烟气脱硫(FGD)设备及工艺原理

合集下载

烟气脱硫FGD设备及工艺原理讲义

烟气脱硫FGD设备及工艺原理讲义

烟气脱硫FGD设备及工艺原理讲义一、概述烟气脱硫FGD是一种用于减少烟气中SO2含量的环保设备,广泛应用于火力发电厂、燃煤锅炉等工业生产中。

FGD工艺通过将含有SO2的烟气与吸收剂接触,最终形成硫酸盐,并将其分离出处理。

本讲义将介绍烟气脱硫FGD设备及其工艺原理。

二、FGD设备1.洗涤塔洗涤塔是烟气脱硫FGD的主要设备,主要由吸收塔、喷嘴、泵站、底部料液分离器等组成。

烟气通过洗涤塔时,与喷入的吸收剂充分接触,SO2被吸收生成硫酸溶液,烟气中的SO2含量得以降低。

2.氧化风机氧化风机主要作用是将洗涤塔中吸收的二氧化硫气体氧化成亚硫酸气体,进一步加速反应的进行。

通常选择使用压力风机或离心风机。

3.除雾器除雾器主要用于防止SO2吸收后形成的硫酸雾进入大气中,从而对环境和人体造成伤害。

除雾器可采用湿式或干式结构,使得硫酸雾物理或化学地沉降。

三、FGD工艺原理1.化学反应烟气脱硫FGD过程中,主要发生以下化学反应:SO2 + CaCO3 + 1/2O2 + H2O → CaSO4•2H2O + CO2化学反应中,烟气中的SO2与吸收剂CaCO3产生反应生成硫酸盐CaSO4•2H2O。

这个反应是FGD工艺中的核心反应。

2.吸收与再生烟气中的SO2通过洗涤塔与吸收剂接触吸收,形成硫酸盐。

硫酸盐随后经过氧化风机的氧化反应,形成亚硫酸盐。

最后,亚硫酸盐通过再生装置进行再生,得到纯净的吸收剂,并且产生浓缩的硫酸。

3.处理副产品FGD工艺除了可以减少烟气中SO2的含量外,还能产生有价值的副产品硫酸。

硫酸可作为化肥原料或者工业原料使用,具有较高的经济价值。

以上就是对烟气脱硫FGD设备及工艺原理的简要介绍,FGD工艺在环保和资源利用方面具有重要意义,对减少大气污染和促进资源回收利用具有重要作用。

烟气脱硫FGD设备及工艺原理四、FGD工艺的应用1.环保效果烟气脱硫FGD工艺可以有效降低燃煤电厂和工业锅炉等设施排放的二氧化硫,减少大气中的酸雨、酸性沉积物等问题,保护生态环境,改善空气质量。

脱硫吸收塔的工作原理

脱硫吸收塔的工作原理

脱硫吸收塔的工作原理
脱硫吸收塔是一种常见的空气污染物治理设备,主要用于去除燃煤电厂等工业排放的二氧化硫。

其工作原理可以分为以下几个步骤:
1. 烟气进入吸收塔:燃煤等工业过程产生的烟气通过烟囱进入脱硫吸收塔。

2. 喷射吸收剂:在塔内,喷射一种称为吸收剂的溶液,通常是一种碱性溶液,如石灰乳。

吸收剂溶液具有较高的碱性,能与烟气中的二氧化硫发生化学反应。

3. 硫化物吸收:吸收剂溶液喷射到烟气中,与二氧化硫发生反应生成硫酸盐,如石膏。

这个过程将烟气中的二氧化硫转化为可易于处理的固体废物。

4. 去除固体废物:硫酸盐以悬浮颗粒的形式存在于溶液中,通过设备中的分离器或过滤器来去除。

5. 净化后的烟气排放:经过脱硫吸收塔处理后,烟气中的二氧化硫被大幅减少,这样净化后的烟气可以安全地排放到大气中,不会对环境产生过多的污染。

需要注意的是,脱硫吸收塔的工作原理与具体的型号和工艺参数有关,不同的设备在具体操作上可能存在差异。

以上为常见的脱硫吸收塔的一般工作原理介绍。

烟气脱硫技术简介

烟气脱硫技术简介

国内烟气脱硫技术我国目前的经济条件和技术条件还不允许象发术达国家那样投入大量的人力和财力,并且在对二氧化硫的治理方面起步很晚,至今还处于摸索阶段,国内一些电厂的烟气脱硫装置大部分欧洲、美国、日本引进的技术,或者是试验性的,且设备处理的烟气量很小,还不成熟。

不过由于近几年国家环保要求的严格,脱硫工程是所有新建电厂必须的建设的。

因此我国开始逐步以国外的技术为基础研制适合自己国家的脱硫技术。

以下是国内在用的脱硫技术中较为成熟的一些,由于资料有限只能列举其中的一些供读者阅读。

石灰石——石膏法烟气脱硫工艺石灰石——石膏法脱硫工艺是世界上应用最广泛的一种脱硫技术,日本、德国、美国的火力发电厂采用的烟气脱硫装置约90%采用此工艺。

它的工作原理是:将石灰石粉加水制成浆液作为吸收剂泵入吸收塔与烟气充分接触混合,烟气中的二氧化硫与浆液中的碳酸钙以及从塔下部鼓入的空气进行氧化反应生成硫酸钙,硫酸钙达到一定饱和度后,结晶形成二水石膏。

