟)如图所示的网格由边长相同的小正方形组成,点、、、、、、在小正方形的顶点上,则的重心是( )A .点B .点C .点D .点【例3-3】如图,在ABC 中,以A 为圆心,任意长为半径画弧,分别交AB 、AC 于点M 、N ;再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ;连结AP 并延长交BC 于点D .则下列说法正确的是( )A .AD BD AB +<B .AD 一定经过ABC 的重心 C .BAD CAD ∠=∠D .AD 一定经过ABC 的外心考点四: 垂直平分线与角平分线的性质 【例4-1】(2021·青海中考真题)如图,在四边形ABCD 中,∠A=90°,AD=3,BC=5,对角线BD 平分∠ABC ,则△BCD 的面积为( )A .7.5B .8C .15D .无法确定【例4-2】在△ABC 中,∠BAC =115°,DE 、FG 分别为AB 、AC 的垂直平分线,则∠EAG 的度数为 A B C D E F G ABC∆D E FGA .50°B .40°C .30°D .25°【例4-3】如图,在Rt △ABC 中,∠A =90°,BD 平分∠ABC 交AC 于D 点,AB =4,BD =5,点P 是线段BC 上的一动点,则PD 的最小值是__________.考点五: 全等三角形的性质与判定【例5-1】2020·湖北省直辖县级行政单位·中考真题)如图,已知和都是等腰三角形,,交于点F ,连接,下列结论:①;②;③平分;④.其中正确结论的个数有( )A .1个B .2个C .3个D .4个【例5-2】(2021·陕西中考真题)如图,,,点在上,且.求证:.【例5-3】(2021·广东广州·中考真题)如图,点E 、F 在线段BC 上,,,ABC ADE 90BAC DAE ∠=∠=︒,BD CE AF BD CE =BF CF ⊥AF CAD ∠45AFE ∠=︒//BD AC BD BC =E BC BE AC =D ABC ∠=∠//AB CD A D ∠=∠,证明:.【例5-4】(2021·江苏淮安·中考真题)(知识再现)学完《全等三角形》一章后,我们知道“斜边和一条直角边分别相等的两个直角三角形全等(简称HL 定理)”是判定直角三角形全等的特有方法.(简单应用)如图(1),在△ABC 中,∠BAC =90°,AB =AC ,点D 、E 分别在边AC 、AB 上.若CE =BD ,则线段AE 和线段AD 的数量关系是 .(拓展延伸)在△ABC 中,∠BAC =(90°<<180°),AB =AC =m ,点D 在边AC 上. (1)若点E 在边AB 上,且CE =BD ,如图(2)所示,则线段AE 与线段AD 相等吗?如果相等,请给出证明;如果不相等,请说明理由.(2)若点E 在BA 的延长线上,且CE =BD .试探究线段AE 与线段AD 的数量关系(用含有a 、m 的式子表示),并说明理由.【例5-5】(2020·山东烟台市·中考真题)如图,在等边三角形ABC 中,点E 是边AC 上一定点,点D 是直线BC 上一动点,以DE 为一边作等边三角形DEF ,连接CF .(问题解决)(1)如图1,若点D 在边BC 上,求证:CE+CF =CD ;(类比探究)(2)如图2,若点D 在边BC 的延长线上,请探究线段CE ,CF 与CD 之间存在怎样的数量关系?并说明理由.考点六: 三角形全等综合【例6-1】(2022·北京)在ABC 中,90ACB ∠=,D 为ABC 内一点,连接BD ,DC ,延长DC 到点E ,使得.CE DC = BE CF =AE DF=αα(1)如图1,延长BC 到点F ,使得CF BC =,连接AF ,EF ,若AF EF ⊥,求证:BD AF ⊥; (2)连接AE ,交BD 的延长线于点H ,连接CH ,依题意补全图2,若222AB AE BD =+,用等式表示线段CD 与CH 的数量关系,并证明.