2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷(解析版)

合集下载

浙江省杭州市部分学校2020-2021学年上学期九年级英语12月月考试卷分类汇编:任务型阅读

浙江省杭州市部分学校2020-2021学年上学期九年级英语12月月考试卷分类汇编:任务型阅读

浙江省杭州市部分学校2020-2021学年上学期九年级英语12月月考试卷分类汇编任务型阅读2020-2021学年浙江省杭州市文海实验中学九年级上学期12月月考英语试卷阅读下面(第1—5题)有关内容。

请从A—F选项中选出符合各段意思的小标题。

选项中有一项是多余选项。

Five ways to make a great first impression(印象)!Researchers have discovered that, in general, it only takes seven seconds for a person to start making judgments about you when they first meet you. That's why you should follow these useful tips on how to create a good first impression.1.________Before meeting someone, start thinking about the purpose of the meeting. Are you trying to impress them? For example, if you want to make new friends at a social event, you will want to appear friendly. And if you decide to run for class president at your school, you will need to appear confident(自信).2.________Smiling is the most important thing you can do when meeting someone new. It shows that you're friendly and makes people around you feel more comfortable. To have a winning smile, make sure your teeth are clean by brushing them every day.3.________Before you begin speaking, you will be judged on your body language. Therefore, it's important to show trust in yourself by standing up tall and putting your shoulders back. Besides, if you uncross your arms, you will appear relaxed and friendly.4.________How you smell can influence people's first impression of you. If you have a bad body smell, it will put people off. In short, aim to smell clean and avoid putting on a lot of scented products.5.________What you wear matters. While you should look clean and tidy, it's also important to dress properly, whether you're going to a birthday party or a sporting event. You should think aboutwhat your clothes say about you.【答案】1.F 2. D 3.E 4. A 5. B2020-2021学年浙江省杭州市西湖区十三中九年级上学期12月月考英语试卷第二节(共5小题,每小题2分,满分10分)下面文章有五处(第31-35题)需要添加小标题。

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷 (解析版)

2020-2021学年浙江省杭州市高三(上)期末数学试卷一、选择题(共10小题).1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.23.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.408.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣19.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=;4=.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.14.已知tanα=cosα,则cos2α+cos4α=,=.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是.16.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.参考答案一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={x|1≤x≤3},B={x|(x﹣1)(x﹣2)≥0},则A∪B=()A.{x|1≤x≤2}B.{x|2≤x≤3}C.{x|1≤x≤3}D.R解:∵A={x|1≤x≤3},B={x|x≤1或x≥2},∴A∪B=R.故选:D.2.已知a∈R,若(2+ai)(a﹣2i)=﹣4i(i为虚数单位),则a=()A.﹣1B.0C.1D.2解:因为(2+ai)(a﹣2i)=﹣4i,所以4a+(a2﹣4)i=﹣4i,则有4a=0,a2﹣4=﹣4,解得a=0.故选:B.3.某几何体的三视图如图所示,则该几何体的体积为()A.1B.C.D.解:由三视图知几何体是一个四棱锥,四棱锥的底面是一个平行四边形,有两个等腰直角三角形,直角边长为1组成的平行四边形,四棱锥的一条侧棱与底面垂直,且侧棱长为1,∴四棱锥的体积是.故选:B.4.若a>0,b>0,则“a>b”是“lna﹣b>lnb﹣a”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:当a>0,b>0时,若a>b,则lna>lnb,此时a+lna>b+lnb成立,即充分性成立,设f(x)=x+lnx,当x>0时,f(x)为增函数,则由a+lna>b+lnb得f(a)>f(b),即a>b,即必要性成立,则“a>b”是“a+lna>b+lnb”的充要条件,故选:C.5.函数f(x)=(﹣1)cos x(其中e为自然对数的底数)图象的可能是()A.B.C.D.解:f(x)=•cos x=•cos x,则f(﹣x)=•cos x=•cos x=﹣f(x),则f(x)是奇函数,排除A,C,当0<x<时,f(x)<0,排除B,故选:D.6.已知随机变量ξ满足P(ξ=x)=ax+b(x=﹣1,0,1),其中a,b∈R.若E(ξ)=,则D(ξ)=()A.B.C.D.解:由已知可得:P(ξ=﹣1)=﹣a+b,P(ξ=0)=b,P(ξ=1)=a+b,则﹣a+b+b+a+b=1,即b=,又E(ξ)=﹣1×(﹣a+b)+0×b+1×(a+b)=,所以a=,所以ξ的分布列如下:ξ﹣101P所以D(ξ)=,故选:B.7.已知(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则a1=()A.﹣30B.30C.﹣40D.40解:∵(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),令f(x)=(x2+1)(2x﹣1)7=a0+a1(x﹣1)+a2(x﹣1)2+…+a9(x﹣1)9(x∈R),则f′(x)=2x=a1+a2(x﹣1)1+…+a9(x﹣1)8,f′(x)=2x•(2x﹣1)7+(x2+1)•14(2x﹣1)6,∴a1=f′(1)=2×1+2×14×(2﹣1)6=30故选:B.8.已知实数a,b满足|b|≤2﹣a,且a≥﹣1,则2a+b的最小值为()A.﹣7B.﹣5C.﹣3D.﹣1解:不等式|b|≤2﹣a可化为﹣2+a≤b≤2﹣a,且a≥﹣1,所以约束条件为,画出约束条件表示的平面区域,如阴影部分所示:设z=2a+b,平移目标函数知,当目标函数过点A时,z取得最小值;由,求得A(﹣1,﹣3),所以z=2a+b的最小值为z min=2×(﹣1)+(﹣3)=﹣5.故选:B.9.设函数f(x)=lnx﹣﹣2mx+n,若不等式f(x)≤0对x∈(0,+∞)恒成立,则的最大值为()A.B.C.e D.2e解:不等式f(x)≤0对x∈(0,+∞)恒成立,即为lnx﹣﹣2mx+n≤0,即lnx﹣≤2m(x﹣)对x>0恒成立,设g(x)=lnx﹣,由g′(x)=+>0,可得g(x)在(0,+∞)递增,且g(e)=0,当x→0时,g(x)→﹣∞;x→+∞,g(x)→+∞,作出y=g(x)的图象,再设h(x)=2m(x﹣),x>0,可得h(x)表示过(,0),斜率为2m的一条射线(不含端点),要求的最大值,且满足不等式恒成立,可求的最大值,由于点(,0)在x轴上移动,只需找到合适的m>0,且与g(x)=lnx﹣切于点(,0),如图所示:此时=e,即有的最大值为2e,故选:D.10.设数列{a n}满足a1=3,a2=6,a n+2=(n∈N*),()A.存在n∈N*,a n∉QB.存在p>0,使得{a n+1﹣pa n}是等差数列C.存在n∈N*,a n=D.存在p>0,使得{a n+1﹣pa n}是等比数列解:由a n+2=(n∈N*),可得①,则②①﹣②可得,a n+2a n﹣a n+1a n﹣1=a n+12﹣a n2,所以a n(a n+2+a n)=a n+1(a n+1+a n﹣1),则,由此可得,,所以,则a n+2=3a n+1﹣a n且a1=3∈Z,a2=6∈Z,所以a n∈Z,故选项A,C错误;由a n+3=3a n+2﹣a n+1,可得a n+3﹣a n+2=5a n+1﹣2a n不是常数,所以不存在p>0,使得{a n+1﹣pa n}是等差数列,故选项B错误;假设存在p>0,使得{a n+1﹣pa n}是等比数列,公比为q,则有a n+1﹣pa n=q(a n﹣pa n﹣1),所以a n+1=(p+q)a n﹣pqa n﹣1,由a n+2=3a n+1﹣a n,则,解得,所以存在,使得{a n+1﹣pa n}是等比数列,故选项D正确.故选:D.二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.计算lg2﹣lg=1;4=9.解:lg2﹣lg=lg2+lg5=lg10=1;4==9.故答案为:1;9.12.在△ABC中,A=,b=4,a=2,则B=,△ABC的面积等于2.解:因为在△ABC中,A=,b=4,a=2,由正弦定理,可得=,可得sin B=1,因为B∈(0,π),则B=,所以c===2,所以S△ABC=ac==2.故答案为:,2.13.若a>0,b>0,且a+b=1,则a2+b2的最小值等于,+的最大值等于.解:∵a>0,b>0,a+b=1,∴,,∴,∴a2+b2的最小值等于;∵,∴,∴的最大值等于.故答案为:.14.已知tanα=cosα,则cos2α+cos4α=1,=1.解:因为tanα==cosα,可得sinα=cos2α,则cos2α+cos4α=cos2α+sin2α=1,=====1.故答案为:1,1.15.一排11个座位,现安排2人就座,规定中间的3个座位不能坐,且2人不相邻,则不同排法的种数是44.解:根据题意,分2种情况讨论,①两个都在左边的4个座位或右边的4个座位就坐,有2×A22×3=12种排法,②两个人一人在左边4个座位,一个在右边4个座位就坐,有2×CA41×C41=32种排法,则一共有12+32=44种不同的排法,故答案为:4416.平面向量,的夹角为60°,且|﹣|=1,则•(+2)的最大值为.解:设||=a,||=b,则由|﹣|=1,平方得||2+||2﹣2•=1,即a2+b2﹣2ab×=1,即a2+b2﹣ab=1,则•(+2)=||2+2•=a2+ab,∵a2+ab===,令m=,则m>0,则原式==,再设t=1+m,则t>1,则m=t﹣1.则===≤===,当且仅当t=,即t=时,取等号,即•(+2)的最大值为,故答案为:.17.在棱长为的正方体ABCD﹣A1B1C1D1中,棱BB1,B1C1的中点分别为E,F,点P在平面BCC1B1内,作PQ⊥平面ACD1,垂足为Q.当点P在△EFB1内(包含边界)运动时,点Q的轨迹所组成的图形的面积等于.解:连结BD交AC于点O,连结OD1,B1D交于点H,设G为CD1的中点,因为AC⊥BD,AC⊥BB1,BB1∩BD=B,BB1,BD⊂平面BB1D,所以AC⊥平面BB1D,因为B1D⊂平面BB1D,所以B1D⊥AC,同理可证B1D⊥AD1,又AC∩AD1=A,AC,AD1⊂平面ACD1,所以B1D⊥平面ACD1,即点B1在平面ACD1的投影为H,且D1H=2HO,同理,点E,F在面ACD1的投影分别为O,G,所以△EFB1在平面ACD1的投影为△OGH,又,所以,所以点Q的轨迹所组成的图形的面积S=.故答案为:.三、解答题:本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.18.已知函数f(x)=sin(ωx+)cos(ωx+)(ω>0)的最小正周期为π.(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)在锐角△ABC中,若sin A sin C﹣sin2C=sin2A﹣sin2B,求f(B)的值.解:(I)函数f(x)=sin(ωx+)cos(ωx+)=(sinωx+cosωx)(cosωx﹣sinωx)=cos2ωx﹣sin2ωx=×﹣×=cos2ωx﹣,因为函数f(x)最小正周期为π,由T==π,且ω>0,解得ω=1,所以f(x)=cos2x﹣,令2kπ﹣π≤2x≤2kπ,k∈Z,解得kπ﹣≤x≤kπ,k∈Z,可得函数f(x)的单调递增区间为:[kπ﹣,kπ],k∈Z.(II)由sin A sin C﹣sin2C=sin2A﹣sin2B得:ac﹣c2=a2﹣b2,即a2+c2﹣b2=ac,∴cos B===,又B为锐角,可得B=,∴f(B)=cos﹣=﹣=.19.已知函数f(x)=x2﹣ax﹣|ax﹣2|(a>0).(Ⅰ)若a=2,解不等式f(x)<0;(Ⅱ)设x1,x2,x3,x4是函数y=f(x)+1的四个不同的零点,且x1<x2<x3<x4.问是否存在实数a,使得x2,x3,x4成等差数列?若存在,求出所有a的值;若不存在,说明理由.解:(Ⅰ)当a=2时,不等式f(x)<0,即x2﹣2x﹣|2x﹣2|=|x﹣1|2﹣2|x﹣1|﹣1<0,所以0≤|x﹣1|<,解得,故不等式f(x)<0的解集为{x|};(Ⅱ)因为f(x)=x2﹣ax﹣|ax﹣2|(a>0),则,又y=f(x)+1有四个不同的零点,所以△=4a2﹣12>0且,解得,因为x1<x2<x3<x4,当时,f(x)+1=x2﹣1=0,可得x1=﹣1,x2=1,所以x3,x4是x2﹣2ax+3=0的两个根,若x2,x3,x4成等差数列,则,所以,代入方程x2﹣2ax+3=0可得,,解得或﹣2(舍),综上可知,存在使得x2,x3,x4成等差数列.20.在三棱锥A﹣BCD中,△BCD为等腰直角三角形,点E,G分别是线段BD,CD的中点,点F在线段AB上,且BF=2FA.若AD=1,AB=,CB=CD=.(Ⅰ)求证:AG∥平面CEF;(Ⅱ)求直线AD与平面CEF所成的角.【解答】(Ⅰ)证明:连接BG交EC于H,连接FH,则点H为△BCD的重心,有,∵,∴FH∥AG,且FH⊂平面CEF,AG⊄平面CEF,则AG∥平面CEF;(Ⅱ)解:∵BF=,BE=1,∠ABD=30°,∴EF2=BF2+BE2﹣2BE•BF•cos∠ABD==,故BF2=BE2+EF2,∴BE⊥EF,又由已知,CE⊥BD,CE∩EF=E,则BD⊥平面CEF,过F作AD的平行线FP,交BD于P,则PE⊥CEF,故∠PFE为直线AD与平面CEF所成的角,且FP=,EP=,∠FEP=90°,∴sin,得直线AD与平面CEF所成的角为.21.在数列{a n}中,a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0.(Ⅰ)若q k=2,求a1+a3+a5+…+a2k﹣1;(Ⅱ)若a2k,a2k+1,a2k+2(k∈N*)成等差数列,公差为d k,设b k=.①求证:{b n}为等差数列;②若d1=2,求数列{d k}的前k项和D k.【解答】(Ⅰ)解:因为a1=1,a2k﹣1,a2k,a2k+1(k∈N*)成等比数列,公比为q k>0,所以,则a1+a3+a5+…+a2k﹣1==;(Ⅱ)①证明:因为a2k,a2k+1,a2k+2(k∈N*)成等差数列,所以2a2k+1=a2k+a2k+2,即,则,即b k+1﹣b k=1,所以数列{b n}为等差数列,公差为1;②解:若d1=2,所以a3=a2+2,则有,所以a2=2或a2=﹣1;当a2=2时,q1=2,所以b1=1,则b k=1+(k﹣1)×1=k,即,解得,所以,则=,所以,则d k=a2k+1﹣a2k=k+1,故;若a2=﹣1时,q1=﹣1,所以,则,即,解得,则=,则,所以d k=a2k+1﹣a2k=4k﹣2,故.综上所述,或.22.已知函数f(x)=xlnx﹣a(x+1)2,a∈R恰好有两个极值点x1,x2(x1<x2).(Ⅰ)求证:存在实数m∈(),使0<a<m;(Ⅱ)求证:﹣<f(x1)<﹣.【解答】证明:(Ⅰ)f′(x)=lnx+1﹣a(x+1),x>0,结合题意,lnx+1﹣a(x+1)=0,即lnx+1=a(x+1)存在2个不同正根,先考虑y=a(x+1)与y=lnx+1相切,记切点横坐标为x0,则,解得:,记g(x)=xlnx﹣1,x>0,则g′(x)=1+lnx,令g′(x)=0,解得:x=,故y=g(x)在(0,)递减,在(,+∞)递增,且g(1)=﹣1<0,g(2)=ln4﹣1>0,故存在唯一x0∈(1,2),使得x0lnx0=1成立,取m=∈(,1),则0<a<m时,f(x)恰有2个极值点,得证;(Ⅱ)由(Ⅰ)知:f′(x1)=lnx1+1﹣a(x1+1),且<x1<x0<2,故a=,代入f(x1),得f(x1)=(x1lnx1﹣x1﹣lnx1﹣1),设h(x)=(xlnx﹣x﹣lnx﹣1),h′(x)=(lnx﹣),<x<2,由h′(x0)=0,得lnx0=,即x0lnx0=1,则x∈(,x0)时,h′(x)<0,x∈(x0,2),h′(x)>0,故h(x)在(,x0)递减,在(x0,2)递增,h(x)>h(x0)=(x0lnx0﹣lnx0﹣x0﹣1)=(1﹣﹣x0﹣1)=﹣(x0+),∵x0∈(1,2),∴x0+∈(2,),∴h(x0)∈(﹣,﹣1),故h(x)>﹣,即f(x1)>﹣,而h(x)<h()=﹣>h(2)=(ln2﹣3),故:﹣<f(x1)<﹣.。

浙江省宁波外国语学校2022-2023学年九年级上学期第一次月考数学试卷(含解析)

浙江省宁波外国语学校2022-2023学年九年级上学期第一次月考数学试卷(含解析)