经吸收塔排出的石膏浆液经浓缩、脱水,使其含水量小于10%,然后用输送机送至石膏贮仓堆放,脱硫后的烟气经过除雾器除去雾滴,再经过换热器加热升温后,由烟囱排入大气。

由于吸收塔内吸收剂浆液通过循环泵反复循环与烟气接触,吸收剂利用率很高,钙硫比较低,脱硫效率可大于95% 。

注意:锅炉出来的烟气经过除尘之后温度还是很高,而进入脱硫系统,温度是不能太高,温度过高,则吸收塔内的石膏结晶受到很大影响,而且设备的腐蚀和磨蚀会非常严重。

一般在原烟气和净烟气之间加设GGH(气气换热器),一方面对原烟气进行降温,以利于后面处理。

一方面对净烟气进行升温,有利于排烟的抬升,减少烟囱雨的形成,也在直观上减少烟囱排烟的量。

而且如果净烟气不升温的话,SO3会形成酸露,对烟囱的腐蚀非常严重。

脱硫过程的温度一般控制在40-60之间,不是需要太高的温度进行的。

旋转喷雾干燥烟气脱硫工艺喷雾干燥法脱硫工艺以石灰为脱硫吸收剂,石灰经消化并加水制成消石灰乳,消石灰乳由泵打入位于吸收塔内的雾化装置,在吸收塔内,被雾化成细小液滴的吸收剂与烟气混合接触,与烟气中的SO2发生化学反应生成CaSO3,烟气中的SO2被脱除。

烟气循环流化床(CFBFGD)干法脱硫工艺介绍.

烟气循环流化床(CFBFGD)干法脱硫工艺介绍.

2.5
%
CaCO3 etc
2.3
%
Ca(OH)2
0.4
%
CaCl2·2H2O
0.3
%
CaF2
0.1
%
飞灰和中性成分
85.9
%
自由水分
0.5
%
成分为估计值,并随飞灰,SO3和CaO中的中性成分的量的变化 而变化。
谢谢观赏!
撰写:郑彬,万驰
6.09
Vol%
备注 标准、湿 标准、干
4.3 烟气中有害成分量 (相对于含氧6%,标准,干基)
SO2 SO3 HCl HF 灰分
原烟气 净化烟气 单位 效率 (-%)
2251
225
90
0
mg/m3
99
50
2.5
mg/m3
95
20
1
mg/m3
95
30000
200
mg/m3
99.9
4.4消耗量
参数
三 循环流化床脱硫技术特点及其运用范围
1) 塔内没有任何运动部件,磨损小,设备使用寿 命长维护量小。
2) 脱硫效率高、运行费用低。 3) 加入吸收塔的消石灰和水是相对独立的,没有
喷浆系统及浆液喷嘴,便于控制消石灰用量及喷 水量,容易控制操作温度。 4) 负荷适应性好。由于采用了清洁烟气再循环技 术,以及脱硫灰渣循环等措施,可以满足不同的 锅炉负荷要求。锅炉负荷在10%~110%范围内变 化,脱硫系统可正常运行。
在文丘里出口扩管段设一套喷水装置,喷入的雾化 水一是增湿颗粒表面,二是使烟温降至高于烟气露点 20℃左右,创造了良好的脱硫反应温度,吸收剂在此 与SO2充分反应.
净化后的含尘烟气从吸收塔顶部侧向排出,然后进 入脱硫除尘器(可根据需要选用布袋除尘器或电除尘 器),再通过引风机排入烟囱。由于排烟温度高于露 点温度20℃左右,因此烟气不需要再加热,同时整个 系统无须任何的防腐。

烟气脱硫(FGD)系统课件

烟气脱硫(FGD)系统课件
2
二、电厂烟气脱硫工艺原理及系统流程
1、发电厂脱硫系统主要包括三大主系统:


每期烟气吸收系统:(石灰石浆液制 备系统、石膏脱水系统、废水处理系统) 以及(每期SO2烟气吸收系统)。 2、发电厂烟气脱硫系统的简介: 电厂烟气脱硫一期工程包括3、4、5、6号机组烟气脱硫系统、石灰石浆液制备系统、 石膏脱水系统、废水处理系统,其中3、4、5、6号机组各设置1套烟气脱硫系统、石灰 石浆液制备系统、石膏脱水系统、废水处理系统等公用系统各1套,按8套机组脱硫共 用设计。按全烟气脱硫设计,脱硫效率不小于95%。 3、4、5、6号机组采用石灰石-石膏湿法进行全烟气脱硫,每台机组1套FGD,1炉1塔, 公用系统按石灰石浆液制备、石膏脱水处理、脱硫废水处理系统8台机组共用一套设置, 并一次建成。脱硫后的烟气再通过烟囱进行排放。工艺系统由石灰石浆液制备及供应 系统、SO2吸收系统、氧化空气系统、烟气系统、石膏脱水系统、工艺水系统、事故 浆液和排空系统组成。 3.工艺的主要特点 本期工程脱硫工艺采用石灰石/石膏湿法(以下简称FGD),其中FGD不设GGH烟 气再热系统。 脱硫装置的烟气处理能力为一台锅炉BMCR工况时的烟气量(按30~100%考虑烟气量 波动),脱 硫效率≥95%。 脱硫系统设置100%烟气旁路,以保证脱硫装置在任何情况下不影响发电机组的安全运 行。
二、电厂烟气脱硫工艺原理及系统流程
4.2.石灰石浆液磨制系统
本期烟气脱硫工程并列设3套石灰石浆液磨制系统,每套的容量相当于托克 电厂厂8台机组在BMCR工况时石灰石消耗量的50%。 来自石灰石贮仓的石灰石经秤重给料机计量后进入湿式球磨机,同时磨机内 按比例加入来自石膏脱水系统的混合液,研磨后球磨机的溢流自流到湿磨浆液罐, 然后由湿磨浆液泵输送到石灰石浆旋流分级站,含有粗颗粒石灰石的旋流分级底 流返回湿式球磨机入口,而旋流分级后的溢流则作为产品流入石灰石浆液中间槽。 经过磨制后的石灰石浓度为25%,(皮带输送机和称重给料机(变频控制)送入 湿式球磨机并加水混合成浓度为60~70%左右的石灰石浆进行磨制。磨制完的石 灰石浆液进入湿磨浆液罐,由湿磨浆液泵输送到石灰石旋流分离器,旋流器底流 返回湿式球磨机再磨,旋流器溢流送到石灰石浆液中间槽,由石灰石浆液输送泵 送到石灰石浆液槽备用)。 本系统的主要设备是球磨机。球磨机自身主要包括带有钢球的转筒。在细节 上,包括新供给流体和旋流器底流在内的整个球磨机供给流体流经研磨室,以减 小颗粒尺寸。底层灰浆通过球磨机排放耳轴流过研磨球返回螺旋。

