三角形知识点训练含答案
经典初中数学三角形专题训练及例题解析
经典《三角形》专题训练知识点梳理考点一、三角形1、三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2、三角形的分类. ⎪⎩⎪⎨⎧钝角三角形直角三角形锐角三角形 ⎪⎪⎩⎪⎪⎨⎧)(等边三角形等腰三角形不等边三角形 3、三角形的三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边.4、三角形的重要线段①三角形的中线:顶点与对边中点的连线,三条中线交点叫重心②三角形的角平分线:内角平分线与对边相交,顶点和交点间的线段,三个角的角平分线的交点叫内心③三角形的高:顶点向对边作垂线,顶点和垂足间的线段.三条高的交点叫垂心(分锐角三角形,钝角三角形和直角三角形的交点的位置不同)5、三角形具有稳定性6、三角形的内角和定理及性质定理:三角形的内角和等于180°.推论1:直角三角形的两个锐角互补。
推论2:三角形的一个外角等于不相邻的两个内角的和。
推论3:三角形的一个外角大于与它不相邻的任何一个内角。
7、多边形的外角和恒为360°8、多边形及多边形的对角线①正多边形:各个角都相等,各条边都相等的多边形叫做正多边形.②凸凹多边形:画出多边形的任何一条边所在的直线,若整个图形都在这条直线的同一侧,这样的多边形称为凸多边形;,若整个多边形不都在这条直线的同一侧,称这样的多边形为凹多边形。
③多边形的对角线的条数:A.从n 边形的一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形。
B.n 边形共有2)3(-n n 条对角线。
9、边形的内角和公式及外角和①多边形的内角和等于(n-2)×180°(n ≥3)。
②多边形的外角和等于360°。
三角形 (按角分) 三角形 (按边分)10、平面镶嵌及平面镶嵌的条件。
①平面镶嵌:用形状相同或不同的图形封闭平面,把平面的一部分既无缝隙,又不重叠地全部覆盖。
②平面镶嵌的条件:有公共顶点、公共边;在一个顶点处各多边形的内角和为360°。
2022年高考数学解三角形知识点专项练习含答案
专题19 解三角形一、单选题(本大题共10小题,共50分)1.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形2.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 73.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里4.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√35.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π4,在D点测得塔顶A的仰角是π6,水平面上的,则电视塔AB的高度为()mA. 20B. 30C. 40D. 506.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√64km2C.D. 6−√34km27.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√1058.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形9.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √510.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6二、单空题(本大题共4小题,共20分)11.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.12. 在四边形ABCD 中,AB =6,BC =CD =4,DA =2,则四边形ABCD 的面积的最大值是______.13. 海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B 两点间的距离,现在珊瑚群岛上取两点C,D ,测得CD =45m ,∠ADB =135∘,∠BDC =∠DCA =15∘,∠ACB =120∘,则AB 两点的距离为______.14. 如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,若测得CD =4 km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离是_______km .三、解答题(本大题共4小题,共30分)15. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b .16. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值.17. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.18. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB 、AC 上,小径PM 、PN 与边界BC 的夹角都为60°,区域PMB 和区域PNC 内种植郁金香,区域AMPN 内种植月季花.(1)探究:观赏小径PM 与PN 的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?专题19 解三角形一、单选题(本大题共10小题,共50分)19.在△ABC中,角A,B,C所对的边分别为a,b,c,若2acosC=b,则△ABC的形状是()A. 等腰直角三角形B. 直角三角形C. 等腰三角形D. 等边三角形【答案】C解:∵b=2acosC,∴由正弦定理得sinB=2sinAcosC,∵B=π−(A+C),∴sin(A+C)=2sinAcosC,则sinAcosC+cosAsinC=2sinAcosC,sinAcosC−cosAsinC=0,即sin(A−C)=0,∵A、C∈(0,π),∴A−C∈(−π,π),则A−C=0,∴A=C,∴△ABC是等腰三角形.故选:C.20.如图,在△ABC中,点D在边AB上,CD⊥BC,AC=5√3,CD=5,BD=2AD,则AD的长为()A. 4B. 5C. 6D. 7【答案】B【解析】解:设AD=t,可得BD=2t,BC=√4t2−25,在直角三角形BCD中,可得cosB=√4t2−252t,在三角形ABC中,可得cosB=222⋅3t⋅√4t2−25,即为√4t2−252t =222⋅3t⋅√4t2−25,即2(4t2−25)=9t2−75,解得t=5,可得AD=5,故选:B.21.海上有A、B两个小岛相距10海里,从A岛望C岛和B岛成60°的视角,从B岛望C岛和A岛成75°的视角,则B,C间的距离是()A. 10√3海里B. 10√63海里 C. 5√2海里 D. 5√6海里【答案】D【解析】解:由题意可得,A=60°,B=75°,∠C=180°−60°−75°=45°根据正弦定理可得,BCsin60°=ABsin45°∴BC=10×√32√22=5√6故选D.22.在△ABC中,内角A、B、C所对的边分别为a、b、c,若角A、C、B成等差数列,角C的角平分线交AB于点D,且CD=√3,a=3b,则c的值为()A. 3B. 72C. 4√73D. 2√3【答案】C【解析】解:由题意,得由S△ABC=S△ACD+S△BCD,得,所以ab=a+b,(b=0舍去),所以3b2=4b,解得b=43故a=3b=4,故c=√a2+b2−2ab·cosC=4√73故选C.23.如图,要测量电视塔AB的高度,在C点测得塔顶A的仰角是π,在D点测得塔顶A4的仰角是π,水平面上的,则电视塔AB的高度为6()mA. 20B. 30C. 40D. 50【答案】A【解析】解:由题题意,设AB=x,则BD=√3x,BC=x在△DBC中,∠BCD=60°,CD=40,∴根据余弦定理,得BD2=BC2+CD2−2BC⋅CD⋅cos∠DCB即:(√3x)2=(40)2+x2−2×40⋅x⋅cos60°整理得x2+20x−800=0,解之得x=−40(舍去)或x=20即所求电视塔的高度为20米.故选A.24.为测出小区的面积,进行了一些测量工作,所得数据如图所示,则小区的面积为( )A.B. 3−√6km24C.D. 6−√34km2【答案】D【解析】解:如图连接AC,根据余弦定理可得AC2=AB2+BC2−2AB×BCcosB=3,即AC=√3,由于AC2+BC2=AB2,所以∠ACB=90°,∠BAC=30°,所以∠DAC=45°−30°=15°,∠DCA=105°−90°=15°,所以∠DAC=∠DCA所以△ADC为等腰三角形,设AD=DC=x,∠D=150°,由余弦定理x2+x2+√3x2=3⇒x2=3(2−√3),故所求面积为12×1×√3+12×3(2−√3)×12=6−√34.故选D.25.已知直三棱柱ABC−A1B1C1的底面是正三角形,AB=2√3,D是侧面BCC1B1的中心,球O与该三棱柱的所有面均相切,则直线AD被球O截得的弦长为()A. √1010B. √105C. 3√1010D. 3√105【答案】D【解析】解:因为球O与直三棱柱ABC−A1B1C1的所有面均相切,且直三棱柱ABC−A1B1C1的底面是正三角形,所以球心O为该三棱柱上、下底面三角形重心连线的中点,如图所示,设球O的球心为O,底面三角形ABC的重心为O′,连接OO′,则OO′⊥底面ABC.设BC的中点为E,连接AE,易知点O′在AE上,连接OD、DE,因为D是侧面BB1C1C的中心,所以四边形OO′ED为正方形,设球O的半径为r,则由AB=2√3,可得r=2√3×√32×13=1,易得AD=√3√32)=√10,连接OA,可得OA=√23)=√5,∴cos ∠ADO=DO2+AD2−AO22⋅DO⋅AD =3√1010,故所求弦长为2r⋅cos ∠ADO=3√105.故选D.26.在△ABC中,角A,B,C所对的边分别为a,b,c,若直线bx+ycos A+cos B=0与ax+ycos B+cos A=0平行,则△ABC一定是()A. 锐角三角形B. 等腰三角形C. 直角三角形D. 等腰或者直角三角形【答案】C【解析】解:∵直线bx+ycosA+cosB=0与ax+ycosB+cosA=0平行,∴ba =cosAcosB,解得bcosB=acosA,∴利用余弦定理可得:b×a2+c2−b22ac =a×b2+c2−a22bc,整理可得:c2(b2−a2)=(b2+a2)(b2−a2),∴解得:c2=a2+b2或b=a,而当a=b时,两直线重合,不满足题意;则△ABC是直角三角形.故选C.27.海伦不仅是古希腊的数学家,还是一位优秀的测绘工程师.在他的著作《测地术》中最早出现了已知三边求三角形面积的公式,即著名的海伦公式S=√p(p−a)(p−b)(p−c),这里p=12(a+b+c),a,b,c分别为▵ABC的三个角A,B,C所对的边,该公式具有轮换对称的特点,形式很美.已知▵ABC中,p=12,c=9,cosA=23,则该三角形内切圆半径()A. √2B. √3C. √10D. √5【答案】D【解析】解:因为p=12(a+b+c),所以a+b+c=2p,因为p=12,c=9,所以a+b=15,三角形的内切圆半径r=2Sa+b+c,由余弦定理得cos A=b2+c2−a2 2bc =23,所以(b−a)(b+a)+81=12b,即b−5a=−27,所以a=7,b=8,所以S=√p(p−a)(p−b)(p−c)=√12×(12−7)(12−8)(12−9)=12√5,所以r=√5,故选D28.在ΔABC中,若1sinA +1sinB=2(1tanA+1tanB),则()A. C的最大值为π3B. C的最大值为2π3C. C的最小值为π3D. C的最小值为π6【答案】A【解析】解:因为1sin A +1sin B=2(1tan A+1tan B),所以1sin A +1sin B=2(cosAsinA+cosBsin B),所以sin A+sin Bsin Asin B =2·(sin BcosA+cosBsinA)sin Asin B=2·sin(A+B)sin Asin B =2·sinCsin Asin B,所以sinA+sinB=2sinC,由正弦定理得到:a+b=2c,所以cosC=a2+b2−c22ab =a2+b2−(a+b2)22ab=34a2+34b2−12ab2ab⩾34·2ab−12ab2ab=12,当且仅当a=b时“=”成立,所以,则C的最大值为π3.故选A.二、单空题(本大题共4小题,共20分)29.如图,在离地面高200m的热气球上,观测到山顶C处的仰角为15∘、山脚A处的俯角为45∘,已知∠BAC=60∘,则山的高度BC为______m.【答案】300【解析】解:根据题意,可得Rt△AMD中,∠MAD=45°,MD=200,∴AM=MDsin45°=200√2.∵△MAC中,∠AMC=45°+15°=60°,∠MAC=180°−45°−60°=75°,∴∠MCA=180°−∠AMC−∠MAC=45°,由正弦定理,得AC=MAsin∠AMCsin∠MCA =200√2×√32√22=200√3,在Rt△ABC中,BC=ACsin∠BAC=200√3×√32=300m.故答案为300.30.在四边形ABCD中,AB=6,BC=CD=4,DA=2,则四边形ABCD的面积的最大值是______.【答案】8√3【解析】解:如图所示,AB=6,BC=CD=4,DA=2,设BD=x,在△ABD中,由余弦定理可得x2=22+62−2×2×6cosA=40−24cosA,在△BCD中,由余弦定理可得x2=32−32cosC,联立可得3cosA−4cosC=1,①又四边形ABCD面积S=12×4×4sinC+12×2×6sinA,即4sinC+3sinA=12S,②①2+②2可得9+16+24(sinAsinC−cosAcosC)=1+14S2,化简可得−24cos(A+C)=14S2−24,由于−1≤cos(A+C)≤1,∴−24≤14S2−24≤24,∴0≤S2≤192,解得S≤8√3,当cos(A+C)=−1即A+C=π时取等号,∴S的最大值为8√3.故答案为:8√3.31.海洋蓝洞是地球罕见的自然地理现象,被喻为“地球留给人类保留宇宙秘密的最后遗产”,我国拥有世界上最深的海洋蓝洞.若要测量如图所示的蓝洞的口径A,B两点间的距离,现在珊瑚群岛上取两点C,D,测得CD=45m,∠ADB=135∘,∠BDC=∠DCA=15∘,∠ACB=120∘,则AB两点的距离为______.【答案】45√5【解析】解:易知在△ACD中,∠DAC=180°−∠ADB−∠BDC−∠ACD=15°,∴△ACD为等腰三角形,则AD=CD=45,在△BCD中,∠CBD=180°−∠BDC−∠ACD−∠ACB=30°,∠BCD=120°+15°= 135°,所以由正弦定理得,即45sin30°=BDsin135°,得BD=45√2,在△ABD中,由余弦定理得=452+(45√2)2−2×45×45√2×(−√22)=452×5,所以AB=45√5,即A,B两点的距离为45√5,故答案为45√5.32.如图,A,B两点在河的同侧,且A,B两点均不可到达,要测出A,B的距离,测量者可以在河岸边选定两点C,D,若测得CD=4km,∠ADB=∠CDB=30°,∠ACD=60°,∠ACB=45°,则A,B两点间的距离是_______km.【答案】2√2【解析】由于CD=4km,∠ADB=∠CDB=30∘,∠ACD=60∘,∠ACB=45∘,所以∠DAC=180°−30°−30°−60°=60°,∠DBC=180°−30°−60°−45°=45°,在三角形ADC 中,由正弦定理得4sin∠DAC =ADsin∠ACD ,所以AD =4sin60°sin60°=4,在三角形BCD 中,由正弦定理得BDsin∠BCD =4sin∠DBC , 所以BD =4×sin(60°+45°)sin45°=2√3+2,在三角形ABD 中由余弦定理得到AB 2=42+(2√3+2)2−2×4×(2√3+2)cos30°=8, 所以AB =2√2, 故答案为2√2.三、解答题(本大题共4小题,共30分)33. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且ccosB +bcosC =3acosB .(1)求cos B 的值;(2)若|CA⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=2,△ABC 的面积为2√2,求边b . 