【例6-2】(2022·山东泰安·中考真题)正方形ABCD 中,P 为AB 边上任一点,AE DP ⊥于E ,点F 在DP 的延长线上,且DE EF =,连接AF BF 、,BAF ∠的平分线交DF 于G ,连接GC .(1)求证:AEG △是等腰直角三角形;(2)求证:2AG CG DG +=;(3)若2AB =,P 为AB 的中点,求BF 的长.第三部分:中考真题一.选择题1.(2022•鄂尔多斯)如图,15AOE ∠=︒,OE 平分AOB ∠,//DE OB 交OA 于点D ,EC OB ⊥,垂足为C .若2EC =,则OD 的长为( )A .2B .23C .4D .43+2.(2022•荆门)数学兴趣小组为测量学校A 与河对岸的科技馆B 之间的距离,在A 的同岸选取点C ,测得30AC =,45A ∠=︒,90C ∠=︒,如图,据此可求得A ,B 之间的距离为( )A .203B .60C .302D .303.(2022•湘西州)如图,在Rt ABC ∆中,90A ∠=︒,M 为BC 的中点,H 为AB 上一点,过点C 作//CG AB ,交HM 的延长线于点G ,若8AC =,6AB =,则四边形ACGH 周长的最小值是( )A .24B .22C .20D .184.(2022•西宁)若长度是4,6,a 的三条线段能组成一个三角形,则a 的值可以是( )A .2B .5C .10D .117.(2022•西宁)如图,60MON ∠=︒,以点O 为圆心,适当长为半径画弧,交OM 于点A ,交ON 于点B ;分别以点A ,B 为圆心,大于12AB 的长为半径画弧,两弧在MON ∠的内部相交于点P ,画射线OP ;连接AB ,AP ,BP ,过点P 作PE OM ⊥于点E ,PF ON ⊥于点F .则以下结论错误的是( )A .AOB ∆是等边三角形B .PE PF =C .PAE PBF ∆≅∆D .四边形OAPB 是菱形5.(2022•西藏)如图,数轴上A,B两点到原点的距离是三角形两边的长,则该三角形第三边长可能是()A.5-B.4C.7D.86.(2022•大连)如图,在ABC∆中,90ACB∠=︒.分别以点A和点C为圆心,大于12 AC的长为半径作弧,两弧相交于M,N两点,作直线MN.直线MN与AB相交于点D,连接CD,若3AB=,则CD的长是()A.6B.3C.1.5D.1 7.(2022•青海)如图,在Rt ABC∆中,90ACB∠=︒,D是AB的中点,延长CB至点E,使BE BC=,连接DE,F为DE中点,连接BF.若16AC=,12BC=,则BF的长为( )A.5B.4C.6D.88.(2022•张家界)如图,点O是等边三角形ABC内一点,2OA=,1OB=,3OC=,则AOB∆与BOC∆的面积之和为()A 3B3C33D39.(2022•长沙)如图,在ABC∆中,按以下步骤作图:①分别以点A、B为圆心,大于12AB的长为半径画弧,两弧交于P、Q两点;②作直线PQ交AB于点D;③以点D为圆心,AD长为半径画弧交PQ于点M,连接AM、BM.若22AB=AM的长为()A.4B.2C3D2 10.(2022•海南)如图,直线//m n,ABC∆是等边三角形,顶点B在直线n上,直线m交AB于点E,交AC于点F,若1140∠=︒,则2∠的度数是()A.80︒B.100︒C.120︒D.140︒11.(2022•黑龙江)如图,ABC∆中,AB AC=,AD平分BAC∠与BC相交于点D,点E 是AB的中点,点F是DC的中点,连接EF交AD于点P.若ABC∆的面积是24, 1.5PD=,则PE的长是()A .90ADC ∠=︒B .DE DF =C .AD BC = D .BD CD =12.(2022•广东)下列图形中有稳定性的是( )A .三角形B .平行四边形C .长方形D .正方形13.(2022•贺州)如图,在Rt ABC ∆中,90C ∠=︒,56B ∠=︒,则A ∠的度数为( )A .34︒B .44︒C .124︒D .134︒14.