脱硫除尘器工作原理

脱硫除尘器工作原理

脱硫除尘器工作原理
脱硫除尘器是一种常用于工业生产过程中的环境治理设备,主要用于去除烟气中的二氧化硫和颗粒物。

它的工作原理包括反应吸附和滤除。

首先,烟气会通过脱硫除尘器的进气口进入设备内部。

在设备内部,烟气会与一种特殊的吸附剂(通常为活性炭或石灰浆)进行接触反应。

这种吸附剂具有高效吸附能力,能够捕捉烟气中的二氧化硫分子。

在吸附过程中,二氧化硫与吸附剂发生化学反应,形成相应的硫化物。

随后,烟气会进入脱硫除尘器的过滤区。

在过滤区,设备内设置了一系列滤料,如滤袋或滤筒。

这些滤料具有一定的孔隙结构,可以阻止颗粒物进一步传播。

烟气通过滤料时,颗粒物会被滤料捕捉并逐渐积聚在滤料表面。

经过上述处理,烟气中的二氧化硫和颗粒物都被有效地去除掉。

最后,清洁的烟气从脱硫除尘器的出口排放出去,达到了净化环境、保护健康的目的。

需要注意的是,脱硫除尘器的工作效率与吸附剂的种类和滤料的质量有关。

不同的工业生产过程可能需要使用不同类型的脱硫除尘器来满足特定的净化要求。

脱硫吸收塔工作原理

脱硫吸收塔工作原理

脱硫吸收塔工作原理
脱硫吸收塔是用于从燃烧废气中去除二氧化硫(SO2)的设备。

脱硫吸收塔采用湿法脱硫技术,通过将含有SO2的废气通过吸收液中,利用吸收液中的碱性物质与SO2发生化学反应,将SO2捕捉并转化成溶解于液体中的硫酸盐。

以下是脱硫吸收塔的工作原理:
1.吸收液准备:在脱硫吸收塔中,准备一种碱性的吸收液,通常
是石灰浆液(氧化钙溶液)。

石灰浆液含有碱性物质(氢氧化钙,
Ca(OH)2),可以与SO2发生反应生成硫酸钙(CaSO3)。

2.废气进入吸收塔:含有SO2的燃烧废气从底部或侧面进入脱
硫吸收塔。

3.吸收液喷淋:石灰浆液从吸收塔的顶部喷淋下来,与废气接触。

在这个过程中,SO2会与氢氧化钙反应生成硫酸钙,并转化成
溶解在液体中。

4.SO2吸收:SO2被吸收液中的氢氧化钙捕获,并转化成硫酸
钙。

反应的化学方程式如下:
SO2+Ca(OH)2→CaSO3+H2OSO2+Ca(OH)2→CaSO3+H2O
5.生成硫酸钙:反应产生的硫酸钙溶解在吸收液中,形成硫酸钙
溶液。

6.排放净化后废气:经过吸收塔处理后,废气中的SO2大大减
少。

净化后的废气从吸收塔的顶部或侧面排放出去。

7.产生废液:吸收液中的硫酸钙会逐渐积累,形成废液。

废液中
的硫酸钙通常需要通过后续的处理过程,如过滤、浓缩等,以
回收和处理。

脱硫吸收塔是一种有效的脱硫设备,通过湿法脱硫的方式,能够高效地将SO2从废气中移除,以减少对环境的污染。

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训1. 前言烟气脱硫FGD(Flue Gas Desulfurization)是一种常用的烟气处理技术,主要是用于煤电厂和工业炉的烟气中去除二氧化硫(SO2)。

本文将介绍烟气脱硫FGD设备的类型和工艺原理,并提供详细的培训说明。

2. 烟气脱硫FGD设备类型烟气脱硫FGD设备根据其工作原理和结构形式可以分为多种类型,包括湿式烟气脱硫FGD设备和干式烟气脱硫FGD设备。

2.1 湿式烟气脱硫FGD设备湿式烟气脱硫FGD设备是最常用的脱硫设备之一,其主要原理是将烟气与吸收液接触和反应,从而去除烟气中的SO2。

常见的湿式烟气脱硫FGD设备包括石灰石石膏法、石膏法、海水法等。

石灰石石膏法是目前最广泛应用的湿式烟气脱硫FGD设备之一。

其工作原理是将石灰石石膏与烟气反应生成石膏,从而去除烟气中的SO2。

该工艺具有较高的脱硫效率和较低的运行成本。

石膏法是另一种湿式烟气脱硫FGD设备,其原理是使用工业石膏作为吸收剂,与烟气中的SO2发生反应生成石膏,达到脱硫的目的。

海水法是利用海水中的碱性成分来吸收和中和烟气中的SO2,达到脱硫的目的。

该方法不仅可以降低SO2排放,还可以实现海水的净化和资源回收。

2.2 干式烟气脱硫FGD设备干式烟气脱硫FGD设备是另一种常见的脱硫设备类型,其主要原理是利用干式吸收剂将烟气中的SO2吸收和反应。

干式烟气脱硫FGD设备可以进一步分为喷雾吸收剂法、旋风喷淋法和干式碱吸收法等。

喷雾吸收剂法是利用喷雾吸收剂与烟气接触,吸收和中和烟气中的SO2。

旋风喷淋法是通过旋风管将喷淋吸收剂喷洒到烟气中,达到脱硫的目的。

干式碱吸收法则是利用干式吸收剂直接与烟气中的SO2反应,达到脱硫效果。

3. 烟气脱硫FGD工艺原理培训烟气脱硫FGD工艺原理培训主要包括以下几个方面的内容:3.1 烟气特性分析在进行烟气脱硫FGD工艺培训之前,首先需要对烟气进行特性分析。