【答案】解:(1)由正弦定理asinA =bsinB =csinC , 即ccosB +bcosC =3acosB ,得sinCcosB +sinBcosC =3sinAcosB ,则有3sinAcosB =sin(B +C)=sin(π−A)=sinA . 又A ∈(0,π),则sinA >0,则.(2)因为B ∈(0,π),则sinB >0,.因为|CA ⃗⃗⃗⃗⃗ −CB ⃗⃗⃗⃗⃗ |=|BA ⃗⃗⃗⃗⃗ |=c =2,所以S =12acsinB =12a ×2×2√23=2√2,得a =3.由余弦定理,则b =3.34. 在①2acosC +c =2b ,②cos 2B−C 2−cosBcosC =34,③(sinB +sinC)2=sin 2A +3sinBsinC 这三个条件中任选一个补充在下面的横线上,并加以解答. 在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且 . (1)求角A 的大小;(2)若a =2,求△ABC 面积的最大值. 【答案】解:(1)选①,由正弦定理得2sin Acos C +sin C =2sin B ,所以2sin Acos C +sin C =2sin (A +C)=2(sin Acos C +cos Asin C),即sin C(2cos A −1)=0,又C ∈(0,π),所以sin C >0,所以cos A =12,又A ∈(0,π),从而得A =π3. 选②,因为cos 2 B−C 2−cosBcosC =1+cos (B−C )2−cosBcosC=1−cosBcosC+sinBsinC2=1−cos(B+C)2=34,所以cos(B +C)=−12,cosA =−cos(B +C)=12,又因为A ∈(0,π),所以A =π3. 选③因为(sinB +sinC)2=sin 2A +3sinBsinC , 所以sin 2B +sin 2C +2sinBsinC =sin 2A +3sinBsinC , 即sin 2B +sin 2C −sin 2A =sinBsinC , 所以由正弦定理得b 2+c 2−a 2=bc ,由余弦定理知cosA =b 2+c 2−a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)得A =π3,又a =2,由余弦定理得a 2=b 2+c 2−2bccos A =b 2+c 2−bc ⩾2bc −bc =bc , 所以bc ⩽4,当且仅当b =c =2时取得等号,,所以△ABC 面积的最大值为√3.35. 设a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,m ⃗⃗⃗ =(cos C2,sin C2),n ⃗ =(cos C2,−sin C2),m ⃗⃗⃗ 与n ⃗ 的夹角为π3. (1)求角C 的大小;(2)已知c =72,△ABC 的面积S =3√32,求a +b 的值.【答案】解:(1)由已知,得.又∵|m⃗⃗⃗ |=|n ⃗ |=1, .又∵0<C <π,∴C =π3.(2)由面积公式,得由余弦定理,得c 2=a 2+b 2−2abcosC , 即494=a 2+b 2−ab.② ①②联立,解得a +b =112.36. 某农场有一块等腰直角三角形的空地ABC ,其中斜边BC 的长度为400米,为迎接“五一”观光游,欲在边界BC 上选择一点P ,修建观赏小径PM 、PN ,其中M 、N 分别在边界AB、AC上,小径PM、PN与边界BC的夹角都为60°,区域PMB和区域PNC内种植郁金香,区域AMPN内种植月季花.(1)探究:观赏小径PM与PN的长度之和是否为定值?请说明理由;(2)为深度体验观赏,准备在月季花区域内修建小径MN,当P点在何处时,三条小径(PM、PN、MN)的长度和最小?【答案】解:(1)在三角形BPM中由正弦定理可得:PM sin45∘=PBsin75∘,化简得PM=(√3−1)PB,同理可得PN=(√3−1)PC,∴PM+PN=(√3−1)(PB+PC)=(√3−1)BC=(√3−1)×400为定值.(2)在三角形PMN中,由余弦定理得MN2=PM2+PN2−2PM⋅PNcos60°=(PM+ PN)2−3PM⋅PN=160000(√3−1)2−3PM⋅PN≥160000(√3−1)2−3×(PM+PN2)2=160000(√3−1)2−3×[400(√3−1)2]2=40000(√3−1)2,∴MN≥200(√3−1),当且仅当PM=PN,即P为BC的中点时,MN取得最小值200(√3−1),∴P为BC的中点时,三条小径(PM、PN、MN)的长度和最小,且最小值为600(√3−1).。
八年级上册第一章三角形整章复习知识点和对应练习
T ——三角形一、知识梳理:专题一:三角形有关的线段;专题二:三角形有关的角;专题三:多边形及其内角和.二、考点分类专题一:三角形有关的线段考点一:三角形的边1.三角形的概念:由不在同一直线上的三条线段首尾顺次相接所组成的图形.2.三角形分类:(1)按角的关系分类 (2)按边的关系分类⎧⎪⎧⎨⎨⎪⎩⎩直角三角形三角形锐角三角形斜三角形钝角三角形⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形底和腰不相等的等腰三角形等腰三角形等边三角形 3.三角形的三边关系:两边之和大于第三边,两边之差小于第三边.【例1】【类型一】 判定三条线段能否组成三角形以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cm ;B .5cm ,6cm ,10cm ;C .1cm ,1cm ,3cm ;D .3cm ,4cm ,9cm 解析:选项A 中2+3=5,不能组成三角形,故此选项错误;选项B 中5+6>10,能组成三角形,故此选项正确;选项C 中1+1<3,不能组成三角形,故此选项错误;选项D 中3+4<9,不能组成三角形,故此选项错误.故选B.方法总结:判定三条线段能否组成三角形,只要判定两条较短的线段长度之和大于第三条线段的长度即可.【类型二】 判断三角形边的取值范围一个三角形的三边长分别为4,7,x ,那么x 的取值范围是( )A .3<x <11 ;B .4<x <7 ;C .-3<x <11 ;D .x >3解析:∵三角形的三边长分别为4,7,x ,∴7-4<x <7+4,即3<x <11.故选A.方法总结:判断三角形边的取值范围要同时运用两边之和大于第三边,两边之差小于第三边.有时还要结合不等式的知识进行解决.【类型三】等腰三角形的三边关系已知一个等腰三角形的两边长分别为4和9,求这个三角形的周长.解析:先根据等腰三角形两腰相等的性质可得出第三边长的两种情况,再根据两边和大于第三边来判断能否构成三角形,从而求解.解:根据题意可知等腰三角形的三边可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能构成三角形,应舍去;4+9>9,故4,9,9能构成三角形,∴它的周长是4+9+9=22.方法总结:在求三角形的边长时,要注意利用三角形的三边关系验证所求出的边长能否组成三角形.【类型四】三角形三边关系与绝对值的综合若a,b,c是△ABC的三边长,化简|a-b-c|+|b-c-a|+|c+a-b|.解析:根据三角形三边关系:两边之和大于第三边,两边之差小于第三边,来判定绝对值里的式子的正负,然后去绝对值符号进行计算即可.解:根据三角形的三边关系,两边之和大于第三边,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.方法总结:绝对值的化简首先要判断绝对值符号里面的式子的正负,然后根据绝对值的性质将绝对值的符号去掉,最后进行化简.此类问题就是根据三角形的三边关系,判断绝对值符号里面式子的正负,然后进行化简.考点二:三角形的高、中线与角平分线1.三角形的高:从三角形的一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高.2.三角形的中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线.3.三角形的角平分线:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点与交点的线段叫做三角形的角平分线.【例2】探究点一:三角形的高【类型一】三角形高的画法画△ABC的边AB上的高,下列画法中,正确的是( )解:过点C 作边AB 的垂线段,即画AB 边上的高CD ,所以画法正确的是D.故选D. 方法总结:三角形任意一边上的高必须满足:(1)过该边所对的顶点;(2)垂足必须在该边或在该边的延长线上.【类型二】 根据三角形的面积求高如图所示①,在△ABC 中,AB =AC =5,BC =6,AD ⊥BC 于点D ,且AD =4,若点P 在边AC 上移动,则BP 的最小值为________.解析:根据垂线段最短,可知当BP ⊥AC 时,BP 有最小值.由△ABC 的面积公式可知12AD ·BC =12BP ·AC ,解得BP =245方法总结:解答此题可利用面积相等作桥梁(但不求面积)求三角形的高,这种解题方法通常称为“面积法”.① ② ③ ④ 探究点二:三角形的中线【类型一】 应用三角形的中线求线段的长如图②在△ABC 中,AC =5cm ,AD 是△ABC 的中线,若△ABD 的周长比△ADC 的周长大2cm ,则BA =________.解析:如图,∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD 的周长-△ADC 的周长=(BA +BD +AD )-(AC +AD +CD )=BA -AC ,∴BA -5=2,∴BA =7cm.方法总结:通过本题要理解三角形的中线的定义,解决问题的关键是将△ABD 与△ADC 的周长之差转化为边长的差.【类型二】 利用中线解决三角形的面积问题如图③,在△ABC 中,E 是BC 上的一点,EC =2BE ,点D 是AC 的中点,设△ABC ,△ADF 和△BEF 的面积分别为S △ABC ,S △ADF 和S △BEF ,且S △ABC =12,则S △ADF -S △BEF =________.解析:∵点D 是AC 的中点,∴AD =12AC .∵S △ABC =12,∴S △ABD =12S △ABC =12×12=6.∵EC =2BE ,S △ABC =12,∴S △ABE =13S △ABC =13×12=4.∵S △ABD -S △ABE =(S △ADF +S △ABF )-(S △ABF +S △BEF )=S △ADF -S △BEF ,即S △ADF -S △BEF =S △ABD -S △ABE =6-4=2.故答案为2.方法总结:三角形的中线将三角形分成面积相等的两部分;高相等时,面积的比等于底边的比;底相等时,面积的比等于高的比.探究点三:三角形的角平分线如图④,已知:AD 是△ABC 的角平分线,CE 是△ABC 的高,∠BAC =60°,∠BCE =40°,求∠ADB 的度数.解析:根据AD 是△ABC 的角平分线,∠BAC =60°,得出∠BAD =30°,再利用CE 是△ABC 的高,∠BCE =40°,得出∠B 的度数,进而得出∠ADB 的度数.解:∵AD 是△ABC 的角平分线,∠BAC =60°,∴∠DAC =∠BAD =30°.∵CE 是△ABC 的高,∠BCE =40°,∴∠B =50°,∴∠ADB =180°-∠B -∠BAD =180°-50°-30°=100°.方法总结:通过本题要灵活掌握三角形的角平分线的表示方法,同时此类问题往往和三角形的高综合考查.考点三:三角形的稳定性【例3】要使四边形木架(用4根木条钉成)不变形,至少需要加钉1根木条固定,要使五边形木架不变形,至少需要加2根木条固定,要使六边形木架不变形,至少需要加3根木条固定,…,那么要使一个n 边形木架不变形,至少需要几根木条固定?解析:由于多边形(三边以上的)不具有稳定性,将其转化为三角形后木架的形状就不变了.根据具体多边形转化为三角形的经验及题中所加木条可找到一般规律.解:过n 边形的一个顶点可以作(n -3)条对角线,把多边形分成(n -2)个三角形,所以,要使一个n 边形木架不变形,至少需要(n -3)根木条固定.方法总结:将多边形转化为三角形时,所需要的木条根数,可从具体到一般去发现规律,然后验证求解.专题二:三角形有关的角考点四:三角形的内角1.三角形的内角和定理:三角形的内角和等于180°2.直角三角形的性质:直角三角形两锐角互余【例4】探究点一:三角形的内角和【类型一】 求三角形内角的度数已知,如图①,D 是△ABC 中BC 边延长线上一点,DF ⊥AB 交AB 于F ,交AC 于E ,若∠A =46°,∠D =50°.求∠ACB 的度数.① ② 解析:在Rt △DFB 中,根据三角形内角和定理,求得∠B 的度数,再在△ABC 中求∠ACB 的度数即可.解:在△DFB 中,∵DF ⊥AB ,∴∠DFB =90°.∵∠D =50°,∠DFB +∠D +∠B =180°,∴∠B =40°.在△ABC 中,∵∠A =46°,∠B =40°,∴∠ACB =180°-∠A -∠B =94°. 方法总结:求三角形的内角,必然和三角形内角和定理有关,解决问题时要根据图形特点,在不同的三角形中,灵活运用三角形内角和定理求解.【类型二】 判断三角形的形状一个三角形的三个内角的度数之比为1∶2∶3,这个三角形一定是( )A .直角三角形B .锐角三角形C .钝角三角形D .无法判定解析:设这个三角形的三个内角的度数分别是x ,2x ,3x ,根据三角形的内角和为180°,得x +2x +3x =180°,解得x =30°,∴这个三角形的三个内角的度数分别是30°,60°,90°,即这个三角形是直角三角形.故选A.方法总结:在解决有关比例问题时,通常先设比例系数,然后列方程求解.【类型三】 三角形的内角与角平分线、高的综合运用如图②,在△ABC 中,∠A =12∠B =13∠ACB ,CD 是△ABC 的高,CE 是∠ACB 的角平分线,求∠DCE 的度数.解析:根据已知条件用∠A 表示出∠B 和∠ACB ,利用三角形的内角和求出∠A ,再求出∠ACB ,∠ACD ,最后根据角平分线的定义求出∠ACE 即可求得∠DCE 的度数.解:∵∠A =12∠B =13∠ACB ,设∠A =x ,∴∠B =2x ,∠ACB =3x .∵∠A +∠B +∠ACB =180°,∴x +2x +3x =180°,解得x =30°,∴∠A =30°,∠ACB =90°.∵CD 是△ABC 的高,∴∠ADC =90°,∴∠ACD =180°-90°-30°=60°.∵CE 是∠ACB 的角平分线,∴∠ACE =12×90°=45°,∴∠DCE =∠ACD -∠ACE =60°-45°=15°.方法总结:本题是常见的几何计算题,解题的关键是利用三角形的内角和定理和角平分线的性质,找出角与角之间的关系并结合图形解答.探究点二:直角三角形的性质【类型一】 直角三角形性质的运用如图,CE ⊥AF ,垂足为E ,CE 与BF 相交于点D ,∠F =40°,∠C =30°,求∠EDF 、∠DBC 的度数.解析:根据直角三角形两锐角互余列式计算即可求出∠EDF ,再根据三角形的内角和定理求出∠C +∠DBC =∠F +∠DEF ,然后求解即可.解:∵CE ⊥AF ,∴∠DEF =90°,∴∠EDF =90°-∠F =90°-40°=50°.由三角形的内角和定理得∠C +∠DBC +∠CDB =∠F +∠DEF +∠EDF ,∴30°+∠DBC =40°+90°,∴∠DBC =100°.方法总结:本题主要利用了直角三角形两锐角互余的性质和三角形的内角和定理,熟记性质并准确识图是解题的关键.考点五:三角形的外角1.三角形外角的定义:三角形的一边与另一边的延长线组成的角.2.三角形外角的性质:三角形的外角等于与它不相邻的两内角的和;三角形的一个外角大于与它不相邻的任何一个内角.【例5】探究点:三角形的外角【类型一】 应用三角形的外角求角的度数如图所示,P 为△ABC 内一点,∠BPC =150°,∠ABP =20°,∠ACP =30°,求∠A 的度数.解析:延长BP交AC于E或连接AP并延长,构造三角形的外角,再利用外角的性质即可求出∠A的度数.解:延长BP交AC于点E,则∠BPC,∠PEC分别为△PCE,△ABE的外角,∴∠BPC=∠PEC +∠PCE,∠PEC=∠ABE+∠A,∴∠PEC=∠BPC-∠PCE=150°-30°=120°.∴∠A=∠PEC-∠ABE=120°-20°=100°.方法总结:利用三角形的外角的性质将已知与未知的角联系起来是计算角的度数的方法.【类型二】用三角形外角的性质把几个角的和分别转化为一个三角形的内角和已知:如图为一五角星,求证:∠A+∠B+∠C+∠D+∠E=180°.解析:根据三角形外角性质得出∠EFG=∠B+∠D,∠EGF=∠A+∠C,根据三角形内角和定理得出∠E+∠EGF+∠EFG=180°,代入即可得证.