2022-2023学年浙江省宁波外国语学校九年级(上)第一次月考数学试卷一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)若(a﹣b):a=1:15,则a:b=()A.1:15B.4:5C.15:14D.14:152.(4分)下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.3.(4分)如图,AD∥BE∥CF,点B,E分别在AC,DF上,DE=2,EF=AB=3,则BC 长为()A.B.2C.D.44.(4分)在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC的值为()A.B.C.D.5.(4分)两个相似三角形的一组对应边分别为6cm和8cm,如果较小三角形的周长为27cm,那么较大三角形的周长为()A.30cm B.36cm C.45cm D.54cm6.(4分)菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是()A.B.C.tanα=D.sinα=7.(4分)如图,取一张长为a、宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.B.a=2b C.D.8.(4分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm9.(4分)如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=()A.B.C.D.10.(4分)如图,在正方形ABCD中,E,F分别为AD,CD的中点,BF与CE相交于点H,直线EN交CB的延长线于点N,作CM⊥EN于点M,交BF于点G,且CM=CD,有以下结论:①BF⊥CE;②ED=EN;③tan∠ENC=;④S四边形DEHF=4S△CHF,其中正确结论的个数为()A.1个B.2个C.3个D.4个二、填空题(每小题5分,共30分)11.(5分)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B=.12.(5分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=.13.(5分)在△ABC中,如果∠A、∠B满足|tan A﹣1|+(cos B﹣)2=0,那么∠C=.14.(5分)已知△ABC中,AB=4,AC=6,D是AB的中点,E为AC边上的点,△ADE 与△ABC相似,则AE=.15.(5分)晚上,小亮(GH)走在大街上,他发现:当他站在大街两边的两盏路灯(AB 和CD)之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为米.16.(5分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为.三、解答题(本题有8小题,第17、18、19、20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)计算:(1)+tan60°(2)2cos45°•sin45°﹣2sin30°•tan45°+•tan60°.18.(8分)在△ABC中,∠C=90°,BC=3,∠A=30°,求∠B和AC,AB的长.19.(8分)如图,方格纸中的每个小正方形的边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图1中画出一个格点△A1B1C1,使得△A1B1C1与△ABC相似,周长之比为2:1;(2)在图2中画出一个格点△A2B2C2,使得△A2B2C2与△ABC相似,面积之比为2:1.20.(8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?21.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C 同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B 出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.22.(12分)已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,点E、F 分别是AC、AB边上的一动点,连接EF,将纸片的一角AEF沿EF折叠.(1)若折叠后点A落在AB边上的点D处(如图1),且S四边形ECBD=3S△EDF,求AE的长;(2)若AE=AF,折叠后点A的对应点为点M(如图2),连结BM.①若点M恰好在BC边上(如图3),求EF的长.②求BM的最小值.23.(12分)如图,四边形ABCD中,AB=AD,边BC、CD的垂直平分线交于四边形内部一点O,连接BO、DO,已知BO∥AD.(1)判断四边形ABOD的形状?并证明你的结论;(2)连接AO并延长,交BC于点E,若CE=2,BE=6,∠ODC=45°.①求AB的长.②若∠BAD=135°,求AO•AE的值.24.(14分)类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,(1)尝试探究如图(1),在正方形ABCD中,对角线AC、BD相交于点O,点E是BC边上一点,AE 与BD交于点G,过点E作EF⊥AE交AC于点F,若,则的值是;(2)拓展迁移如图(2),在矩形ABCD中,过点B作BH⊥AC于点O,交AD于点H,点E是BC边上一点,AE与BH相交于点G,过点E作EF⊥AE交AC于点F.①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;②若,=b(a>0,b>0),求的值(用含a,b的代数式表示).2022-2023学年浙江省宁波外国语学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(每小题4分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)若(a﹣b):a=1:15,则a:b=()A.1:15B.4:5C.15:14D.14:15【分析】根据比例式的分比性质,可得:,通过整理可知:,即可推出a:b=15:14.【解答】解:∵(a﹣b):a=1:15,∴,∴,∴a:b=15:14.故选:C.【点评】本题主要考查比例式的性质,关键在于熟练运用比例式的分比性质,认真的进行计算.2.(4分)下列四个选项中的三角形,与图中的三角形相似的是()A.B.C.D.【分析】由于已知三角形和选择项的三角形都放在小正方形的网格中,设正方形的边长为1,所以每一个三角形的边长都是可以表示出,然后根据三角形的对应边成比例即可判定选择项.【解答】解:设小正方形的边长为1,那么已知三角形的三边长分别为,2,,所以三边之比为1:2:.A、三角形的三边分别为2,,3,三边之比为::3,故本选项错误;B、三角形的三边分别为2,4,2,三边之比为1:2:,故本选项正确;C、三角形的三边分别为2,3,,三边之比为2:3:,故本选项错误;D、三角形的三边分别为,,4,三边之比为::4,故本选项错误.故选:B.【点评】此题主要考查了相似三角形的判定,属于基础题,掌握三边对应成比例的两个三角形相似是解答本题的关键,难度一般.3.(4分)如图,AD∥BE∥CF,点B,E分别在AC,DF上,DE=2,EF=AB=3,则BC 长为()A.B.2C.D.4【分析】根据平行线分线段成比例定理即可得出答案.【解答】解:∵AD∥BE∥CF,∴=,∵DE=2,EF=AB=3,∴=,∴BC=,故选:A.【点评】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键.4.(4分)在正方形网格中,∠BAC如图放置,点A,B,C都在格点上,则sin∠BAC的值为()A.B.C.D.【分析】连接BC,则利用勾股定理可得AC=,BC=,AB=,从而可得∠ACB=90°,在RT△ABC中求解sin∠BAC的值即可.【解答】解:连接BC,则可得AC=,BC=,AB=,∵AC2+BC2=AB2,∴∠ACB=90°,在RT△ABC中,sin∠BAC===.故选:C.【点评】此题考查了特殊角的三角函数值,属于基础题,解答本题的关键是求出AB、AC、BC的长度,判断出△ABC是直角三角形.5.(4分)两个相似三角形的一组对应边分别为6cm和8cm,如果较小三角形的周长为27cm,那么较大三角形的周长为()A.30cm B.36cm C.45cm D.54cm【分析】由两个相似三角形的一组对应边分别为6cm和8cm,可求得相似比,又由相似三角形的周长的比等于相似比,较小三角形的周长为27cm,即可求得答案.【解答】解:∵两个相似三角形的一组对应边分别为6cm和8cm,∴相似比为:6:8=3:4,∴周长比为:3:4,∵较小三角形的周长为27cm,∴较大三角形的周长为:27×=36(cm).故选:B.【点评】此题考查了相似三角形的性质.此题比较简单,注意掌握相似三角形的周长比等于相似比定理的应用是解此题的关键.6.(4分)菱形ABCD的对角线AC=6,BD=8,∠ABD=α,则下列结论正确的是()A.B.C.tanα=D.sinα=【分析】首先根据菱形的性质可得AC⊥DB,AO=CO=AC,BO=DO=BD,再利用勾股定理计算出AB长,然后根据锐角三角函数定义分别进行计算可得答案.【解答】解:∵四边形ABCD是菱形,∴AC⊥DB,AO=CO=AC,BO=DO=BD,∵AC=6,BD=8,∴AO=3.BO=4,∴AB==5,∴sinα=,cosα=,tanα=,故选:D.【点评】此题主要考查了菱形的性质,以及锐角三角函数,关键是掌握菱形的对角线互相垂直、平分.7.(4分)如图,取一张长为a、宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.B.a=2b C.D.【分析】根据题意可得:对折两次后得到的小长方形纸片的长为b,宽为a,然后利用相似多边形的性质可得=,进行计算即可解答.【解答】解:由题意得:对折两次后得到的小长方形纸片的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴b2=a2,∴a2=4b2,∴a=2b,故选:B.【点评】本题考查了相似多边形的性质,矩形的性质,翻折变换(折叠问题),熟练掌握相似多边形的性质是解题的关键.8.(4分)如图,AC是⊙O的直径,弦BD⊥AO于E,连接BC,过点O作OF⊥BC于F,若BD=8cm,AE=2cm,则OF的长度是()A.3cm B.cm C.2.5cm D.cm【分析】根据垂径定理得出AB的长,进而利用中位线定理得出OF即可.【解答】解:连接AB,OB,∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm,在Rt△ABE中,AE2+BE2=AB2,即AB=,∵OA=OC,OB=OC,OF⊥BC,∴BF=FC,∴OF=.故选:D.【点评】此题考查垂径定理,关键是根据垂径定理得出OE的长.9.(4分)如图,正方形ABCD中,内部有6个全等的正方形,小正方形的顶点E、F、G、H分别在边AD、AB、BC、CD上,则tan∠DEH=()A.B.C.D.【分析】设大正方形的边长为25,如图,过点G作GP⊥AD,垂足为P,可以得到△BGF ∽△PGE,再根据相似三角形对应边成比例的性质列式求解即可得到DE和BG,根据勾股定理可求EG的长,进而求出每个小正方形的边长.进而求出tan∠DEH的值.【解答】解:如图所示:设正方形ABCD边长为25,∴∠A=∠B=90°,AB=25,过点G作GP⊥AD,垂足为P,则∠4=∠5=90°,∴四边形APGB是矩形,∴∠2+∠3=90°,PG=AB=25,∵六个大小完全一样的小正方形如图放置在大正方形中,∴∠1+∠2=90°,∴∠1=∠FGB,∴△BGF∽△PGE,∴,∴,∴GB=5.∴AP=5.同理DE=5.∴PE=AD﹣DE﹣AP=25﹣5﹣5=15,PG=25,∴tan∠DEH=tan∠1=PE:PG=3:5故选:A.【点评】本题主要考查了利用相似三角形的判定和相似三角形对应边成比例的性质和勾股定理,综合性较强,正确的作出辅助线是解题的关键.10.(4分)如图,在正方形ABCD中,E,F分别为AD,CD的中点,BF与CE相交于点H,直线EN交CB的延长线于点N,作CM⊥EN于点M,交BF于点G,且CM=CD,有以下结论:①BF⊥CE;②ED=EN;③tan∠ENC=;④S四边形DEHF=4S△CHF,其中正确结论的个数为()A.1个B.2个C.3个D.4个【分析】①正确.由△CDE≌△BCF,推出∠CBF=∠ECD,由∠ECD+∠ECB=90°,推出∠CBF+∠BCE=90°,推出∠BHC=90°,推出BF⊥CE;②错误.利用HL证明Rt△CEM≌Rt△CED,根据全等三角形的性质得出ED=EM;③正确.首先证明NE=NC,设NE=CN=x,EM=DE=AE=a,则CM=CD=2a,在Rt△CNM中,可得(x﹣a)2+(2a)2=x2,推出x=a,由tan∠ENC=计算即可;④正确.易知△CHF∽△CDE,可得==()2==.【解答】解:∵四边形ABCD是正方形,∴BC=CD=AD,∠BCF=∠CDE=90°,∵E,F分别为AD,CD的中点,∴DE=AD,CF=CD,∴DE=CF,∴△CDE≌△BCF(SAS),∴∠CBF=∠ECD,∵∠ECD+∠ECB=90°,∴∠CBF+∠BCE=90°,∴∠BHC=90°,∴BF⊥CE,故①正确,∵CM=CD,∠CME=∠D=90°,CE=CE,∴Rt△CEM≌Rt△CED(HL),∴ED=EM,故②错误,∴∠CED=∠CEM=∠ECN,∴NE=NC,设NE=CN=x,EM=DE=AE=a,则CM=CD=2a,在Rt△CNM中,(x﹣a)2+(2a)2=x2,解得x=a,tan∠ENC===,故③正确,在Rt△CDE中,CE==a,∵∠CHF=∠D=90°,∠HCF=∠DCE,∴△CHF∽△CDE,∴=()2==,∴S四边形DEHF=4S△CHF,故④正确,故选:C.【点评】本题考查相似三角形的判定和性质、全等三角形的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.二、填空题(每小题5分,共30分)11.(5分)如图,在Rt△ABC中,∠C=90°,若sin A=,则cos B=.【分析】根据三角函数的定义即可得到cos B=sin A=.【解答】解:在Rt△ABC中,∠C=90°,∵sin A==,∴cos B==.故答案为:.【点评】本题考查了三角函数的定义,由定义可推出互余两角的三角函数的关系:若∠A+∠B=90°,则sin A=cos B,cos A=sin B.熟知相关定义是解题关键.12.(5分)已知点P是线段AB的黄金分割点,且AP>BP,AB=4,那么AP=2﹣2.【分析】根据黄金分割点的定义,知AP是较长线段;则AP=AB,代入数据即可得出AP的长.【解答】解:由于P为线段AB=4的黄金分割点,且AP是较长线段;则AP=AB=×4=2﹣2.故答案为2﹣2.【点评】本题考查了黄金分割的概念.应该识记黄金分割的公式:较短的线段=原线段的,较长的线段=原线段的.13.(5分)在△ABC中,如果∠A、∠B满足|tan A﹣1|+(cos B﹣)2=0,那么∠C=75°.【分析】先根据△ABC中,tan A=1,cos B=,求出∠A及∠B的度数,进而可得出结论.【解答】解:∵△ABC中,|tan A﹣1|+(cos B﹣)2=0∴tan A=1,cos B=∴∠A=45°,∠B=60°,∴∠C=75°.故答案为:75°.【点评】本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.14.(5分)已知△ABC中,AB=4,AC=6,D是AB的中点,E为AC边上的点,△ADE 与△ABC相似,则AE=3或.【分析】分类讨论:当△ADE∽△ABC时,=,即=;当△ADE∽△ACB时,=,即=,然后根据比例性质分别计算出对应的AE的值.【解答】解:当△ADE∽△ABC时,=,即=,则AE=3;当△ADE∽△ACB时,=,即=,则AE=,所以AE的长为3或.