这包括烟气中的SO2浓度、烟气中的颗粒物浓度、烟气的温度和湿度等参数的测量和分析。

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训

烟气脱硫FGD设备及工艺原理培训1. FGD设备组成FGD设备包括吸收塔、循环泵、石膏浆液处理系统以及废水处理系统等部分。

吸收塔通常由吸收段、冷却段、排气段和再循环泵组成,其中吸收塔是核心设备,用于与烟气进行接触和反应。

2. 工艺原理FGD工艺原理主要是通过将烟气与喷射进入吸收塔中的石膏浆液进行接触,使其二氧化硫被吸收并转化成硫酸盐。

烟气在吸收塔中延迟停留时间,使二氧化硫与石膏浆液充分接触,从而达到脱硫的目的。

3. 技术特点FGD设备的技术特点包括高效减排、设备结构简单、操作方便、运行成本较低等。

脱硫效率可达到90%以上,具有良好的环保效益和经济效益。

4. 关键操作在FGD设备及工艺中,关键的操作包括调节吸收塔进出口浆液的浓度、泵站的流量和温度等,确保设备稳定运行并达到脱硫效果。

通过对FGD设备及工艺原理的培训,操作人员能够掌握其操作技术和工艺原理,提高设备的运行效率和脱硫效果,为保护环境、减少大气污染做出贡献。

烟气脱硫(FGD)设备及工艺原理是工业领域中常用的环保技术。

在这项技术中,二氧化硫(SO2)是一种主要的有害气体,它会通过烟囱排放到大气中,对环境和人类健康造成危害。

因此,通过FGD设备及工艺,可以有效减少工业烟气中的二氧化硫排放,从而保护环境和人们的健康。

FGD设备通常包括吸收塔、循环泵、石膏浆液处理系统以及废水处理系统等部分。

其中,吸收塔是整个设备的核心部件,它由吸收段、冷却段、排气段和再循环泵组成。

吸收塔的主要作用是与烟气进行充分接触,从而使烟气中的二氧化硫被吸收并转化成硫酸盐,达到减少大气污染的效果。

FGD工艺的原理是通过将烟气与喷射进入吸收塔中的石膏浆液进行接触,使烟气中的二氧化硫得到吸收。

在吸收塔中,石膏浆液会延迟停留一段时间,与烟气充分接触和反应,从而使二氧化硫被有效吸收。

吸收塔内的冷却段用于控制温度,避免石膏浆液在吸收塔内结垢,影响脱硫效果。

而排气段则用于排出处理后的烟气。

氨法脱硫工艺介绍

氨法脱硫工艺介绍

8,424,000 10,152,000 226,800 32,616,000 89,280,000 547,000 51,966,000 89,280,000
37,314,000(+)
(-) (+) (+)
石灰石法( 1.5% 煤中含硫量 由 ZAMAX 公司提供) (人民币) NO 1 2 3 4 5 总计 总计 净值 项目名称 风机功耗 工程功耗 工艺水耗量 石灰石耗量 副产品 (-) (+) (-) 消耗量 3.800kw/hr 3,600kw/hr 140 t/hr 13.6 t/hr 22.9 t/hr 单价 0.3/kw 0.3/kw 0.5/t 30/t 20/t 每小时价 1,140 1,080 70 408 458 2,698 458 2,240(-) 每天价 27,360 25,920 1,680 9,792 10,992 64,752 10,992
反应剂供给系统: 氨水反应剂供给系统包括了7天储存量的 储罐和输送泵。28%浓度的氨水通过脱硫塔底部的氧化用 分配器与氧化空气和冷却水混合在一起送人脱硫塔。一个 预设PH值的控制阀控制了氨水的流量。 应用条件:氨法脱硫不但除害而且变害为益,还可以产生 出对人类有益的副产品,如把损害土地、农作物的酸雨变 成农民种地的化肥。氨法工艺类似常见的石灰石—石膏工 艺,但生成副产品的要求不一样,石灰石以半干半湿的石膏 的形式作为副产品,而氨法脱硫如直接以商品形式出现,制 成干燥的、颗粒狀尿素一样, 它的干燥设备就复杂得多,这 使它的初级投资上升。但长期来看,该法还是具有较可观 的经济效益,因而可以应用于各种大型电厂是一种很有前 景的工艺方法。
5182.50(+)
每天价 28,080 33,840 756 108,720 297,600 1,824 173,220 297,600

FGD脱硫系统简介

FGD脱硫系统简介

FGD脱硫系统简介FGD脱硫系统简介烟气脱硫系统一般采用浆液循环、塔内强制氧化方式的石灰石—石膏湿法烟气脱硫工艺。

吸收剂采用325目95%通过的石灰石浆液,副产物为石膏(二水硫酸钙);石膏浆液先采用一级水力旋流器进行初脱水,然后采用真空皮带脱水机脱水至含水量小于10%,再采用气流干燥设备将石膏烘干至含水量小于4%。