证明:∵∠EFG、∠EGF分别是△BDF、△ACG的外角,∴∠EFG=∠B+∠D,∠EGF=∠A +∠C.又∵在△EFG中,∠E+∠EGF+∠EFG=180°,∴∠A+∠B+∠C+∠D+∠E=180°.方法总结:解决此类问题的关键是根据图形的特点,利用三角形外角的性质将分散的角集中到某个三角形中,利用三角形内角和进行解决.【类型三】三角形外角的性质和角平分线的综合应用如图①,∠ACD是△ABC的外角,BE平分∠ABC,CE平分∠ACD,且BE、CE交于点E.(1)如果∠A=60°,∠ABC=50°,求∠E的度数;(2)猜想:∠E与∠A有什么数量关系(写出结论即可);(3)如图②,点E是△ABC两外角平分线BE、CE的交点,探索∠E与∠A之间的数量关系,并说明理由.解析:先计算特殊角的情况,再综合运用三角形的内角和定理及其推论结合三角形的角平分线概念解决.解:(1)根据外角的性质得∠ACD =∠A +∠ABC =60°+50°=110°,∵BE 平分∠ABC ,CE 平分∠ACD ,∴∠1=12∠ACD =55°,∠2=12∠ABC =25°.∵∠E +∠2=∠1,∴∠E =∠1-∠2=30°;(2)猜想:∠E =12∠A ; (3)∵BE 、CE 是两外角的平分线,∴∠2=12∠CBD ,∠4=12∠BCF ,而∠CBD =∠A +∠ACB ,∠BCF =∠A +∠ABC ,∴∠2=12(∠A +∠ACB ),∠4=12(∠A +∠ABC ).∵∠E +∠2+∠4=180°,∴∠E +12(∠A +∠ACB )+12(∠A +∠ABC )=180°,即∠E +12∠A +12(∠A +∠ACB +∠ABC )=180°.∵∠A +∠ACB +∠ABC =180°,∴∠E +12∠A =90°. 方法总结:对于本题发现的结论要予以重视:图①中,∠E =12∠A ;图②中,∠E =90°-12∠A .考点六:多边形及其内角和多边形1.定义:在同一平面内,由不在同一条直线上的一些线段首尾顺次相接组成的封闭图形.2.相关概念:顶点、边、内角、对角线.3.多边形的对角线:n 边形从一个顶点出发的对角线条数为(n -3)条;n 边形共有对角线n (n -3)2条(n ≥3).4.正多边形:如果多边形的各边都相等,各内角也都相等,那么就称为正多边形. 多边形的内角和与外角和1.性质:多边形的内角和等于(n -2)·180°;多边形的外角和等于360°.2.多边形的边数与内角和、外角和的关系:(1)n 边形的内角和等于(n -2)·180°(n ≥3,n 是正整数),可见多边形内角和与边数n 有关,每增加1条边,内角和增加180°.(2)多边形的外角和等于360°,与边数的多少无关.(3).正n 边形:正n 边形的内角的度数为(n -2)·180°n ,外角的度数为360°n. 【例6】探究点一:多边形的概念【类型一】 多边形及其概念下列图形不是凸多边形的是( )解析:根据凸多边形的概念,如果多边形的边都在任意一条边所在的直线的同旁,该多边形即是凸多边形,否则即是凹多边形.由此可得选项D 的图形不是凸多边形.故选D. 方法总结:多边形可分为凸多边形和凹多边形,辨别凸多边形可有两种方法:(1)画多边形任何一边所在的直线,整个多边形都在此直线的同一侧;(2)每个内角的度数均小于180°.通常所说的多边形指凸多边形.【类型二】 确定多边形的边数若一个多边形截去一个角后,变成十五边形,则原来的多边形的边数可能为( )A .14或15或16B .15或16C .14或16D .15或16或17解析:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,则多边形的边数是14,15或16.故选A. 方法总结:一个多边形截去一个角后,多边形的边数可能增加了一条,也可能不变或减少了一条,解决此类问题可以亲自动手画一下.探究点二:多边形的对角线【类型一】 确定多边形的对角线的条数从四边形的一个顶点出发可画________条对角线,从五边形的一个顶点出发可画________条对角线,从六边形的一个顶点出发可画________条对角线,请猜想从七边形的一个顶点出发有________条对角线,从n 边形的一个顶点出发有________条对角线,从而推导出n 边形共有________条对角线.解析:根据n 边形从一个顶点出发可引出(n -3)条对角线.从n 个顶点出发引出n (n -3)条对角线,而每条重复一次,可得答案.解:从四边形的一个顶点出发可画1条对角线,从五边形的一个顶点出发可画2条对角线,从六边形的一个顶点出发可画3条对角线,从七边形的一个顶点出发有4条对角线,从n 边形的一个顶点出发有(n -3)条对角线,从而推导出n 边形共有n (n -3)2条对角线. 方法总结:(1)多边形有n 条边,则经过多边形的一个顶点的对角线有(n -3)条;(2)多边形有n 条边,对角线的条数为n (n -3)2.【类型二】 根据对角线条数确定多边形的边数从一个多边形的任意一个顶点出发都只有5条对角线,则它的边数是( )A .6B .7C .8D .9解析:设这个多边形是n 边形.依题意,得n -3=5,解得n =8.故这个多边形的边数是8.故选C.【类型三】 根据分成三角形的个数,确定多边形的边数连接多边形的一个顶点与其他顶点的线段把这个多边形分成了6个三角形,则原多边形是( )A .五边形B .六边形C .七边形D .八边形解析:设原多边形是n 边形,则n -2=6,解得n =8.故选D.方法总结:从n 边形的一个顶点出发可引出(n -3)条对角线,这(n -3)条对角线把n 边形分成(n -2)个三角形.探究点三:正多边形的有关概念下列图形中,是正多边形的是( )A .等腰三角形B .长方形C .正方形D .五边都相等的五边形解析:根据正多边形的定义:各个角都相等,各条边都相等的多边形叫做正多边形进行解答.正方形四个角相等,四条边都相等,故选C. 方法总结:解答此类问题的关键是要搞清楚正多边形的定义,各个角相等、各条边相等的多边形是正多边形,这两个条件缺一不可.探究点一:多边形的内角和【类型一】利用内角和求边数一个多边形的内角和为540°,则它是( )A.四边形 B.五边形C.六边形 D.七边形解析:熟记多边形的内角和公式(n-2)·180°设它是n边形,根据题意得(n-2)·180=540,解得n=5.故选B.【类型二】求多边形的内角和一个多边形的内角和为1800°,截去一个角后,得到的多边形的内角和为( )A.1620° B.1800°C.1980° D.以上答案都有可能解析:1800÷180=10,∴原多边形边数为10+2=12.∵一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1,∴新多边形的边数可能是11,12,13,∴新多边形的内角和可能是1620°,1800°,1980°.故选D.方法总结:一个多边形截去一个内角后,边数可能减1,可能不变,也可能加1.根据多边形的内角和公式求出原多边形的边数是解题的关键.【类型三】复杂图形中的角度计算如图,∠1+∠2+∠3+∠4+∠5+∠6+∠7=( )A.450° B.540°C.630° D.720°解析:如图,∵∠3+∠4=∠8+∠9,∴∠1+∠2+∠3+∠4+∠5+∠6+∠7=∠1+∠2+∠8+∠9+∠5+∠6+∠7=五边形的内角和=540°,故选B.方法总结:本题考查了灵活运用五边形的内角和定理和三角形内外角关系.根据图形特点,将问题转化为熟知的问题,体现了转化思想的优越性.【类型四】利用方程和不等式确定多边形的边数一个同学在进行多边形的内角和计算时,求得内角和为1125°,当他发现错了以后,重新检查,发现少算了一个内角,问这个内角是多少度?他求的是几边形的内角和?解析:本题首先由题意找出不等关系列出不等式,进而求出这一内角的取值范围;然后可确定这一内角的度数,进一步得出这个多边形的边数.解:设此多边形的内角和为x,则有1125°<x<1125°+180°,即180°×6+45°<x<180°×7+45°,因为x为多边形的内角和,所以它是180°的倍数,所以x=180°×7=1260°.所以7+2=9,1260°-1125°=135°.因此,漏加的这个内角是135°,这个多边形是九边形.方法总结:解题的关键是由题意列出不等式求出这个多边形的边数.探究点二:多边形的外角和【类型一】已知各相等外角的度数,求多边形的边数正多边形的一个外角等于36°,则该多边形是正( )A.八边形 B.九边形C.十边形 D.十一边形解析:正多边形的边数为360°÷36°=10,则这个多边形是正十边形.故选C.方法总结:如果已知正多边形的一个外角,求边数可直接利用外角和除以这个角即可.【类型二】多边形内角和与外角和的综合运用一个多边形的内角和与外角和的和为540°,则它是( )A.五边形 B.四边形C.三角形 D.不能确定解析:设这个多边形的边数为n,则依题意可得(n-2)×180°+360°=540°,解得n =3,∴这个多边形是三角形.故选C.方法总结:熟练掌握多边形的内角和定理及外角和定理,解题的关键是由已知等量关系列出方程从而解决问题.。
(文末带答案)人教版初中数学全等三角形考点专题训练
(文末带答案)人教版初中数学全等三角形考点专题训练单选题1、如图,Rt△ACB中,∠ACB=90°,△ABC的角平分线AD、BE相交于点P,过P作PF⊥AD交BC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;②BF=BA;③PH=PD;④连接CP,CP平分∠ACB,其中正确的是()A.①②③B.①②④C.①③④D.①②③④2、如图,已知∠ABC=∠DCB.添加一个条件后,可得△ABC≌△DCB,则在下列条件中,不能添加的是()A.AC=DB B.AB=DC C.∠A=∠D D.∠ABD=∠DCA3、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA、OB上分别在取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C、D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是()A.SAS B.ASA C.AAS D.SSS4、如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a−b+c D.a+b−c5、如图,AC=BD,AO=BO,CO=DO,∠D=30°,∠A=95°,则∠AOB等于( )A.120°B.125°C.130°D.135°6、如图,△ABC和△EDF中,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7、如图,AB//DC,AB=DC,要使∠A=∠C,直接利用三角形全等的判定方法是()A.AASB.SASC.ASAD.SSS∠AOB,则OC是∠AOB的平分线③a>b,则8、下列说法:①若AC=BC,则C为AB的中点②若∠AOC=12a2>b2④若a=b,则|a|=|b|,其中正确的有()A.1个B.2个C.3个D.4个填空题9、如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.10、如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是__________.11、工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与点M,N重合,过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是____.12、如图,已知AF=BE,∠A=∠B,AC=BD,经分析__________≌__________,依据是__________.13、如图,已知AD=AE,请你添加一个条件,使得△ADC≌△AEB,你添加的条件是_____.(不添加任何字母和辅助线)解答题14、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E,(1)当直线MN绕点C旋转到图1的位置时,求证:①△ADC≌△CEB;②DE=AD+BE;(2)当直线MN绕点C旋转到图2的位置时,猜想DE、AD、BE之间的关系,并请给出证明.15、如图,在△ABC中,AB=AC,D是BA延长线上一点,E是AC的中点,连接DE并延长,交BC于点M,∠DAC的平分线交DM于点F.求证:AF=CM.(文末带答案)人教版初中数学全等三角形_010参考答案1、答案:D解析:根据三角形内角和定理以及角平分线定义判断①;根据全等三角形的判定和性质判断②③;根据角平分线的判定与性质判断④.解:在△ABC 中,∵∠ACB=90°,∴∠BAC+∠ABC=90°,又∵AD 、BE 分别平分∠BAC 、∠ABC ,∴∠BAD+∠ABE=12(∠BAC+∠ABC)=12(180°-∠ACB)=12(180°-90°)=45°, ∴∠APB=135°,故①正确.∴∠BPD=45°,又∵PF ⊥AD ,∴∠FPB=90°+45°=135°,∴∠APB=∠FPB ,又∵∠ABP=∠FBP ,BP=BP ,∴△ABP ≌△FBP(ASA),∴∠BAP=∠BFP ,AB=FB ,PA=PF ,故②正确.在△APH 和△FPD 中,∵∠APH=∠FPD=90°,∠PAH=∠BAP=∠BFP ,PA=PF ,∴△APH ≌△FPD(ASA),∴PH=PD ,故③正确.连接CP ,如下图所示:∵△ABC的角平分线AD、BE相交于点P,∴点P到AB、AC的距离相等,点P到AB、BC的距离相等,∴点P到BC、AC的距离相等,∴点P在∠ACB的平分线上,∴CP平分∠ACB,故④正确,综上所述,①②③④均正确,故选:D.小提示:本题考查了角平分线的判定与性质,三角形全等的判定方法,三角形内角和定理.掌握相关性质是解题的关键.2、答案:A解析:先要确定现有已知在图形上的位置,结合全等三角形的判定方法对选项逐一验证,排除错误的选项.解:∵∠ABC=∠DCB,∵BC=BC,A、添加AC=DB,不能得△ABC≌△DCB,符合题意;B、添加AB=DC,利用SAS可得△ABC≌△DCB,不符合题意;C、添加∠A=∠D,利用AAS可得△ABC≌△DCB,不符合题意;D、添加∠ABD=∠DCA,∴∠ACB=∠DBC,利用ASA可得△ABC≌△DCB,不符合题意;故选:A.小提示:本题主要考查三角形全等的判定,熟练掌握判定方法是解题的关键.3、答案:D解析:根据全等三角形的判定条件判断即可.解:由题意可知OC=OD,MC=MD在△OCM和△ODM中{OC=OD OM=OM MC=MD∴△OCM≅△ODM(SSS)∴∠COM=∠DOM∴OM就是∠AOB的平分线故选:D小提示:本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.4、答案:D解析:分析:详解:如图,∵AB⊥CD,CE⊥AD,∴∠1=∠2,又∵∠3=∠4,∴180°-∠1-∠4=180°-∠2-∠3,即∠A=∠C.∵BF⊥AD,∴∠CED=∠BFD=90°,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,ED=BF=b,又∵EF=c,∴AD=a+b-c.故选:D.点睛:本题主要考查全等三角形的判定与性质,证明△ABF≌△CDE是关键.5、答案:B解析:在△AOC和△BOD中{AC=BD AO=BO CO=DO,∴△AOC≌△BOD(SSS),∴∠C=∠D,又∵∠D=30°,∴∠C=30°,又∵在△AOC中,∠A=95°,∴∠AOC=(180-95-30) °=55°,又∵∠AOC+∠AOB=180°(邻补角互补),∴∠AOB=(180-55)°=125 °.故选B.6、答案:C解析:根据全等三角形的判定方法即可判断.A. AB=ED,可用ASA判定△ABC≌△EDF;B. AC=EF,可用AAS判定△ABC≌△EDF;C. AC∥EF,不能用AAA判定△ABC≌△EDF,故错误;D. BF=DC,可用AAS判定△ABC≌△EDF;故选C.小提示:此题主要考查全等三角形的判定,解题的关键是熟知全等三角形的判定方法.7、答案:B解析:根据平行线性质得出∠ABD=∠CDB,再加上AB=DC,BD=DB,根据全等三角形的判定定理SAS即可推出△ABD≌△CDB,从而推出∠A=∠C,即可得出答案.∵AB//DC,∴∠ABD=∠CDB,在△ABD和△CDB中,{AB=CD∠ABD=∠CDBBD=BD,∴△ABD≌△CDB(SAS),∴∠A=∠C,故选B.小提示:本题考查了平行线性质、全等三角形的判定与性质的应用,熟练掌握全等三角形的判定与性质定理是解题的关键.8、答案:A解析:根据直线中点、角平分线、有理数大小比较以及绝对值的性质,逐一判定即可.