初中三角形知识点总结
(完整版)初中三角形知识点总结
![(完整版)初中三角形知识点总结](https://img.taocdn.com/s3/m/f3088fda5122aaea998fcc22bcd126fff7055def.png)
图形的初步认识:三角形考点一、三角形1、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180°。
推论:①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角平等边;等边平等角;大角对大边;大边对大角。
4、三角形的面积三角形的面积 = 1×底×高2考点二、全等三角形1、全等三角形的观点能够完整重合的两个三角形叫做全等三角形。
2、三角形全等的判断三角形全等的判断定理:(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“ SAS”)(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ ASA”)(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“ SSS”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“ AAS”)。
直角三角形全等的判断:关于特别的直角三角形,判断它们全等时,还有 HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“ HL”)3、全等变换只改变图形的地点,不改变其形状大小的图形变换叫做全等变换。
全等变换包含一下三种:(1)平移变换:把图形沿某条直线平行挪动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折 180°,这类变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转必定的角度到另一个地点,这类变换叫做旋转变换。
考点三、等腰三角形1、等腰三角形的性质(1)等腰三角形的性质定理及推论:定理:等腰三角形的两个底角相等(简称:等边平等角)推论 1:等腰三角形顶角均分线均分底边并且垂直于底边。
三角形知识点总结
![三角形知识点总结](https://img.taocdn.com/s3/m/afa83174876fb84ae45c3b3567ec102de3bddf10.png)
三角形知识点总结三角形是初中数学中非常重要的一个几何图形,它在数学和实际生活中都有着广泛的应用。
下面就来对三角形的相关知识点进行一个全面的总结。
一、三角形的定义和基本要素三角形是由三条线段首尾顺次相接所组成的封闭图形。
这三条线段叫做三角形的边,相邻两边的公共端点叫做三角形的顶点,相邻两边所组成的角叫做三角形的内角,简称角。
三角形有三个顶点、三条边和三个角。
三角形的内角和为 180 度,这是三角形一个非常重要的性质。
二、三角形的分类1、按角分类(1)锐角三角形:三个角都小于 90 度的三角形。
(2)直角三角形:有一个角等于 90 度的三角形。
(3)钝角三角形:有一个角大于 90 度小于 180 度的三角形。
2、按边分类(1)等边三角形:三条边都相等的三角形。
(2)等腰三角形:有两条边相等的三角形。
其中相等的两条边叫做腰,另一边叫做底边。
两腰的夹角叫做顶角,腰和底边的夹角叫做底角。
(3)不等边三角形:三条边都不相等的三角形。
三、三角形的三边关系三角形任意两边之和大于第三边,任意两边之差小于第三边。
这个关系是判断三条线段能否组成三角形的重要依据。
例如,有三条线段 a、b、c,如果 a + b > c,a + c > b,b + c > a,同时|a b| < c,|a c| < b,|b c| < a,那么这三条线段可以组成三角形。
四、三角形的高、中线和角平分线1、三角形的高从三角形的一个顶点向它的对边作垂线,顶点和垂足之间的线段叫做三角形的高。
三角形有三条高,锐角三角形的三条高都在三角形内部;直角三角形有两条高是直角边,另一条高在三角形内部;钝角三角形有两条高在三角形外部,一条高在三角形内部。
2、三角形的中线连接三角形顶点和它对边中点的线段叫做三角形的中线。
三角形的三条中线相交于一点,这个点叫做三角形的重心。
中线将三角形分成面积相等的两个部分。
3、三角形的角平分线三角形一个内角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线。
关于三角形的知识点总结
![关于三角形的知识点总结](https://img.taocdn.com/s3/m/7e3bd16b11661ed9ad51f01dc281e53a58025123.png)
关于三角形的知识点总结一、三角形的定义三角形是由不在同一直线上的三条线段首尾顺次相接所组成的封闭图形。
二、三角形的分类1、按角分类11 锐角三角形:三个角都小于 90 度的三角形。
12 直角三角形:有一个角等于 90 度的三角形。
13 钝角三角形:有一个角大于 90 度小于 180 度的三角形。