在MBCR工况条件下,全烟气脱硫效率不低于95%。

主要工艺流程为原烟气经增压风机升压,通过吸收塔烟气入口进入吸收塔,进入吸收塔的烟气向上流动并与逆向喷淋下降的循环浆液的小液滴相遇,在喷淋区烟气与碱性石灰石浆液得到充分的接触反应,脱除烟气中的二氧化硫后,经除雾器除去烟气中的雾滴,再经由烟囱排出;石灰石浆液由设置在吸收塔内喷淋母管上的多个喷嘴喷出,与烟气接触发生中和反应脱除烟气中的二氧化硫后,流入吸收塔浆池内。

吸收浆液中的HSO3-,被鼓入浆池中的空气强制氧化成 HSO4-。

最终反应生成二水硫酸钙(CaSO4.2H2O)浆液即石膏浆液。

脱硫系统主要工艺设备参数石灰石卸料储存系统及石灰石浆液制备系统主要设备振动给料机(1台)处理量:0-80t/h 电机380v/1.1kw金属分离器 (1台) 电机380v/2.2kw挡边皮带输送机(1台)输送量:65-80t/h 电机380v/22kw皮带长88m 带宽0.8m 带速1.0m/s 倾角75度石灰石仓(1台)(钢筋混凝土)贮仓有效容量:1073m3 贮存量1392t贮仓尺寸:φ10×12m皮带称重式给料机(2台)每台出力:0~25t/h 电机380v/3kw输送距离:11m称重精度:±1%湿式球磨机系统(2套)每台出力:15t/h给料粒度0—20mm出料粒度325目,通过率95%。

石灰石浆液水力旋流器(二套FGD共享二台)外理能力: 110m3/h入口含固量: 45%底流含固量: 52.5%溢流含固量: 30%石灰石浆液箱(1台)石灰石浆液箱用于配制浆及储存浆液。

干法脱硫-工艺流程及原理说明

干法脱硫-工艺流程及原理说明

工艺流程及原理说明一个典型的CFB-FGD系统由预电除尘器、吸收剂制备、吸收塔、脱硫灰再循环、注水系统、脱硫除尘器以及仪表控制系统等组成,其工艺流程见上图。

首先从锅炉的空气预热器出来的烟气温度一般为120~180℃左右,通过预除尘器后从底部进入吸收塔(当脱硫渣与粉煤灰须分别处理时,才需要一级除尘器,否则烟气可直接进入脱硫塔),在此处高温烟气与加入的吸收剂、循环脱硫灰充分预混合,进行初步的脱硫反应,在这一区域主要完成吸收剂与HCl、HF的反应。

然后烟气通过吸收塔底部的文丘里管的加速,进入循环流化床体,物料在循环流化床内,气固两相由于气流的作用,产生激烈的湍动与混合,充分接触,在上升的过程中,不断形成絮状物向下返回,而絮状物在激烈湍动中又不断解体重新被气流提升,使得气固间的滑落速度高达单颗粒滑落速度的数十倍;吸收塔顶部结构进一步强化了絮状物的返回,进一步提高了塔内颗粒的床层密度,使得床内的Ca/S比高达50以上。

这样循环流化床内气固两相流机制,极大地强化了气固间的传质与传热,为实现高脱硫率提供了根本的保证。

在文丘里的出口扩管段设一套喷水装置,喷入的雾化水以降低脱硫反应器内的烟温,使烟温降至高于烟气露点20℃左右,从而使得SO2与Ca(OH)2的反应转化为可以瞬间完成的离子型反应。

吸收剂、循环脱硫灰在文丘里段以上的塔内进行第二步的充分反应,生成副产物CaSO3·1/2H2O,还与SO3、HF和HCl反应生成相应的副产物CaSO4·1/2H2O、CaF2、CaCl2·Ca(OH)2·2H2O 等。

烟气在上升过程中,颗粒一部分随烟气被带出吸收塔,一部分因自重重新回流到循环流化床内,进一步增加了流化床的床层颗粒浓度和延长吸收剂的反应时间。

由于提供的脱硫系统有清洁烟气再循环技术,无论锅炉负荷如何变化,烟气在文丘里以上的塔内流速均为5m/s左右,从文丘里以上的塔高大约40m左右,这样烟气在塔内的气固接触时间大约为8秒左右,从而有效地保证了脱硫效率。

火电厂烟气脱硫技术的原理及其应用

火电厂烟气脱硫技术的原理及其应用

2010年第期 总第10期36新疆电力技术0 前言1 当前烟气脱硫技术的发展状况我国是以燃煤为主的国家,据统计,年煤炭消耗量为.亿吨,且呈逐年递增趋势,二氧化硫的排放量达万吨,超过美国万吨的排放量,成为世界二氧化硫排放第一大国。

二氧化硫是酸性的,它过量排放到大气中,会形成“酸沉降”,遇水可形成酸雨和酸雾;不遇上水也会以“干沉降”的形式富集在植物和土壤,与土壤中的水会合后,能形成浓度更大的硫酸。