当三点不在同一直线上的时候,点C不是AB的中点,故错误;当OC位于∠AOB的内部时候,此结论成立,故错误;当a、b为负数时,a2<b2,故错误;若a=b,则|a|=|b|,故正确;故选:A.小提示:此题主要考查直线中点、角平分线、有理数大小比较以及绝对值的性质,熟练掌握,即可解题.9、答案:7解析:由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.所以答案是:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.10、答案:(﹣4,3)或(﹣4,2)解析:分△ABD≌△ABC,△ABD≌△BAC两种情况,根据全等三角形对应边相等即可解答.解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,如下图所示:∴点D的坐标是(-4,3),当△ABD’≌△BAC时,过D’作D’G⊥AB,过C点作CH⊥AB,如上图所示:△ABD’边AB上的高D’G与△BAC的边AB上高CH相等,∴D’G=CH=4,AG=BH=1,∴OG=2,∴点D’的坐标是(-4,2),所以答案是:(-4,3)或(-4,2).小提示:本题考查的是全等三角形的性质,坐标与图形的性质,掌握全等三角形的对应边相等是解题的关键.11、答案:SSS##边边边解析:由作图过程可得MO=NO,NC=MC,再加上公共边CO=CO可利用SSS定理判定△MOC≌△NOC.解:∵在△ONC和△OMC中{ON=OM CO=CO NC=MC,∴△MOC≌△NOC(SSS),∴∠BOC=∠AOC,所以答案是:SSS.小提示:本题主要考查了全等三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.12、答案:△ADF△BCE SAS解析:利用SAS 得出全等三角形.证明:∵AC =BD ,∴AD =BC ,在△ADF 和△BCE 中∵{AD =BC ∠A =∠B AF =BE,∴△ADF ≌△BCE (SAS ).所以答案是:①△ADF ,②△BCE ,③SAS .小提示:此题主要考查了全等三角形的判定,熟练掌握判定方法是解题的关键13、答案:AB =AC 或∠ADC =∠AEB 或∠ABE =∠ACD .解析:根据图形可知证明△ADC ≌△AEB 已经具备了一个公共角和一对相等边,因此可以利用ASA 、SAS 、AAS 证明两三角形全等.∵∠A =∠A ,AD =AE ,∴可以添加AB =AC ,此时满足SAS ;添加条件∠ADC =∠AEB ,此时满足ASA ;添加条件∠ABE =∠ACD ,此时满足AAS ,故答案为AB =AC 或∠ADC =∠AEB 或∠ABE =∠ACD ;小提示:本题考查了全等三角形的判定,是一道开放题,解题的关键是牢记全等三角形的判定方法.14、答案:(1)①见解析;②见解析;(2)AD−BE=DE,证明见解析.解析:(1)①利用“AAS”证明△ADC≌△CEB全等即可;②根据△ADC≌△CEB即可得到AD=CE,BE=CD,即可得到AD+BE=CE+CD=DE;(2)同(1)证明△ADC≌△CEB得到AD=CE,BE=CD,即可推出AD−BE=CE−CD=DE.证明(1)①∵AD⊥MN,BE⊥MN,∠ACB=90∘∴∠ADC=∠CEB=90°,∴∠DAC+∠DCA=∠DCA+∠BCE=90°,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS);②∵△ADC≌△CEB,∴AD=CE,BE=CD,∴AD+BE=CE+CD=DE;(2)关系:AD−BE=DE;证明:∵AD⊥MN,∠ACB=90∘,BE⊥MN,∴∠ADC=∠CEB=90°,∴∠DAC+∠ACD=90∘,∠ECB+∠ACD=90∘,∴∠DAC=∠ECB,在△ADC和△CEB中,{∠ADC=∠CEB ∠DAC=∠ECBAC=CB,∴△ADC≌△CEB(AAS),∴AD=CE,BE=CD,∴AD−BE=CE−CD=DE.小提示:本题主要考查了全等三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.15、答案:证明见解析.解析:先根据等腰三角形的性质可得∠B=∠C,再根据三角形的外角性质可得∠DAC=∠B+∠C=2∠C,然后根据角平分线的定义得∠EAF=12∠DAC=∠C,最后根据三角形全等的判定定理与性质即可得证.∵AB=AC,∴∠B=∠C,∴∠DAC=∠B+∠C=2∠C,∵AF是∠DAC的平分线,∴∠EAF=12∠DAC=∠C,∵E是AC的中点,∴AE=CE,在△AEF和△CEM中,{∠EAF=∠CAE=CE∠AEF=∠CEM,∴△AEF≅△CEM(ASA),∴AF=CM.小提示:本题考查了等腰三角形的性质、角平分线的定义、三角形全等的判定定理与性质等知识点,熟练掌握三角形全等的判定方法是解题关键.。
八年级数学上册第十二章全等三角形知识点总结全面整理(带答案)
八年级数学上册第十二章全等三角形知识点总结全面整理单选题AD,BD平分∠ABC,则点D到AB的距离等于( )1、如图,在ΔABC中,∠C=90°,AC=8,DC=13A.4B.3C.2D.1答案:C分析:如图,过点D作DE⊥AB于E,根据已知求出CD的长,再根据角平分线的性质进行求解即可.如图,过点D作DE⊥AB于E,AD,∵AC=8,DC=13∴CD=8×1=2,1+3∵∠C=90°,BD平分∠ABC,∴DE=CD=2,即点D到AB的距离为2,故选C.小提示:本题考查了角平分线的性质,熟练掌握角平分线上的点到角两边的距离相等是解题的关键.2、如图,在△ADE和△ABC中,∠E=∠C,DE=BC,EA=CA,过A作AF⊥DE,垂足为F,DE交CB的延长线于点G,连接AG.四边形DGBA的面积为12,AF=4,则FG的长是()A.2B.2.5C.3D.103答案:C分析:过点A作AH⊥BC于H,证△ABC≌△AED,得AF=AH,再证Rt△AFG≌Rt△AHG(HL),同理Rt△ADF≌Rt△ABH,得S四边形DGBA=S四边形AFGH=12,然后求得Rt△AFG的面积=6,进而得到FG的长.如图所示,过点A作AH⊥BC于H,在△ABC与△ADE中,{AC=AE∠C=∠E BC=DE,∴△ABC≌△ADE(SAS),∴AD=AB,S△ABC=S△AED,又∵AF⊥DE,∴12×DE×AF=12×BC×AH,∴AF=AH,∵AF⊥DE,AH⊥BC,∴∠AFG=∠AHG=90°,在Rt△AFG和Rt△AHG中,,{AG=AGAF=AH∴Rt△AFG≌Rt△AHG(HL),同理:Rt△ADF≌Rt△ABH(HL),∴S四边形DGBA=S四边形AFGH=12,∵Rt△AFG≌Rt△AHG,∴SRt△AFG=6,∵AF=4,∴1×FG×4=6,2解得:FG=3.故选:C.小提示:本题考查全等三角形的判定与性质,综合运用各知识点是解题的基础,作出合适的辅助线是解此题的关键.3、如图,在△ABC中,∠C=90°,以点B为圆心,任意长为半径画弧,分别交AB、BC于点M、N.分别以点M、MN的长度为半径画弧,两弧相交于点P,过点P作线段BD,交AC于点D,过点D作N为圆心,以大于12∠ABC;③BC=BE;④AE=BE中,一定正确的是()DE⊥AB于点E,则下列结论①CD=ED;②∠ABD=12A.①②③B.①②③④C.②④D.②③④答案:A分析:由作法可知BD是∠ABC的角平分线,故②正确,根据角平分线上的点到角两边的距离相等可得①正确,由HL可得Rt△BDC≌Rt△BDE,故BC=BE,③正确,解:由作法可知BD是∠ABC的角平分线,故②正确,∵∠C=90°,∴DC⊥BC,又DE⊥AB,BD是∠ABC的角平分线,∴CD=ED,故①正确,在Rt△BCD和Rt△BED中,{DE=DC,BD=BD∴△BCD≌△BED,∴BC=BE,故③正确.故选A.小提示:本题考查了角平分线的画法及角平分线的性质,熟练掌握相关知识是解题关键.4、如图,小明家仿古家具的一块三角形形状的玻璃坏了,需要重新配一块.小明通过电话给玻璃店老板提供相关数据,为了方便表述,将该三角形记为ΔABC,提供了下列各组元素的数据,配出来的玻璃不一定符合要求的是()A.AB,BC,CA B.AB,BC,∠B C.AB,AC,∠B D.∠A,∠B,BC答案:C分析:根据SSS,SAS,ASA逐一判定,其中SSA不一定符合要求.A. AB,BC,CA.根据SSS一定符合要求;B. AB,BC,∠B.根据SAS一定符合要求;C. AB,AC,∠B.不一定符合要求;D. ∠A,∠B,BC.根据ASA一定符合要求.故选:C.小提示:本题考查了三角形全等的判定,解决问题的关键是熟练掌握判定三角形全等的SSS,SAS,ASA三个判定定理.5、如图,点B,C,E在同一直线上,且AC=CE,∠B=∠D=90°,AC⊥CD,下列结论不一定成立的是()A.∠A=∠2B.∠A+∠E=90°C.BC=DE D.∠BCD=∠ACE答案:D分析:根据直角三角形的性质得出∠A=∠2,∠1=∠E,根据全等三角形的判定定理推出△ABC≌△CDE,再逐个判断即可.解:∵AC⊥CD,∴∠ACD=90°,∵∠B=90°,∴∠1+∠A=90°,∠1+∠2=90°,∴∠A=∠2,同理∠1=∠E,∵∠D=90°,∴∠E+∠2=∠A+∠E=90°,在△ABC和△CDE中,{∠A=∠2∠B=∠D AC=CE,∴△ABC≌△CDE(AAS),∴BC=DE,∴选项A、选项B,选项C都正确;根据已知条件推出∠A=∠2,∠E=∠1,但是∠1=∠2不能推出,而∠BCD=90°+∠1,∠ACE=90°+∠2,所以∠BCD=∠ACE不一定成立故选项D错误;故选:D.小提示:本题考查了全等三角形的判定定理和直角三角形的性质,能灵活运用知识点进行推理是解此题的关键,注意:全等三角形的判定定理有:ASA,SAS,AAS,SSS,两直角三角形全等,还有HL.6、在△ABC中,AB=4,AC=6,AD是BC边上的中线,则AD的取值范围是()A.0<AD<10B.1<AD<5C.2<AD<10D.0<AD<5答案:B分析:延长AD至点E,使得DE=AD,可证△ABD≌△CDE,可得AB=CE,AD=DE,在△ACE中,根据三角形三边关系即可求得AE的取值范围,即可解题.解:延长AD至点E,使得DE=AD,∵在△ABD和△CDE中,∵{AD=DE∠ADB=∠CDEBD=CD,∴△ABD≌△CDE(SAS),∴AB=CE,AD=DE∵△ACE中,AC﹣AB<AE<AC+AB,∴2<AE<10,∴1<AD<5.故选:B.小提示:本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△ABD≌△CDE是解题的关键.7、如图,D是AB上一点,DF交AC于点E,DE=FE,FC//AB,若AB=4,CF=3,则BD的长是( )A.0.5B.1C.1.5D.2答案:B分析:根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出ΔADE≅ΔCFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.∵CF//AB,∴∠A=∠FCE,∠ADE=∠F,在ΔADE和ΔFCE中{∠A=∠FCE∠ADE=∠FDE=FE,∴ΔADE≅ΔCFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB−AD=4−3=1.故选B.小提示:本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定ΔADE≅ΔFCE是解此题的关键.8、下列选项可用SAS证明△ABC≅△A′B′C′的是()A.AB=A′B′,△B=△B′,AC=A′C′B.AB=A′B′,BC=B′C′,△A=△A′C.AC=A′C′,BC=B′C′,△C=△C′D.AC=A′C′,BC=B′C′,△B=△B′答案:C分析:根据全等三角形SAS的判定逐项判定即可.解:A.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;B.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意;C.满足SAS,能证明△ABC△△A′B′C′,故该选项符合题意;D.不满足SAS,不能证明△ABC△△A′B′C′,故该选项不符合题意,故选:C.小提示:本题考查全等三角形的判定,熟练掌握全等三角形的判定条件是解答的关键.9、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为().A.4B.3C.2D.1答案:B分析:根据题意逐个证明即可,①只要证明△AOC≌△BOD(SAS),即可证明AC=BD;②利用三角形的外角性质即可证明; ④作OG⊥MC于G,OH⊥MB于H,再证明△OCG≌△ODH(AAS)即可证明MO平分∠BMC.解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,{OA=OB∠AOC=∠BODOC=OD,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,{∠OCA=∠ODB∠OGC=∠OHDOC=OD,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;正确的个数有3个;故选B.小提示:本题是一道几何的综合型题目,难度系数偏上,关键在于利用三角形的全等证明来证明线段相等,角相等.10、如图,AB=AC,AD=AE,∠BAC=∠DAE,点B,D,E在同一直线上,若∠1=25°,∠2=35°,则∠3的度数是()A.50°B.55°C.60°D.70°答案:C分析:由∠BAC=∠DAE可证得∠BAD=∠CAE,继而证明△BAD≅△CAE(SAS),由全等三角形对应角相等得到∠2=∠CAE,∠ABD=∠1,最后由三角形的外角性质解答即可.解:∵∠BAC=∠DAE∴∠BAC−∠DAC=∠DAE−∠DAC∴∠BAD=∠CAE∵AB=AC,AD=AE,∴△BAD≅△CAE(SAS)∴∠2=∠CAE,∠ABD=∠1∵∠1=25°,∠2=35°∴∠3=∠2+∠ABD=∠2+∠1=60°故选:C.小提示:本题考查全等三角形的判定与性质、三角形的外角性质等知识,是重要考点,掌握相关知识是解题关键.填空题11、如图,在Rt△ABC中,∠ACB=90°,△ABC的角平分线AD,BE相交于点P,过P作PF⊥AD,交BC延长线于F,交AC于H,则下列结论:①∠APB=135°;②BF=BA;③PH=HC;④PH=PD;其中正确的有____________________.答案:①②④分析:由角平分线的定义,可得∠PAB+∠PBA=45°,由三角形内角和定理可得结论①;由△BPA≌△BPF可得结论②;由△APH≌△FPD可得结论④;若PH=HC,则PD=HC,由AD>AC可得AP>AH不成立,故③错误;解:∵∠CAB+∠CBA=90°,AD、BE平分∠CAB、∠CBA,∴∠PAB+∠PBA=1(∠CAB+∠CBA)=45°,2△PAB中,∠APB=180°-(∠PAB+∠PBA)=135°,故①正确;∵∠ADF+∠F=90°,∠ADF+∠DAC=90°,∴∠F=∠DAC=∠DAB,△BPA和△BPF中:∠PBA=∠PBF,∠PAB=∠PFB,BP=BP,∴△BPA≌△BPF(AAS),∴BA=BF,PA=PF,故②正确;△APH和△FPD中:∠PAH=∠PFD,PA=PF,∠APH=∠FPD=90°,∴△APH≌△FPD(ASA),∴PH=PD,故④正确;若PH=HC,则PD=HC,AD>AC,则AD-PD>AC-HC,即AP>AH,不成立,故③错误;综上所述①②④正确,所以答案是:①②④小提示:本题考查了三角形内角和定理,全等三角形的判定和性质等知识;掌握全等三角形的判定和性质是解题关键.12、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,过点D作DE⊥AB,若CB=7,则DE+ DB=______.答案:7分析:先利用角平分线性质证明CD=DE,再求出DE+DB的值即可.解:∵AD平分∠BAC交BC于点D,∠C=90°,DE⊥AB,∴CD=ED.∵CB=7,∴BD+CD=7,∴DE+DB=7,所以答案是:7.小提示:本题主要考查了角平分线的性质,解题的关键是熟练掌握角平分线的性质.13、如图,在△ABC中,A(0,1),B(3,1),C(4,3),D是坐标平面上一点,若以A,B,D为顶点的三角形与△ABC全等,则点D的坐标是________.答案:D1(-1,3),D2(4,-1),D3(-1,-1)分析:若要△ABD≌△ABC,则D点可在AB的上方或下方,分别讨论即可.如图,要和△ABC全等,且有一边为AB的三角形,D点可为:D1(-1,3),D2(4,-1),D3(-1,-1)所以答案是:D1(-1,3),D2(4,-1),D3(-1,-1).