故答案为:3或.【点评】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形(多边形)的周长的比等于相似比;相似三角形的对应线段(对应中线、对应角平分线、对应边上的高)的比也等于相似比;相似三角形的面积的比等于相似比的平方.15.(5分)晚上,小亮(GH)走在大街上,他发现:当他站在大街两边的两盏路灯(AB 和CD)之间,并且自己被两边路灯照在地上的两个影子成一直线时,自己右边的影子长为3米,左边的影子长为1.5米.又知自己身高1.80米,两盏路灯的高相同,两盏路灯之间的距离为12米,则路灯的高为 6.6米.【分析】利用相似三角形的相似比,列出方程,通过解方程求出路灯的高即可.【解答】解:设路灯的高为x米,∵GH⊥BD,AB⊥BD,∴GH∥AB.∴△EGH∽△EAB.∴=①.同理△FGH∽△FCD,=②.∴==.∴=.解得:EB=11,代入①得=,解得x=6.6.答:路灯的高6.6米.故答案为:6.6.【点评】此题主要考查了相似三角形的应用,利用相似三角形的相似比,列出方程,通过解方程求出路灯的高,体现了转化的思想.16.(5分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=5,则BD的长为2.【分析】作DM⊥BC,交BC延长线于M,连接AC,由勾股定理得出AC2=AB2+BC2=25,求出AC2+CD2=AD2,由勾股定理的逆定理得出△ACD是直角三角形,∠ACD=90°,证出∠ACB=∠CDM,得出△ABC∽△CMD,由相似三角形的对应边成比例求出CM=2AB=6,DM=2BC=8,得出BM=BC+CM=10,再由勾股定理求出BD即可.【解答】解:作DM⊥BC,交BC延长线于M,连接AC,如图所示:则∠M=90°,∴∠DCM+∠CDM=90°,∵∠ABC=90°,AB=3,BC=4,∴AC2=AB2+BC2=25,∵CD=10,AD=5,∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°,∴∠ACB+∠DCM=90°,∴∠ACB=∠CDM,∵∠ABC=∠M=90°,∴△ABC∽△CMD,∴=,∴CM=2AB=6,DM=2BC=8,∴BM=BC+CM=10,∴BD===2,故答案为:2.【点评】本题考查了相似三角形的判定与性质、勾股定理、勾股定理的逆定理;熟练掌握相似三角形的判定与性质,证明由勾股定理的逆定理证出△ACD是直角三角形是解决问题的关键.三、解答题(本题有8小题,第17、18、19、20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)17.(8分)计算:(1)+tan60°(2)2cos45°•sin45°﹣2sin30°•tan45°+•tan60°.【分析】(1)将特殊角的三角函数值代入后进行化简求值即可;(2)将特殊角的三角函数值代入,然后化简二次根式,最后合并同类项即可.【解答】解:(1)原式=+=+;(2)原式=2××﹣2××1+×=1﹣1+3=3.【点评】本题考查了特殊角的三角函数值.应用中要熟记特殊角的三角函数值,一是按值的变化规律去记,正弦逐渐增大,余弦逐渐减小,正切逐渐增大;二是按特殊直角三角形中各边特殊值规律去记.18.(8分)在△ABC中,∠C=90°,BC=3,∠A=30°,求∠B和AC,AB的长.【分析】在Rt△ABC中,利用直角三角形的两个锐角互余求出∠B=60°,然后利用含30度角的直角三角形的性质,进行计算即可解答.【解答】解:∵∠C=90°,BC=3,∠A=30°,∴∠B=90°﹣∠A=60°,AB=2BC=6,∴AC=BC=3,∴∠B=60°,AB=6,AC=3.【点评】本题考查了解直角三角形,含30度角的直角三角形,熟练掌握含30度角的直角三角形的性质是解题的关键.19.(8分)如图,方格纸中的每个小正方形的边长都是1,△ABC是格点三角形(顶点在方格顶点处).(1)在图1中画出一个格点△A1B1C1,使得△A1B1C1与△ABC相似,周长之比为2:1;(2)在图2中画出一个格点△A2B2C2,使得△A2B2C2与△ABC相似,面积之比为2:1.【分析】(1)根据相似三角形的性质,把△ABC的边长扩大2倍即可.(2)根据相似三角形的性质,把△ABC的边长扩大倍即可.【解答】解:(1)如图,△A1B1C1即为所求作.(2)如图,△A2B2C2即为所求作.【点评】本题考查作图﹣相似变换,三角形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.(8分)如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据:≈1.732).(1)若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9米;(2)一座建筑物GH距离坡角A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面内,点C、A、G 在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?【分析】(1)根据题意得出,∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,进而得出EF的长,即可得出答案;(2)利用在Rt△DP A中,DP=AD,以及P A=AD•cos30°进而得出DM的长,利用HM=DM•tan30°得出即可.【解答】解:(1)∵修建的斜坡BE的坡角(即∠BEF)不大于45°,∴∠BEF最大为45°,当∠BEF=45°时,EF最短,此时ED最长,∵∠DAC=∠BDF=30°,AD=BD=30,∴BF=EF=BD=15,DF=15,故:DE=DF﹣EF=15(﹣1)≈10.9(米);若修建的斜坡BE的坡角(即∠BEF)不大于45°,则平台DE的长最多为10.9m;(2)过点D作DP⊥AC,垂足为P.在Rt△DP A中,DP=AD=×30=15,P A=AD•cos30°=×30=15.在矩形DPGM中,MG=DP=15,DM=PG=15+27,在Rt△DMH中,HM=DM•tan30°=×(15+27)=15+9.GH=HM+MG=15+15+9≈45.6.答:建筑物GH高约为45.6米.【点评】此题主要考查了解直角三角形中坡角问题,根据图象构建直角三角形,进而利用锐角三角函数得出是解题关键.21.(10分)如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.动点M,N从点C 同时出发,均以每秒1cm的速度分别沿CA、CB向终点A,B移动,同时动点P从点B 出发,以每秒2cm的速度沿BA向终点A移动,连接PM,PN,设移动时间为t(单位:秒,0<t<2.5).(1)当t为何值时,以A,P,M为顶点的三角形与△ABC相似?(2)是否存在某一时刻t,使四边形APNC的面积S有最小值?若存在,求S的最小值;若不存在,请说明理由.【分析】根据勾股定理求得AB=5cm.(1)分类讨论:△AMP∽△ABC和△APM∽△ABC两种情况.利用相似三角形的对应边成比例来求t的值;(2)如图,过点P作PH⊥BC于点H,构造平行线PH∥AC,由平行线分线段成比例求得以t表示的PH的值;然后根据“S=S△ABC﹣S△BPH”列出S与t的关系式S=(t﹣)2+(0<t<2.5),则由二次函数最值的求法即可得到S的最小值.【解答】解:∵如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm.∴根据勾股定理,得=5cm.(1)以A,P,M为顶点的三角形与△ABC相似,分两种情况:①当△AMP∽△ABC时,=,即=,解得t=;②当△APM∽△ABC时,=,即=,解得t=0(不合题意,舍去);综上所述,当t=时,以A、P、M为顶点的三角形与△ABC相似;(2)存在某一时刻t,使四边形APNC的面积S有最小值.理由如下:假设存在某一时刻t,使四边形APNC的面积S有最小值.如图,过点P作PH⊥BC于点H.则PH∥AC,∴=,即=,∴PH=t,∴S=S△ABC﹣S△BPN,=×3×4﹣×(3﹣t)•t,=(t﹣)2+(0<t<2.5).∵>0,∴S有最小值.当t=时,S最小值=.答:当t=时,四边形APNC的面积S有最小值,其最小值是.【点评】本题综合考查了相似三角形的判定与性质、平行线分线段成比例,二次函数最值的求法以及三角形面积公式.解答(1)题时,一定要分类讨论,以防漏解.另外,利用相似三角形的对应边成比例解题时,务必找准对应边.22.(12分)已知一个直角三角形纸片ACB,其中∠ACB=90°,AC=4,BC=3,点E、F 分别是AC、AB边上的一动点,连接EF,将纸片的一角AEF沿EF折叠.(1)若折叠后点A落在AB边上的点D处(如图1),且S四边形ECBD=3S△EDF,求AE的长;(2)若AE=AF,折叠后点A的对应点为点M(如图2),连结BM.①若点M恰好在BC边上(如图3),求EF的长.②求BM的最小值.【分析】(1)由折叠的性质得出EF⊥AB,△AEF≌△DEF,得出S△AEF≌S△DEF,由已知得出S△ABC=4S△AEF,证明△AEF∽△ABC,得出=()2,即可求出AE的长;(2)①如图3中,漏解AM交EF于点O.证明四边形AEMF是菱形,求出菱形的边长,再利用相似三角形的性质求解即可;②由①可知,四边形AEMF是菱形,推出∠CAM=∠BAM,推出点M的运动轨迹是∠CAB的角平分线,推出当BM⊥AM时,BM的值最小.【解答】解:(1)如图1中,∵△ACB的一角沿EF折叠,折叠后点A落在AB边上的点D处,∴EF⊥AB,△AEF≌△DEF,∴S△AEF=S△DEF,∵S四边形ECBF=3S△EDF,∴S△ABC=4S△AEF,在Rt△ABC中,∵∠ACB=90°,AC=4,BC=3,∴AB===5,∵∠EAF=∠BAC,∴△AEF∽△ABC,∴=()2,即()2=,∴AE=;(2)①如图3中,连接AM交EF于点O.∵AE=AF,AE=EM,F A=FM,∴AE=E=MF=AF,∴四边形AEMF是菱形,∴FM∥AC,EF⊥AM,OE=OF,∴∠FMB=∠C=90°,设AF=FM=AE=EM=x,则BF=x,BM=x,∵AB=5,∴x+x=5,∴x=,∴AE=,BM=,CM=,∴AM===,∵∠EAO=∠CAM,∠AOE=∠C=90°,∴△AOE∽△ACM,∴=,∴=,∴OE=,∴EF=2OE=;②由①可知,四边形AEMF是菱形,∴∠CAM=∠BAM,∴点M的运动轨迹是∠CAB的角平分线,∴当BM⊥AM时,BM的值最小,此时BM=AB•sin∠MAN=5×=.【点评】本题是四边形综合题,考查了折叠的性质、相似三角形的判定和性质、勾股定理、菱形的判定和性质等知识;本题综合性强,有一定难度,证明三角形相似和运用勾股定理得出方程是解决问题的关键,属于中考常考题型.23.(12分)如图,四边形ABCD中,AB=AD,边BC、CD的垂直平分线交于四边形内部一点O,连接BO、DO,已知BO∥AD.(1)判断四边形ABOD的形状?并证明你的结论;(2)连接AO并延长,交BC于点E,若CE=2,BE=6,∠ODC=45°.①求AB的长.②若∠BAD=135°,求AO•AE的值.【分析】(1)连接AO、CO,根据中垂线知OB=OC=OD,证△ABO≌△ADO得∠BAO =∠DAO,由BO∥AD知∠BOA=∠DAO,从而得∠BAO=∠BOA,据此知AB=BO,继而得证;(2)连接CO、DE,设DE交OC于点P,先证△BOE≌△DOE得BE=DE、∠OBE=∠ODE,结合∠OBC=∠OCB知∠OCE=∠ODE,由∠EPC=∠OPD知∠CEP=∠DOP =90°,根据CE2+DE2=DC2知CE2+BE2=2AB2,代入计算可得;(3)由△BOE≌△DOE,∠DEB=90°知∠OEB=∠OED=45°,结合四边形ABOD是菱形,∠BAD=135°知∠ABO=45°,从而得∠ABO=∠AEB,证△ABO∽△AEB得AO •AE=AB2,代入计算可得.【解答】解:(1)四边形ABOD是菱形,理由如下:如图1,连接AO、CO,∵边BC、CD的垂直平分线交于点O,∴OB=OC=OD,又AB=AD,AO=AO,∴△ABO≌△ADO(SSS),∴∠BAO=∠DAO,∵BO∥AD,∴∠BOA=∠DAO,∴∠BAO=∠BOA,∴AB=BO,∴AB=BO=OD=AD,∴四边形ABOD是菱形;(2)如图2,连接CO、DE,设DE交OC于点P,∵∠ODC=45°,OC=OD,∴∠COD=90°,△OCD是等腰直角三角形,∴CD=OD=AB,∵四边形ABOD是菱形,∴∠DOA=∠BOA,∴∠BOE=∠DOE,在△BOE和△DOE中,∵,∴△BOE≌△DOE(SAS),∴BE=DE、∠OBE=∠ODE,∵∠OBC=∠OCB,∴∠OCE=∠ODE,又∵∠EPC=∠OPD,∴∠CEP=∠DOP=90°,在Rt△DCE中,CE2+DE2=DC2,即CE2+BE2=2AB2,∵CE=2,BE=6,∴2AB2=(2)2+(6)2=200,∴AB=10;(3)由(2)知△BOE≌△DOE,∠DEB=90°,∴∠OEB=∠OED=45°,∵四边形ABOD是菱形,∠BAD=135°,∴∠ABO=45°,∴∠ABO=∠AEB,又∵∠BAO=∠EAB,∴△ABO∽△AEB,∴=,∴AO•AE=AB2,∵AB=10,∴AO•AE=100.【点评】本题是相似形的综合问题,解题的关键是掌握菱形的判定与性质、全等三角形和相似三角形的判定与性质及等腰直角三角形的性质等知识点.24.(14分)类比转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整,(1)尝试探究如图(1),在正方形ABCD中,对角线AC、BD相交于点O,点E是BC边上一点,AE 与BD交于点G,过点E作EF⊥AE交AC于点F,若,则的值是;(2)拓展迁移如图(2),在矩形ABCD中,过点B作BH⊥AC于点O,交AD于点H,点E是BC边上一点,AE与BH相交于点G,过点E作EF⊥AE交AC于点F.①若∠BAE=∠ACB,sin∠EAF=,求tan∠ACB;②若,=b(a>0,b>0),求的值(用含a,b的代数式表示).【分析】(1)过E作EN⊥AC于N,EM⊥BD于M,由四边形ABCD是正方形,得到AC ⊥BD,∠ACB=∠DBC=45°,于是得到四边形OMEN是矩形,△BEM与△CEN是等腰直角三角形,求得=2,然后根据△EMG∽△ENF,即可得到结论;(2)①证出GA=GB,设GO=2a,则GA=3a,由勾股定理求出OA=a,由锐角三角函数的定义可得出答案;②过E作EN⊥AC于N,EM⊥BH于M,得到四边形OMEN是矩形,由△MEG∽△NEF,得到,由于△ABC∽△CNE,求出EN=,由于△BEM∽△BCO,得到,求出EM=a•CN,即可得到结论.【解答】解:(1)过E作EN⊥AC于N,EM⊥BD于M,∵四边形ABCD是正方形,∴AC⊥BD,∠ACB=∠DBC=45°,∴四边形OMEN是矩形,△BEM与△CEN是等腰直角三角形,∴∠MEN=90°,EM=BE,EN=CE,∵=2,∴=2,∵EF⊥AE,∴∠MEG=∠NEF,∴△EMG∽△ENF,∴,故答案为:.(2)①∵BH⊥AC,∴∠BOC=∠AOB=90°,∴∠ACB+∠OBC=90°,∵四边形ABCD是矩形,∴∠ABE=90°,∴∠ABO+∠OBC=90°,∴∠ACB=∠ABO,∵∠BAE=∠ACB,∴∠BAE=∠ABO,∴GA=GB,设GO=2a,∵sin∠EAF==,∴GA=3a,∴OA===a,∵OB=GB+OG=3a+2a=5a,∴tan∠ABO=,∴tan∠ACB=;②如图3中,过E作EN⊥AC于N,EM⊥BH于M,∵BH⊥AC,∴四边形OMEN是矩形,∴∠MEN=90°,∵AE⊥EF,∴∠MEG=∠NEF,∴△MEG∽△NEF,∴,∵∠ABC=∠CNE=90°,∠ACB=∠ECN,∴△ABC∽△ENC,∴=b,∴EN=,∵EM⊥BH,AC⊥BH,∴EM∥AC,∴△BEM∽△BCO,∴,∵=a,∴,∴,∵ON=EM,∴=a,∴EM=a•CN,∴=.【点评】本题是四边形综合题,考查了相似形的判定与性质、矩形的性质、正方形的性质等知识,解题的关键是正确寻找相似三角形解决问题,属于中考压轴题.。