“酸沉降”导致土壤、河流酸化,腐蚀金属,损害土地健康,破坏动植物的生长,严重伤害生态环境。

我国目前燃煤排放量占排放总量的%以上,而火力发电厂又是最主要的烟气排放源,因此控制的污染势在必行。

目前,工业应用的烟气脱硫(即技术可分为干法(含半干法) 脱硫和湿法脱硫。

干法脱硫是使用固体吸收剂、吸附剂或催化剂除去废气中的常用的方法有活性炭吸附法、分子筛吸附法、氧化法和金属氧化物吸收法等。

干法脱硫的最大优点是治理中无废水、废酸的排出,减少了二次污染;缺点是脱硫效率低,设备庞大。

湿法脱硫采用液体吸收剂洗涤烟气以除去常用的方法有石灰石-石膏法、钠碱吸收法、氨吸收法、铝法、催化氧化和催化还原法等。

湿法脱硫所用设备比较简单,操作容易,脱硫效率高,但脱硫后烟气温度较低,不利于烟气的扩散。

下面简要介绍目前在市场上应用比较广泛的烟气脱硫方法。

石灰石-石膏湿法烟气脱硫工艺是目前世界上应用最广泛、技术最成熟的脱除技术,约占已安装 机组容量的%。

该工艺具有脱硫效率高、运行可靠性高、吸收剂利用率高、能适应大容量机组和高浓度 烟气条件、对煤种适应性强、吸收剂廉价、钙硫比低(一般小于.) 以及副产品具有综合利用的商业价值等特点。

其主要缺点是基建投资费用高、占地面积大、耗水量大及脱硫副产品为湿态,因此难以处理,而且脱硫产生的废水需要经过处理才能排放。

海水烟气脱硫是目前惟一一种不需要添加任何化学药剂的工艺,也不产生固体废弃物,脱硫效率大于%,运行稳定,系统可用率高达%;用海水冷却水脱硫,经济性好,运行及维护费用较低;压力损失小,一般在.~.结构简单,操作简便,易于实现自动化。

脱硫除雾器的工作原理

脱硫除雾器的工作原理

脱硫除雾器的工作原理
脱硫除雾器是一种用于净化燃煤烟气中的二氧化硫和颗粒物的设备,其工作原理通常包括以下几个步骤:
1. 烟气进入脱硫除雾器:烟气由烟囱或尾气处理系统引入脱硫除雾器中。

2. 预处理部分:烟气经过预处理部分,通常会升温至适宜的温度范围,以提高脱硫效率。

3. 脱硫部分:烟气进入脱硫部分,常用的方法包括湿法脱硫和干法脱硫。

- 湿法脱硫:在湿法脱硫中,烟气与喷雾剂(通常为石灰石浆液)接触,二氧化硫会与氢氧化钙反应生成硫酸钙沉淀,从而被去除。

同时,这个过程也能够去除烟气中的一些颗粒物。

- 干法脱硫:干法脱硫主要通过喷雾干燥剂(如氢氧化钠或碳酸钠)来吸收烟气中的二氧化硫,形成硫化钠或硫酸钠,并通过过滤器或电除尘器去除颗粒物。

4. 除雾部分:脱硫后的烟气进入除雾部分,通过除雾器将湿度较大的烟气中的水蒸气和颗粒物去除,净化后的烟气被排入大气中或进一步处理后排放。

5. 流体处理:在工作过程中,脱硫除雾器中经常使用各种流体作为媒体,以便实现脱硫和除雾的目的。

这些流体可以是喷雾
剂、干燥剂、清洗剂等,它们与烟气的接触和化学反应有助于去除污染物。

总的来说,脱硫除雾器通过使用不同的方法去除燃煤烟气中的二氧化硫和颗粒物,从而达到减少大气污染物排放的目的。

具体的工作原理根据不同的脱硫除雾器类型和技术有所不同,但通常都是基于物理吸附、化学反应和颗粒物沉降等原理实现。

脱硫塔工作原理

脱硫塔工作原理

脱硫塔工作原理脱硫塔是一种用于烟气脱硫的设备,主要用于燃煤电厂、燃油电厂、燃气电厂等工业设施中,用于减少烟气中的二氧化硫排放。

脱硫塔的工作原理是通过化学反应将烟气中的二氧化硫转化为硫酸盐,从而达到减少二氧化硫排放的目的。

脱硫塔通常由吸收塔、循环泵、喷淋系统、废液处理系统等组成。

其工作原理主要包括吸收和氧化两个过程。

首先是吸收过程。

烟气进入脱硫塔后,通过喷淋系统喷洒出来的吸收液与烟气进行接触,二氧化硫被吸收液吸收并转化为硫酸盐。

吸收液通常是一种碱性溶液,常用的吸收液包括石灰石浆、氢氧化钠溶液等。

这些碱性溶液中的氢氧根离子与二氧化硫发生化学反应,生成硫酸根离子,从而将二氧化硫吸收并转化为硫酸盐。

吸收过程中,烟气中的颗粒物和其他污染物也会被吸收液吸收并沉降。

其次是氧化过程。

在脱硫塔中,吸收液中的硫酸盐会被氧化剂氧化为硫酸。

常用的氧化剂有空气、过氧化氢等。

氧化过程中,硫酸盐被氧化为硫酸,同时释放出二氧化硫和水。

这样一来,吸收液中的硫酸盐得以再生,可以继续用于吸收二氧化硫,形成循环利用。

除了吸收和氧化过程,脱硫塔中还需要进行废液处理。

废液处理是指对脱硫塔中产生的废水进行处理,以达到环保排放标准。

脱硫塔产生的废水中含有大量的硫酸盐和其他污染物,需要进行中和、沉淀、过滤等处理,将废水中的污染物去除,使得废水达到排放标准后方可排放。

总的来说,脱硫塔通过吸收和氧化过程将烟气中的二氧化硫转化为硫酸盐,再经过氧化过程将硫酸盐再生为硫酸,从而实现了对烟气中二氧化硫的脱除。

同时,通过废液处理,确保了废水的环保排放。

脱硫塔的工作原理不仅可以减少二氧化硫的排放,还可以减少烟气中的颗粒物和其他污染物的排放,对环境保护具有重要意义。

循环流化床烟气脱硫工艺[1]