2、按边分类21 不等边三角形:三条边都不相等的三角形。
22 等腰三角形:有两条边相等的三角形。
221 等边三角形:三条边都相等的三角形,也称为正三角形。
三、三角形的性质1、三角形内角和为 180 度。
2、三角形的任意两边之和大于第三边,任意两边之差小于第三边。
四、三角形的高、中线和角平分线1、三角形的高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高。
2、三角形的中线:连接三角形的一个顶点和它所对边的中点的线段叫做三角形的中线。
3、三角形的角平分线:三角形一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
五、三角形的全等1、全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2、全等三角形的性质:全等三角形的对应边相等,对应角相等。
3、全等三角形的判定方法31 “边边边”(SSS):三边对应相等的两个三角形全等。
32 “边角边”(SAS):两边和它们的夹角对应相等的两个三角形全等。
33 “角边角”(ASA):两角和它们的夹边对应相等的两个三角形全等。
34 “角角边”(AAS):两角和其中一角的对边对应相等的两个三角形全等。
35 “斜边、直角边”(HL):斜边和一条直角边对应相等的两个直角三角形全等。
六、三角形的相似1、相似三角形的定义:对应角相等,对应边成比例的两个三角形叫做相似三角形。
2、相似三角形的性质21 相似三角形的对应角相等,对应边成比例。
22 相似三角形的对应高的比,对应中线的比与对应角平分线的比都等于相似比。
23 相似三角形周长的比等于相似比。
初中三角形知识点总结
![初中三角形知识点总结](https://img.taocdn.com/s3/m/6c5344d5b8d528ea81c758f5f61fb7360b4c2b3b.png)
初中三角形知识点总结三角形的定义:三角形是由三条线段首尾顺次连接所组成的图形。
三角形的分类:按角分:锐角三角形(三个角都小于90°)、直角三角形(有一个角为90°)、钝角三角形(有一个角大于90°)。
按边分:等边三角形(三边相等)、等腰三角形(两边相等)、不等边三角形(三边都不相等)。
三角形的基本性质:三角形的两边之和大于第三边,两边之差小于第三边。
三角形具有稳定性。
三角形内角和为180°。
三角形的中线、高、角平分线:中线:连接一个顶点和其对边中点的线段。
中线将三角形分为面积相等的两部分。
高:从一个顶点垂直到对边或其延长线的线段。
角平分线:将一个角分为两个相等的小角的线段。
三角形的面积计算:公式:S=12×底×高S = \frac{1}{2} \times \text{底} \times \text{高}S=21×底×高在直角三角形中,还可以使用斜边和高(作为直角边)来计算面积。
三角形的相似与全等:全等三角形:两个三角形在所有对应的边和角上都相等。
全等三角形有多种判定方法,如SSS(三边全等)、SAS(两边和一个夹角全等)、ASA(两角和一个夹边全等)等。
相似三角形:两个三角形的对应角相等,且对应边的比值也相等。
相似三角形可以通过AA(两角相等)或SSS(三边成比例)等方法进行判定。
三角形的重心、外心、内心:重心:三条中线的交点,将中线分为2:1的两部分。
外心:三条垂直平分线的交点,也是外接圆的圆心。
内心:三条角平分线的交点,也是内切圆的圆心。
以上是对初中三角形知识点的一个简要总结。
在学习过程中,还需要结合具体的题目进行练习,加深对知识点的理解和应用。
初中数学三角形知识点总结
![初中数学三角形知识点总结](https://img.taocdn.com/s3/m/451143998662caaedd3383c4bb4cf7ec4afeb6e8.png)
初中数学知识点总结:三角形第一部分:点、线、角一、线1、直线2、射线3、线段二、角1、角的两种定义:一种是有公共端点的两条射线所组成的图形叫做角;另一种是一条射线绕着端点从一个位置旋转到另一个位置所形成的图形;2.角的平分线3、角的度量:度量角的大小,可用“度”作为度量单位;把一个圆周分成360等份,每一份叫做一度的角;1度=60分;1分=60秒;4. 角的分类:1锐角2直角3钝角4平角5周角5. 相关的角:1对顶角2互为补角3互为余角6、邻补角:有公共顶点,一条公共边,另两条边互为反向延长线的两个角做互为邻补角;注意:互余、互补是指两个角的数量关系,与两个角的位置无关,而互为邻补角则要求两个角有特殊的位置关系;7、角的性质(1)对顶角相等2同角或等角的余角相等3同角或等角的补角相等;三、相交线1、斜线2、两条直线互相垂直3、垂线,垂足4、垂线的性质l过一点有且只有一条直线与己知直线垂直;2垂线段最短;四、距离1、两点的距离2、从直线外一点到这条直线的垂线段的长度叫做点到直线的距离;3、两条平行线的距离:两条直线平行,从一条直线上的任意一点向另一条直线引垂线,垂线段的长度,叫做两条平行线的距离;五、平行线1、定义:在同一平面内,不相交的两条直线叫做平行线;说明:也可以说两条射线或两条线段平行,这实际上是指它们所在的直线平行;2、平行线的判定:1 同位角相等,两直线平行;2 内错角相等,两直线平行;3 同旁内角互补,两直线平行;3、平行线的性质1两直线平行,同位角相等;2两直线平行,内错角相等;3两直线平行,同旁内角互补;说明:要证明两条直线平行,用判定公理或定理在已知条件中有两条直线平行时,则应用性质定理;4、如果一个角的两边分别平行于另一个角的两边,那么这两个角相等.5、如果一个角的两边分别垂直于另一个角的两边,那么这两个角互补.