小提示:本题考查判定全等三角形的概念,注意不要遗漏可能的情况是解题关键.14、如图,在△ABC中,∠A=90°,DE⊥BC,垂足为E.若AD=DE且∠C=50°,则∠ABD=_____°.答案:20分析:利用三角形的内角和定理先求解∠ABC,再利用角平分线的性质定理的逆定理证明:BD平分∠ABC,从而可得答案.解:∵∠A=90°,∠C=50°,∴∠ABC=180°−90°−50°=40°,∵∠A=90°,DE⊥BC,DA=DE,∴BD平分∠ABC,∠ABD=1∠ABC=20°,2所以答案是:20小提示:本题考查的是三角形的内角和定理,角平分线的定义及性质定理的逆定理,掌握角平分线的性质定理的逆定理是解题的关键.15、如图,已知AB=CB,要使△ABD≌△CBD(SSS),还需添加一个条件,你添加的条件是__________.答案:AD=CD分析:要利用SSS判定△ABD≌△CBD,已知AB=CB,公共边BD=BD,只需要再添加一组对边相等即可.解:∵AB=CB,BD=BD,∴要利用SSS判定△ABD≌△CBD,只需要在添加一组对边相等即可.∴AD=CD,所以答案是:AD=CD.小提示:本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.解答题16、如图,在△ABC中,AD是高,E、F分别是AB、AC的中点,AB=8,AC=6.(1)求四边形AEDF的周长;(2)若∠BAC=90°,求四边形AEDF的面积.答案:(1)14;(2)12.分析:(1)延长DE到G,使GE=DE,连接BG,根据线段中点的定义求出AE=4,AF=3,并利用SAS证明AB=4,△AED≌△BEG,由全等三角形的性质并再次利用全等三角形的判定得出△GBD≌△ABD,可证得DE=12同理DF=1AC=3,即可计算出四边形的周长;2(2)利用SSS可证△AEF≌△DEF,根据直角三角形的面积计算方法求出△AEF的面积,则四边形的面积即可求解.解:(1)延长DE 到G ,使GE =DE ,连接BG ,∵E 、F 分别是AB 、AC 的中点,AB =8,AC =6,∴AE =BE =12AB =4,AF =CF =12AC =3.在△AED 和△BEG 中,{AE =BE∠AED =∠BEG DE =GE,∴△AED ≌△BEG (SAS ).∴AD =BG ,∠DAE =∠GBE .∵AD ⊥BC ,∴∠DAE +∠ABD =90°.∴∠GBE +∠ABD =90°.即∠GBD =∠ADB =90°.在△GBD 和△ABD 中,{BG =DA∠GBD =∠ADB BD =DB,∴△GBD ≌△ABD (SAS ).∴GD =AB .∵DE =12GD ,∴DE =12AB =4.同理可证:DF =12AC =3.∴四边形AEDF 的周长=AE +ED +DF +FA =14.(2)由(1)得AE =DE =12AB =4,AF =DF =12AC =3, 在△AEF 和△DEF 中,{AE =DEAF =DF EF =EF,∴△AEF ≌△DEF (SSS ).∵∠BAC =90°,∴S △AEF =12AE•AF =12×4×3=6. ∴S 四边形AEDF =2S △AEF =12.小提示:本题主要考查了全等三角形的判定与性质,掌握全等三角形的判定与性质并能利用倍长中线法构造全等三角形是解题的关键.17、已知:如图1,在Rt △ABC 中,∠ACB =90°,∠B =60°,AD ,CE 是角平分线,AD 与CE 相交于点F ,FM ⊥AB ,FN ⊥BC ,垂足分别为M ,N .【思考说理】(1)求证:FE =FD .【反思提升】(2)爱思考的小强尝试将【问题背景】中的条件“∠ACB =90°”去掉,其他条件不变,观察发现(1)中结论(即FE =FD )仍成立.你认为小强的发现正确吗?如果不正确请举例说明,如果正确请仅就图2给出证明.答案:(1)证明见详解;(2)正确,证明见详解;分析:(1)由角平分线的性质、三角形内角和定理证RtΔFDN ≅RtΔ∠FEM (AAS )即可求解;(2)在AB上截取CP=CD,分别证ΔCDF≅ΔCPF(SAS)、ΔAFE≅ΔAFP(ASA)即可求证;证明:(1)∵AD平分∠BAC,CE平分∠ACB,∴点F是ΔABC的内心,∵FM⊥AB,FN⊥BC,∴FM=FN,∵∠ACB=90°,∠ABC=60°,∴∠CAB=30°∴∠CAD=15°∴∠ADC=75°∵∠ACE=45°∴∠CEB=75°∴∠ADC=∠CEB∴RtΔFDN≅RtΔ∠FEM(AAS)∴FE=FD(2)如图,在AB上截取CP=CD,在ΔCDF和ΔCPF中,∵{CD=CP∠DCF=∠PCFCF=CF∴ΔCDF≅ΔCPF(SAS)∴FD=FP,∠CFD=∠CFP,∵AD平分∠BAC,CE平分∠ACB,∴∠CAD=∠BAD,∠ACE=∠BCE,∵∠B=60°,∴∠ACB+∠BAC=120°,∴∠CAD+∠ACE=60°,∴∠AFC=120°,∵∠CFD=∠AFE=180°-∠AFC=60°,∵∠CFD=∠CFP,∴∠AFP=∠CFP=∠CFD=∠AFE=60°,在ΔAFE和ΔAFP中,∵{∠AFE=∠AFP AF=AF∠PAF=∠EAF∴ΔAFE≅ΔAFP(ASA)∴FP=EF∴FD=EF.小提示:本题主要考查三角形的全等证明及性质,角平分线的性质,掌握相关知识并正确作出辅助线构造全等三角形是解题的关键.18、(1)某学习小组在探究三角形全等时,发现了下面这种典型的基本图形.如图1,已知:在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.求证:DE=BD+CE.(2)组员小明想,如果三个角不是直角,那结论是否会成立呢?如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线l上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由.(3)数学老师赞赏了他们的探索精神,并鼓励他们运用这个知识来解决问题:如图3,过△ABC的边AB,AC 向外作正方形ABDE和正方形ACFG,AH是BC边上的高.延长HA交EG于点I.若S△AEG=7,则S△AEI=______.答案:(1)见解析;(2)结论成立,理由见解析;(3)3.5分析:(1)由条件可证明△ABD≌△CAE,可得DA=CE,AE=BD,可得DE=BD+CE;(2)由条件可知∠BAD+∠CAE=180°-α,且∠DBA+∠BAD=180°-α,可得∠DBA=∠CAE,结合条件可证明△ABD≌△CAE,同(1)可得出结论;(3)由条件可知EM=AH=GN,可得EM=GN,结合条件可证明△EMI≌△GNI,可得出结论I是EG的中点.解:(1)证明:如图1中,∵BD⊥直线l,CE⊥直线l,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,{∠ABD=∠CAE∠BDA=∠CEAAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(2)解:成立.理由:如图2中,∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠DBA=∠CAE,在△ADB和△CEA中,{∠BDA=∠AEC∠DBA=∠CAEAB=AC,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE.(3)如图3,过E作EM⊥HI于M,GN⊥HI的延长线于N.∴∠EMI=∠GNI=90°由(1)和(2)的结论可知EM=AH=GN∴EM=GN在△EMI和△GNI中,{∠GIN=∠EIM EM=GN∠GNI=∠EMI,∴△EMI≌△GNI(AAS),∴EI=GI,∴I是EG的中点.∴S△AEI=12S△AEG=3.5.所以答案是:3.5.小提示:本题是四边形综合题,考查了全等三角形的判定和性质,正方形的性质,直角三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.。
初中数学三角形知识点训练附答案
A. , , B. , ,
C. D.
【答案】C
【解析】
【分析】
要判断一个角是不是直角,先要知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.
【详解】
A.若BC=4,AC=5,AB=6,则BC2+AC2≠AB2,故△ABC不是直角三角形;
【详解】
在Rt△ABC中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF∥MN(已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D.
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
12.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,则线段EF的长为()
A.1B. C. D.
【答案】D
【解析】
【分析】
由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.
B. ,故不能组成直角三角形;
C. ,故可以组成直角三角形;
D. ,故不能组成直角三角形;
故选C.
【点睛】
本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.
16.如果把直角三角形的两条直角边长同时扩大到原来的2倍,那么斜边长扩大到原来的()
初二全等三角形所有知识点总结和常考题提高难题压轴题练习(含答案解析)
初二全等三角形所有知识点总结和常考题1.基本定义:⑴全等形:能够完全重合的两个图形叫做全等形 .⑵全等三角形:能够完全重合的两个三角形叫做全等三角形.⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点.⑷对应边:全等三角形中互相重合的边叫做对应边 .⑸对应角:全等三角形中互相重合的角叫做对应角 .2.基本性质:⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.⑵全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:⑴边边边(SSS):三边对应相等的两个三角形全等.⑵边角边(SAS):两边和它们的夹角对应相等的两个三角形全等.⑶角边角(ASA):两角和它们的夹边对应相等的两个三角形全等.⑷角角边(AAS):两角和其中一个角的对边对应相等的两个三角形全等⑸斜边、直角边(HL ):斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:⑴画法:⑵性质定理:角平分线上的点到角的两边的距离相等 .⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上5.证明的基本方法:⑴明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)⑵根据题意,画出图形,并用数字符号表示已知和求证.⑶经过分析,找出由已知推出求证的途径,写出证明过程 .一.选择题(共14小题)1.使两个直角三角形全等的条件是()A. 一个锐角又t应相等B.两个锐角对应相等C. 一条边对应相等D.两条边对应相等2.如图,已知AE=CF /AFD=/ CEB那么添加下列一个条件后,仍无法判定△AD陷4CBE的是()A. /A=/ CB. AD=CBC. BE=DFD. AD // BC3.如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是()A. SSSB. SASC. AASD. ASA4.到三角形三条边的距离都相等的点是这个三角形的(A.三条中线的交点B.三条高的交点C.三条边的垂直平分线的交点D.三条角平分线的交点5.如图,△ AC阴NA CB'/BCB =30°则/ ACA的度数为(A. 20°B. 300C. 350D. 40°6.如图,直线11、12、13表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,则供选择的地址有()A. 1处B. 2处C. 3处D. 4处7.如图,AD是4ABC中/ BAC的角平分线,D已AB于点E, S AABC=7, DE=ZAB=4,则AC长是()8.如图,在△ ABC和4DEC中,已知AB=DE还需添加两个条件才能使△ ABCDEC不能添加的一组条件是()A. BC=EC /B=/ EB. BC=EC AC=DCC. BC=DC /A=/DD. / B=/ E,/ A=/ D9.如图,已知在△ ABC中,CD是AB边上的高线,BE平分/ ABC,交CD于点E, BC=5 DE=2,贝BCE的面积等于()A. 10B. 7C. 5D. 410.要测量河两岸相对的两点A, B的距离,先在AB的垂线BF上取两点C, D, 使CD=BC再定出BF的垂线DE,使A, C, E在一条直线上(如图所示),可以说明△ED8 AABC,彳3ED=AB因此测得ED的长就是AB的长,判定△ ED8 △ ABC最恰当的理由是()A.边角边B.角边角C.边边边D.边边角11.如图,4ABC的三边AB, BC, CA长分别是20, 30, 40,其三条角平分线将△ ABC分为三个三角形,则S A ABO):S A BCO:S A CAO等于()BC AA. 1:1:1B. 1: 2: 3C. 2: 3: 4D. 3: 4: 512.尺规作图作/ AOB的平分线方法如下:以O为圆心,任意长为半径画弧交OA, OB于C, D,再分别以点C, D为圆心,以大于tCD长为半径画弧,两弧交于点P,作射线OP由作法得^ OC国4ODP的根据是()A.有两边和其中一边的对角对应相等的两个三角形全等B.有两边对应相等,且有一角为 30°的两个等腰三角形全等C.有一角和一边对应相等的两个直角三角形全等D.有两角和一边对应相等的两个三角形全等14.如图,已知/ 1=/2, AC=AD,增加下列条件:① AB=AE ②BC=ED ③C C= /D;④/ B=/ E.其中能使△ AB ®ZXAED 的条件有( )A. 4个B. 3个C. 2个D. 1个二.填空题(共11小题)15 .如图,在△ ABC 中,/C=90°, AD 平分/CAB BC=8cm, BD=5cm,那么点 D 到线段AB 的距离是 cm.16 .如图,△ ABC 中,/ C=90°, AD 平分/BAC AB=5, CD=2,则△ ABD 的面积17 .如图为6个边长等的正方形的组合图形,则/ 1+/ 2+/3=19 .如图所示,某同学把一块三角形的玻璃打碎成了三块, 现在要到玻璃店去配 一块完全一样的玻璃,那么最省事的办法是带 去玻璃店.18.如图,△AB ®ADEF5请根据图中提供的信息,写出* F x= ______是 _______20.如图,已知AB// CF, E为DF的中点,若AB=9cm, CF=5cm 贝U BD=cm.B C21.在数学活动课上,小明提出这样一个问题:/ B=Z C=90°, E是BC的中点, DE 平分/ADC, /CED=35,如图,则/ EAB是多少度?大家一起热烈地讨论交流,小英第一个得出正确答案,是度.D C22.如图,/XABeAADEE, / B=100°, / BAC=30,那么/ AED=度.23.如图所示,将两根钢条AA', BB'的中点。
(易错题精选)初中数学三角形知识点总复习含答案解析(1)