循环流化床烟气脱硫工艺[1]
05050505050505caohsocasocaohsocaso典型工艺系统流程一个典型的循环流化床烟气脱硫系统是由预除尘器吸收剂制备脱硫塔脱硫灰再循环注水系统脱硫除尘器以及仪表控制系统等组成
循环流化床烟气脱硫工艺
循环流化床烟气脱硫工艺(CFB—FGD)是一种 半干法烟气脱硫技术。
脱硫原理:
循环流化床主要根据循环流化床的工作原 理,使吸收剂烟气在循环流化床内实现二 氧化硫与氢氧化钙反应的一种脱硫方法。 主要化学反应方程式如下:
2.对已建电厂典型的CFD-FGD工艺布置方式:
本章小结
• 1.了解硫循环及硫排放、燃烧前燃料脱 硫、硫化床燃烧脱硫
• 2.理解和掌握高浓度二氧化硫尾气脱硫、 低浓度二氧化硫烟气脱硫
• 3.掌握石灰/石灰石烟气脱硫的原理及影 响因素
• 4.理解同时脱硫脱(OH )2 SO2 CaSO3 0.5H2O 0.5H2O Ca(OH )2 SO3 CaSO4 0.5H2O 0.5H2O CaSO3 0.5H2O 0.5O2 CaSO4 0.5H2O
典型工艺系统流程
一个典型的循环流化床烟气脱硫系统是由预除尘 器、吸收剂制备、脱硫塔、脱硫灰再循环、注 水系统、脱硫除尘器以及仪表控制系统等组成。
影响系统脱硫效率的主要因素
• 床料循环倍率 • 流化床床料浓度(一般在5~10 kg/m3) • 烟气停留时间 • Ca/S • 脱硫塔操作温度
CFD-FGD工艺布置
1.对新建电厂典型的CFD-FGD工艺布置方式: 锅炉空气预热器 一级除尘 循环流化床吸
收塔 脱硫除尘器 引风机 烟囱。 一级除尘的目的是:可回收部分经济效益
高的粉煤灰‘减少脱硫灰量。效率可达 70%~90%。
• 在CFD-FGD工艺布置中。通常有以下两种 情况:

尾气吸收塔工作原理

尾气吸收塔工作原理

尾气吸收塔工作原理尾气吸收塔(Flue Gas Desulfurization Tower,简称FGD)是一种用于吸收烟气中二氧化硫(SO2)的设备。

其工作原理基于湿法烟气脱硫技术,将烟气通过与吸收剂接触,使其与二氧化硫反应生成硫酸,从而达到减少二氧化硫排放的目的。

以下是尾气吸收塔的工作原理详细解释。

首先,烟气从锅炉排出后进入尾气吸收塔的底部。

在塔内,烟气与喷淋层或喷射喷嘴中的吸收剂进行接触。

吸收剂通常采用氧化钙(CaO)或氧化钙与水合氧化钙(Ca(OH)2)的混合物。

这些吸收剂与烟气中的二氧化硫发生反应生成硫酸。

接下来,吸收剂和烟气中的二氧化硫在吸收塔内进行中和反应。

反应的产物主要包括硫酸和水,这些产物溶解在吸收剂中。

在这个过程中,二氧化硫会被吸收剂捕获和转化,从而减少了尾气中的二氧化硫含量。

然后,除了硫酸之外,尾气中还存在其他的固体和液体颗粒物。

为了分离这些物质,吸收塔的顶部设置了除尘装置。

除尘装置通常是一组湿式电除尘器和冷凝器,它们可以捕获烟气中的颗粒物和水分。

在冷凝器中,水蒸气会凝结成液态水,然后与硫酸一起回流进入吸收塔中。

最后,经过脱硫处理的烟气从尾气吸收塔的顶部排出。

此时,烟气中的二氧化硫大大减少,符合环境排放标准。

吸收塔内的吸收剂会在反应过程中逐渐被转化为硫酸,并逐渐降低其碱性。

因此,为了保持吸收塔的脱硫效率,需要不断地重新补充新鲜的吸收剂。

总之,尾气吸收塔通过湿法吸收剂与烟气中的二氧化硫反应,将其转化为硫酸,从而实现了二氧化硫的脱除。

该技术能够有效减少二氧化硫的排放,降低对环境的影响,是烟气脱硫处理中常用的一种方法。

同时,尾气吸收塔还能去除烟气中的灰尘和水分,提高烟气的清洁度和排放质量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电子束法使用的脱硫剂为合成氨,目前仅限于吨位不大的燃 煤锅炉烟气脱硫。
2.按脱硫剂分类
目前开发的多种烟气脱硫技术,尽管设备构造和工艺流程各不 相同,但基本原理都是以碱性物质作SO2的吸收剂。
以石灰石、生石灰为基础的钙法 按 脱 硫 剂 分 类 以氧化镁为基础的镁法
以合成氨为基础的氨法
以有机碱为基础的碱法 以亚硫酸钠、氢氧化钠为基础的钠法
2.国家对SO2的治理要求
法律的要求: 1995年修订的《中华人民共和国大气污染防治法》提出:在“两 区”内的火电厂新建或已建项目不能采用低硫煤的,必须建设配套脱 硫、除尘装置。 国家污染物排放标准的要求: 《火电厂大气污染物排放标准》(GB13223-1996),对1997年1月1日 起新、扩、改建火电厂,在实行全厂排放总量控制的基础上,增加了 烟囱二氧化硫排放浓度限制。 国务院对“两控区”内火电厂二氧化硫控制的要求:
以湿法脱硫为主的国家有:日本(约占98%)、美 国(约占92%)和德国(约占90%)等。
炉内
活化
CaCO3 → CaO + CO2 CaO + SO2 + 1/2 O2→ CaSO4 CaO+SO3 → CaSO4
CaO + H2O → Ca(OH)2 Ca(OH)2 +SO2 → CaSO3 + H2O CaSO3 + 1/2 O2 → CaS。
3、常用的脱硫技术
近年来,世界各发达国家在烟气脱硫(FGD)方面均取得了很大的进 展,美国、德国、日本等发达工业国家计划在2000年前完成200-- 610 MW的FGD处理容量。 目前国际上已实现工业应用的燃煤电厂烟气脱硫技术主要有:
(1)湿法脱硫技术,占85%左右,其中石灰-石膏法约占36.7%,其它 湿法脱硫技术约占48.3%; (2)喷雾干燥脱硫技术,约占8.4%; (3)吸收剂再生脱硫法,约占3.4%; (4)炉内喷射吸收剂/增温活化脱硫法,约占1.9%; (5)海水脱硫技术; (6)电子束脱硫技术; (7)脉冲等离子体脱硫技术; (8)烟气循环流化床脱硫技术等。
目前国内外应用最广泛的方法是烟气脱硫!!
三、 烟气脱硫方法
1.按有无液相介入分类
在电力界尤其是脱硫界以有无液相介入来进行分类。
按 有 无 液 相 介 入 分 类 湿法 半干法
干法
电子束法 海水法
湿 法:进入湿吸收剂;排出湿物质
湿法是利用碱性溶液为脱硫剂,应用吸收原理在气、液、 固三相中进行脱硫的方法,脱硫产物和残液混合在一起,为稀 糊状的流体。湿法脱硫的操作温度在44-55ºC。
二、火电厂脱硫方式(燃烧前、中、后)
煤炭洗选: 使用前脱硫。目前仅能除去煤炭中的部分无 机硫,对于煤炭中的有机硫尚无经济可行的去除技术。 循环流化床锅炉(CFBC)-- 洁净煤燃烧技术:燃烧过程中 脱硫。具有可燃用劣质煤、调峰能力强、可掺烧石灰石脱硫、 控制炉温减少氮氧化物排放等特点。 烟气脱硫(FGD) :燃烧后脱硫。在锅炉尾部电除尘后至 烟囱之间的烟道处加装脱硫设备,目前95%以上的燃煤锅炉采 用此方式实施脱硫,是控制二氧化硫和酸雨污染最有效、最主 要的技术手段。
投资低于湿法
炉内喷钙+尾部 增湿脱硫技术 成熟 中低硫煤 200MW 及以下 80-90% 石灰石 一般 芬兰
炉内喷钙+尾部增湿法 介于炉内脱硫和烟气脱硫两者之间,在炉膛内喷石灰石粉,排出 的烟气进入尾部烟气增湿塔活化反应,两次脱硫。
四、国内火电厂烟气脱硫的应用
技术内容 技术成熟程度 适用煤种 单机应用规模 脱硫率 吸收剂 市场占有率 技术 特点及经济性 国内应用 普通石灰石/ 石膏脱硫技术 成熟 不限 200MW 及以上 95%以上 石灰石/石灰 高 德国、日本 喷雾干燥 脱硫技术 成熟 中低硫煤 200MW 及以下 75-80% 石灰 一般 日本
《国务院关于酸雨控制区和二氧化硫污染控制区有关问题的批复》 (国函[1998]5号),即要求“两控区”的火电厂做到:到2000年底达 标排放。新建、改造燃煤含硫量大于1%的电厂,必须建设脱硫设施; 现有燃煤含硫量大于1%的电厂,在2010年前分期分批建成脱硫设施或 采取其它具有相应效果的减排二氧化硫措施。
钙法:以石灰石、生石灰为基础。
镁法:以氧化镁为基础的
氨法:以合成氨为基础
(1)脱硫过程 Na2CO3+SO2→Na2SO3+CO2↑ 2NaOH+SO2→Na2SO3+H2O Na2SO3+SO2+H2O→2NaHSO3
(2)再生过程(用石灰乳) 2NaHSO3+Ca(OH)2→Na2SO3+CaSO3 Na2SO3+Ca(OH)2→2NaOH+CaSO3
石灰发生器 分离器
锅炉
烟气经文丘里管喷射 与烟气混合吸收
•广东恒运电厂干法脱硫系统
海水法:采用海水对烟气脱硫的方法
此方法受地域条件限制。且有氯化物严重腐蚀设备的问 题。脱硫残液PH很低,必须配置参数合理的水质恢复系统, 才能达到环保要求的排放条件。
电子束法:是一种利用高能物理原理,采用电子束辐照 烟气,或以脉冲产生电晕对烟气实施脱硫的方法。
烟气脱硫(FGD)设备及工艺原理
一、脱硫的发展与应用 二、火电厂脱硫方式 三、 烟气脱硫方法
四、国内火电厂烟气脱硫的应用
五、石灰石/石膏湿法脱硫工艺流程及设备
一、脱硫的发展与应用
1. 全国火电厂二氧化硫排放状况 1998年全国火电装机容量为20988万千瓦,占总 装机容量的75.7%。二氧化硫排放约为780万吨,占 全国二氧化硫排放量的37.3%。预计2000年达40%, 2010年将达到60%。95年统计,由于酸雨和二氧化硫 污染造成农作物、森林和人体健康等方面的经济损 失约为1100多亿元,已接近当年国民生产总值的2%, 成为制约我国经济和社会发展的重要因素。
半干法:进入湿吸收剂;排出干物质
半方法是指在有液相和气相介入脱硫方法,脱硫产物为干粉状。半 方法的操作温度控制在60-80ºC。
干 法:进入干吸收剂;排出干物质。
干法是指无液相介入完全在干燥状态下进行脱硫的方法。如向炉 内喷干燥的生石灰或石灰石粉末,即脱硫产物为粉状。 干法的操作温度在800-1300ºC。
相关文档
最新文档