第二部分:三角形一、关于三角形的一些概念1、三角形的角平分线;三角形的角平分线是一条线段角平分线平分顶点三条角平分线交于一点交点在三角形内部,是三角形内切圆的圆心,称为内心2、三角形的中线三角形的中线也是一条线段顶点到对边中点间的距离三条中线线交于一点交点在三角形内部,是三角形的几何中心,称为中心3、三角形的高三角形的高线也是一条线段顶点到对边的距离注意:三角形的中线和角平分线都在三角形内;如图2-l, AD、BE、CF都是么ABC的角平分线,它们都在△ABC内如图2-2,AD、BE、CF都是△ABC的中线,它们都在△ABC内而图2-3,说明高线不一定在△ABC内,图2-3-1 图2-3-2 图2-3-3图2-3-1,中三条高线都在△ ABC内,图2-3-2,中高线CD在△ABC内,而高线AC与BC是三角形的边;图2-3-3,中高线BE在△ABC内,而高线AD、CF在△ABC外;二、三角形三条边的关系三角形三边都不相等,叫不等边三角形;有两条边相等的叫等腰三角形;三边都相等的则叫等边三角形;等腰三角形中,相等的两条边叫腰,另一边叫底边,腰和底边的夹角叫底角,两腰的夹角叫项角;三角形按接边相等关系来分类:用集合表示,见图2-4推论:三角形两边之和大于第三边;三角形两边之差小于第三边;不符合定理的三条线段,不能组成三角形的三边;例如:三条线段长分别为5,6,1人因为5+6<12,所以这三条线段,不能作为三角形的三边;三、三角形的内角和定理:三角形三个内角的和等于180°由定理可以知道,三角形的三个内角中,只可能有一个内角是直角或钝角;推论1:直角三角形的两个锐角互余;三角形按角分类:三角形分类用集合表示,见图三角形一边与另一边的延长线组成的角,叫三角形的外角;♦推论2:三角形的一个外角等于和它不相邻的两个内角的和;♦推论3:三角形的一个外角大于任何一个和它不相邻的内角;例如图2—6中∠1 >∠3; ∠1=∠3+∠4; ∠5>∠3+∠8; ∠5=∠3+∠7+∠8;∠2>∠8; ∠2=∠7+∠8; ∠4>∠9; ∠4=∠9+∠10等等;四、全等三角形定义:能够完全重合的两个图形叫全等形;两个全等三角形重合时,互相重合的顶点叫对应顶点,互相重合的边叫对应边,互相重合的角叫对应角;全等三角形的对应边相等; 全等三角形的对应角相等;❖五、全等三角形的判定1、边角边公理:“SAS”♦注意:一定要是两边夹角,而不能是边边角;2、角边角公理:ASA3、角角边:AAS4、边边边:SSS5、直角三角形全等的判定:“斜边,直角边”或“HL ”三角形的重要性质:三角形的稳定性;六、角的平分线定理1:在角的平分线上的点到这个角的两边的距离相等;定理2:一个角的两边的距离相等的点,在这个角的平分线上;可以证明三角形内存在一个点,它到三角形的三边的距离相等这个点就是三角形的三条角平分线的交点交于一点七、等腰三角形的判定定理:如果一个三角形有两个角相,那这两个角所对的两条边也相等;简写成“等角对等动”;推论1:三个角都相等的三角形是等边三角形推论2:有一个角等于60°的等腰三角形是等边三角形八、勾股定理勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方,即:222a c b =+ 勾股定理的逆定理:如果三角形的三边长a 、b 、c 有下面关系:222a c b =+,那么这个三角形是直角三角形直角三角形 222a c b =+三角形的中位线:连接三角形两边中点的线段叫做三角形的中位线三角形中位线定理:三角形的中位线平行于三角形的第三边,且等于第三边的一半; 特别提示:①直角三角形斜边上的中线等于斜边的一半②在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半;。
初中三角形数学知识点总结
![初中三角形数学知识点总结](https://img.taocdn.com/s3/m/9a134cc370fe910ef12d2af90242a8956becaaec.png)
初中三角形数学知识点总结三角形是初中数学中重要的几何形状之一,涉及到的数学知识相对较多。
下面是关于初中三角形的数学知识点总结,包括定义、分类、性质,以及与三角形相关的解题方法和应用。
一、三角形的定义和分类1.三角形的定义:三角形是由三条线段组成的闭合图形,其中每条线段都与另外两条线段相交,且只相交于一个点。
这个相交的点称为三角形的顶点,而三条线段称为三角形的边。
2.三角形的分类:(1)按照边长分类:-等边三角形:三边都相等的三角形。
-等腰三角形:两边相等的三角形。
-普通三角形:三边都不相等的三角形。
(2)按照角度分类:-直角三角形:其中一个内角为90度的三角形。
-钝角三角形:其中一个内角大于90度的三角形。