(2022•永州)如图,在Rt ABC ∆中,90ABC ∠=︒,60C ∠=︒,点D 为边AC 的中点,2BD =,则BC 的长为( )A 3B .23C .2D .415.(2022•荆州)如图,直线12//l l ,AB AC =,40BAC ∠=︒,则12∠+∠的度数是( )A .60︒B .70︒C .80︒D .90︒16.(2022•宜昌)如图,在ABC ∆中,分别以点B 和点C 为圆心,大于12BC 长为半径画弧,两弧相交于点M ,N .作直线MN ,交AC 于点D ,交BC 于点E ,连接BD .若7AB =,12AC =,6BC =,则ABD ∆的周长为( )A .25B .22C .19D .1817.(2022•岳阳)如图,已知//l AB ,CD l ⊥于点D ,若40C ∠=︒,则1∠的度数是( )A .30︒B .40︒C .50︒D .60︒18.(2022•台湾)如图,ABC ∆中,D 点在AB 上,E 点在BC 上,DE 为AB 的中垂线.若B C ∠=∠,且90EAC ∠>︒,则根据图中标示的角,判断下列叙述何者正确?( )A .12∠=∠,13∠<∠B .12∠=∠,13∠>∠C .12∠≠∠,13∠<∠D .12∠≠∠,13∠>∠19.(2022•宜宾)如图,在ABC ∆中,5AB AC ==,D 是BC 上的点,//DE AB 交AC 于点E ,//DF AC 交AB 于点F ,那么四边形AEDF 的周长是( )A .5B .10C .15D .2020.(2022•广元)如图,在ABC ∆中,6BC =,8AC =,90C ∠=︒,以点B 为圆心,BC 长为半径画弧,与AB 交于点D ,再分别以A 、D 为圆心,大于12AD 的长为半径画弧,两弧交于点M 、N ,作直线MN ,分别交AC 、AB 于点E 、F ,则AE 的长度为( )A .2.5B .2C .3.5D .321.(2022•宜宾)如图,ABC ∆和ADE ∆都是等腰直角三角形,90BAC DAE ∠=∠=︒,点D 是BC 边上的动点(不与点B 、C 重合),DE 与AC 交于点F ,连结CE .下列结论:①BD CE =;②DAC CED ∠=∠;③若2BD CD =,则45CF AF =;④在ABC ∆内存在唯一一点P ,使得PA PB PC ++的值最小,若点D 在AP 的延长线上,且AP 的长为2,则23CE =+.其中含所有正确结论的选项是( )A .①②④B .①②③C .①③④D .①②③④22.(2022•杭州)如图,CD AB ⊥于点D ,已知ABC ∠是钝角,则( )A .线段CD 是ABC ∆的AC 边上的高线B .线段CD 是ABC ∆的AB 边上的高线C .线段AD 是ABC ∆的BC 边上的高线D .线段AD 是ABC ∆的AC 边上的高线二.填空题1.(2020·辽宁铁岭市·中考真题)如图,在ABC 中,5,8,9===AB AC BC ,以A 为圆心,以适当的长为半径作弧,交AB 于点M ,交AC 于点N ,分别以,M N 为圆心,以大于12MN 的长为半径作弧,两弧在BAC ∠的内部相交于点G ,作射线AG ,交BC 于点D ,点F 在AC 边上,AF AB =,连接DF ,则CDF 的周长为___________.2.(2020·辽宁营口市·中考真题)如图,△ABC 为等边三角形,边长为6,AD ⊥BC ,垂足为点D ,点E 和点F 分别是线段AD 和AB 上的两个动点,连接CE ,EF ,则CE +EF 的最小值为_____.3.(2021·辽宁锦州·中考真题)如图,在△ABC 中,AC =4,∠A =60°,∠B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.4题4.(2021·湖北鄂州市·中考真题)如图,在平面直角坐标系中,点C 的坐标为()1,0-,点A的坐标为()3,3-,将点A 绕点C 顺时针旋转90︒得到点B ,则点B 的坐标为_____________.5.