江苏省镇江市外国语学校2024-2025学年九年级上学期第一次月考数学试题

江苏省镇江市外国语学校2024-2025学年九年级上学期第一次月考数学试题

江苏省镇江市外国语学校2024-2025学年九年级上学期第一次月考数学试题一、单选题1.已知Rt ABC V 中,90C o ∠=,3AC =,4BC =,以C 为圆心,r 为半径的圆与边AB 有两个交点,则r 的取值范围是( )A .125r =B .125r >C .34r <<D .1235r <≤ 2.关于x 的一元二次方程2(1)10a x x a -++-=的一个根为0,则实数a 的值为A .1-B .0C .1D .1-或1 3.一个等腰三角形的两条边长分别是方程2x 2﹣13x +15=0的两根,则该等腰三角形的周长是( )A .8B .11.5C .10D .8或11.5 4.已知a 是方程x 2+x ﹣1=0的一个根,则22211a a a ---的值为( )A B C .﹣1 D .1 5.关于x 的方程()20a x m b ++=的解是122,1=-=x x (a ,m ,b 均为常数,a ≠0),则方程()220a x m b +++=的解是( ) A .122,1=-=x xB .121,3==x xC .124,1=-=-x xD .无法求解6.已知关于x 的一元二次方程2104x x m -+=有实数根,设此方程得一个实数根为t ,令24454y t t m =--+,则( )A .2y >-B .2y ≥-C .2y ≤-D .2y <- 7.已知关于x 的方程25ax bx c ++=的一个根是2,且二次函数2y ax bx c =++的对称轴是直线2x =,则这条抛物线的顶点坐标为( )A .(2,3)-B .(2,1)C .(2,5)D .(5,2) 8.如图,在同一平面直角坐标系中,函数2(0)y ax a =+≠与22(0)y ax x a =--≠的图象可能是( )A .B .C .D .9.若抛物线2y x ax b =++与x 轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线1x =,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )A .()3,6--B .()3,0-C .()3,5--D .()3,1--二、填空题10.已知关于x 的方程(m +2)x ²+4m x +1=0是一元二次方程,则m 的取范围值是. 11.方程220210x x -=中较小的根是 .12.如图,在平面直角坐标系中,点A 、B 的坐标分别为(0,1)和,则OAB △外接圆的圆心坐标是 .13.若一个三角形两条边长为2和4,第三边长满足方程27100x x -+=,则此三角形的周长为.14.关于x 的一元二次方程2210kx x +-=有两个不相等的实数根,则k 的取值范围是. 15.如图,在等腰直角△ABC 中,斜边AB 的长度为8,以AC 为直径作圆,点P 为半圆上的动点,连接BP ,取BP 的中点M ,则CM 的最小值为.16.若一元二次方程20x x a -+=有实数根,则a 的取值范围是. 17.已知8ab -=,160ab +≤,则2+a b 的值为.18.如图,在△AOB 中,∠AOB =90°,∠A =30°,OB =4,以点O 为圆心,OB 为半径画弧,分别交OA 、AB 于点C 、D ,则图中阴影部分的面积是(结果保留π)19.已知抛物线y =ax 2+bx +c 的对称轴为直线x =2,与x 轴的一个交点坐标为(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②4a +b =0;③a ﹣b +c <0;④b 2>4ac ;⑤当x <2时,y 随x 的增大而增大,你认为其中正确的是 .(填序号)20.当1x ≤时,二次函数22()1y x m m =--++有最大值4,则实数m 的值为.三、解答题21.如图,AD 为ABC V 外接圆的直径,AD BC ⊥,垂足为点F ,ABC ∠的平分线交AD 于点E ,连接BD ,CD .(1)求证:BD CD =;(2)请判断B ,E ,C 三点是否在以D 为圆心,以DB 为半径的圆上?并说明理由.22.已知一元二次方程ax 2+bx +c =0的一个根为1,且a 、b 满足b ,求c 的值.23.已知关于x 的一元二次方程x 2﹣4x ﹣m 2=0.(1)求证:该方程有两个不相等的实数根;(2)若该方程的两个实数根x 1,x 2满足12123x x x x ++=,求m 的值.24.矩形ABCD 中,AB =17,BC P 在AB 边上,且满足AP =3PC ,求PB 之长.25.已知CD 为△ABC 的中线,∠A 及∠BDC 的度数分别是方程x 2-75x +1350=0的两根, (1)求∠A 及∠BDC 的度数;(2)求∠B 的度数.26.王老师提出问题:求代数式245x x ++的最小值.要求同学们运用所学知识进行解答.同学们经过探索、交流和讨论,最后总结出如下解答方法;解:22222454225(2)1x x x x x ++=++-+=++,2(2)0x +≥Q ,2(2)11x ∴++≥.当2(2)0x +=时,2(2)1x ++的值最小,最小值是1.245x x ∴++的最小值是1.请你根据上述方法,解答下列各题:(1)直接写出2(1)3x -+的最小值为 .(2)求代数式21032x x ++的最小值.(3)你认为代数式21253x x -++有最大值还是有最小值?求出该最大值或最小值. (4)若27110x x y -+-=,求x y +的最小值.27.如图一,AB 是O e 的直径,AC 是弦,直线EF 和O e 相切与点C ,AD EF ⊥,垂足为D .(1)求证:CAD BAC ∠=∠;(2)如图二,若把直线EF 向上移动,使得EF 与O e 相交于G ,C 两点(点C 在点G 的右侧),连结AC ,AG ,若题中其他条件不变,这时图中是否存在与CAD ∠相等的角.若存在,找出一个这样的角,并证明;若不存在,说明理由.。

2020-2021学年浙江金华婺城区婺州外国语学校九年级(上)第一次月考数学试卷(附答案详解)

2020-2021学年浙江金华婺城区婺州外国语学校九年级(上)第一次月考数学试卷(附答案详解)