-锐角三角形:三个内角都小于90度的三角形。
二、三角形的性质1.三角形内角和定理:三角形的三个内角的和等于180度。
2.三角形外角定理:三角形的一个外角等于其不相邻的两个内角的和。
3.三角形的全等定理:由三个完全相等的边或角确定的三角形是全等的。
4.三角形的相似定理:如果两个三角形对应的角相等且对应的边成比例,那么这两个三角形是相似的。
5.三角形的角平分线定理:三角形内任意一角的角平分线可将对边一分为二,并且与另外两边成比例。
6.三角形的内切圆和外切圆:三角形内切圆的圆心是三角形内角的角平分线的交点,内切圆的半径等于三角形的面积除以半周长;三角形外切圆的圆心是三角形外角的角平分线的交点,外切圆的半径等于三角形面积除以面积的半周长之差。
三、与三角形相关的解题方法和应用1.三角形的周长和面积计算方法:三角形的周长等于三角形的三个边长之和,可以使用海伦公式计算三角形的面积。
2.三角形的面积计算方法:可以根据三角形的底边和高来计算面积,也可以使用正弦定理、余弦定理和正弦面积公式等方法进行计算。
3.三角形的相似解题方法:-根据相似三角形的性质,可以求出两个相似三角形的边长比例关系;-根据角平分线定理,可以求出三角形内角的角平分线所分割的边长比例关系。
初中数学知识点总结三角形
![初中数学知识点总结三角形](https://img.taocdn.com/s3/m/0b558c9851e2524de518964bcf84b9d528ea2cdc.png)
初中数学知识点总结三角形三角形是初中数学中重要的几何形状之一,它涉及到许多重要的数学概念和性质。
这篇文章将总结初中数学中与三角形相关的知识点,以帮助您更好地理解和应用这些概念。
一、三角形的定义和分类1.三角形是由三条线段构成的有界平面图形,其中每两条线段之间的交点称为顶点,每条线段称为边。
2.三角形的分类根据边的长度和角的大小来确定。
-根据边的长度:等边三角形、等腰三角形、普通三角形;-根据角的大小:锐角三角形、钝角三角形、直角三角形。
二、三角形的性质和定理1.三角形内角和定理:三角形的三个内角的和是180°。
2.等腰三角形的性质:等腰三角形的底边上的两个角相等,等腰三角形的高线同时也是中线和角平分线。
3.直角三角形的性质:直角三角形的两条直角边上的两条垂线相等,直角三角形的斜边是两条直角边上的的高线中的最大值。
4. 正弦定理:对于任意一个三角形ABC,正弦定理可以表示为sinA/a=sinB/b=sinC/c,其中a、b、c为三角形ABC的边长,A、B、C为三角形ABC的顶点对应的角度。
5. 余弦定理:对于任意一个三角形ABC,余弦定理可以表示为c²=a²+b²-2abcosC,其中c为三角形ABC的斜边的边长,a、b为三角形ABC的两个其他边的边长,C为夹在这两边之间的角度。
6.角平分线定理:在一个三角形中,角平分线把对边分成两个相等的部分。
7.中线定理:在一个三角形中,三条中线交于一点且该点距离三个顶点的距离分别是中线的三分之一8.高线定理:在一个三角形中,三条高线交于一点,该点距离三个顶点的距离分别是高线的两倍。
三、三角形的轴心和中心1. Incenter:三角形内切圆的圆心称为三角形的内心,连接三角形的三条边与内心的连线分别垂直于三角形的边。
2. Circumcenter:三角形外切圆的圆心称为三角形的外心,外心到三个顶点的距离相等。
3. Centroid:三角形重心是由三条中线的交点形成的,重心将三角形的面积划分成三个相等的部分。
初中三角形知识点总结
![初中三角形知识点总结](https://img.taocdn.com/s3/m/2e0c810f11661ed9ad51f01dc281e53a5802510a.png)
初中三角形知识点总结初中三角形知识点总结「篇一」1.知识概念1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4.中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
5.角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
6.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
7.多边形的内角:多边形相邻两边组成的角叫做它的内角。
8.多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
9.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
10.正多边形:在平面内,各个角都相等,各条边都相等的多边形叫做正多边形。
11.平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面。
12.公式与性质三角形的内角和:三角形的内角和为180°三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
多边形内角和公式:n边形的内角和等于(n-2)·180°多边形的外角和:多边形的内角和为360°。