(易错题精选)初中数学三角形知识点总复习含答案解析(1)一、选择题1.如图,在ABC ∆中,90C ∠=︒,2AC =,点D 在BC 上,5AD =,ADC 2B ∠=∠,则BC 的长为( )A .51-B .51+C .31-D .31+【答案】B【解析】【分析】 根据ADC 2B ∠=∠,可得∠B=∠DAB ,即5BD AD ==,在Rt △ADC 中根据勾股定理可得DC=1,则BC=BD+DC=51+.【详解】解:∵∠ADC 为三角形ABD 外角∴∠ADC=∠B+∠DAB∵ADC 2B ∠=∠∴∠B=∠DAB∴5BD AD ==在Rt △ADC 中,由勾股定理得:22DC 541AD AC =-=-=∴BC=BD+DC=51+故选B【点睛】 本题考查勾股定理的应用以及等角对等边,关键抓住ADC 2B ∠=∠这个特殊条件.2.AD 是△ABC 中∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 交AC 于点F .S △ABC =7,DE=2,AB=4,则AC 长是( )A .4B .3C .6D .2【答案】B【解析】【分析】首先由角平分线的性质可知DF=DE=2,然后由S △ABC =S △ABD +S △ACD 及三角形的面积公式得出结果.【详解】解:AD 是△ABC 中∠BAC 的平分线,∠EAD=∠FADDE ⊥AB 于点E ,DF ⊥AC 交AC 于点F ,∴DF=DE ,又∵S △ABC =S △ABD +S △ACD ,DE=2,AB=4, 11742222AC ∴=⨯⨯+⨯⨯ ∴AC=3.故答案为:B【点睛】本题主要考查了角平分线的性质,熟练掌握角平分线的性质、灵活运用所学知识是解题的关键.3.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100ABC ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒【答案】C【解析】【分析】 根据题意,连接OA ,OB ,OC ,进而求得BOC MOC ∆≅∆,AOB AON ∆≅∆,即∠CBO =∠CMO ,∠OBA =∠ONA ,根据三角形内角和定理即可得到∠MON 的度数.【详解】如图,连接OA ,OB ,OC ,∵点O 是ABC ∆的内心,∴BCO MCO ∠=∠,∵CM =CB ,OC =OC ,∴()BOC MOC SAS ∆≅∆,∴CBO CMO ∠=∠,同理可得:AOB AON ∆≅∆,∴ABO ANO ∠=∠,∵100CBA CBO ABO ∠=∠+∠=︒,∴100CMO ANO ∠+∠=︒,∴180()80MON CMO ANO ∠=︒-∠+∠=︒,故选:C.【点睛】本题主要考查了三角形全等的性质及判定,三角形的内角和定理及角度的转换,熟练掌握相关辅助线的画法及三角形全等的判定是解决本题的关键.4.如图,在△ABC 中,∠C=90°,∠A=30°,以点B 为圆心,适当长为半径的画弧,分别交BA ,BC 于点M 、N ;再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,作射线BP 交AC 于点D ,则下列说法中不正确的是()A .BP 是∠ABC 的平分线B .AD=BDC .:1:3CBD ABD S S =V V D .CD=12BD 【答案】C【解析】【分析】 A 、由作法得BD 是∠ABC 的平分线,即可判定;B 、先根据三角形内角和定理求出∠ABC 的度数,再由BP 是∠ABC 的平分线得出∠ABD =30°=∠A,即可判定;C ,D 、根据含30°的直角三角形,30°所对直角边等于斜边的一半,即可判定.【详解】解:由作法得BD 平分∠ABC ,所以A 选项的结论正确;∵∠C =90°,∠A =30°,∴∠ABC =60°,∴∠ABD =30°=∠A ,∴AD =BD ,所以B 选项的结论正确;∵∠CBD =12∠ABC =30°, ∴BD =2CD ,所以D 选项的结论正确;∴AD =2CD ,∴S △ABD =2S △CBD ,所以C 选项的结论错误.故选:C .【点睛】此题考查含30°角的直角三角形的性质,尺规作图(作角平分线),解题关键在于利用三角形内角和进行计算.5.如图,在ABC ∆中,33B ∠=︒,将ABC ∆沿直线m 翻折,点B 落在点D 的位置,则12∠-∠的度数是( )A .33︒B .56︒C .65︒D .66︒【答案】D【解析】【分析】 由折叠的性质得到∠D=∠B ,再利用外角性质即可求出所求角的度数.【详解】解:如图,由折叠的性质得:∠D=∠B=33°,根据外角性质得:∠1=∠3+∠B ,∠3=∠2+∠D ,∴∠1=∠2+∠D+∠B=∠2+2∠B=∠2+66°,∴∠1-∠2=66°.故选:D .【点睛】此题考查了翻折变换以及三角形外角性质的运用,熟练掌握折叠的性质是解本题的关键.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.6.如图,已知ABC ∆,若AC BC ⊥,CD AB ⊥,12∠=∠,下列结论:①//AC DE ;②3A ∠=∠;③3EDB ∠=∠;④2∠与3∠互补;⑤1B ∠=∠,其中正确的有( )A .2个B .3个C .4个D .5个【答案】C【解析】【分析】 根据平行线的判定得出AC ∥DE ,根据垂直定义得出∠ACB=∠CDB=∠CDA=90°,再根据三角形内角和定理求出即可.【详解】∵∠1=∠2,∴AC ∥DE ,故①正确;∵AC ⊥BC ,CD ⊥AB ,∴∠ACB=∠CDB=90°,∴∠A+∠B=90°,∠3+∠B=90°,∴∠A=∠3,故②正确;∵AC ∥DE ,AC ⊥BC ,∴DE ⊥BC ,∴∠DEC=∠CDB=90°,∴∠3+∠2=90°(∠2和∠3互余),∠2+∠EDB=90°,∴∠3=∠EDB,故③正确,④错误;∵AC⊥BC,CD⊥AB,∴∠ACB=∠CDA=90°,∴∠A+∠B=90°,∠1+∠A=90°,∴∠1=∠B,故⑤正确;即正确的个数是4个,故选:C.【点睛】此题考查平行线的判定和性质,三角形内角和定理,垂直定义,能综合运用知识点进行推理是解题的关键.7.如图,赵爽弦图是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形两条直角边长分别为a和b.若8ab ,大正方形的边长为5,则小正方形的边长为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】由题意可知:中间小正方形的边长为a﹣b,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:a﹣b,∵每一个直角三角形的面积为:12ab=12×8=4,∴根据4×12ab+(a﹣b)2=52=25,得4×4+(a﹣b)2=25,∴(a﹣b)2=25﹣16=9,∴a﹣b=3(舍负),故选:C.【点睛】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.8.如图,在△ABC 中,点D 为BC 的中点,连接AD ,过点C 作CE ∥AB 交AD 的延长线于点E ,下列说法错误的是( )A .△ABD ≌△ECDB .连接BE ,四边形ABEC 为平行四边形 C .DA =DED .CE =CD【答案】D【解析】【分析】 根据平行线的性质得出∠B=∠DCE ,∠BAD=∠E ,然后根据AAS 证得△ABD ≌△ECD ,得出AD=DE ,根据对角线互相平分得到四边形ABEC 为平行四边形,CE=AB ,即可解答.【详解】∵CE ∥AB ,∴∠B=∠DCE ,∠BAD=∠E ,在△ABD 和△ECD 中,===B DCE BAD E BD CD ∠∠⎧⎪∠∠⎨⎪⎩∴△ABD ≌△ECD (AAS ),∴DA=DE ,AB=CE ,∵AD=DE ,BD=CD ,∴四边形ABEC 为平行四边形,故选:D .【点睛】此题考查平行线的性质,三角形全等的判定和性质以及平行四边形的性判定,解题的关键是证明△ABD ≌△ECD .9.把一副三角板如图(1)放置,其中∠ACB =∠DEC =90°,∠A =45°,∠D =30°,斜边AB =4,CD =5.把三角板DCE 绕着点C 顺时针旋转15°得到△D 1CE 1(如图2),此时AB 与CD 1交于点O ,则线段AD 1的长度为( )A .13B .5C .22D .4【答案】A【解析】 试题分析:由题意易知:∠CAB=45°,∠ACD=30°.若旋转角度为15°,则∠ACO=30°+15°=45°.∴∠AOC=180°-∠ACO-∠CAO=90°.在等腰Rt △ABC 中,AB=4,则AO=OC=2.在Rt △AOD 1中,OD 1=CD 1-OC=3,由勾股定理得:AD 1=13.故选A.考点: 1.旋转;2.勾股定理.10.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】 本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.11.对于图形的全等,下列叙述不正确的是( )A .一个图形经过旋转后得到的图形,与原来的图形全等B .一个图形经过中心对称后得到的图形,与原来的图形全等C .一个图形放大后得到的图形,与原来的图形全等D .一个图形经过轴对称后得到的图形,与原来的图形全等【答案】C【解析】A. 一个图形经过旋转后得到的图形,与原来的图形全等,正确,不符合题意;B. 一个图形经过中心对称后得到的图形,与原来的图形全等,正确,不符合题意;C. 一个图形放大后得到的图形,与原来的图形不全等,故错误,符合题意;D. 一个图形经过轴对称后得到的图形,与原来的图形全等,正确,不符合题意, 故选C.【点睛】本题考查了对全等图形的认识,解题的关键是要明确通过旋转、轴对称、平移等都可以得到与原图形全等的图形,而通过放大或缩小只能得到与原图形形状一样的图形,得不到全等图形.12.如图,AD ∥BC ,∠C =30°, ∠ADB:∠BDC= 1:2,则∠DBC 的度数是( )A .30°B .36°C .45°D .50°【答案】D【解析】【分析】 直接利用平行线的性质得出∠ADC=150°,∠ADB=∠DBC,进而得出∠ADB 的度数,即可得出答案.【详解】∵AD ∥BC,∠C=30°∴∠ADC=150°,∠ADB=∠DBC∵∠ADB:∠DBC=1:2∴∠ADB=13×150°=50°,故选D. 【点睛】熟练掌握平行线的性质是本题解题的关键.13.如图,ABC V 中,5AB AC ==,AE 平分BAC ∠交BC 于点E ,点D 为AB 的中点,连接DE ,则DE 的长为( )A .2B .2.5C .3D 5【答案】B【解析】【分析】 根据等腰三角形三线合一可得AE ⊥BC ,再根据直角三角形斜边上的中线是斜边的一半即可求得DE 的长度.【详解】解:∵5AB AC ==,AE 平分BAC ∠,∴AE ⊥BC ,又∵点D 为AB 的中点, ∴1 2.52DE AB ==, 故选:B .【点睛】 本题考查等腰三角形三线合一和直角三角形斜边上的中线.熟练掌握相关定理,并能正确识图,得出线段之间的关系是解题关键.14.如图,经过直线AB 外一点C 作这条直线的垂线,作法如下:(1)任意取一点K ,使点K 和点C 在AB 的两旁.(2)以点C 为圆心,CK 长为半径作弧,交AB 于点D 和E .(3)分别以点D 和点E 为圆心,大于12DE 的长为半径作弧,两弧相交于点F . (4)作直线CF .则直线CF 就是所求作的垂线.根据以上尺规作图过程,若将这些点作为三角形的顶点,其中不一定...是等腰三角形的为( )A.△CDF B.△CDK C.△CDE D.△DEF【答案】A【解析】【分析】根据作图过程和等腰三角形的定义进行分析即可.【详解】由作图过程可得:CD=CD,DF=EF,CD=CK所以,是等腰三角形的有△CDK,△CDE,△DEF;△CDF不一定是等腰三角形.故选:A【点睛】考核知识点:等腰三角形.理解等腰三角形的定义是关键.15.如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,若添加下列一个条件后,仍然不能证明△ABC≌△DEF,则这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF【答案】D【解析】解:∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC≌△DEF;故选D.点睛:本题考查了全等三角形的判定,掌握全等三角形的判定方法:SSS、ASA、SAS、AAS 和HL是解题的关键.16.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为()A .8 cmB .9 cmC .10 cmD .11 cm【答案】B【解析】 解:由题意知:OA =OA ′,∠AOB =∠A ′OB ′,OB =OB ′,∴△AOB ≌△A ′OB ′,∴A ′B ′=AB =9cm .故选B .点睛:本题考查了全等三角形的判定及性质的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.17.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD 是一个筝形,其中AD=CD ,AB=CB ,詹姆斯在探究筝形的性质时,得到如下结论:①AC ⊥BD ;②AO=CO=12AC ;③△ABD ≌△CBD , 其中正确的结论有( )A .0个B .1个C .2个D .3个【答案】D【解析】 试题解析:在△ABD 与△CBD 中,{AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.18.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC ≌△AED 的是( )A .BC=EDB .∠BAD=∠EAC C .∠B=∠ED .∠BAC=∠EAD【答案】C【解析】 解:A .∵AB =AE ,AC =AD ,BC =ED ,∴△ABC ≌△AED (SSS ),故A 不符合题意; B . ∵∠BAD =∠EAC ,∴∠BAC =∠EAD .∵AB =AE ,∠BAC =∠EAD ,AC =AD , ∴△ABC ≌△AED (SAS ),故B 不符合题意;C .不能判定△ABC ≌△AED ,故C 符合题意.D .∵AB =AE , ∠BAC =∠EAD ,AC =AD ,∴△ABC ≌△AED (SAS ),故D 不符合题意. 故选C .19.如图,在ABC V 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .已知CDE △的面积比CDB △的面积小4,则ADE V 的面积为( )A .4B .3C .2D .1【答案】A【解析】【分析】由作图步骤可知直线MN为线段AB的垂直平分线,根据三角形中线的性质可得S△CDA=S△CDB,根据△CDE的面积比△CDB的面积小4即可得答案.【详解】由作图步骤可知直线MN为线段AB的垂直平分线,∴CD为AB边中线,∴S△CDA=S△CDB,∵△CDE的面积比△CDB的面积小4,∴S△ADE=S△CDA-S△CDE=S△CDB-S△CDE=4.故选:A.【点睛】本题考查尺规作图——垂直平分线的画法及三角形中线的性质,三角形的中线,把三角形分成两个面积相等的三角形;熟练掌握三角形中线的性质是解题关键.20.等腰三角形的一个角比另一个角的2倍少20度,则等腰三角形顶角的度数是()A.140o B.20o或80o C.44o或80o D.140o或44o或80o 【答案】D【解析】【分析】设另一个角是x,表示出一个角是2x-20°,然后分①x是顶角,2x-20°是底角,②x是底角,2x-20°是顶角,③x与2x-20°都是底角根据三角形的内角和等于180°与等腰三角形两底角相等列出方程求解即可.【详解】设另一个角是x,表示出一个角是2x-20°,①x是顶角,2x-20°是底角时,x+2(2x-20°)=180°,解得x=44°,∴顶角是44°;②x是底角,2x-20°是顶角时,2x+(2x-20°)=180°,解得x=50°,∴顶角是2×50°-20°=80°;③x与2x-20°都是底角时,x=2x-20°,解得x=20°,∴顶角是180°-20°×2=140°;综上所述,这个等腰三角形的顶角度数是44°或80°或140°.故答案为:D.【点睛】本题考查了等腰三角形两底角相等的性质,三角形的内角和定理,难点在于分情况讨论,特别是这两个角都是底角的情况容易漏掉而导致出错.。
三角形 知识点+考点+典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
初中三角形有关知识点总结及习题大全,带答案
11.(2010·兰州中考)如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD = 2,将腰CD以D为中心逆时针旋转90°至DE,连接AE、CE,△ADE的面积为3,则BC的长为.
【解析】过点E作EF⊥AF交AD的延长线于点F,过点D作DM⊥BC交BC于点M,因此四边形ABMD是矩形,则BM=AD=2,且∠EFD=∠DMC=90°,根据题意可知DE=DC,∠EDC=90°,因此∠EDF+∠CDF=90°,又因为∠CDM+∠CDF=90°,所以∠EDF=∠CDM,从而△EDF≌△MCD,CM=EF,因为△ADE的面积为3,AD = 2,所以EF=3,所以BC=BM+CM=5.
【解析】 ,由 得 =
答案:
9、(2009·怀化中考)如图,已知 , ,要使 ≌ ,可补充的条件是(写出一个即可).
【解析】如AE=AC或∠B=∠D.
答案:AE=AC(答案不唯一);
10、(2009·龙岩中考)如图,点B、E、F、C在同一直线上.已知∠A=∠D,∠B=∠C,要使
△ABF≌△DCE,需要补充的一个条件是(写出一个即可).