2020-2021学年浙江省金华市婺城区婺州外国语学校九年级(上)第一次月考数学试卷(10月份)1.−2020的绝对值是( )A. −2020B. 2020C. −12020D. 120202.如图是由七个相同的小正方体摆成的几何体,则这个几何体的主视图是( )A.B.C.D.3.下列计算正确的是( )A. a3+a2=a5B. a3⋅a2=a6C. (2a2)3=6a6D. a6÷(−a)2=a44.本学期,大兴区开展了“恰同学少年,品诗词美韵”中华传统诗词大赛活动.小江统计了班级30名同学四月份的诗词背诵数量,具体数据如表所示:诗词数量(首)4567891011人数34457511那么这30名同学四月份诗词背诵数量的众数和中位数分别是( )A. 11,7B. 7,5C. 8,8D. 8,75.如图,圆锥的底面半径为1,母线长为3,则侧面积为( )A. 2πB. 3πC. 6πD. 8π6.若二次函数y=ax2+bx+c的x与y的部分对应值如下表:x−2−1012y830−10则抛物线的顶点坐标是( )A. (−1,3)B. (0,0)C. (1,−1)D. (2,0)7. 抢凳子是小时候常玩的游戏.人围成圈,将凳子放在中间,主持人开始敲鼓,此时人围着凳子按同一方向转圈.当敲击声停止时,就要抢坐在凳子上.因为凳子数量少于玩游戏的总人数,未抢坐到凳子上的玩家淘汰下场.现在甲、乙、丙3位同学准备玩抢凳子的游戏,谁先抢坐到凳子上谁获胜.如图,三人已站定,主持人要在他们中间放一个凳子,为使游戏公平,凳子应放在图中三角形的( )A. 三条高的交点B. 重心C. 内心D. 外心8. 某校美术社团为练习素描,他们第一次用120元买了若干本资料,第二次用240元在同一商家买同样的资料,这次商家每本优惠4元,结果比上次多买了20本.求第一次买了多少本资料?若设第一次买了x 本资料,列方程正确的是( )A. 240x−20−120x=4 B. 240x+20−120x =4 C.120x−240x−20=4D.120x−240x+20=49. 如图,点M 是正方形ABCD 边CD 上一点,连接AM ,作DE ⊥AM 于点E ,BF ⊥AM 于点F ,连接BE.若AF =1,四边形ABED 的面积为6,则∠EBF 的余弦值是( )A. 2√1313 B.3√1313 C. 23 D. √131310. 如图,点G 是△ABC 的重心,下列结论:①DGGB =12;②AEEB =EDBC ;③△EDG ∽△CBG ;④S 四边形AEGDS △ABC=13.其中正确的个数有( )A. 1个B. 2个C. 3个D. 4个11. 分解因式:4−x 2=______. 12. 如图,在△ABC 中,DE//BC ,AE EC=12,AD =2,则BD 长为______.13. 四张扑克牌的牌面如图①,将扑克牌洗匀后,背面朝上放置在桌面上如图②,随机同时抽取两张扑克牌,牌面数字是2和4的概率为______.14.如图所示,在直角坐标系中,A点坐标为(−3,4),⊙A的半径为2,P为x轴上一动点,PB切⊙A于点B,则PB最小值是______.15.如图,直线y=12x+2与双曲线y=kx相交于点A(m,3),与x轴交于点C.点P在x轴上,如果△ACP的面积为3,则点P的坐标是______.16.在平面直角坐标系xOy中,抛物线y=−x2+bx+c经过点A,B,C,已知A(−1,0),C(0,3),则抛物线的表达式为______,如图,抛物线顶点为E,EF⊥x轴于F点,N是线段EF上一动点,M(m,0)是x轴上一动点,若∠MNC=90∘,则实数m的取值范围为______.17.计算:−12019+(13)−2+(3.14−π)0−4cos30∘.18.解方程:4xx2−4−2x−2=1.19.如图,在6×6的网格中,每个小正方形的边长为1,点A在格点(小正方形的顶点)上.试在各网格中画出顶点在格点上,面积为6,且符合相应条件的图形.20.某校教职工为庆祝“建国70周年”开展学习强国知识竞赛,本次知识竞赛分为甲、乙、丙三组进行.下面两幅统计图反映了教师参加学习强国知识竞赛的报名情况,请你根据图中的信息回答下列问题:(1)该校教师报名参加本次学习强国知识竞赛的总人数为______人,并补全条形统计图;(2)该校教师报名参加丙组的人数所占圆心角度数是______;(3)根据实际情况,需从甲组抽调部分教师到丙组,使丙组人数是甲组人数的3倍,应从甲组抽调多少名教师到丙组?21.小张在甲楼A处向外看,由于受到前面乙楼的遮挡,最近只能看到地面D处,俯角为α.小颖在甲楼B处(B在A的正下方)向外看,最近能看到地面E处,俯角为β,地面上G,F,D,E 在同一直线上,已知乙楼高CF为10m,甲乙两楼相距FG为15m,俯角α=45∘,β=35∘.(1)求点A到地面的距离AG;(2)求A,B之间的距离.(结果精确到0.1m)(sin35∘≈0.57,cos35∘≈0.82,tan35∘≈0.70)22.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作CE⊥AC交AD的延长线于点E,F为CE的中点,连结DB,DF.(1)求∠CDE的度数.(2)求证:DF是⊙O的切线.(3)若tan∠ABD=3时,求AC的值.DE23.【发现问题】爱好数学的小明在做作业时碰到这样的一道题目:如图①,点O为坐标原点,⊙O的半径为1,点A(2,0).动点B在⊙O上,连结AB,作等边△ABC(A,B,C为顺时针顺序),求OC的最大值【解决问题】小明经过多次的尝试与探索,终于得到解题思路:在图①中,连接OB,以OB 为边在OB的左侧作等边三角形BOE,连接AE.(1)请你找出图中与OC相等的线段,并说明理由;(2)线段OC的最大值为______.【灵活运用】(3)如图②,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(5,0),点P为线段AB外一动点,且PA=2,PM=PB,∠BPM=90∘,求线段AM长的最大值及此时点P的坐标.【迁移拓展】(4)如图③,BC=4√2,点D是以BC为直径的半圆上不同于B、C的一个动点,以BD为边作等边△ABD,请直接写出AC的最值.24.如图,已知抛物线y=ax2+85x+c与x轴交于A、B两点,与y轴交于C点,且A(2,0)、C(0,−4),直线l:y=−12x−4与x轴交于点D,点P是抛物线y=ax2+85x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.(1)试求该抛物线表达式;(2)如图1,若点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;(3)如图2,过点P作PH⊥y轴,垂足为H,连接AC.①求证:△ACD是直角三角形;②试问是否存在这样的点P,使得以点P、C、H为顶点的三角形与△ACD相似?若存在,请直接写出点P的横坐标;若不存在,请说明理由.答案和解析1.【答案】B【解析】解:根据绝对值的概念可知:|−2020|=2020,故选:B.根据绝对值的定义直接进行计算.本题考查了绝对值.解题的关键是掌握绝对值的概念,注意掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.2.【答案】B【解析】解:从正面看易得左边第一列有2个正方形,中间第二列最有1个正方形,最右边一列有2个正方形在右上角处.故选:B.找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.本题考查了三视图的知识,主视图是从物体的正面看得到的视图.3.【答案】D【解析】解:A.a3+a2,无法合并,故此选项不合题意;B.a3⋅a2=a5,故此选项不合题意;C.(2a2)3=8a6,故此选项不合题意;D.a6÷(−a)2=a4,故此选项符合题意.故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别化简,进而判断得出答案.此题主要考查了合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算,正确掌握相关运算法则是解题关键.4.【答案】D【解析】【分析】本题考查中位数和众数的概念.掌握在一组数据中出现次数最多的数叫做这组数据的众数;将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数是解题的关键.根据众数和中位数的定义解答可得.【解答】解:这组数据中8出现的次数最多,则其众数为8;30个数据的中位数为第15、16个数据的平均数,则其中位数为7+72=7,故选:D.5.【答案】B【解析】解:圆锥的侧面积=12×2π×1×3=3π,故选:B.根据扇形面积公式计算,得到答案.本题考查的是圆锥的计算,理解圆锥的侧面展开图与原来的扇形之间的关系是解决本题的关键,理解圆锥的母线长是扇形的半径,圆锥的底面圆周长是扇形的弧长.6.【答案】C【解析】【分析】本题主要考查二次函数的性质,利用条件求得二次函数的解析式是解题的关键.由表中所给数据,可求得二次函数解析式,则可求得其顶点坐标.【解答】解:∵当x=0或x=2时,y=0,当x=1时,y=−1,∴{c=04a+2b+c=0a+b+c=−1,解得{a=1b=−2c=0,∴二次函数解析式为y=x2−2x=(x−1)2−1,∴抛物线的顶点坐标为(1,−1).故选C.7.【答案】D【解析】解:为了游戏公平,凳子的位置到三角形的三个顶点的距离相等,∴凳子放在三角形的外心处,故选:D.利用三角形的外心的性质解决问题即可.本题考查三角形的内心,重心,外心,游戏的公平性等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.8.【答案】D【解析】解:设他上月买了x本笔记本,则这次买了(x+20)本,根据题意得:120x −240x+20=4.故选:D.由设第一次买了x本资料,则设第二次买了(x+20)本资料,由等量关系:第二次比第一次每本优惠4元,即可得到方程.此题考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9.【答案】B【解析】解:∵四边形ABCD为正方形,∴BA=AD,∠BAD=90∘,∵DE⊥AM于点E,BF⊥AM于点F,∴∠AFB=90∘,∠DEA=90∘,∵∠ABF+∠BAF=90∘,∠EAD+∠BAF=90∘,∴∠ABF=∠EAD,在△ABF和△DEA中{∠BFA=∠DEA,∠ABF=EAD, AB=DA,∴△ABF≌△DAE(AAS),∴BF=AE;设AE=x,则BF=x,DE=AF=1,∵四边形ABED的面积为6,∴12⋅x⋅x+12⋅x⋅1=6,解得x1=3,x2=−4(舍去),∴EF=x−1=2,在Rt△BEF中,BE=√22+32=√13,∴sin∠EBF=BFBE=3√13=3√1313.故选:B.首先证明△ABF≌△DAE得到BF=AE;设AE=x,则BF=x,DE=AF=1,利用四边形ABED的面积等于△ABE的面积与△ADE的面积之和得到12⋅x⋅x+12⋅x⋅1=6,解方程求出x得到AE=BF=3,则EF=x−1=2,然后利用勾股定理计算出BE,最后利用余弦的定义求解.本题考查了正方形的性质:正方形的四条边都相等,四个角都是直角;正方形具有四边形、平行四边形、矩形、菱形的一切性质.会运用全等三角形的知识解决线段相等的问题.也考查了解直角三角形.10.【答案】C【解析】解:∵点G是△ABC的重心,∴D是AC的中点,E是AB的中点,∵DE//BC,DE=12BC,∴△AED∽△ABC,∴AEAB =EDBC,故②错误;∵DE//BC,∴∠DEG=∠BCG,∠EDG=∠CBG,∴△EDG∽△CBG,∴DGGB =DEBC=12,故①③正确;∵点G是△ABC的重心,∴DG:BD=1:3,∵AD=DC,∴S△ABD=12S△ABC,∵S△ADES△ABC =(EDBC)2=14,∴S△BDE=14S△ABC,∴S△DEG=13S△BDE=112S△ABC,∴S四边形AEGD =S△AED+S△DGE=14S△ABC+112S△ABC=13S△ABC,∴S四边形AEGDS△ABC=13,故④正确;故正确的有①③④,故选:C.根据重心的定义得出D是AC的中点,E是AB的中点,DG:BD=1:3,进而得出ED//BC,得出△AED∽△ABC,△EDG∽△CBG,根据相似三角形的性质得出DGGB =DEBC=12,AEAB=EDBC,S ADES△ABC=(ED BC )2=14,进而根据S△DEG=13S△BDE=112S△ABC,即可求得S四边形AEGD=S△AED+S△DGE=1 4S△ABC+112S△ABC=13S△ABC,即可求得S四边形AEGDS△ABC=13,即可得出答案.本题综合考查了三角形中位线的性质、平行线的判定和性质、相似三角形的判定和性质,综合性强,难度较大,解答时,需要学生具有综合运用知识的能力.11.【答案】(2−x)(2+x)【解析】解:4−x2=(2−x)(2+x),故答案为:(2−x)(2+x).直接利用平方差公式进行分解即可.此题主要考查了公式法分解因式,关键是掌握平方差公式:a2−b2=(a+b)(a−b).12.【答案】4【解析】解:∵在△ABC中,DE//BC,AEEC =12,AD=2,∴AEEC =ADBD,即2BD =12,解得:BD=4,故答案为:4结合平行线分线段成比例定理以及比例的基本性质解答即可.此题主要考查平行线分线段成比例定理:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.同时考查了比例的性质.13.【答案】16【解析】解:根据题意画树状图如下:共有12种等情况数,其中抽取两张扑克牌,牌面数字是2和4的有2种,则牌面数字是2和4的概率为212=16;故答案为:16.画树状图展示所有12种等可能的结果数,再出抽到两张牌的牌面数字之和是奇数的结果数,然后根据概率公式计算概率此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.14.【答案】2√3【解析】解:如图,连接AB,AP.根据切线的性质定理,得AB ⊥PB.要使PB 最小,只需AP 最小,则根据垂线段最短,则AP ⊥x 轴于P ,此时P 点的坐标是(−3,0),AP =4,在Rt △ABP 中,AP =4,AB =2,∴PB =√AP 2−AB 2=2√3.则PB 最小值是2√3.故答案为:2√3.此题根据切线的性质以及勾股定理,根据垂线段最短的性质进行分析,把要求PB 的最小值转化为求AP 的最小值,进而可以解决问题.本题考查了切线的性质和坐标与图形的性质.此题应先将问题进行转化,再根据垂线段最短的性质进行分析.15.【答案】(−2,0)或(−6,0)【解析】解:当y =0时,即12x +2=0,解得x =−4,∴直线y =12x +2与x 轴的交点C(−4,0),设点P(x,0),∵△ACP 的面积为3,∴12×|x +4|×3=3, 解得x =−2或x =−6,∴点P 的坐标为(−2,0)或(−6,0),故答案为:(−2,0)或(−6,0).根据一次函数图象上点的坐标特征可求出点C 的坐标,再根据三角形的面积公式列方程可求出点P 的坐标.本题考查反比例函数与一次函数的交点坐标,掌握一次函数图象上点的坐标特征以及三角形的面积公式是解决问题的关键.16.【答案】y =−x 2+2x +3−54≤m ≤5【解析】解:由题意得:{−1−b +c =0c =3, 解得:{b =2c =3, ∴抛物线解析式为y =−x 2+2x +3;∵y =−x 2+2x +3=−(x −1)2+4,∴E(1,4),设N(1,n),则0<n ≤4,∵∠MNC =90∘,∴CM 2=CN 2+MN 2,∴32+m 2=12+(3−n)2+(m −1)2+n 2整理得,m =n 2−3n +1,即m =(n −32)2−54, ∵0<n ≤4,当n =32时,m 最小值=−54,n =4时,m =5,综上,m 的取值范围为:−54≤m ≤5. 故答案为:y =−x 2+2x +3,−54≤m ≤5.由y =−x 2+bx +c 经过点A 、B 、C ,A(−1,0),C(0,3),利用待定系数法即可求得此抛物线的解析式;利用勾股定理得出关系式m =(n −32)2−54,然后根据n 的取值可得答案. 此题考查了待定系数法求函数的解析式、二次函数的最值问题以及直角三角形的性质等知识,解题的关键是掌握数形结合思想与方程思想的应用.17.【答案】解:−12019+(13)−2+(3.14−π)0−4cos30∘=−1+9+1−4×√32 =−1+9+1−2√3=9−2√3.【解析】先化简各式,然后再进行计算即可解答.本题考查了实数的运算,零指数幂,负整数指数幂,特殊角的三角函数值,准确熟练地进行计算是解题的关键.18.【答案】解:去分母得:4x −2(x +2)=x 2−4,整理得:x 2−2x =0,即x(x −2)=0,所以x =0或x −2=0,解得:x =0或x =2,检验:把x =2代入得:(x +2)(x −2)=0,把x =0代入得:(x +2)(x −2)≠0,∴x =2是增根,分式方程的解为x =0.【解析】方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.19.【答案】解:符合条件的图形如图所示.【解析】首先根据题意可知所作的三角形面积为6,则该三角形底与高的乘积为12,据此作图.对于后两个图,结合平行四边形的面积公式可得底与高的乘积为6,结合题干中A点的位置要求进行作图.本题考查作图-应用与设计,关键是灵活运用三角形的面积、平行四边形的面积与性质解决问题.20.【答案】(1)50;(2)180∘;(3)设应从甲组抽调x名教师到丙组,由题意得,25+x=3(15−x),解得,x=5.答:应从甲组抽调5名教师到丙组,丙组人数是甲组人数的3倍.【解析】解:(1)由条形图可知,甲组有15人,由扇形图可知,甲组人数所占的百分比为30%,∴该校教师报名参加本次学习强国知识竞赛的总人数为:15÷30%=50(人),则乙组人数为:50×20%=10(人),补全条形统计图如图所示:故答案为:50;(2)参加丙组的人数所占圆心角度数为:360∘×(1−20%−30%)=180∘,故答案为:180∘;(3)见答案.【分析】(1)根据条形统计图得到甲组有15人,根据扇形图得到甲组人数所占的百分比为30%,计算求出总人数,求出乙组人数,补全条形统计图;(2)根据丙组人数所占的百分比,求出丙组的人数所占圆心角度数;(3)根据题意列出一元一次方程,解方程得到答案.本题考查的是条形统计图、扇形统计图、一元一次方程的应用,读懂条形图和扇形图、掌握解一元一次方程应用题的一般步骤是解题的关键.21.【答案】解:(1)∵由已知得:∠AGD=∠BGE=∠CFD=90∘,∠CDF=α=45∘,∴DF=CF=10,DG=FG+FD=15+10=25,∴AG=GD=25,答:位置A离地面的垂直距离为25米;(2)∵∠CEF=β=35∘,∴CFEF=tan∠CEF=tan35∘≈0.70,∴EF=CF0.70=100.70≈14.29,∴EG=GF+EF=15+14.29=29.29,又∵BGEG=tan∠CEF=tan35∘≈0.70,∴BG=0.70EG=0.70×29.29≈20.50,∴AB≈25−20.50≈4.5.答:A,B相差4.5米.【解析】(1)先由等腰直角三角形的性质得出DF=CF,DG=FG+FD,进而可得出结论;(2)根据锐角三角函数的定义得出EF与BG的长,进而可得出结论.本题考查的是解直角三角形的应用-仰角俯角问题,熟记锐角三角函数的定义是解答此题的关键.22.【答案】解:(1)∵对角线AC为⊙O的直径,∴∠ADC=90∘,∴∠CDE=180∘−90∘=90∘;(2)如图,连接OD,∵∠CDE=90∘,F为CE的中点,∴DF=CF,∴∠FDC=∠FCD,∵OD=OC,∴∠ODC=∠OCD,∴∠FDC+∠ODC=∠FCD+∠OCD,即∠ODF=∠OCF,∵CE⊥AC,∴∠ODF=∠OCF=90∘,即OD⊥DF,∴DF是⊙O的切线.(3)∵∠E=90∘−∠ECD=∠DCA=∠ABD,∴tan∠E=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,∴AC=√(3x)2+(9x)2=3√10x,∴ACDE =3√10xx=3√10.【解析】(1)因为对角线AC为⊙O的直径,可得∠ADC=90∘,即∠CDE=90∘;(2)连接OD,证明DF=CF,可得∠FDC=∠FCD,因为OD=OC,可得∠ODC=∠OCD,即∠ODF=∠OCF=90∘,可得DF是⊙O的切线;(3)证明∠E=∠DCA=∠ABD,可得tan∠E=tan∠DCA=tan∠ABD=3,设DE=x,则CD=3x,AD=9x,在Rt△ADC中,求得AC的长,即可得出ACDE的值.本题考查圆的切线的判定,圆周角定理,锐角三角函数的定义.解题的关键是掌握圆的切线的判定方法.23.【答案】(1)如图①中,结论:OC=AE,理由:∵△ABC,△BOE都是等边三角形,∴BC=BA,BO=BE,∠CBA=∠OBE=60∘,∴∠CBO=∠ABE,∴△CBO≌△ABE,∴OC=AE.(2)3;(3)如图1,连接BM,∵将△APM绕着点P顺时针旋转90∘得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(5,0),∴OA=2,OB=5,∴AB=3,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值(如图2中)最大值=AB+AN,∵AN=√2AP=2√2,∴最大值为2√2+3;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE=√2,∴OE=BO−AB−AE=5−3−√2=2−√2,∴P(2−√2,√2).(4)AC的最大值为2√2+2√6.AC的最小值为2√6−2√2.【解析】解:(1)见答案.(2)在△AOE中,AE≤OE+OA,∴当E、O、A共线,∴AE的最大值为3,∴OC的最大值为3.故答案为3.(3)见答案.(4)如图4中,以BC为边作等边三角形△BCM,∵∠ABD=∠CBM=60∘,∴∠ABC=∠DBM,∵AB=DB,BC=BM,∴△ABC≌△DBM,∴AC=MD,∴欲求AC的最大值,只要求出DM的最大值即可,∵BC=4√2=定值,∠BDC=90∘,∴点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大,最大值=2√2+2√2,∴AC的最大值为2√2+2√6.当点A在线段BD的右侧时,同法可得AC的最小值为2√6−2√2,故答案为:AC的最大值为2√2+2√6,AC的最小值为2√6−2√2.【分析】(1)结论:OC=AE.只要证明△CBO≌△ABE即可;(2)利用三角形的三边关系即可解决问题;(3)连接BM,将△APM绕着点P顺时针旋转90∘得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2√2+3;过P作PE⊥x轴于E,根据等腰直角三角形的性质,即可得到结论;(4)如图4中,以BC为边作等边三角形△BCM,由△ABC≌△DBM,推出AC=MD,推出欲求AC的最大值,只要求出DM的最大值即可,由BC=4√2=定值,∠BDC=90∘,推出点D在以BC为直径的⊙O上运动,由图象可知,当点D在BC上方,DM⊥BC时,DM的值最大;本题考查四边形综合题、等边三角形的性质、等腰直角三角形的性质、全等三角形的判定和性质、圆等知识,正确的作出辅助线构造全等三角形是解题的关键,学会用转化的思想思考问题,掌握旋转法添加辅助线,属于中考压轴题.24.【答案】解:(1)把A(2,0)、C(0,−4)代入y=ax2+85x+c中得:{4a+165+c=0c=−4,解得:{a=15c=−4,∴该抛物线表达式为:y=15x2+85x−4;(2)如图1,设点P的坐标为(x,15x2+85x−4),则F(x,−12x−4),∵点P在第三象限,∴PF=(−12x−4)−(15x2+85x−4)=−15x2−2110x,∵C(0,−4),∴OC=4,∵四边形PCOF是平行四边形,且PF//OC,∴PF=OC=4,即−15x2−2110x=4,2x2+21x+40=0,(x+8)(2x+5)=0,x1=−8,x2=−2.5,当y=0时,15x2+85x−4=0,解得:x1=−10,x2=2,∴P的坐标为(−8,−4)或(−2.5,−274);(3)①当y=0时,−12x−4=0,x=−8,∴D(−8,0),由勾股定理得:DC2=82+42=80,AC2=22+42=20,AD2=102=100,∴AD2=AC2+DC2,∴∠ACD=90∘,∴△ACD是直角三角形;②设点P的坐标为(x,15x2+85x−4),由①知:∠ACD=90∘,∠PHC=90∘,AC=√20=2√5,CD=√80=4√5,∴AC CD=12如图3,点P在第一象限,当△ACD∽△PHC时,则ACCD =PHCH=2√54√5=12,∴CH=2PH,∴15x2+85x−4−(−4)=2x,解得:x1=0(P与C重合,舍),x2=2,∴此时点P的横坐标为2;如图4,点P在第一象限,当△ACD∽△CHP时,则ACCD =CHPH=12,∴PH=2CH,∴−x=2[−4−(15x2+85x−4)],解得:x1=0(舍),x2=−5.5,∴此时点P的横坐标为−5.5;如图5,点P在第二象限,当△ACD∽△CHP时,则ACCD =CHPH=12,∴PH=2CH,∴−x=2[(15x2+85x−4)−(−4)],解得:x1=0(舍),x2=−10.5,∴此时点P的横坐标为−10.5(P在直线l上);如图6,点P在第二象限,当△ACD∽△PHC时,则ACCD =PHCH=12,∴CH=2PH,∴[(15x2+85x−4)−(−4)]=−2x,解得:x1=0(舍),x2=−18,∴此时点P的横坐标为−18;综上所述,点P的横坐标为2或−5.5或−10.5或−18时,使得以点P、C、H为顶点的三角形与△ACD 相似.【解析】(1)利用待定系数法求抛物线的解析式;(2)先设点P的坐标为(x,15x2+85x−4),根据PF//OC,可知点P的横坐标和点F的横坐标相等,则可得F(x,−12x−4),根据点P在第三象限,表示PF的长,由四边形PCOF是平行四边形,则PF=OC=4,列方程可得结论;(3)①根据勾股定理计算△ACD三边的平方,并由勾股定理的逆定理可得:△ACD是直角三角形;②根据点P在各个象限上,利用△ACD两直角边的比为1:2,并利用相似比列方程可得结论,注意点P与A重合时也成立.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、平行四边形的性质、勾股定理的逆定理、相似三角形的性质,依据平行线的对边相等列出关于x 的方程是解答问题(2)的关键,利用相似三角形的性质列出关于x的方程是解答问题(3)的关键,并注意运用分类讨论的思想,不要丢解.。