多边形对角线的条数:(1)从n边形的一个顶点出发可以引(n-3)条对角线,把多边形分词(n-2)个三角形。
(2)n边形共有条对角线。
初中三角形知识点总结「篇二」初中三角形数学知识点总结三角形的一个外角大于任何一个和它不相邻的内角。
接下来为大家整合的是上海初中数学三角形知识点总结。
三角形知识点三角形两边的和大于第三边推论三角形两边的差小于第三边三角形内角和定理三角形三个内角的和等于180°推论1 直角三角形的两个锐角互余推论2 三角形的一个外角等于和它不相邻的两个内角的和推论3 三角形的一个外角大于任何一个和它不相邻的内角中考知识点总结:三角形的一个外角等于和它不相邻的两个内角的和。
七年级数学三角形知识点总结归纳
![七年级数学三角形知识点总结归纳](https://img.taocdn.com/s3/m/d98d782dae1ffc4ffe4733687e21af45b307feaa.png)
七年级数学三角形知识点总结归纳数学中的三角形是一个重要的概念,它不仅在几何学中有广泛的应用,也在实际生活中存在着丰富的实例。
作为一个七年级学生,我们需要掌握一些关于三角形的基本知识。
在本文中,我将对七年级数学课程中的三角形知识进行总结和归纳。
一、三角形的定义和分类三角形是一个有三条边和三个角的几何形状。
根据边的长度,三角形可以分为等边三角形、等腰三角形和普通三角形。
根据角的大小,三角形可以分为直角三角形、钝角三角形和锐角三角形。
二、三角形的性质1. 三角形内角和定理:- 所有三角形的内角和等于180度。
- 直角三角形中,一个内角为90度,其他两个内角之和为90度。
2. 三角形的外角性质:- 三角形的外角等于其对应内角的补角。
3. 三角形的边长关系:- 等边三角形的三条边相等。
- 等腰三角形的两边相等。
4. 三角形的角度关系:- 锐角三角形的三个内角都是锐角。
- 钝角三角形至少有一个内角是钝角。
三、特殊三角形1. 45-45-90三角形:- 一个45度的角和一个45度的角的三角形。
- 其他一个角为90度。
- 其中的两个直角边长度相等。
2. 30-60-90三角形:- 一个30度的角和一个60度的角的三角形。
- 其他一个角为90度。
- 三条边的长度之间存在特殊关系。
四、勾股定理勾股定理是三角形中的一个重要定理,它描述了直角三角形中两条直角边和斜边之间的关系。
勾股定理可以用公式表示为:c² = a² + b²,其中c为斜边的长度,a和b为直角边的长度。
五、三角形的相似性1. 两个三角形相似的条件:- 对应角相等。
- 对应边成比例或者平行。
2. 相似三角形的性质:- 相似三角形的对应角相等。
- 相似三角形的对应边成比例。
六、三角形的中位线和高线1. 中位线:- 连接三角形的一个角和对边中点的线段。
- 三角形的三条中位线交于一点,这个点被称为质心。
2. 高线:- 四边形的一个边和对角线所成角的平分线。
三角形及全等三角形知识点总结
![三角形及全等三角形知识点总结](https://img.taocdn.com/s3/m/e559b17a5627a5e9856a561252d380eb6294230a.png)
三角形及全等三角形知识点总结
三角形是我们初中数学学习中的重要内容之一。
在数学中,三
角形是由三条边以及夹角组成的图形。
本文将对三角形以及全等三
角形的相关知识进行总结。
一、三角形的定义和性质
1. 定义:三角形是由三条线段组成的图形,每个线段都称为三
角形的边,而它的端点则称为三角形的顶点。
2. 性质:
a. 三角形的内角和等于180度:一个三角形的三个内角之和等于180度。
b. 外角性质:三角形的一个内角的补角为另外两个角的外角。
c. 内角和外角之间的关系:一个三角形的三个内角和三个外角之和都是360度。
二、三角形的分类
根据三角形的边长以及角度的不同,三角形可以分为以下几种类型。
1. 根据边长分类:
a. 等边三角形:三条边都相等的三角形。
b. 等腰三角形:两条边相等的三角形。
c. 普通三角形:三条边都不相等的三角形。
2. 根据角度分类:
a. 直角三角形:一个内角为90度的三角形。
b. 钝角三角形:一个内角大于90度的三角形。
c. 锐角三角形:三个内角都小于90度的三角形。
三、全等三角形的概念和判定条件
全等三角形是指有相同大小和形状的三角形。
两个三角形全等的条件是:
1. SSS判定条件:两个三角形的三条边分别对应相等。
2. SAS判定条件:两个三角形的两条边和夹角分别对应相等。
初中数学三角形知识点整理
![初中数学三角形知识点整理](https://img.taocdn.com/s3/m/27ebd020dcccda38376baf1ffc4ffe473268fd58.png)
初中数学三角形知识点整理初中数学三角形知识点整理1初一年级知识点:认识三角形1.三角形:由不在同一直线上的三条线段首尾顺次相接组成的图形叫三角形。
三角形的特征:①不在同一直线上;②三条线段;③首尾顺次相接;④三角形具有稳定性。
2.三角形中的三条重要线段:角平分线、中线、高(1)角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