A.20° B. 35° C. 45° D.55°
【解析】选D因为∠A=20°,∠E=35°,所以∠EFB=55º,又因为AB∥CD,所以∠C=∠EFB=55º;
7.(2009·呼和浩特中考)已知△ABC的一个外角为50°,则△ABC一定是()
A.锐角三角形B.钝角三角形
C.直角三角形D.钝角三角形或锐角三角形
【解析】由EP平分∠AEF,∠PEF=30 得∠AEF=60 ,由A B//CD得∠EFC=120 ,由FP⊥EP得∠P=90 ,
数学中考三角形知识加例题(含答案)
a60第4题图题图NPOA三角形复习★知识点1. 三角形的定义三角形是多边形中边数最少的一种。
它的定义是:由不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。
顺次相接组成的图形叫做三角形。
★知识点2.三角形的分类(1) 按角分类按角分类(2) 按边分类按边分类例:如果三角形的一个外角等于它相邻内角的2倍,且等于它不相邻内角的4倍,那么这个三角形一定是(么这个三角形一定是( )A 、锐角三角形、锐角三角形B 、直角三角形、直角三角形C 、钝角三角形、钝角三角形D 、正三角形、正三角形 解题思路:根据角度来判断是哪一种三角形。
答案B 练习:如图,已知OA =a ,P 是射线ON 上一动点(即P 可在射线ON 上运动),∠AON =600,填空:,填空:(1)当OP = 时,△AOP 为等边三角形;为等边三角形; (2)当OP = 时,△AOP 为直角三角形;为直角三角形; (3)当OP 满足满足 时,△AOP 为锐角三角形;为锐角三角形; (4)当OP 满足满足 时,△AOP 为钝角三角形。
为钝角三角形。
答案:(1)a ;(2)a 2或2a ;(3)2a <OP <a 2;(4)0<OP <2a或OP >a 2 ◆知识点3.三角形三条重要线段三角形中的主要线段有:三角形的角平分线、中线和高线。
这三条线段必须在理解和掌握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:握它的定义的基础上,通过作图加以熟练掌握。
并且对这三条线段必须明确三点:三角形三角形锐角三角形锐角三角形 直角三角形直角三角形钝角三角形钝角三角形三角形三角形 不等边三角形不等边三角形等腰三角形等腰三角形底边和腰不相等的等腰三角等边三角形等边三角形2A 1A 3题图题图DC B A(1)三角形的角平分线、中线、高线均是线段,不是直线,也不是射线。
线、中线、高线均是线段,不是直线,也不是射线。
(2)三角形的角平分线、中线、高线都有三条,角平分线、中线,都在三角形内部。
人教版八年级上册第十一章 三角形知识点复习及习题练习
第十一章三角形知识框架【三角形的概念】1、三角形的定义由不在同一条直线上的三条线段首尾依次相接所组成的图形叫做三角形。
要点:①三条线段;②不在同一条直线上;③首尾顺次相连。
2、基本概念:三角形有三条边,三个内角,三个顶点。
边:组成三角形的线段,表示方法:AB(c)、BC(a)、AC(b)内角:相邻两边所组成的角,表示方法:∠A、∠B、∠C顶点:相邻两边的公共端点,表示方法:A、B、C三角形ABC用符号表示为△ABC。
夹边、夹角、对边、对角3、数三角形个数技巧1)按组成三角形的图形个数来数(如单个三角形、由2个图形组成的三角形……最后求和)2)从图中的某一条线段开始,按一定的顺序找出能组成三角形的另外两条边;3)先固定一个顶点,再变换另外两个顶点,找出不共线的三点共有多少组。
练:1、下列说法中正确的是()A、由三个角组成的图形叫三角形B、由三条直线组成图形叫三角形C、由不在同一直线上的三条线段首尾顺次相接所组成的图形叫三角形D、由三条线段组成的图形叫三角形2、右图中三角形的个数是()A、6B、7C、8D、93、如右图所示:(1)图中有几个三角形?把它们一一写出来。
(2)写出△ABD的三个内角。
(3)以∠C为内角的三角形有哪些?(4)以AB为边的三角形有哪些?【分类】在等腰三角形中,相等的两边都叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
练:1、如果三角形的一个外角是锐角,则此三角形的形状是()A、锐角三角形B.钝角三角形C.直角三角形D.无法判断2、若△ABC三边长分别为m,n,p,且| m - n |+( n - p)2= 0 ,则这个三角形为()A、等腰三角形B、等边三角形C、直角三角形D、等腰直角三角形3、三角形中,若一个角等于其他两个角的差,则这个三角形是()A.钝角三角形B.直角三角形C.锐角三角形D.等腰三角形4、根据下列所给条件,判断△ABC的形状(若已知的是角,则按角的分类标准去判断;若已知的是边,则按边的分类标准去判断)(1)∠A=45°,∠B=65°,∠C=70°;(2)∠C=90°;(3)∠C=120°;(4)AB=BC=4,AC=5.【三边的关系】①三角形任意两边之和大于第三边,b + c > a;②三角形任意两边之差小于第三边,b - c < a。
《常考题》初中八年级数学上册第十一章《三角形》知识点复习(含答案解析)
一、选择题1.下列说法正确的是( )A .射线AB 和射线BA 是同一条射线B .连接两点的线段叫两点间的距离C .两点之间,直线最短D .七边形的对角线一共有14条 2.已知两条线段15cm a =,8cm b =,下列线段能和a ,b 首尾相接组成三角形的是( )A .20cmB .7cmC .5cmD .2cm 3.用若干根等长的小木棍搭建等边三角形(三边相等的三角形),搭建1个等边三角形最少需要3根小木棍,搭建2个等边三角形最少需要5根小木棍,搭建4个等边三角形最少需要小木棍的根数是( )A .12B .10C .9D .6 4.如图,在ABC 中,55A ∠=︒,65C =︒∠,BD 平分ABC ∠,//DE BC ,则BDE ∠的度数是( )A .50°B .25°C .30°D .35°5.如图,//AB CD ,40C ∠=︒,60A ∠=︒,则F ∠的度数为( )A .10°B .20°C .30°D .40° 6.在下列长度的四根木棒中,能与2m 、5m 长的两根木棒钉成一个三角形的是( )A .2mB .3mC .5mD .7m 7.如图,在ABC ∆中,AD 是ABC ∆的角平分线,DE AC ⊥,若40,60B C ︒︒∠=∠=,则ADE ∠的度数为( )A .30︒B .40︒C .50︒D .60︒ 8.在△ABC 中,∠A =x °,∠B =(2x +10)°,∠C 的外角大小(x +40)°,则x 的值等于( ) A .15B .20C .30D .40 9.如果一个三角形的两边长分别为4和7,则第三边的长可能是( ) A .3B .4C .11D .12 10.下列长度的四根木棒,能与3cm ,7cm 长的两根木棒钉成一个三角形的是( ) A .3cmB .10cmC .4cmD .6cm 11.正十边形每个外角等于( )A .36°B .72°C .108°D .150° 12.如图,直线//BC AE ,CD AB ⊥于点D ,若150∠=︒,则BCD ∠的度数是( )A .60°B .50°C .40°D .30° 13.如图,在五边形ABCDE 中,AB ∥CD ,∠A =135°,∠C =60°,∠D =150°,则∠E 的大小为( )A .60°B .65°C .70°D .75° 14.将下列长度的三根木棒首尾顺次连接,不能组成三角形的是( ) A .4、5、6 B .3、4、5 C .2、3、4 D .1、2、3 15.如图,小明从点A 出发沿直线前进9米到达点,B 向左转45后又沿直线前进9米到达点C ,再向左转45后沿直线前进9米到达点D ……照这样走下去,小明第一次回到出发点A 时所走的路程为( )A.72米B.80米C.100米D.64米二、填空题16.如图1,ABC纸片面积为24,G为ABC纸片的重心,D为BC边上的一个四等<)连结CG,DG,并将纸片剪去GDC,则剩下纸片(如图2)的面分点(BD CD积为__________.17.如图,C为∠AOB的边OA上一点,过点C作CD∥OB交∠AOB的平分线OE于点F,作CH⊥OB交BO的延长线于点H,若∠EFD=α,现有以下结论:①∠COF=α;②∠AOH =180°﹣2α;③CH⊥CD;④∠OCH=2α﹣90°.其中正确的是__(填序号).18.如果三角形两条边分别为3和5,则周长L的取值范围是________∠的度19.如图,飞机P在目标A的正上方,飞行员测得目标B的俯角为30°,那么APB数为______°.20.如图所示,△ABC 中,∠BAC 、∠ABC 、∠ACB 的四等分线相交于D 、E 、F (其中∠CAD =3∠BAD ,∠ABE =3∠CBE ,∠BCF =3∠ACF ),且△DFE 的三个内角分别为∠DFE =60°、∠FDE =53°、∠FED =67°,则∠BAC 的度数为_________°.21.已知ABC 的高为AD ,65BAD ∠=︒,25CAD ∠=︒,则BAC ∠的度数是_______.22.如图,在一个四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC ,且∠ABC=80°,∠BCD=70°,则∠AED=_________.23.如图,六边形ABCDEF 中,AB ∥DC ,∠1、∠2、∠3、∠4分别是∠BAF 、∠AFE 、∠FED 、∠EDC 的外角,则∠1+∠2+∠3+∠4=_____.24.如图,ABC 中,40A ∠=︒,72B ∠=︒,CE 平分ACB ∠,CD AB ⊥于D ,DF CE ⊥交CE 于F ,则CDF ∠=______.25.如图,在ABC ∆中,BD 平分ABC ∠,AE BD ⊥.若30ABC ∠=︒,50C ∠=︒,则CAE ∠的度数为_______︒.26.如图,线段AD ,BE ,CF 两两相交于点H ,I ,G ,分别连接AB ,CD ,EF .则A B C D E F ∠+∠+∠+∠+∠+∠=____.三、解答题27.已知:如图90MON ∠=︒,与点O 不重合的两点A 、B 分别在OM 、ON 上,BE 平分ABN ∠,BE 所在的直线与OAB ∠的平分线所在的直线相交于点C . (1)当点A 、B 分别在射线OM 、ON 上,且45BAO ∠=︒时,求ACB ∠的度数; (2)当点A 、B 分别在射线OM 、ON 上运动时,ACB ∠的大小是否发生变化?若不变,请给出证明;若发生变化,请求出ACB ∠的范围.28.如图,在ABC 中,ABC ∠和ACB ∠的平分线相交于点P ,根据下列条件,求BPC ∠的度数.(1)若40ABC ∠=︒,60ACB ∠=︒,则BPC ∠=______;(2)若110ABC ACB ∠+∠=︒,则BPC ∠=______;(3)若90A ∠=︒,则BPC ∠=______;(4)从以上的计算中,你能发现已知A ∠,求BPC ∠的公式是:BPC ∠=______(提示:用A ∠表示).29.如图所示,已知AD ,AE 分别是△ABC 的高和中线,AB =3cm ,AC =4 cm ,BC=5 cm ,∠CAB =90°.(1)求AD 的长.(2)求△ABE 的面积.30.如图,已知直线//AB CD ,直线EF 分别交直线AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于一点P .试说明:90P ∠=︒.。
三角形-知识点 考点 典型例题(含答案)
第七章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
必修5解三角形知识点和练习题(含答案)
解三角形1复习要点 1.正弦定理:2sin sin sin a b c R ABC===或变形:::sin :sin :sin a b c A B C =.2.余弦定理: 2222222222cos 2cos 2cos a b c bc A b a c ac B c b a ba C ⎧=+-⎪=+-⎨⎪=+-⎩ 或 222222222cos 2cos 2cos 2b c a A bc a c b B ac b a cC ab ⎧+-=⎪⎪+-⎪=⎨⎪⎪+-=⎪⎩.3.(1)两类正弦定理解三角形的问题:1、已知两角和任意一边,求其他的两边及一角. 2、已知两角和其中一边的对角,求其他边角. (2)两类余弦定理解三角形的问题:1、已知三边求三角.2、已知两边和他们的夹角,求第三边和其他两角. 4.判定三角形形状时,可利用正余弦定理实现边角转化,统一成边的形式或角的形式.5.解题中利用ABC ∆中A B C π++=,以及由此推得的一些基本关系式进行三角变换的运算,如:s in ()s in ,A B C +=c o s ()c o s ,A B C +=-ta n ()ta n ,A B C +=- sincos,cossin,tancot222222A B C A B C A B C +++===.高一数学测试题———正弦、余弦定理与解三角形一、选择题: 1、ΔABC 中,a=1,b=3, ∠A=30°,则∠B 等于( )A .60°B .60°或120°C .30°或150°D .120°2、符合下列条件的三角形有且只有一个的是 ( )A .a=1,b=2 ,c=3B .a=1,b=2 ,∠A=30°C .a=1,b=2,∠A=100°C .b=c=1, ∠B=45°3、在锐角三角形ABC 中,有 ( )A .cosA>sinB 且cosB>sinA B .cosA<sinB 且cosB<sinAC .cosA>sinB 且cosB<sinAD .cosA<sinB 且cosB>sinA4、若(a+b+c)(b+c -a)=3abc,且sinA=2sinBcosC, 那么ΔABC 是 ( )A .直角三角形B .等边三角形C .等腰三角形D .等腰直角三角形5、设A 、B 、C 为三角形的三内角,且方程(sinB -sinA)x 2+(sinA -sinC)x +(sinC -sinB)=0有等根,那么角B ( )A .B>60°B .B ≥60°C .B<60°D .B ≤60°6、满足A=45°,c=6 ,a=2的△ABC 的个数记为m,则a m 的值为( )A .4B .2C .1D .不定8、两灯塔A,B 与海洋观察站C 的距离都等于a(km), 灯塔A 在C 北偏东30°,B 在C 南偏东60°,则A,B 之间的相距 ( )A .a (km)B .3a(km) C .2a(km) D .2a (km)二、填空题:9、A 为ΔABC 的一个内角,且sinA+cosA=127, 则ΔABC 是______三角形.10、在ΔABC 中,A=60°, c:b=8:5,内切圆的面积为12π,则外接圆的半径为_____. 11、在ΔABC 中,若S ΔABC =41 (a 2+b 2-c 2),那么角∠C=______.12、在ΔABC 中,a =5,b = 4,cos(A -B)=3231,则cosC=_______.三、解答题:13、在ΔABC 中,求分别满足下列条件的三角形形状: ①B=60°,b 2=ac ;②b 2tanA=a 2tanB ; ③sinC=BA B A cos cos sin sin ++1、在A B C △中,已知内角A π=3,边23BC =.设内角B x =,周长为y .(1)求函数()y f x =的解析式和定义域;(2)求y 的最大值.2、在A B C 中,角,,A B C 对应的边分别是,,a b c ,若1sin ,2A =3sin 2B =,求::a b c3、在A B C 中,,a b c 分别为,,A B C ∠∠∠的对边,若2sin (cos cos )3(sin sin )A B C B C +=+, (1)求A 的大小;(2)若61,9a b c =+=,求b 和c 的值。
八年级数学上册第十二章全等三角形知识点汇总(带答案)