2019-2020学年天津外国语大学附属外国语学校九年级(上)第一次月考数学试卷 (含解析)

2019-2020学年天津外国语大学附属外国语学校九年级(上)第一次月考数学试卷 (含解析)

2019-2020学年天津外国语大学附属外国语学校九年级(上)第一次月考数学试卷一、选择题(本大题共10小题,共30.0分)1.下列安全标志图中,是中心对称图形的是()A. B. C. D.2.已知1≤x≤52,那么函数y=−x2+4x−3的最大值为()A. 0B. 34C. 1 D. 523.如果将抛物线y=x2+2向下平移1个单位,那么所得抛物线的解析式是()A. y=(x−1)2+2B. y=(x+1)2+2C. y=x2+1D. y=x2+34.点P1(−1,y1),P2(3,y2),P3(5,y3)均在二次函数y=−x2+2x+3的图象上,则y1,y2,y3的大小关系是()A. y3>y2>y1B. y3>y1=y2C. y1>y2>y3D. y1=y2>y35.在同一平面直角坐标系中,函数y=ax+b与y=bx2+ax的图象可能是()A. B.C. D.6.在平面内由极点、极轴和极径组成的坐标系叫做极坐标系.如图,在平面上取定一点O称为极点;从点O出发引一条射线Ox称为极轴;线段OP的长度称为极径.点P的极坐标就可以用线段OP的长度以及从Ox转动到OP的角度(规定逆时针方向转动角度为正)来确定,即P(3,60°)或P(3,−300°)或P(3,420°)等,则点P关于点O成中心对称的点Q的极坐标表示不正确的是()A. Q(3,240°)B. Q(3,−120°)C. Q(3,600°)D. Q(3,−500°)7.二次函数y=ax2+bx+c(a≠0)的图象如图,下列结论正确的有()个①abc>0②4ac−b2<0③3b+2c<0④a−b+c>0A. 1个B. 2个C. 3个D. 4个8.一条抛物线的对称轴是直线x=−1,点A(−3,3),B(1.5,5.25),C(−1,−1)在该抛物线上,当−3≤x≤1.5时,则下列说法正确的是()A. 有最小值−1,有最大值3B. 有最小值−1,有最大值5.25C. 有最小值3,有最大值5.25D. 有最小值−1,没有最大值9.抛物线y=ax2+bx+c的顶点为D(−1,2),与x轴的一个交点A在点(−3,0)和(−2,0)之间,其部分图象如图,则以下结论:①b2−4ac>0;②a+b+c<0;③a=c−2;④方程ax2+bx+ c=0的根为−1.其中正确的结论为()A. ①②③B. ①②④C. ①③④D. ①②③④10.如图,正方形ABCD中,AB=4cm,点E、F同时从C点出发,以1cm/s的速度分别沿CB−BA、CD−DA运动,到点A时停止运动.设运动时间为t(s),△AEF的面积为S(cm2),则S(cm2)与t(s)的函数关系可用图象表示为()A. B.C. D.二、填空题(本大题共8小题,共32.0分)11.已知二次函数y=x2+bx+3的对称轴为x=2,则b=.12.若二次函数y=x2+6x+k的图象与x轴有且只有一个交点,则k的值为______ .13.二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,当y=0时,x的值是___.x…−1012…y…0343…14.x2215.如图,点A1、A2、A3、…、An在抛物线y=x2图象上,点B1、B2、B3、…、B n在y轴上,若△A1B0B1、△A2B1B2、…、△A n B n−1B n都为等腰直角三角形(点B0是坐标原点),则△A2011B2010B2011的腰长=______.16.如果二次函数y=x2+2kx+k−4的图象的对称轴为x=3,那么k=________.17.如图,O是等边△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60∘得到线段BO′,下列结论正确的有.(填序号) ①△BO′A可以由△BOC绕点B逆时针旋转60∘得到; ②点O与点O′的距离为4; ③∠AOB=150∘; ⑤S△AOC+S△AOB=6+9√3 418.“龟、蟹赛跑趣事”:某天,乌龟和螃蟹在同一直线道路上同起点、同方向、同时间出发,分别以不同的速度匀速跑500米.当螃蟹领先乌龟300米时,螃蟹停下来休息并睡着了,当乌龟追上螃蟹的瞬间,螃蟹惊醒了(惊醒时间忽略不计),立即以原来的速度继续跑向终点,并赢得了比赛.在比赛的整个过程中,乌龟和螃蟹的距离y(米)与乌龟出发的时间x(分钟)之间的关系如图所示,则螃蟹到达终点时,乌龟距终点的距离是_______米.三、计算题(本大题共1小题,共10.0分)19.县城某茶叶专卖店经销一种茶叶,该种茶叶的成本价是240元/kg,已知每月的销量y与销售单价x之间满足一次函数关系.且茶叶的销售单价不得低于成本价.下面是某段时间销售单价与销量之间的关系对应表.销售单价(x元/kg)…360370…每月的销售y(kg)…10095…(2)受物价上涨因素和销售其他因素的影响,茶叶专卖店想把该种茶叶的销售单价x控制在不低于440元/kg,不高于500元/kg,当销售单价定为多少时,当月销售获得的利润最大?最大利润是多少?四、解答题(本大题共3小题,共28.0分)20.已知关于x的方程x2−2mx+3m=0有两个实数根是x1,x2,且(x1−x2)2=16,如果关于x的另一个方程x2−2mx+6m−9=0的两个实数根都在x1和x2之间,求m的值.21.如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点.(1)求抛物线的解析式;(2)如图①,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由.(3)如图②,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使△CQM为等腰三角形且△BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由.22.如图,过A(1,0)作x轴的垂线,交抛物线y=−43x2+133x于点C,D(3,a)为抛物线上一点,点M为线段OD上的一个动点,MN//AC交抛物线于点N.(1)求直线OD的解析式;(2)若四边形ACNM为平行四边形,求点M的坐标.-------- 答案与解析 --------1.答案:B解析:【分析】此题考查中心对称的概念,根据中心对称的概念求解.【解答】解:A.不符合中心对称图形的概念,故此选项错误;B.符合中心对称图形的概念,故此选项正确;C.不符合中心对称图形的概念,故此选项错误;D.不符合中心对称图形的概念,故此选项错误.故选B2.答案:C解析:【分析】本题考查了二次函数的最值.属于基础题.确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.把二次函数的解析式整理成顶点式形式,然后确定出最大值.【解答】解:∵y=−x2+4x−3=−(x−2)2+1.∴该抛物线的对称轴是x=2,∵1⩽x⩽5,2∴当x=2时,y最大=1.故选C.3.答案:C解析:【分析】本题考查了二函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.先利用二次函数的性质得到抛物线y=x2+2的顶点坐标为(0,2),再根据点平移的规律得到点(0,2)平移后所得对应点的坐标为(0,1),然后根据顶点式写出平移后的抛物线的解析式.【解答】解:抛物线y=x2+2的顶点坐标为(0,2),点(0,2)向下平移1个单位长度所得对应点的坐标为(0,1),所以平移后的抛物线的解析式为y=x2+1,故选:C.4.答案:D解析:【分析】本题考查了函数图象上的点的坐标与函数解析式的关系,同时考查了函数的对称性及增减性.根据函数解析式的特点,其对称轴为x=1,图象开口向下,在对称轴的右侧,y随x的增大而减小,据二次函数图象的对称性可知,P1(−1,y1)与P2(3,y2)关于对称轴对称,可判断y1=y2>y3.【解答】解:∵y=−x2+2x+3,=1,∴对称轴为x=−b2aP2(3,y2),P3(5,y3)在对称轴的右侧,y随x的增大而减小,∵3<5,∴y2>y3,根据二次函数图象的对称性可知,P1(−1,y1)与P2(3,y2)关于对称轴对称,故y1=y2>y3,故选D.5.答案:A解析:解:若a>0,b>0,则y=ax+b经过一、二、三象限,y=bx2+ax开口向上,顶点在y 轴左侧,故B、C错误;若a<0,b<0,则y=ax+b经过二、三、四象限,y=bx2+ax开口向下,顶点在y轴左侧,故D错误;若a>0,b<0,则y=ax+b经过一、三、四象限,y=bx2+ax开口向下,顶点在y轴右侧,故A正确;故选:A.根据a、b的正负不同,则函数y=ax+b与y=bx2+ax的图象所在的象限也不同,针对a、b进行分类讨论,从而可以选出正确选项.本题考查二次函数的图象、一次函数的图象,解题的关键是明确一次函数图象和二次函数图象的特点,利用分类讨论的数学思想解答.6.答案:D解析:解:∵P(3,60°)或P(3,−300°)或P(3,420°),由点P关于点O成中心对称的点Q可得:点Q的极坐标为(3,240°),(3,−120°),(3,600°),故选:D.根据中心对称的性质解答即可.此题考查中心对称的问题,关键是根据中心对称的性质解答.7.答案:D解析:解:由二次函数的图象开口向上可得a>0,根据二次函数的图象与y轴交于正半轴知:c>0,由对称轴为直线x=−1,可得出b与a同号,即b>0,则abc>0,故①正确;由抛物线与x轴有两个交点可以看出方程ax2+bx+c=0的根的判别式b2−4ac>0,即4ac−b2< 0,故②正确;由函数图象可以看出当x=1时,二次函数的值为负,即a+b+c<0,由−b2a =−1可得a=12b,所以12b+b+c<0,整理得出3b+2c<0,故③正确;把由函数图象可以看出当x=−1时,二次函数的值为正,即a−b+c>0,故④正确;故选:D.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点得出c的值,然后根据抛物线与x轴交点的个数及x=−1时,x=1时二次函数的值的情况进行推理,进而对所得结论进行判断.本题考查了二次函数图象与系数的关系:二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b 和二次项系数a共同决定对称轴的位置,当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定,△=b2−4ac>0时,抛物线与x轴有2个交点;△=b2−4ac=0时,抛物线与x轴有1个交点;△=b2−4ac<0时,抛物线与x轴没有交点.8.答案:B解析:【分析】本题考查二次函数的最值,根据函数图象分析即可得出结论.【解答】解:根据函数图象,可知当−3≤x≤1.5时,有最小值,最小值为−1,有最大值,最大值为5.25.故选B.9.答案:A解析:[分析]①根据二次函数y=ax2+bc+c的图象与x轴有两个交点,可得△>0,即b2−4ac>0,据此判断即可.②根据二次函数y=ax2+bc+c的图象的对称轴是x=−1,与x轴的一个交点A在点(−3,0)和(−2,0)之间,可得与x轴的另一个交点A在点(0,0)和(1,0)之间,所以x=1时,y<0,据此判断即可.③首先根据x=−b2a =−1,可得b=2a,所以顶点的纵坐标是4ac−b24a=4ac−4a24a=c−a=2,据此判断即可.④根据x=−1时,y≠0,所以方程ax2+bx+c=0的根为−1这种说法不正确,据此判断即可.此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y 轴交点.抛物线与y轴交于(0,c).[详解]解:∵二次函数y=ax2+bc+c的图象与x轴有两个交点,∴△>0,即b2−4ac>0,∴结论①正确;∵二次函数y=ax2+bc+c的图象的对称轴是x=−1,与x轴的一个交点A在点(−3,0)和(−2,0)之间,∴与x轴的另一个交点A在点(0,0)和(1,0)之间,∴x=1时,y<0,∴a+b+c<0,∴结论②正确;∵x=−b2a=−1,∴b=2a,∴顶点的纵坐标是4ac−b24a =4ac−4a24a=c−a=2,∴a=c−2,∴结论③正确;∵x=−1时,y≠0,∴方程ax2+bx+c=0的根为−1这种说法不正确,∴结论④不正确.∴正确的结论为:①②③.故选A.10.答案:D解析:解:当0≤t≤4时,S=S正方形ABCD−S△ADF−S△ABE−S△CEF=4⋅4−12⋅4⋅(4−t)−12⋅4⋅(4−t)−12⋅t⋅t=−12t2+4t=−12(t−4)2+8;当4<t≤8时,S=12⋅(8−t)2=12(t−8)2.故选:D.分类讨论:当0≤t≤4时,利用S=S正方形ABCD−S△ADF−S△ABE−S△CEF可得S=−12t2+4t,配成顶点式得S=−12(t−4)2+8,此时抛物线的开口向下,顶点坐标为(4,8);当4<t≤8时,直接根据三角形面积公式得到S=12(8−t)2=12(t−8)2,此时抛物线开口向上,顶点坐标为(8,0),于是根据这些特征可对四个选项进行判断.本题考查了动点问题的函数图象:函数图象是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.解决本题的关键是利用分类讨论的思想求出S与t的函数关系式.11.答案:−4解析:【分析】本题主要考查的是二次函数的性质,属于基础题.根据二次函数的对称轴公式代入计算即可.【解答】解:∵二次函数y=x2+bx+3的对称轴为x=2,∴−b2×1=2,∴b=−4.故答案为−4.12.答案:9解析:解:∵二次函数y=x2+6x+k的图象与x轴有且只有一个交点,∴△=b2−4ac=62−4k=0,∴k=9.故答案为:9.二次函数的图象与x轴交点个数取决于△,△>0图象与x轴有两个交点,△=0,图象与x轴有且只有一个交点,利用此公式直接求出m的值即可.此题主要考查了二次函数图象与x轴交点个数的判定方法,可以与一元二次方程的判别式相结合来解题.13.答案:−1或3.解析:[分析]利用表中数据和抛物线的对称性得到抛物线的对称轴为直线x=1,然后利用二次函数的性质由x=−1时,y=0得到x=3时,y=0.[详解]=1.∵x=0和x=2时,y的值都是3,∴抛物线的对称轴为直线x=0+22而x=−1时,y=0,∴x=2×1−1=3时,y=0.即y=0时,x的值为−1或3.故答案为:−1或3.[点睛]本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.14.答案:2解析:【分析】本题考查的是二次函数的最值问题,掌握二次函数的性质是解题的关键.根据二次函数的性质计算【解答】解:∵关于x的二次函数y=ax2+a2的最小值为4,∴a2=4,a>0,解得,a=2,故答案为2.15.答案:2011√2解析:解:过点A1作A1⊥x轴于点D,A1C⊥y轴于点C,过A2作A2⊥x轴于点F,A2E⊥y轴于点E.∵△A1BOB1、△A2B1B2都是等腰直角三角形∴B1C=B0C=DB0=A1D,B2E=B1E设A1(a,b)∴a=b将其代入解析式y=x2得:∴a=a2解得:a=0(不符合题意)或a=1,由勾股定理得:A1B0=√2同理可以求得:A2B1=2√2A3B2=3√2A4B3=4√2…∴A2011B2010=2011√2∴△A2011B2010B2011的腰长为:2011√2故答案为:2011√2本题是一道二次函数规律题,运用由特殊到一般的解题方法,利用等腰直角三角形的性质及点的坐标的关系求出第一个等腰直角三角形的腰长,用类似的方法求出第二个,第三个…的腰长,观察其规律,最后得出结果.本题是一道二次函数的综合题考查了在函数图象中利用点的坐标与图形的关系求线段的长度,涉及到了等腰三角形的性质,勾股定理,抛物线的解析式的运用等多个知识点.16.答案:−3解析:【分析】本题主要考查二次函数的性质,解此题的关键是对二次函数的性质的理解和掌握.直接利用对称轴公式求解即可.解:∵二次函数y=x2+2kx+k−4图象的对称轴为x=3,=3,∴对称轴为:x=−2k2×1解得:k=−3,故答案为:−3.17.答案:①②③⑤解析:【分析】本题考查了旋转变换中等边三角形,直角三角形的性质.利用勾股定理的逆定理,判定勾股数3、4、5所构成的三角形是直角三角形,这是本题的要点.在判定结论⑤时,将△AOB向不同方向旋转,体现了结论①−结论④解题思路的拓展应用.证明△BO′A≌△BOC,又∠OBO′=60°,所以△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;由△OBO′是等边三角形,可知结论②正确;在△AOO′中,三边长为3,4,5,这是一组勾股数,故△AOO′是直角三角形;进而求得∠AOB=150°,故结论③正确;=S△AOO′+S△OBO′=6+4√3,故结论④错误;S四边形AO′BO如图②,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.利用旋转变换构造等边三角形与直角三角形,将S△AOC+S△AOB转化为S△COO″+S△AOO″,计算可得结论⑤正确.【解答】解:如图①,由题意可知,∠1+∠2=∠3+∠2=60°,∴∠1=∠3,又∵OB=O′B,AB=BC,∴△BO′A≌△BOC,又∵∠OBO′=60°,∴△BO′A可以由△BOC绕点B逆时针旋转60°得到,故结论①正确;如图①,连接OO′,∵OB=O′B,且∠OBO′=60°,∴△OBO′是等边三角形,∴OO′=OB=4.故结论②正确;∵△BO′A≌△BOC,∴O′A=OC=5.在△AOO′中,三边长为3,4,5,这是一组勾股数,∴△AOO′是直角三角形,∠AOO′=90°,∴∠AOB=∠AOO′+∠BOO′=90°+60°=150°,故结论③正确;S四边形AO′BO=S△AOO′+S△OBO′=12×3×4+√34×42=6+4√3,故结论④错误;如图②所示,将△AOB绕点A逆时针旋转60°,使得AB与AC重合,点O旋转至O″点.易知△AOO″是边长为3的等边三角形,△COO″是边长为3、4、5的直角三角形,则S△AOC+S△AOB=S四边形AOCO″=S△COO″+S△AOO″=12×3×4+√34×32=6+94√3,故结论⑤正确.综上所述,正确的结论为①②③⑤.故答案为①②③⑤.18.答案:75解析:【分析】本题考查了一次函数的应用,读懂题目信息,理解并得到螃蟹先到达终点,然后求出螃蟹、乌龟两人所用的速度是解题的关键.根据“速度=路程÷时间”结合函数图象即可算出乌龟的速度,再根据“出发25分钟后螃蟹的路程−乌龟的路程=300”即可求出螃蟹的速度,进而即可求出螃蟹、乌龟会合地离起点的时间,结合总路程及二者的速度即可得出结论.【解答】解:由图可知乌龟跑125分钟到达终点,∴乌龟的速度为500÷125=4(米/分),设螃蟹的速度为x 米/分,则25x −25×4=300,解得x =16,螃蟹休息的时间为300÷4=75(分钟).∴螃蟹走完全程的总时间为500÷16+75=106.25(分钟).∴螃蟹到达终点时,乌龟距终点的距离为4×(125−106.25)=75(米).故答案为75.19.答案:解:(1)设y =kx +b ,据已知可得{360k +b =100370k +b =95, 解得:{k =−12b =280, ∴y =−12x +280,∵{x ≥240−12x +280≥0,解得:240≤x ≤560.(2)设销售单价为x 元/kg ,据题意可得y =(−12x +280)(x −240)整理:y =(−12x +280)(x −240)=−12x 2+400x −67200=−12(x −400)2+12800当440≤x≤500时,y随x的增大而减小,所以x=440时,y的值最大为12000,当销售单价定为440元/kg时,当月销售获得的利润最大,最大利润是12000元.解析:本题主要考查二次函数的应用,解题的关键是熟练掌握待定系数法求函数解析式及根据总利润的相等关系列出函数解析式、利用二次函数的性质求最值问题.(1)利用待定系数法求解可得;(2)根据“月销售利润=每千克利润×销售量”列出函数解析式,并配方成顶点式,继而根据二次函数的性质求解可得.20.答案:解:∵x1,x2是方程x2−2mx+3m=0①的两个实数根,∴x1+x2=2m,x1⋅x2=3m.∵(x1−x2)2=16,∴(x1+x2)2−4x1x2=16.∴4m2−12m=16.解得m1=−1,m2=4.(1)当m=−1时,方程x2−2mx+3m=0化为x2+2x−3=0.解得x1=−3,x2=1.方程x2−2mx+6m−9=0化为x2+2x−15=0.解得x′1=−5,x′2=3.∵−5、3不在−3和1之间,∴m=−1不合题意,舍去;(2)当m=4时,方程x2−2mx+3m=0化为x2−8x+12=0,解得:x1=2,x2=6.方程x2−2mx+6m−9=0化为x2−8x+15=0,解得x′1=3,x′2=5.∵2<3<5<6,即x1<x′1<x′2<x2,∴方程x2−2mx+6m−9=0的两根都在方程x2−2mx+3m=0的两根之间.∴m=4.综合上所述,m的值为4.解析:本题考查了根与系数的关系,本题中有重要的两个步骤要注意,一是利用第一个方程的条件先求出m的值,二是要把解出的m值代入第二个方程求得x的值并利用题中条件检验,符合题意的m值才是方程中的m值.先利用第一个方程中的条件,利用根与系数的关系求得m的值,再把m代入第二个方程求得另一个方程的解,并根据条件求出符合题意的m值.21.答案:解:(1)根据题意设抛物线的解析式为y=a(x−1)(x−4),代入C(0,3)得3=4a,解得a=34,y=34(x−1)(x−4)=34x2−154x+3,所以,抛物线的解析式为y=34x2−154x+3.(2)∵A、B关于对称轴对称,如图1,连接BC,∴BC与对称轴的交点即为所求的点P,此时PA+PC=BC,∴四边形PAOC的周长最小值为:OC+OA+BC,∵A(1,0)、B(4,0)、C(0,3),∴OA=1,OC=3,BC=√OB2+OC2=5,∴OC+OA+BC=1+3+5=9;∴在抛物线的对称轴上存在点P,使得四边形PAOC的周长最小,四边形PAOC周长的最小值为9.(3)∵B(4,0)、C(0,3),∴直线BC的解析式为y=−34x+3,①当∠BQM=90°时,如图2,设M(a,b),∵∠CMQ>90°,∴只能CM=MQ=b,∵MQ//y轴,∴△MQB∽△COB,∴BMBC =MQOC,即5−b5=b3,解得b=158,代入y=−34x+3得,158=−34a+3,解得a=32,∴M(32,158);②当∠QMB=90°时,如图3,∵∠CMQ=90°,∴只能CM=MQ,设CM=MQ=m,∴BM=5−m,∵∠BMQ=∠COB=90°,∠MBQ=∠OBC,∴△BMQ∽△BOC,∴m3=5−m4,解得m=157,作MN//OB ,∴MN OB =CN OC=CM BC ,即MN 4=CN 3=1575, ∴MN =127,CN =97, ∴ON =OC −CN =3−97=127,∴M(127,127), 综上,在线段BC 上存在这样的点M ,使△CQM 为等腰三角形且△BQM 为直角三角形,点M 的坐标为(32,158)或(127,127).解析:(1)把点A(1,0)、B(4,0)、C(0,3)三点的坐标代入函数解析式,利用待定系数法求解;(2)A 、B 关于对称轴对称,连接BC ,则BC 与对称轴的交点即为所求的点P ,此时PA +PC =BC ,四边形PAOC 的周长最小值为:OC +OA +BC ;根据勾股定理求得BC ,即可求得;(3)分两种情况分别讨论,即可求得.本题是二次函数的综合题,考查了待定系数法求二次函数的解析式,轴对称−最短路线问题,等腰三角形的性质等;分类讨论思想的运用是本题的关键.22.答案:解:(1)∵点D 在抛物线上,∴把D(3,a)代入抛物线解析式y =−43x 2+133x 可得, a =−43×32+133×3,解得:a =1,设直线OD 的解析式为:y =kx ,∵点D 在直线OD 上,∴把D(3,1)代入y =kx 中,可得:1=3k ,解得:k =13∴直线OD 的解析式为y =13x ;(2).∵CA ⊥x 轴,且与抛物线交于点C ,∴C 点坐标为(1,3),AC =3,设点M的坐标为(m,13m),则N点坐标为(m,−43m2+133m),那么MN=−43m2+4m,又∵四边形ACNM为平行四边形,∴AC=MN,即−43m2+4m=3,解得m=32,∴点M的坐标为(32,12 ).解析:此题考查的是一次函数,二次函数及四边形的综合运用.(1).可以先求出D点的坐标,再用待定系数法求出直线OD的解析式;(2).可以利用平行四边形对边相等,求出MN的长度,再求出M的坐标.。

浙教版2020-2021学年度上学期浙江省杭州市七年级数学第一次月考试卷(含解析)

浙教版2020-2021学年度上学期浙江省杭州市七年级数学第一次月考试卷(含解析)

2020-2021学年度上学期浙江省杭州市七年级数学第一次月考试卷一、选择题(共10题;共30分)1.用四舍五入法把106.49精确到个位的近似数是( )A. 107B. 107.0C. 106D. 106.52.如果温度上升 3℃ ,记作 +3℃ ,那么温度下降 2℃ 记作( )A. −2℃B. +2℃C. +3℃D. −3℃3.−|−12| 的相反数的倒数是( )A. 12B. −12C. 2D. −24.下列算式中,计算结果是负数的是( )A. (﹣2)+7B. |﹣1|C. 3×(﹣2)D. (﹣1)25.下列各式不成立的是( )A. −(−3)=3B. |2|=|−2|C. 0>|−1|D. −2>−36.2020年初,国家统计局发布数据,按现行国家农村贫困标准测算,截至2019年末,全国农村贫困人口减少至551万人,累计减少9348万人.将9348万用科学记数法表示为( )A. 0.9348×108B. 9.348×107C. 9.348×108D. 93.48×1067.如图,数轴上有三个点A 、B 、C ,若点A 、B 表示的数互为相反数,则图中点C 对应的数是( )A. ﹣2B. 0C. 1D. 48.甲、乙、丙三地海拔高度分别为30米, −25 米, −5 米,那么最高的地方比最低的地方高( )A. 20米B. 25米C. 35米D. 55米9.有理数a ,b ,c ,d 在数轴上的对应点的位置如图所示,则正确的结论是( )A. a >﹣4B. bd >0C. |a|>|b|D. b+c >010.计算:1+( − 2)+3+( − 4)+…+2017+( − 2018)的结果是( )A. 0B. − 1C. − 1009D. 1010 二、填空题(共8题;共24分)11.2020年6月9日,我国全海深自主遥控潜水器“海斗一号”在马里亚纳海沟刷新了我国潜水器下潜深度的纪录,最大下潜深度达10907米.假设以马里亚纳海沟所在海域的海平面为基准,记为0米,高于马里亚纳海沟所在海域的海平面100米的某地的高度记为 +100 米,根据题意,“海斗一号”下潜至最大深度10907米处,该处的高度可记为________米.12.截止2020年6月5日,全世界感染新冠肺炎的人数约为6650000人,数字6650000用科学记数法表示,并保留2个有效数字,应记为________.13.M、N是数轴上的两个点,线段MN的长度为3,若点M表示的数为-1,则点N表示的数为________.14.如果m是最大的负整数,n是绝对值最小的有理数,c是倒数等于它本身的自然数,那么代数式m2019+ 2020n+c2021的值为________.15.已知|x|=3,|y|=7,且x+y>0,则x−y的值等于________.16.比较大小:−|−5|________ −(−4).17.数轴上点P表示的数是﹣2,那么到P点的距离是3个单位长度的点表示的数是________.18.下面是一个三角形数阵根据该数阵的规律,猜想第十行所有数的和________.三、解答题(共7题;共46分)19.计算:(1)−8+|32÷(−2)3|−(−42)×5 .(2)|﹣9|÷3+(12−23)×12+32;20.把下列各数填在相应的集合内。

2020-2021学年度上学期浙江省宁波市三校联考九年级数学第一次月考试卷(含解析)

2020-2021学年度上学期浙江省宁波市三校联考九年级数学第一次月考试卷(含解析)