(2020·湖北中考真题)如图,D 是等边三角形ABC 外一点.若8,6BD CD ==,连接AD ,则AD 的最大值与最小值的差为_____.6.(2021·湖北十堰市·中考真题)如图,在Rt ABC 中,90,8,6ACB AC BC ∠=︒==,点P 是平面内一个动点,且3AP =,Q 为BP 的中点,在P 点运动过程中,设线段CQ 的长度为m ,则m 的取值范围是__________.7.如图,是一个3×3的正方形网格,则∠1+∠2+∠3+∠4= .三.解答题1.(2022铜仁)如图,点C 在BD 上,,,,⊥⊥⊥=AB BD ED BD AC CE AB CD .求证:ABC CDE △≌△.2.(2022福建)如图,点B ,F ,C ,E 在同一条直线上,BF =EC ,AB =DE ,∠B =∠E .求证:∠A =∠D .3.(2022广东)如图,已知AOC BOC ∠=∠,点P 在OC 上,PD OA ⊥,PE OB ⊥,垂足分别为D ,E .求证:OPD OPE ≌.4.(2022大庆)如图,在四边形ABDF 中,点E ,C 为对角线BF 上的两点,,,AB DF AC DE EB CF ===.连接,AE CD .(1)求证:四边形ABDF 是平行四边形;(2)若AE AC =,求证:AB DB =.5.(2022云南)如图,在平行四边形ABCD 中,连接BD ,E 为线段AD 的中点,延长BE 与CD 的延长线交于点F ,连接AF ,∠BDF =90°(1)求证:四边形ABDF 是矩形;(2)若AD =5,DF =3,求四边形ABCF 的面积S .6.(2022梧州)如图,在ABCD 中,E ,G ,H ,F 分别是,,,AB BC CD DA 上的点,且,BE DH AF CG .求证:EF HG =.7.(2022遵义)将正方形ABCD 和菱形EFGH 按照如图所示摆放,顶点D 与顶点H 重合,菱形EFGH 的对角线HF 经过点B ,点E ,G 分别在AB ,BC 上.(1)求证:ADE CDG ≌;(2)若2AE BE ==,求BF 的长8.(2022贵阳)如图,在正方形ABCD 中,E 为AD 上一点,连接BE ,BE 的垂直平分线交AB 于点M ,交CD 于点N ,垂足为O ,点F 在DC 上,且MF AD ∥.(1)求证:ABE FMN ≌△△;(2)若8AB =,6AE =,求ON 的长.9.(2022安徽)已知四边形ABCD 中,BC =CD .连接BD ,过点C 作BD 的垂线交AB 于点E ,连接DE .(1)如图1,若∥DE BC ,求证:四边形BCDE 是菱形;(2)如图2,连接AC ,设BD ,AC 相交于点F ,DE 垂直平分线段AC .(ⅰ)求∠CED 的大小;(ⅱ)若AF =AE ,求证:BE =CF .10.(2022玉林)问题情境:在数学探究活动中,老师给出了如图的图形及下面三个等式:①AB AC = ②DB DC = ③BAD CAD ∠=∠若以其中两个等式作为已知条件,能否得到余下一个等式成立? 解决方案:探究ABD △与ACD △全等.问题解决:(1)当选择①②作为已知条件时,ABD △与ACD △全等吗?_____________(填“全等”或“不全等”),理由是_____________;(2)当任意选择两个等式作为已知条件时,请用画树状图法或列表法求ABD ACD △≌△的概率.11.(2022北部湾)已知MON α∠=,点A ,B 分别在射线,OM ON 上运动,6AB =.(1)如图①,若90α=︒,取AB 中点D ,点A ,B 运动时,点D 也随之运动,点A ,B ,D 的对应点分别为,,A B D ''',连接,OD OD '.判断OD 与OD '有什么数量关系?证明你的结论:(2)如图②,若60α=︒,以AB 为斜边在其右侧作等腰直角三角形ABC ,求点O 与点C 的最大距离:(3)如图③,若45α=︒,当点A ,B 运动到什么位置时,AOB 的面积最大?请说明理由,并求出AOB 面积的最大值.。