(2)中线:在三角形中,连接一个顶点和它的对边中点的线段叫做三角形的中线。
(3)高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
说明:①三角形的角平分线、中线、高都是线段;②三角形的角平分线、中线都在三角形内部且都交于一点;三角形的高可能在三角形的内部(锐角三角形)、外部(钝角三角形),也可能在边上(直角三角形),它们(或延长线)相交于一点。
课后习题1.下列说法正确的是 ( )A.三角形的角平分线、中线、高都在三角形的内部B.直角三角形只有一条高C.三角形的三条高至少有一条在三角形内D.钝角三角形的三条高均在三角形外2.等边三角形三边上的中线、高、角平分线共有 ( )A.3条B.5条C.7条D.9条3.(1)在△ABC中,AD是∠BAC的平分线,BE是AC边上的中线,∠BAD=40o,则∠CAD=______,若AC=6 cm,则AE=______.(2)△ABC的周长为18 cm,BE、CF分别为AC、AB边上的中线,BE、CF相交于O,AO的延长线交BC于D,且AF =3 cm,AE=2 cm.则BD的长为______.初中数学三角形知识点整理2我们在学习三角形的知识中,老师经常会提到的一句话就是:三角形具有稳定性。
稳定性证明任取三角形两条边,则两条边的非公共端点被第三条边连接。
∵第三条边不可伸缩或弯折,∴两端点距离固定,∴这两条边的夹角固定;∵这两条边是任取的,∴三角形三个角都固定,进而将三角形固定,∴三角形有稳定性。
(完整版)三角形知识点总结
![(完整版)三角形知识点总结](https://img.taocdn.com/s3/m/f1762d5c76a20029bc642d80.png)
三角形知识点总结一、基础知识1、三角形的定义:由不在同一直线上的三条线段首尾顺次相接组成的图形叫做三角形.(三角形有三条边,三个内角,三个顶点.组成三角形的线段叫做三角形的边;相邻两边所组成的角叫做三角形的内角;相邻两边的公共端点是三角形的顶点)2、三角形的表示三角形ABC用符号表示为△ABC,三角形ABC的边AB可用边AB所对的角C的小写字母c表示,AC可用b表示,BC可用a表示.三个顶点用大写字母A,B,C来表示。
(1)三条线段要不在同一直线上,且首尾顺次相接;(2)三角形是一个封闭的图形;(3)注意:△ABC是三角形ABC的符号标记,单独的△没有意义3、三角形的分类:(1)按边分类:等腰三角形、等边三角形、不等边三角形(2)按角分类:锐角三角形、直角三角形、钝角三角形4、三角形的主要线段的定义:(1)三角形的中线:三角形中,连结一个顶点和它对边中点的线段.如图:(1)AD是△ABC的BC上的中线.(2)BD=DC= BC.注意:①三角形的中线是线段;②三角形三条中线全在三角形的内部且交于三角形内部一点(重心)③中线把三角形分成两个面积相等的三角形.(2)三角形的角平分线:三角形一个内角的平分线与它的对边相交,这个角顶点与交点之间的线段如图:(1)AD是△ABC的∠BAC的平分线.(2)∠1=∠2= ∠BAC.注意:①三角形的角平分线是线段;②三角形三条角平分线全在三角形的内部且交于三角形内部一点(内心)③角平分线上的点到角的两边距离相等(3)三角形的高:从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段.如图:①AD是△ABC的BC上的高线;②AD⊥BC于D;③∠ADB=∠ADC=90°.注意:①三角形的高是线段;②锐角三角形的三条高的交点在三角形内部;钝角三角形的三条高的交点在三角形的外部:直角三角形的三条高的交点在直角顶点上。
三角形三条高所在直线交于一点(垂心)③由于三角形有三条高线,所以求三角形的面积的时候就有三种(因为高底不一样)(4)三角形的中垂线:过三角形一条边中点所做的垂直于该条边的线段如图:DE是△ABC的边BC的中垂线;DE⊥BC于D;BD=DC注意:①三角形的中垂线是直线;②三角形的三条中垂线交于一点(外心)小总结:内心:三条角平分线的交点,也是三角形内切圆的圆心.性质:到三边距离相等.外心:三条中垂线的交点,也是三角形外接圆的圆心.性质:到三个顶点距离相等.重心:三条中线的交点.性质:三条中线的三等分点,到顶点距离为到对边中点距离的2倍.垂心:三条高所在直线的交点.5、三角形的三边关系:三角形的任意两边之和大于第三边;任意两边之差小于第三边.注意:(1)三边关系的依据是:两点之间线段最短;(2)围成三角形的条件是任意两边之和大于第三边.6、三角形的角与角之间的关系:(1)三角形三个内角的和等于180;(2)三角形的一个外角等于和它不相邻的两个内角的和;(3)三角形的一个外角大于任何一个和它不相邻的内角.(4)直角三角形的两个锐角互余.7、三角形的内角和定理:三角形的内角和等于180°.推论:直角三角形的两个锐角互余。
关于三角形的所有知识点总结
![关于三角形的所有知识点总结](https://img.taocdn.com/s3/m/3e5f730ef11dc281e53a580216fc700abb6852b4.png)
关于三角形的所有知识点总结一、三角形的概念。
1. 定义。