2020-2021学年度上学期浙江省宁波市三校联考九年级数学第一次月考试卷一、选择题(共10题;共40分)1.抛物线y=3(x﹣2)2+1的顶点坐标为()A. (1,2)B. (﹣2,1)C. (2,1)D. (﹣2,1)2.二次函数y=x²的图象平移后经过点(2,0),则下列平移方法正确的是()A. 向左平移2个单位,向下平移2个单位B. 向左平移1个单位,向上平移2个单位C. 向右平移1个单位,向下平移1个单位D. 向右平移2个单位,向上平移1个单位3.如图,AB是⊙O的直径,点C、D在⊙O上,∠BDC=20°,则∠AOC的大小为()A. 40°B. 140°C. 160°D. 170°4.一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是()A. 第一次摸出的球是红球,第二次摸出的球一定是绿球B. 第一次摸出的球是红球,第二次摸出的球不一定是绿球C. 第一次摸出的球是红球,第二次摸出的球不一定是红球D. 第一次摸出的球是红球的概率是13;两次摸出的球都是红球的概率是195.口袋中有白球和红球共10个,这些球除颜色外其它都相同.小明将口袋中的球搅匀后随机从中摸出一个球,记下颜色后放回口袋中,小明继续重复这一过程,共摸了100次,结果有40次是红球,请你估计口袋中红球的个数是()A. 3B. 4C. 5D. 66.圆的一条弦长为6,其弦心距为4,则圆的半径为()A. 5B. 6C. 8D. 107.如图,点A,B,C,D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A. 30°B. 40°C. 50°D. 60°8.竖直上抛物体离地面的高度h(m)与运动时间t(s)之间的关系可以近似地用公式h=−5t2+v0t+ h0表示,其中h0(m)是物体抛出时离地面的高度,v0(m s⁄)是物体抛出时的速度.某人将一个小球从距地面1.5m的高处以20m/s的速度竖直向上抛出,小球达到的离地面的最大高度为()A. 23.5mB. 22.5mC. 21.5mD. 20.5m9.如图,有两条公路OM,ON相交成30°,沿公路OM方向离两条公路的交叉处O点80米的A处有一所希望小学,当拖拉机沿ON方向行驶时,距拖拉机中心50米的范围内均会受到噪音影响,已知有两台相距40米的拖拉机正沿ON方向行驶,它们的速度均为10米/秒,则这两台拖拉机沿ON方向行驶时给小学带来噪音影响的时间为()A. 6秒B. 8秒C. 10秒D. 18秒10.如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=1,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A. 1个B. 2个C. 3个D. 4个二、填空题(共6题;共30分)11.如图,MN是⊙O的直径,矩形ABCD的顶点A、D在MN上,顶点B、C在⊙O上,若⊙O的半径为5,AB=4,则BC边的长为________.12.已知二次函数y=−x2+2x+m的部分图象如图所示,则关于x的一元二次方程−x2+2x+m=0的根为________.13.经过人民中路十字路口红绿灯处的两辆汽车,可能直行,也可能向左转,如果这两种可能性大小相同,则至少有一辆向左转的概率是________.14.有4根细木棒,长度分别为2cm,3cm,4cm,5cm,从中任选3根,恰好能搭成一个三角形的概率是________.15.如图,AB是⊙O的一条弦,P是⊙O上一动点(不与点A,B重合),M,N分别是BP,AB的中点.若AB=4,∠APB=30°,则MN长的最大值为________.16.如图,在平面直角坐标系中,抛物线y=a(x-2)²+1(a为常数)的顶点为A,过点A作y轴的平行线与抛物线y= −13x2- 43x交于点B,抛物线y= −13x2- 43x的顶点为C,连结CA、CB,则△ABC的面积为________。

浙江省宁波市曙光中学2020-2021学年第一学期九年级数学第一次月考试题(10月)

浙江省宁波市曙光中学2020-2021学年第一学期九年级数学第一次月考试题(10月)

曙光中学2020学年第一次月考数学试题考生须知:1.全卷有三个大题,24个小题。

满分为150分,考试时间为120分钟。

2.请将姓名、准考证号分别填写在试题卷和答题卷的规定位置上。

3.答题时,把试题卷Ⅰ的答案在答题卷Ⅰ上对应的选项位置用2B铅笔涂黑、涂满。

将试题卷ll的答案用黑色字迹的钢笔或签字笔书写,答案必须按照题号顺序在答题卷Ⅱ各题目规定区域内作答﹐做在试题卷上或超出答题卷区域书写的答案无效。

4.不允许使用计算器,没有近似计算要求的试题,结果都不能用近似数表示。

一、选择题(每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题日要求)1. 关于二次函数y=-(x +1)2-2,下列说法正确的是A. y有最小值-2B.y有最大值-2C.y有最小值-1D. y有最大值-12. 统计如下:根据以上结果,抽查该地区一名九年级男生,估计他的身高不低于180 cm的概率是A.0.85B.0.57C.0.42D.0.153.o的半径为5 cm,点A到圆心O的距离OA=3 cm,则点A与o的位置关系为A.点A在圆内B.点A在圆上C.点A在圆外D.无法确定4. 下列命题中﹐正确的是A.三点确定一个圆B.垂直于弦的直径平分弦C. 经过四点不能作一个圆D. 三角形有一个且只有一个外接圆5. 已知点A(4,y1),B(5,y2).C(-2,y3)都在函数y=(x-2)2-1的图象上,则y1,y2,y3的大小关系是A.y1<y2<y3B.y2<y1<y3C.y2<y3<y1D.y3<y2<y16. 在平面直角坐标系中,已知a≠b,设函数y=(x+a)(x+b)的图象与x轴有M个交点,函数y=(ax+1)(bx +1)的图象与x轴有N个交点,则A.M=N-1或M=N+1B.M=N-1或M=N+2C.M=N或M=N+1D.M=N或M=N-17. 如图,在边长仅为4的正万形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当点Р到B点时,P,Q两点同时停止运动.设点Р的运动时间为t秒(0≤t≤4),△BPQ的面积为S﹐则S与t的函数关系的大致图象是(第9题图) A. B. C. D.8. 如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(10,0),直线y=kx+8与⊙O交于B,C 两点,则弦BC长的最小值A. 8B. 10C. 12D. 16(第8题图) (第9题图) (第10题图)9. 如图,已知二次函数y=ax2+bx+c的图象与x轴分别交于A,B两点,与y轴交于C点,OA=O C.则由抛物线的特征写出如下结论:①abc>0;②4ac-b2>0;③a-b+c>0;④ac+b+1=0.其中正确的个数是的长为半径的A于点E,二、填空题(每小题5分,共30分)12. 在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为▲ .13. 将抛物线y=x2+1先向左平移2个单位长度,再向上平移3个单位长度,那么平移后的抛物线的表达式为y= ▲ .14. 已知:二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如下表所示,那么方程ax2+ bx+c=0(a≠0,a,b,c为常数)的根是▲ .(第7题表) (第8题图) (第10题图)15. 在直角坐标系中,抛物线y=ax2−4ax+2(a>0)交y轴于点A,点B是点A关于对称轴的对称点,点C是抛物线的顶点,若△ABC的外接圆经过原点O,则C点坐标为▲ .16. 如图,已知点A(−4,4),一个以A为顶点的45°角绕点A旋转,角的两边分别交x轴正半轴,y轴负半轴于E. F,连接EF.当△AEF是直角三角形时,点E的坐标是▲ .三、解答题(本大题有8小题,共80分)17. (本题6分)(1)如图1,如图,CD所在的直线垂直平分线段AB,利用这样的工具,最少使用几次就可以找到圆形工件的圆心.(2)如图2,有一块破碎的圆形残片,请你用直尺和圆规找出它的圆心O.(保留作图痕迹).(第17题图1) (第17题图2)18. (本题8分)如图,某商场有一个可自由转动的转盘做抽奖活动.(1)若只旋转其中一个转盘,求指针落在蓝色区域的概率.(2)顾客旋转两次转盘,若指针两次都落在红色区域则获一等奖,请用树状图或列表法求获一等奖的概率.19. (本题8分)如图,AB是⊙O的直径,C是BA延长线上一点,点D在⊙O上,且CD=OA,CD的延长线交⊙O于点E.若∠CEO=40°,求∠BOE的度数.20. (本题10分) 如图,已知二次函数y=-x2+bx+c的图象经过点A (3,1),点B(0,4) .(1)求该二次函数的表达式及顶点坐标;(2)点C(m,n)在该二次函数图象上.①当m=-1时,求n的值;②当m≤x≤3时,n最大值为5,最小值为1,请根据图象直接写出....m的取值范围.21. (本题10分)一下水管道横截面为圆形,直径为100 cm,下雨前水面宽为60 cm.(1)下雨前管道内水深多少cm?(2)一场大雨过后,水面宽为80 cm,那么水位上升多少cm?22. (本题10分) 某农场要建一个饲养场(长方形ABCD),饲养场的一面靠墙(墙最大可用长度为27米),另三边用木栏围成,中间也用木栏隔开,分成两个场地,并在如图所示的三处各留1米宽的门(不用木栏),建成后木栏总长57米,设饲养场(长方形ABCD)的宽为a米。

2020-2021学年四川省成都外国语学校九年级(上)第一次月考数学试卷(10月份)

2020-2021学年四川省成都外国语学校九年级(上)第一次月考数学试卷(10月份)

2020-2021学年四川省成都外国语学校九年级(上)第一次月考数学试卷(10月份)一.选择题(每题3分,共10小题)1.(3分)已知a是﹣,则a的相反数为()A.2B.﹣2C.﹣D.2.(3分)2020年初,新冠疫情暴发,截至目前全球累计新冠确诊病例约为3005万,用科学记数法表示这个数据是()A.3.005×106B.3.005×105C.3.005×107D.3.05×1073.(3分)如图是由10个同样大小的小正方体摆成的几何体.将小正方体①移走后,则关于新几何体的三视图描述正确的是()A.俯视图不变,左视图不变B.主视图改变,左视图改变C.俯视图不变,主视图不变D.主视图改变,俯视图改变4.(3分)关于x的方程(m+1)x2+2mx﹣3=0是一元二次方程,则m的取值是()A.任意实数B.m≠1C.m≠﹣1D.m>15.(3分)如图,若∠A+∠ABC=180°,则下列结论正确的是()A.∠1=∠2B.∠2=∠4C.∠1=∠3D.∠2=∠36.(3分)如图,点D,E分别为△ABC边AB,AC上的一点,且DE∥BC,S△ADE=4,S四边形DBCE=5,则△ADE与△ABC相似比为()A.5:9B.4:9C.16:81D.2:37.(3分)已知平行四边形ABCD,AC、BD是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是()A.∠BAC=∠DCA B.∠BAC=∠ABD C.∠BAC=∠DAC D.∠BAC=∠ADB8.(3分)如图,点B是线段AC的黄金分割点(AB>BC),则下列结论中正确的是()A.AC2=AB2+BC2B.BC2=AC•ABC.D.9.(3分)如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB =90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为()A.B.C.D.10.(3分)如图,直线y=﹣x+6分别与x、y轴交于点A、B,点C在线段OA上,线段OB沿BC翻折,点O落在AB边上的点D处.以下结论:①AB=10;②直线BC的解析式为y=﹣2x+6;③点D(,);④若线段BC上存在一点P,使得以点P、O、C、D为顶点的四边形为菱形,则点P的坐标是(,).正确的结论是()A.①②B.①②③C.①③④D.①②③④二、填空题(每小题4分,共16分)11.(4分)a﹣4ab2分解因式结果是.12.(4分)若k===(k≠0),则k的值为.13.(4分)如图,△OAB与△OCD是以点O为位似中心的位似图形,相似比为1:2,∠OCD=90°,CO =CD,若B(2,0),则点C的坐标为.14.(4分)在△ABC中,∠ABC=75°,∠BAC=60°,BC=4,按以下步骤作图:①分别以点B、C 为圆心,以大于BC为半径作弧,两弧相交于M,N两点;②作直线MN交AC于点D,则AD的长为.三、解答题(共54分)15.(12分)(1)计算,2﹣2﹣(π﹣2011)0+﹣.(2)解不等式组:,并将其解集表示在数轴上.16.(6分)先化简再求值:(﹣)÷,其中x是不等式组的正整数解.17.(8分)如图,在矩形ABCD中,对角线AC与BD相交于点O.过点B作AC的平行线,过点C作BD 的平行线,两线相交于点P.(1)求证:四边形OBPC是菱形;(2)已知AB=3,BC=5,求四边形OBPC的面积.18.(8分)2015年1月,市教育局在全市中小学中选取了63所学校从学生的思想品德、学业水平、学业负担、身心发展和兴趣特长五个维度进行了综合评价.评价小组在选取的某中学七年级全体学生中随机抽取了若干名学生进行问卷调查,了解他们每天在课外用于学习的时间,并绘制成如下不完整的统计图.根据上述信息,解答下列问题:(1)本次抽取的学生人数是;扇形统计图中的圆心角α等于;补全统计直方图;(2)被抽取的学生还要进行一次50米跑测试,每5人一组进行.在随机分组时,小红、小花两名女生被分到同一个小组,请用列表法或画树状图求出她俩在抽道次时抽在相邻两道的概率.19.(8分)“创新实践”小组想利用镜子与皮尺测量大树AB的高度,因大树底部有障碍物,无法直接测量到大树底部的距离.聪明的小颖借鉴《海岛算经》的测量方法设计出如图所示的测量方案:测量者站在点F处,将镜子放在点M处时,刚好看到大树的顶端,沿大树方向向前走3米,到达点D处,将镜子放在点N处时,刚好看到大树的顶端(点F,M,D,N,B在同一条直线上),若测得FM=1.5米,DN =1米,测量者眼睛到地面的距离为1.6米,求大树AB的高度.20.(12分)如图1,在△ABC中,∠A=90°,将△ABC折叠,使点A落在BC边上点D处,折痕为EF(点E在AB上,点F在AC上),且EF∥BC,连接EC交DF于O.(1)若AB=6,AC=4,求的值;(2)如图2,过D作DH⊥AC于H,交CE于G.求证:G是DH的中点;(3)若BD=nDC,求的值.(用含n的代数式表示)四、填空题(每小题4分,共20分)21.(4分)已知m,n是方程x2+5x+1=0的两根,则m2﹣5n+2020=.22.(4分)已知关于x的方程的解是负数,则n的取值范围为.23.(4分)如图,在平面直角坐标系中,点A1,A2,A3,…,A n在x轴上,点B1,B2,B3,…,B n在直线y=x上,若A1(1,0),且△A1B1A2,△A2B2A3,…,△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1,S2,S3,…,S n,则S n可表示为.24.(4分)如图,已知⊙O的半径为3cm,点A、B、C把⊙O三等分,分别以OA、OB、OC为直径作圆,则图中阴影部分的面积为.25.(4分)如图在△ABC中,∠ACB=90°,∠A=30°,BC=3.D是AB上一动点,以DC为斜边向右侧作等腰Rt△DCE,使∠CED=90°,连接BE,则线段BE的最小值为.五、解答题(共30分)26.(8分)因粤港澳大湾区和中国特色社会主义先行示范区的双重利好,深圳已成为国内外游客最喜欢的旅游目的地城市之一,深圳著名旅游“网红打卡地”东部华侨城景区在2019年春节长假期间,共接待游客达20万人次,预计在2021年春节长假期间,将接待游客达28.8万人次.(1)求东部华侨城景区2019至2021年春节长假期间接待游客人次的平均增长率.(2)东部华侨城景区一奶茶店销售一款奶茶,每杯成本价为6元,根据销售经验,在旅游旺季,若每杯定价25元,则平均每天可销售300杯,若每杯价格降低1元,则平均每天可多销售30杯,2021年春节期间,店家决定进行降价促销活动,则当每杯售价定为多少元时,既能让顾客获得最大优惠,又可让店家在此款奶茶实现平均每天6300元的利润额?27.(10分)在矩形ABCD中,AB:BC=1:2.点M为AD的中点,点P为对角线BD的中点,点E、F 分别在边AB、AD上.且PE⊥PF.(1)求的值.(2)求证:BE=AB+2MF.(3)作射线EF与射线BD交于点Q,若BE:AF=3:4,EF=,求DQ的长.28.(12分)如图,平行四边形ABCD在平面直角坐标系中,AD=6,若OA、OB的长是关于x的一元二次方程x2﹣7x+12=0的两个根,且OA>OB.(1)求的值.(2)若E为x轴上的点,且S△AOE=,求经过D、E两点的直线的解析式,并判断△AOE与△DAO 是否相似?(3)若点M在平面直角坐标系内,则在直线AB上是否存在点F,使以A、C、F、M为顶点的四边形为菱形?若存在,请直接写出F点的坐标;若不存在,请说明理由.参考答案一.选择题(每题3分,共10小题)1.D;2.C;3.A;4.C;5.C;6.D;7.B;8.C;9.A;10.B;二、填空题(每小题4分,共16分)11.a(1﹣2b)(1+2b);12.2或﹣1;13.(2,2);14.;三、解答题(共54分)15.(1)++.(2)﹣2<x≤2,在数轴上表示为:;16.原式=,当x=2时,原式==.;17.(1)证明过程见解答;(2)7.5.;18.30;144°;19.大树AB的高度为8米.;20.(1);(2)证明见解答;(3).;四、填空题(每小题4分,共20分)21.2044;22.n<2且n≠;23.;24.π﹣;25.;五、解答题(共30分)26.;27.(1)=;(2)见解答;(3)DQ=.;。