中考复习三角形的基本概念与性质

中考复习三角形的基本概念与性质

中考复习三角形的基本概念与性质三角形是初中数学中的重要概念,它涉及到边、角、面积等基本要素。

掌握三角形的基本概念与性质对于中考数学的学习至关重要。

本文将从三角形的定义、分类以及常用的性质等方面进行讲解,帮助同学们在中考复习中更好地理解和掌握三角形。

一、三角形的定义与分类1. 三角形的定义三角形是由三条线段组成的多边形,它的特点是有三个顶点和三条边。

三角形的三个顶点可以不在同一条直线上,但是三条边必须相互连接才能构成三角形。

2. 三角形的分类根据三角形的边长和角度的关系,三角形可分为以下几类:(1) 等边三角形:三条边的长度相等;(2) 等腰三角形:两条边的长度相等;(3) 直角三角形:有一个角为直角(90度);(4) 钝角三角形:有一个角大于90度;(5) 锐角三角形:三个角都小于90度。

二、三角形的性质1. 三角形内角和性质对于任意一个三角形,其内角和恒为180度。

即三个角的度数之和等于180度。

2. 三边关系性质(1) 三角形两边之和大于第三边:若三边长分别为a、b、c,则满足a +b > c、b +c > a、a + c > b。

只有满足这个条件,这三条边才能构成一个三角形。

(2) 两边之差小于第三边:若三边长分别为a、b、c,则满足|a - b| <c、|a - c| < b、|b - c| < a。

3. 等腰三角形的性质(1) 等腰三角形的底角(两边相等的角)相等;(2) 等腰三角形的高线(从底边的中点垂直于顶点的线段)相等。

4. 直角三角形的性质(1) 直角三角形的斜边是最长的边;(2) 直角三角形的两个锐角互余,也就是说,两个锐角之和等于90度。

5. 等边三角形的性质(1) 等边三角形的三个内角都等于60度;(2) 等边三角形的高线、中线、角平分线以及垂心、重心、外心、内心都重合于一个点。

6. 三角形的面积公式三角形的面积公式为:面积 = 底边长度 ×高 / 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D C
B A
中考三角形知识点复习归纳总结
⒈ 三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.
三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角; 相邻两边的公共端点是三角形的顶点, 三角形ABC 用符号表示为△ABC,三角形ABC 的边AB 可用边AB 所对的角C 的小写字母c 表示,AC 可用b 表示,BC 可用a 表示.
⒉ 三角形的分类:
(1)按边分类:
(2)按角分类:
⒊ 三角形的主要线段的定义: (1)三角形的中线 三角形中,连结一个顶点和它对边中点的线段.
表示法:1.AD 是△ABC 的BC 上的中线.
三角形 等腰三角形 不等边三角形
底边和腰不相等的等腰三角形
等边三角形 三角形
直角三象形
斜三角形 锐角三角形 钝角三角形
21D C
B A
D C
B A 2.BD=DC=12
BC. 注意:①三角形的中线是线段;
②三角形三条中线全在三角形的内部;
③三角形三条中线交于三角形内部一点;
④中线把三角形分成两个面积相等的三角形.
(2)三角形的角平分线
三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段 表示法:1.AD 是△ABC 的∠BAC 的平分线. 2.∠1=∠2=12
∠BAC. 注意:①三角形的角平分线是线段; ②三角形三条角平分线全在三角形的内部;
③三角形三条角平分线交于三角形内部一点;
④用量角器画三角形的角平分线.
(3)三角形的高
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.
表示法:1.AD 是△ABC 的BC 上的高线.
2.AD⊥BC于D.
3.∠ADB=∠ADC=90°.
注意:①三角形的高是线段;
②锐角三角形三条高全在三角形的内部,直角三角形有两条高是边,钝角三角形有两条高在形外;
③三角形三条高所在直线交于一点.
⒋在画三角形的三条角平分线,三条中线,三条高时应注意:
(1)如图3,三角形三条角平分线交于一点,交点都在三角形内部.
(2)如图4,三角形的三条中线交点一点,交点都在三角形内部.
图3 图4
如图5,6,7,三角形的三条高交于一点,锐角三角形的三条高的交点在三角形内部,钝角三角形的三条高的交点在三角形的外部,直角三角形的三条高的交点在直角三角形的直角顶点上.
5 三角形的三边关系 三角形的任意两边之和大于第三边;任意两边之差小于第三边.
注意:(1)三边关系的依据是:两点之间线段是短;
(2)围成三角形的条件是任意两边之和大于第三边.
6. 三角形的角与角之间的关系: (1)三角形三个内角的和等于180;
(2)三角形的一个外角等于和它不相邻的两个内角的和;
(3)三角形的一个外角大于任何一个和它不相邻的内角.
(4)直角三角形的两个锐角互余.
三角形的内角和定理
定理:三角形的内角和等于180°.
图5
图6
图7 图8
推论:直角三角形的两个锐角互余。

推理过程:
一、作CM∥AB,则∠4=∠1,而∠2+∠3+∠4=1800,即∠A+∠B+∠ACB=1800.
二、作MN∥BC,则∠2=∠B,∠3=∠C,而∠1+∠2+∠3=1800,
即∠BAC+∠B+∠C=1800.
注意:(1)证明的思路很多,基本思想是组成平角.
(2)应用内角和定理可解决已知二个角求第三个角或已知三角关系求三个角.7.三角形的稳定性:
三角形的三边长确定,则三角形的形状就唯一确定,这叫做三角形的稳定性.
注意:(1)三角形具有稳定性;
(2)四边形没有稳定性.
适当添加辅助线,寻找基本图形
(1)基本图形一,如图8,在ABC中,AB=AC,B,A,D成一条直线,则
1DAC.
DAC=2B=2C或B=C=
2
(2)基本图形二,如图9,如果CO 是AOB的角平分线,DE∥OB交OA,OC于D,E,那么DOE是等腰三角形,DO=DE.当几何问题的条件和结论中,
图9
或在推理过程中出现有角平分线,平行线,等腰三角形三个条件中
的两个时,就应找出这个基本图形,并立即推证出第三个作为结论.
即:角平分线+平行线→等腰三角形.
基本图形三,如图10,如果BD 是ABC的角平分线,M是AB上一点,MN BD,且与BP,BC相交于P,N.那么BM=BN,即BMN是等腰三角形,且MP=NP,
即:角平分线+垂线→等腰三角形.
当几何证题中出现角平分线和向角平分线所作垂线时,就应找出这个基
本图形,如等腰三角形不完整就应将基本图
形补完整,如图11,图12.
图11。

相关文档
最新文档