- 由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2. 基本元素。
- 边:组成三角形的线段叫做三角形的边。
三角形有三条边。
- 顶点:相邻两边的公共端点叫做三角形的顶点。
三角形有三个顶点。
- 角:三角形相邻两边所组成的角叫做三角形的内角,简称三角形的角。
三角形有三个内角。
二、三角形的分类。
1. 按角分类。
- 锐角三角形:三个角都是锐角(即每个角都小于90°)的三角形。
- 直角三角形:有一个角是直角(等于90°)的三角形。
直角三角形中,夹直角的两条边叫做直角边,直角所对的边叫做斜边。
- 钝角三角形:有一个角是钝角(大于90°小于180°)的三角形。
2. 按边分类。
- 不等边三角形:三条边都不相等的三角形。
- 等腰三角形:有两条边相等的三角形。
相等的两条边叫做腰,另一条边叫做底边;两腰所夹的角叫做顶角,腰与底边所夹的角叫做底角。
- 等边三角形:三条边都相等的三角形。
等边三角形是特殊的等腰三角形,它的三个角都相等,并且每个角都等于60°。
三、三角形的性质。
1. 三角形内角和定理。
- 三角形的内角和等于180°。
可以通过多种方法证明,如剪拼法、作平行线法等。
2. 三角形的外角性质。
- 三角形的一个外角等于与它不相邻的两个内角的和。
- 三角形的一个外角大于任何一个与它不相邻的内角。
3. 三角形的三边关系。
- 三角形两边之和大于第三边。
- 三角形两边之差小于第三边。
可以根据这个关系判断三条线段能否组成三角形。
4. 等腰三角形的性质。
- 等腰三角形的两腰相等。
- 等腰三角形的两底角相等(简称为“等边对等角”)。
- 等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合(简称为“三线合一”)。
5. 等边三角形的性质。
- 等边三角形的三条边相等。
- 等边三角形的三个内角都相等,并且每一个角都等于60°。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形的初步认识:
三角形
考点一、三角形
1、三角形的三边关系定理及推论
(1)三角形三边关系定理:三角形的两边之和大于第三边。
推论:三角形的两边之差小于第三边。
2、三角形的内角和定理及推论
三角形的内角和定理:三角形三个内角和等于180°。
推论:
①直角三角形的两个锐角互余。
②三角形的一个外角等于和它不相邻的来两个内角的和。
③三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
4、三角形的面积
1×底×高
三角形的面积=
2
考点二、全等三角形
1、全等三角形的概念
能够完全重合的两个三角形叫做全等三角形。
2、三角形全等的判定
三角形全等的判定定理:
(1)边角边定理:有两边和它们的夹角对应相等的两个三角形全等(可简写成“边角边”或“SAS”)
(2)角边角定理:有两角和它们的夹边对应相等的两个三角形全等(可简写成“角边角”或“ASA”)
(3)边边边定理:有三边对应相等的两个三角形全等(可简写成“边边边”或“SSS”)。
(4)角角边定理:有两角和一边对应相等的两个三角形全等(可简写成“角角边”或“AAS”)。
直角三角形全等的判定:
对于特殊的直角三角形,判定它们全等时,还有HL定理(斜边、直角边定理):有斜边和一条直角边对应相等的两个直角三角形全等(可简写成“斜边、直角边”或“HL”)
3、全等变换
只改变图形的位置,不改变其形状大小的图形变换叫做全等变换。
全等变换包括一下三种:
(1)平移变换:把图形沿某条直线平行移动的变换叫做平移变换。
(2)对称变换:将图形沿某直线翻折180°,这种变换叫做对称变换。
(3)旋转变换:将图形绕某点旋转一定的角度到另一个位置,这种变换叫做旋转变换。
考点三、等腰三角形
1、等腰三角形的性质
(1)等腰三角形的性质定理及推论:
定理:等腰三角形的两个底角相等(简称:等边对等角)
推论1:等腰三角形顶角平分线平分底边并且垂直于底边。
即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。
推论2:等边三角形的各个角都相等,并且每个角都等于60°。
2、三角形中的中位线
连接三角形两边中点的线段叫做三角形的中位线。
(1)三角形共有三条中位线,并且它们又重新构成一个新的三角形。
(2)要会区别三角形中线与中位线。
三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半。
三角形中位线定理的作用:
位置关系:可以证明两条直线平行。
数量关系:可以证明线段的倍分关系。
常用结论:任一个三角形都有三条中位线,由此有:
结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。
结论2:三条中位线将原三角形分割成四个全等的三角形。
结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。
结论4:三角形一条中线和与它相交的中位线互相平分。
结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。