八年级数学上册第十二章全等三角形知识点汇总单选题1、如图,已知点A、D、C、F在同一条直线上,∠B=∠E =90°,AB=DE,若添加一个条件后,能用“HL”的方法判定Rt△ABC≌Rt△DEF,添加的条件可以是()A.BC=EF B.∠BCA=∠F C.AB∥DE D.AD=CF答案:D分析:根据题目给的条件可知道直角边和直角,因为需用“HL”的方法判定Rt△ABC≌Rt△DEF,故只能添上斜边这一条件,即可解答.解:∵∠B=∠E=90°,AB=DE,∴添加条件AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF;或添加条件AD=CF,也可得出AC=DF,根据“HL”即可判定Rt△ABC≌Rt△DEF,故D正确.故选:D.小提示:本题主要考查了利用“HL”判定三角形全等,掌握三角形全等的判定是解题的关键.2、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20°B.40°C.60°D.70°答案:B分析:由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD =∠CBE=70°即可.解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,{CE=BDBC=CB,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.小提示:本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.3、如图,为测量桃李湖两端AB的距离,南开中学某地理课外实践小组在桃李湖旁的开阔地上选了一点C,测得∠ACB的度数,在AC的另一侧测得∠ACD=∠ACB,CD=CB,再测得AD的长,就是AB的长.那么判定△ABC≌△ADC的理由是()A.SASB.SSSC.ASAD.AAS答案:A分析:已知条件是∠ACD=∠ACB,CD=CB,AC=AC,据此作出选择.解:在△ADC与△ABC中,{CD=CB∠ACD=∠ACBAC=AC.∴△ADC≌△ABC(SAS).故选:A.小提示:此题考查了全等三角形的应用,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS,做题时注意选择.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.4、为了测量工件的内径,设计了如图所示的工具,点O为卡钳两柄的交点,且有OA=OB=OC=OD,只要量得CD之间的距离,就可知工件的内径AB.其数学原理是利用△AOB≌△COD,判断的依据是()A.SSSB.SASC.ASAD.AAS答案:B分析:利用“边角边”证明△ABO和△CDO全等,根据全等三角形对应边相等解答.解:在△ABO和△CDO中{OA=OC ∠AOB=COD OB=OD∴△ABO≌△CDO(SAS)故选B小提示:本题考查了全等三角形的应用,熟练掌握三角形全等的判定方法是解题的关键.5、观察下列作图痕迹,所作线段CD为△ABC的角平分线的是()A.B.C .D .答案:C 分析:根据角平分线画法逐一进行判断即可.A :所作线段为AB 边上的高,选项错误;B :做图痕迹为AB 边上的中垂线,CD 为AB 边上的中线,选项错误;C :CD 为∠ACB 的角平分线,满足题意。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角形知识点训练含答案一、选择题1.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,以A 为圆心,任意长为半径画弧分别交AB 、AC 于点M 和N ,再分别以M 、N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连结AP 并延长交BC 于点D ,则下列说法中正确的个数是( ) ①AD 是BAC ∠的平分线;②ADC 60∠=o ;③点D 在AB 的垂直平分线上;④:1:3DAC ABC S S ∆∆=A .1B .2C .3D .4【答案】D【解析】【分析】 根据题干作图方式,可判断AD 是∠CAB 的角平分线,再结合∠B=30°,可推导得到△ABD 是等腰三角形,根据这2个判定可推导题干中的结论.【详解】题干中作图方法是构造角平分线,①正确;∵∠B=30°,∠C=90°,AD 是∠CAB 的角平分线 ∴∠CAD=∠DAB=30°∴∠ADC=60°,②正确∵∠DAB=∠B=30°∴△ADB 是等腰三角形∴点D 在AB 的垂直平分线上,③正确在Rt △CDA 中,设CD=a ,则AD=2a在△ADB 中,DB=AD=2a∵1122DAC S CD AC a CD ∆=⨯⨯=⨯,13(CD+DB)22BAC S AC a CD ∆=⨯⨯=⨯ ∴:1:3DAC ABC S S ∆∆=,④正确故选:D【点睛】本题考查角平分线的画法及性质、等腰三角形的性质,解题关键是熟练角平分线的绘制方法.2.如图,在矩形ABCD 中, 3,4,AB BC ==将其折叠使AB 落在对角线AC 上,得到折痕,AE 那么BE 的长度为( )A .1B .2C .32D .85【答案】C【解析】【分析】 由勾股定理求出AC 的长度,由折叠的性质,AF=AB=3,则CF=2,设BE=EF=x ,则CE=4x -,利用勾股定理,即可求出x 的值,得到BE 的长度.【详解】解:在矩形ABCD 中,3,4AB BC ==,∴∠B=90°, ∴22345AC =+=,由折叠的性质,得AF=AB=3,BE=EF ,∴CF=5-3=2,在Rt △CEF 中,设BE=EF=x ,则CE=4x -,由勾股定理,得:2222(4)x x +=-, 解得:32x =; ∴32BE =. 故选:C .【点睛】本题考查了矩形的折叠问题,矩形的性质,折叠的性质,以及勾股定理的应用,解题的关键是熟练掌握所学的性质,利用勾股定理正确求出BE 的长度.3.如图,△ABC 中,AB =AC =10,BC =12,D 是BC 的中点,DE ⊥AB 于点E ,则DE 的长为( )A .65B .85C .125D .245【答案】D【解析】【分析】连接AD ,根据已知等腰三角形的性质得出AD ⊥BC 和BD=6,根据勾股定理求出AD ,根据三角形的面积公式求出即可.【详解】解:连接AD∵AB=AC ,D 为BC 的中点,BC=12,∴AD ⊥BC ,BD=DC=6,在Rt △ADB 中,由勾股定理得:AD=22221068AB BD =+=, ∵S △ADB=12×AD×BD =12×AB×DE , ∴DE=8624105AD BD AB ⨯⨯==, 故选D .【点睛】本题考查了等腰三角形的性质(等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合)、勾股定理和三角形的面积,能求出AD 的长是解此题的关键.4.如图,ABCD Y 的对角线AC 与BD 相交于点O ,AD BD ⊥,30ABD ∠=︒,若23AD =.则OC 的长为( )A .3B .3C 21D .6【答案】C【解析】【分析】先根据勾股定理解Rt ABD △求得6BD =,再根据平行四边形的性质求得3OD =,然后根据勾股定理解Rt AOD △、平行四边形的性质即可求得OC OA ==【详解】解:∵AD BD ⊥∴90ADB ∠=︒∵在Rt ABD △中,30ABD ∠=︒,AD =∴2AB AD ==∴6BD ==∵四边形ABCD 是平行四边形 ∴132OB OD BD ===,12OA OC AC ==∴在Rt AOD △中,AD =3OD =∴OA =∴OC OA ==故选:C【点睛】本题考查了含30°角的直角三角形的性质、勾股定理、平行四边形的性质等知识点,熟练掌握相关知识点是解决问题的关键.5.等腰三角形两边长分别是 5cm 和 11cm ,则这个三角形的周长为( )A .16cmB .21cm 或 27cmC .21cmD .27cm【答案】D【解析】【分析】分两种情况讨论:当5是腰时或当11是腰时,利用三角形的三边关系进行分析求解即可.【详解】解:当5是腰时,则5+5<11,不能组成三角形,应舍去;当11是腰时,5+11>11,能组成三角形,则三角形的周长是5+11×2=27cm .故选D .【点睛】本题主要考查了等腰三角形的性质, 三角形三边关系,掌握等腰三角形的性质, 三角形三边关系是解题的关键.6.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )A .30°B .35°C .40°D .45°【答案】C【解析】【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.【详解】∵AB AC =,且30A ∠=︒, ∴18030752ACB ∠︒-︒==︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,∴14514530115AED A ∠∠=︒-=︒-︒=︒,∵//a b ,∴2AED ACB ∠∠∠=+,即21157540∠=︒-︒=︒,故选:C .【点睛】 本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.7.如图,在ABC ∆中,AB 的垂直平分线交BC 于D ,AC 的中垂线交BC 于E ,20DAE ∠=o ,则BAC ∠的度数为( )A .70oB .80oC .90oD .100o【答案】D【分析】根据线段垂直平分线的性质得到DA=DB,EA=EC,在由等边对等角,根据三角形内角和定理求解.【详解】如图所示:∵DM 是线段AB 的垂直平分线,∴DA=DB,B DAB ∠=∠ ,同理可得:C EAC ∠=∠ ,∵ 20DAE ∠=o ,180B DAB C EAC DAE ︒∠+∠+∠+∠+∠=,∴80DAB EAC ︒∠+∠=∴100BAC ︒∠=故选:D【点睛】本题考查了线段的垂直平分线和三角形的内角和定理,解题的关键是掌握线段垂直平分线上的点到线段两端的距离相等.8.如图,在平面直角坐标系中,等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA x ⊥轴,点C 在函数()0k y x x=>的图象上,若1AB =,则k 的值为( )A .1B .22C 2D .2【答案】A【解析】【分析】 根据题意可以求得 OA 和 AC 的长,从而可以求得点 C 的坐标,进而求得 k 的值,本题得以解决.Q 等腰直角三角形ABC 的顶点A 、B 分别在x 轴、y 轴的正半轴上,90ABC ∠=︒,CA ⊥x 轴,1AB =,45BAC BAO ︒∴∠=∠=, 22OA OB ∴==,2AC =, ∴点C 的坐标为2,22⎛⎫ ⎪ ⎪⎝,Q 点C 在函数()0k y x x=>的图象上, 2212k ∴=⨯=, 故选:A .【点睛】本题考查反比例函数图象上点的坐标特征、等腰直角三角形,解答本题的关键 是明确题意,利用数形结合的思想解答.9.如图,OA =OB ,OC =OD ,∠O =50°,∠D =35°,则∠OAC 等于( )A .65°B .95°C .45°D .85°【答案】B【解析】【分析】 根据OA =OB ,OC =OD 证明△ODB ≌△OCA ,得到∠OAC=∠OBD ,再根据∠O =50°,∠D =35°即可得答案.【详解】解:OA =OB ,OC =OD ,在△ODB 和△OCA 中,OB OA BOD AOC OD OC =⎧⎪∠=∠⎨⎪=⎩∴△ODB ≌△OCA (SAS ),∠OAC=∠OBD=180°-50°-35°=95°,故B 为答案.本题考查了全等三角形的判定、全等三角形的性质,熟练掌握全等三角形的判定与性质是解题的关键.10.如图,△ABC中,AB=4,AC=3,AD、AE分别是其角平分线和中线,过点C作CG⊥AD 于F,交AB于G,连接EF,则线段EF的长为()A.1 B.34C.23D.12【答案】D【解析】【分析】由等腰三角形的判定方法可知△AGC是等腰三角形,所以F为GC中点,再由已知条件可得EF为△CBG的中位线,利用中位线的性质即可求出线段EF的长.【详解】∵AD是△ABC角平分线,CG⊥AD于F,∴△AGC是等腰三角形,∴AG=AC=3,GF=CF,∵AB=4,AC=3,∴BG=1,∵AE是△ABC中线,∴BE=CE,∴EF为△CBG的中位线,∴EF=12BG=12,故选:D.【点睛】此题考查等腰三角形的判定和性质、三角形的中位线性质定理,解题关键在于掌握三角形的中位线平行于第三边,并且等于第三边的一半.11.如图,△ABC≌△A E D,∠C=40°,∠E AC=30°,∠B=30°,则∠E AD=();A.30°B.70°C.40°D.110°【答案】D【解析】【分析】【详解】∵△ABC≌△AED,∴∠D=∠C=40°,∠C=∠B=30°,∴∠E AD=180°-∠D-∠E=110°,故选D.12.如图,Rt△ABC中,∠C=90°,∠B=30°,分别以点A和点B为圆心,大于12AB的长为半径作弧,两弧相交于M、N两点,作直线MN,交BC于点D,连接AD,则∠CAD的度数是( )A.20°B.30°C.45°D.60°【答案】B【解析】【分析】根据内角和定理求得∠BAC=60°,由中垂线性质知DA=DB,即∠DAB=∠B=30°,从而得出答案.【详解】在△ABC中,∵∠B=30°,∠C=90°,∴∠BAC=180°-∠B-∠C=60°,由作图可知MN为AB的中垂线,∴DA=DB,∴∠DAB=∠B=30°,∴∠CAD=∠BAC-∠DAB=30°,故选B.【点睛】本题主要考查作图-基本作图,熟练掌握中垂线的作图和性质是解题的关键.13.如图,在平面直角坐标系中,已知点A (﹣2,0),B (0,3),以点A 为圆心,AB 长为半径画弧,交x 轴的正半轴于点C ,则点C 的横坐标介于( )A .0和1之间B .1和2之间C .2和3之间D .3和4之间【答案】B【解析】【分析】 先根据点A ,B 的坐标求出OA ,OB 的长度,再根据勾股定理求出AB 的长,即可得出OC 的长,再比较无理数的大小确定点C 的横坐标介于哪个区间.【详解】∵点A ,B 的坐标分别为(﹣2,0),(0,3),∴OA =2,OB =3,在Rt △AOB 中,由勾股定理得:AB 222+313=∴AC =AB 13,∴OC 132,∴点C 132,0), ∵3134<< , ∴11322<< ,即点C 的横坐标介于1和2之间,故选:B .【点睛】本题考查了弧与x 轴的交点问题,掌握勾股定理、无理数大小比较的方法是解题的关键.14.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C【解析】【分析】 连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM ,114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.15.下列几组线段中,能组成直角三角形的是( )A .2,3,4B .3,4,6C .5,12,13D .2,5,5【答案】C【解析】【分析】要验证是否可以组成直角三角形,根据勾股定理的逆定理,只要验证三边的关系是否满足两边平方是否等于第三边的平方即可,分别验证四个选项即可得到答案.【详解】A .222234+≠,故不能组成直角三角形;B. 222346+≠,故不能组成直角三角形;C .22251213+=,故可以组成直角三角形;D .222255+≠,故不能组成直角三角形;故选C .【点睛】本题主要考查了勾股定理的逆定理(如果三角形两边的平方等于第三边的平方,那么这个三角形是直角三角形),掌握勾股定理的逆定理是解题的关键.16.如图,已知AE=AD ,AB=AC ,EC=DB ,下列结论:①∠C=∠B ;②∠D=∠E ;③∠EAD=∠BAC ;④∠B=∠E ;其中错误的是( ) A .①②B .②③C .③④D .只有④【答案】D【解析】【分析】【详解】解:因为AE =AD ,AB =AC ,EC =DB ;所以△ABD ≌△ACE(SSS);所以∠C =∠B ,∠D =∠E ,∠EAC=∠DAB ;所以 ∠EAC-∠DAC=∠DAB-∠DAC ;得∠EAD=∠CAB .所以错误的结论是④,故选D.【点睛】此题考查了全等三角形的判定方法,根据已知条件利用SSS证明两个三角形全等,还考查了全等三角形的性质:全等三角形的对应角相等,全等三角形的对应边相等.17.如图,AA',BB'表示两根长度相同的木条,若O是AA',BB'的中点,经测量AB=9 cm,则容器的内径A'B'为()A.8 cm B.9 cm C.10 cm D.11 cm【答案】B【解析】解:由题意知:OA=OA′,∠AOB=∠A′OB′,OB=OB′,∴△AOB≌△A′OB′,∴A′B′=AB=9cm.故选B.点睛:本题考查了全等三角形的判定及性质的应用;解答本题的关键是设计三角形全等,巧妙地借助两个三角形全等,寻找所求线段与已知线段之间的等量关系.18.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC⊥BD;②AO=CO=12AC;③△ABD≌△CBD,其中正确的结论有()A.0个B.1个C.2个D.3个【答案】D【解析】试题解析:在△ABD与△CBD中,{AD CDAB BC DB DB===,∴△ABD ≌△CBD (SSS ),故③正确;∴∠ADB=∠CDB ,在△AOD 与△COD 中,{AD CDADB CDB OD OD=∠=∠=,∴△AOD ≌△COD (SAS ),∴∠AOD=∠COD=90°,AO=OC ,∴AC ⊥DB ,故①②③正确;故选D .考点:全等三角形的判定与性质.19.如图,已知AB=AE,AC=AD,下列条件中不能判定△ABC ≌△AED 的是( )A .BC=EDB .∠BAD=∠EAC C .∠B=∠ED .∠BAC=∠EAD【答案】C【解析】 解:A .∵AB =AE ,AC =AD ,BC =ED ,∴△ABC ≌△AED (SSS ),故A 不符合题意; B . ∵∠BAD =∠EAC ,∴∠BAC =∠EAD .∵AB =AE ,∠BAC =∠EAD ,AC =AD , ∴△ABC ≌△AED (SAS ),故B 不符合题意;C .不能判定△ABC ≌△AED ,故C 符合题意.D .∵AB =AE , ∠BAC =∠EAD ,AC =AD ,∴△ABC ≌△AED (SAS ),故D 不符合题意. 故选C .20.图中的三角形被木板遮住了一部分,这个三角形是( )A.锐角三角形B.直角三角形C.钝角三角形D.以上都有可能【答案】D【解析】从图中,只能看到一个角是锐角,其它的两个角中,可以都是锐角或有一个钝角或有一个直角,故选D.。