解直角三角形
考点一、直角三角形的性质
1、直角三角形的两个锐角互余
2、在直角三角形中,30°角所对的直角边等于斜边的一半。
3、直角三角形斜边上的中线等于斜边的一半
4、直角三角形两直角边a ,b 的平
方和等于斜边c 的平方,即222c b a =+
5、摄影定理
在直角三角形中,斜边上的高线是
两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项
∠ACB=90° BD AD CD
•=2 CD ⊥AB AB BD BC
•=2
6、常用关系式
由三角形面积公式可得:
AB •CD=AC •BC
考点二、锐角三角函数的概念 (3~8分)
1、如图,在△ABC 中,∠C=90°
①c a sin =∠=斜边的对边A A
②c
b cos =∠=斜边的邻边A A ③b
a tan =∠∠=的邻边的对边A A A ④a
b cot =∠∠=
的对边的邻边A A A 2、一些特殊角的三角函数值
3、各锐角三角函数之间的关系
(1)互余关系:sinA=cos(90°—A),cosA=sin(90°—A),tanA=cot(90°—A),cotA=tan(90°—A)
(2)平方关系:1cos sin 22=+A A
(3)倒数关系:tanA •tan(90°—A)=1
(4)弦切关系:tanA=A
A cos sin
三角形相似
考点一、比例线段
1、比例的性质
(1)基本性质
①a :b=c :d ⇔ad=bc
②a :b=b :c ac b =⇔2
(2)更比性质(交换比例的内项或外项) d
b c a
=(交换内项) ⇒=d c b a a
c b
d =(交换外项) a
b c d =(同时交换内项和外项)
(3)反比性质(交换比的前项、后项):
(4)合比性质:
(5)等比性质:
3、黄金分割
把线段AB 分成两条线段AC ,BC (AC>BC ),并且使AC 是AB 和BC 的比例中项,叫做把线段AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中AC=2
15-AB ≈0.618AB
考点二、平行线分线段成比例定理
三条平行线截两条直线,所得的对应线段成比例。
考点三、相似三角形
1、相似三角形的概念
对应角相等,对应边成比例的三角形叫做相似三角形。
相似用符号“∽”来表示
2、相似三角形的基本定理
平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。
相似三角形的等价关系:
(1)反身性:对于任一△ABC,都有△ABC∽△ABC;
(2)对称性:若△ABC∽△A’B’C’,则△A’B’C’∽△ABC (3)传递性:若△ABC∽△A’B’C’,并且△A’B’C’∽△A’’B’’C’’,则△ABC∽△A’’B’’C’’。
3、三角形相似的判定
(1)三角形相似的判定方法
①定义法:对应角相等,对应边成比例的两个三角形相似
②平行法:平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似
③判定定理1:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似,可简述为两角对应相等,两三角形相似。
④判定定理2:如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似,可简述为两边对应成比例且夹角相等,两三角形相似。
⑤判定定理3:如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似,可简述为三边对应成比例,两三角形相似
(2)直角三角形相似的判定方法
①以上各种判定方法均适用
②定理:如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似
4、相似三角形的性质
(1)相似三角形的对应角相等,对应边成比例
(2)相似三角形对应高的比、对应中线的比与对应角平分线的比都等于相似比
(3)相似三角形周长的比等于相似比
(4)相似三角形面积的比等于相似比的平方。
5、相似多边形
(1)如果两个边数相同的多边形的对应角相等,对应边成比例,那么这两个多边形叫做相似多边形。
相似多边形对应边的比叫做相似比(或相似系数)
(2)相似多边形的性质
①相似多边形的对应角相等,对应边成比例
②相似多边形周长的比、对应对角线的比都等于相似比
③相似多边形中的对应三角形相似,相似比等于相似多边形的相似比
④相似多边形面积的比等于相似比的平方
6、位似图形
如果两个图形不仅是相似图形,而且每组对应点所在直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,此时的相似比叫做位似比。
性质:每一组对应点和位似中心在同一直线上,它们到位似中心的距离之比都等于位似比。
文档从互联网中收集,已重新修正排版,word格式支持编辑,如有帮助欢迎下载支持。
由一个图形得到它的位似图形的变换叫做位似变换。
利用位似变换可以把一个图形放大或缩小。
11word格式支持编辑,如有帮助欢迎下载支持。