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

专题05 二次函数的图象与性质(解析版)-2020-2021学年九年级数学上册期末综合复习专题提优

2020-2021学年九年级数学上册期末综合复习专题提优训练(人教版)专题05 二次函数的图象与性质【典型例题】1.(2020·福建省连江第三中学初三月考)在同一坐标系内,函数y =kx 2和y =kx +2(k ≠0)的图象大致如图( ) A . B . C . D .【答案】D2.(2020·上海市静安区实验中学初三课时练习)抛物线()232y x =-+3可以看作把抛物线23y x =向_______平移_______个单位,向_______平移_______个单位得到. 【答案】右 2 上 33.(2020·湖南长沙·初三开学考试)已知一个二次函数的图象经过点()1,0A -、()3,0B 和()0,3C -三点. (1)求此二次函数的解析式;(2)求此二次函数的图象的对称轴和顶点坐标.【答案】(1)设二次函数解析式为()()13y a x x =+-,∵抛物线过点()0,3C -,∴()()30103a -=+-,解得1a =,∴()()21323y x x x x =+-=--.(2)由(1)可知:223y x x =--, ∵a =1,b =-2,c =-3, ∴对称轴是直线12b x a =-=,244ac ba -=-4,顶点坐标是()1,4-.4.(2020·浙江杭州外国语学校初三月考)已知一条抛物线分别过点(3,2)-和(0,1),且它的对称轴为直线2x=,试求这条抛物线的解析式.【答案】解:∵抛物线的对称轴为2x =,∴可设抛物线的解析式为2(2)y a x b =-+把(3,2)-,(0,1)代入解析式得()()2232=202=1a b a b ⎧-+-⎪⎨-+⎪⎩, 解得1a =,3b =-,∴所求抛物线的解析式为2(2)3y x =-- 【专题训练】一、选择题1.(2020·竹溪县蒋家堰镇中心学校期末)函数()221y x ++=-的顶点坐标是() A .(2,-1) B .(-2,1) C .(-2,-1) D .(2,1)【答案】B2.(2020·江苏崇川·期末)抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x +1)2+3 B .y =(x +1)2﹣3 C .y =(x ﹣1)2﹣3 D .y =(x ﹣1)2+3【答案】D3.(2020·福建省连江第三中学初三月考)二次函数y =﹣(x -2)2+1的图象中,若y 随x 的增大而减小,则x 的取值范围是( )A .x <2B .x >2C .x <﹣2D .x >﹣2【答案】B4.(2020·竹溪县蒋家堰镇中心学校期末)若函数y =(a ﹣1)x 2﹣4x +2a 的图象与x 轴有且只有一个交点,则a 的值为( ). A .-1 B .2 C .-1或2 D .-1或2或1【答案】D5.(2021·福建学业考试)若二次函数2(0)y ax bx c a =++<的图像对称轴为直线12x =-经过不同的5点(),A p q ,()00,B y ,()12,C y ,)2D y ,()1,E p q --,则0y ,1y ,2y 的大小关系( )A .012y y y >>B .012y y y <<C .021y y y >>D .102y y y >>【答案】C6.(2020·竹溪县蒋家堰镇中心学校期末)已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,给出以下结论:①a +b +c <0;②b 2﹣4ac >0;③b >0;④4a ﹣2b +c <0;⑤a +c <23,其中正确结论的个数是( )A .②③④B .①②⑤C .①②④D .②③⑤【答案】B7.(2020·台州市椒江区前所中学月考)关于x 的一元二次方程2102ax bx ++=有一个根是﹣1,若二次函数212y ax bx =++的图象的顶点在第一象限,设2t a b =+,则t 的取值范围是( )A.1142t<<B.114t-<≤C.1122t-≤<D.112t-<<【答案】D8.(2020·湖南长沙·初三开学考试)已知二次函数y=﹣x2+mx+m(m为常数),当﹣2≤x≤4时,y的最大值是15,则m 的值是()A.﹣19或315B.6或315或-10C.﹣19或6D.6或315或-19【答案】C9.(2020·湖南长沙·初三开学考试)二次函数y=ax2+bx的图象如图所示,则一次函数y=ax+b的图象大致是()A.B.C.D.【答案】D10.(2020·浙江杭州外国语学校初三月考)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2-2)>0D.若x1>x2,则a(x1+x2-2)<0【答案】D二、填空题11.(2020·湖南隆回·初三一模)二次函数243y x x =--+的最大值为_________.【答案】712.(2020·湖南广益实验中学开学考试)二次函数223y x x =-+-图象的顶点坐标是 .【答案】(1,﹣2).13.(2020·上海市静安区实验中学初三课时练习)抛物线(2)(3)y x x =+-的开口______,对称轴是_____________,顶点是_______. 【答案】向下 直线x =12 11(,6)2414.(2020·上海市静安区实验中学初三课时练习)已知抛物线22y x mx =+-的对称轴为x =1,则m =______. 【答案】-215.(2020·上海市静安区实验中学初三课时练习)某广告公司设计一幅周长为20米的矩形广告牌,设矩形的一边长为x 米,广告牌的面积为S 平方米,则S 与x 的函数关系式为________________.【答案】210S x x =-+16.(2020·浙江杭州外国语学校初三月考)抛物线y =ax 2+bx +c (a ≠0)的部分图象如图所示,其与x 轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y <0时,x 的取值范围是_____.【答案】﹣3<x <117.(2020·湖南广益实验中学开学考试)在平面直角坐标系中,若点P (a ,b )的坐标满足a =b ≠0,则称点P 为“对等点”.已知二次函数y =x 2+mx ﹣m 的图象上存在两个不同的“对等点”,且这两个“对等点”关于原点对称,则m 的值为_____.【答案】118.(2020·湖南长沙·初三开学考试)如图,二次函数2(0)y ax bx c a =++≠的图象经过点1(,0)2-,对称轴为直线1,x =下列5个结论:0abc <①;240a b c -+=②;20a b +>③;230c b -<④;()a b m am b +≤+⑤.其中正确的结论为_________________. (注:只填写正确结论的序号)【答案】②⑤三、解答题19.(2020·呼和浩特市敬业学校初二期末)直线33y x =-+与x 轴y 轴分别交于点A ,B ,抛物线2(2)y a x k =-+经过点A ,B ,并与x 轴交于另一点C ,其顶点为P , (1)求,a k 的值;(2)抛物线的对称轴上有一点Q ,使ABQ ∆是以AB 为底边的等腰三角形,求点Q 的坐标;【答案】解:(1)∵直线y=-3x+3与x轴、y轴分别交于点A、B,∴A(1,0),B(0,3).又∵抛物线y=a(x-2)2+k经过点A(1,0),B(0,3),∴43a ka k+=⎧⎨+=⎩,解得11ak=⎧⎨=-⎩,故a,k的值分别为1,-1;(2)设Q点的坐标为(2,m),对称轴x=2交x轴于点F,过点B作BE垂直于直线x=2于点E.在Rt△AQF中,AQ2=AF2+QF2=1+m2,在Rt△BQE中,BQ2=BE2+EQ2=4+(3-m)2,∵AQ=BQ,∴1+m2=4+(3-m)2,∴m=2,∴Q点的坐标为(2,2).20.(2020·云南昆明·初三学业考试)如图,抛物线y =ax 2+bx 过点P (﹣1,5),A (4,0).(1)求抛物线的解析式;(2)在第一象限内的抛物线上有一点B ,当P A ⊥PB 时,求点B 的坐标.【答案】(1)由题意,把点(1,5),(4,0)P A -代入2y ax bx =+得51640a b a b -=⎧⎨+=⎩,解得14a b =⎧⎨=-⎩,则抛物线的解析式为24y x x =-;(2)如图,过P 点作PD x ⊥轴于D ,BE PD ⊥于E , ∵(1,5),(4,0)P A -,∴5,1,4PD OD OA ===,∴145AD OD OA =+=+=,∴5PD AD ==, 45APD DAP ∴∠=∠=︒,设2(,4)B m m m -,则21,45BE m PE m m =-=+-,点B 在第一象限内的抛物线上,4m ∴>,∵PA PB ⊥,即90APB ∠=︒,∴18045BPE APD APB ∠=︒-∠-∠=︒,∴PBE △是等腰直角三角形,∴BE PE =,即2145m m m -+=-,整理得:2560m m --=,解得6m =或14m =-<(舍去),此时22464612m m --=⨯=,故点B 的坐标为(6,12)B .21.(2020·上海市静安区实验中学初三课时练习)已知二次函数的图像过抛物线223y x x =++的顶点和坐标原点.(1)求二次函数的解析式(2)判断点A (-2,5)是否在这个二次函数的图像上 .【答案】解:(1)2223(1)2y x x x =++=++,∴顶点坐标为(-1,2)设2(1)2(0)y a x a =++≠,代入(0,0)得,02a =+,解得,2a =-∴二次函数的解析式为22(1)2y x =-++(2)当x =-2时,y =0,∴点A (-2,5)不在这个二次函数的图像上22.(2020·江苏如东·初三二模)已知抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1,且与x 轴只有一个公共点.(1)试用含a 的式子表示b 和c ;(2)若(x 1,y 1),(3,y 2)是该抛物线上的两点,y 2<y 1,求x 1的取值范围;(3)若将该抛物线向上平移2个单位长度所得新抛物线经过点(3,6),且当p ≤x ≤q 时,新抛物线对应的函数有最小值2p ,最大值2q ,求p ﹣q 的值.【答案】(1)∵抛物线y =ax 2+bx +c (a ,b ,c 为常数,a >0)的对称轴为直线x =1, ∴﹣2b a=1, ∴b =﹣2a ,∵抛物线与x轴只有一个公共点.∴b2﹣4ac=0,即(﹣2a)2﹣4ac=0,∴c=a;(2)∵(x1,y1),(3,y2)是该抛物线上的两点,对称轴为x=1,∴(3,y2)关于对称轴的对称点为(﹣1,y2),∵a>0,抛物线开口向上,∴y2<y1时,x1的取值范围是x1>3或x1<﹣1;(3)由(1)知:抛物线y=ax2﹣2ax+a=a(x﹣1)2(a>0),将该抛物线向上平移2个单位长度所得新抛物线为y=a(x﹣1)2+2,∵经过点(3,6),∴6=4a+2,解得a=1,∴新抛物线为y=(x﹣1)2+2,∴当x=1时,抛物线有最小值为2,∴2p=2,解得p=1,∴1≤x≤q,∵对称轴为x=1,∴当x=q时,在p≤x≤q范围内有最大值2q,∴2q=(q﹣1)2+2,解得q=3或1(舍去),∴p﹣q=1﹣3=﹣2.23.(2020·浙江金华·初三其他)已知:等腰△ABC的底边在x轴上,其中点C与平面直角坐标系原点重合,点A为(4,0),点B,点D是AB边的中点.抛物线y=ax2+bx+c始终经过A,C两点,(1)当△ABC是正三角形时,点B在抛物线上(如图).求抛物线的函数表达式;个单位后,发现抛物线经过点D,求n的值;(2)若将(1)中抛物线向下平移4(3)若将△ABC ABC n的值.【答案】解:(1)∵△ABC是正三角形,∴AC=BC=AB=4,∴点B(2,),设抛物线y=ax(x﹣4)且过(2,),∴=2a (2﹣4),∴a∴抛物线的解析式为y =﹣2x 2+; (2)∵AB =AC ,点A 为(4,0),点C (0,0),∴点B (2 n ), ∵点D 是AB 边的中点,∴点D (3n ),个单位,∴平移后的抛物线解析式为:y =﹣2x 2+﹣4, ∵平移后的抛物线经过点D ,∴2n =﹣2×9+3﹣4, ∴n =32;(3)∵△ABC 的重心坐标为(2),∴△ABC 向上平移3个单位后,重心坐标为(2,3 n +3),∵y2+x﹣2)2+∴顶点坐标为(2,,个单位,∵平移后△ABC的重心与抛物线顶点也相距3∴|∴n=4或6.24.(2020·浙江杭州外国语学校初三月考)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】解:(1)∵抛物线y =ax 2+bx +c (a ≠0)的图象经过A (1,0),B (3,0),∴设抛物线解析式为:y =a (x ﹣1)(x ﹣3),∵抛物线y =a (x ﹣1)(x ﹣3)(a ≠0)的图象经过点C (0,6),∴6=a (0﹣1)(0﹣3),∴a =2,∴抛物线解析式为:y =2(x ﹣1)(x ﹣3)=2x 2﹣8x +6;(2)∵y =2x 2﹣8x +6=2(x ﹣2)2﹣2,∴顶点M 的坐标为(2,﹣2),∵抛物线的顶点M 与对称轴l 上的点N 关于x 轴对称,∴点N (2,2),设直线AN 解析式为:y =kx +b ,由题意可得:022=+⎧⎨=+⎩k b k b , 解得:22k b ==-⎧⎨⎩, ∴直线AN 解析式为:y =2x ﹣2,联立方程组得:222286=-⎧⎨=-+⎩y x y x x , 解得:1110x y =⎧⎨=⎩,2246=⎧⎨=⎩x y ,∴点D (4,6),∴S △ABD =12×2×6=6, 设点E (m ,2m ﹣2),∵直线BE 将△ABD 的面积分为1:2两部分,∴S △ABE =13S △ABD =2或S △ABE =23S △ABD =4, ∴12×2×(2m ﹣2)=2或12×2×(2m ﹣2)=4, ∴m =2或3,∴点E (2,2)或(3,4);(3)若AD 为平行四边形的边,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD =PQ ,∴x D ﹣x A =x P ﹣x Q 或x D ﹣x A =x Q ﹣x P ,∴x P =4﹣1+2=5或x P =2﹣4+1=﹣1,∴点P 坐标为(5,16)或(﹣1,16);若AD 为平行四边形的对角线,∵以A 、D 、P 、Q 为顶点的四边形为平行四边形,∴AD 与PQ 互相平分, ∴22++=P Q A D x x x x ,∴x P =3,∴点P 坐标为(3,0),综上所述:当点P 坐标为(5,16)或(﹣1,16)或(3,0)时,使A 、D 、P 、Q 为顶点的四边形为平行四边形.25.(2020·竹溪县蒋家堰镇中心学校期末)如图1,抛物线()21y x a x a -++=与x 轴交于A ,B 两点(点A 位于点B的左侧),与y 轴负半轴交于点C ,若AB =4. (1)求抛物线的解析式;(2)如图2,E 是第三象限内抛物线上的动点,过点E 作EF ∥AC 交抛物线于点F ,过E 作EG ⊥x 轴交AC 于点M ,过F 作FH ⊥x 轴交AC 于点N ,当四边形EMNF 的周长最大值时,求点E 的横坐标;(3)在x 轴下方的抛物线上是否存在一点Q ,使得以Q 、C 、B 、O 为顶点的四边形被对角线分成面积相等的两部分?如果存在,求点Q 的坐标;如果不存在,请说明理由.【答案】解:(1)依题意得:()21x a x a ++-=0,则12121,x x a x x a +=+=,则AB 4==,解得:a =5或﹣3,抛物线与y 轴负半轴交于点C ,故a =5舍去,则a =﹣3,则抛物线的表达式为:223y x x +=﹣…①;(2)由223y x x +=﹣得:点A 、B 、C 的坐标分别为:()3,0-、()()1,00-3、,, 设点E ()2,23m m m +﹣,OA =OC ,故直线AC 的倾斜角为45°,EF ∥AC ,直线AC 的表达式为:y =﹣x ﹣3,则设直线EF 的表达式为:y =﹣x +b ,将点E 的坐标代入上式并解得:直线EF 的表达式为:y =﹣x +()233m m +﹣…②,联立①②并解得:x =m 或﹣3﹣m ,故点F ()23,4m m m --+,点M 、N 的坐标分别为:(),3m m --、()33m m --+,,则EF ))23F E x x m MN -=--=,四边形EMNF 的周长C =ME +MN +EF +FN =(226m m --+-∵﹣2<0,故S 有最大值,此时m =32+-,故点E 的横坐标为:32+-; (3)①当点Q 在第三象限时,当QC 平分四边形面积时, 则1Q B x x ==,故点Q ()1,4--;当BQ 平分四边形面积时, 则1111,133222OBQ Q Q QCBO S y S x =⨯⨯=⨯⨯+⨯⨯四边形,则11121133222Q Q y x ⎛⎫⨯⨯=⨯⨯+⨯⨯ ⎪⎝⎭, 解得:32Q x =-,故点Q 315,24⎛⎫-- ⎪⎝⎭; ②当点Q 在第四象限时,同理可得:点Q ⎝⎭;综上,点Q 的坐标为:()1,4--或315,24⎛⎫-- ⎪⎝⎭或⎝⎭.。

河南实验中学2020-2021学年九上数学第一次月考试卷(解析版)

河南实验中学2020-2021学年九上数学第一次月考试卷(解析版)
同理:当点C旋转到y轴正半轴时,
点C的坐标为(0, ),
∴点C的坐标为(0, )或(0, ),
故选D.
【点睛】本题考查了菱形的对称性,旋转的性质,直角三角形的性质,解题的关键是要分情况讨论.
10.如图,在平面直角坐标系中有一边长为1的正方形OABC,边OA,OC分别在x轴、y轴上,如果以对角线OB为边作第二个正方形OBB1C1,再以对角线OB1为边作第三个正方形OB1B2C2,照此规律作下去,则点B2020的坐标为( )
解得:x=21,即有21名护士.
故选C.
【点睛】本题考查的知识点是整数问题的综合运用,关键是先求出x人,每2人一班有多少种组合,再由每8小时换班一次,某两人同值一班后,到下次两人再同班求出最长需要的天数.
7.如果有一台电脑被感染,经过两轮感染后就会有100台电脑被感染.若每一轮感染中平均一台电脑会感染 台电脑,则下列所列方程中正确的是()
(2)整理为一般式,再利用公式法求解可得.
【详解】解:(1)∵(x﹣3)2﹣4=0,
∴(x﹣3)2=4,
则x﹣3=2或x﹣3=﹣2,
解得x1=5,x2=1;
(2)将方程整理为一般式,得:x2﹣3x﹣1=0,
∵a=1,b=﹣3,c=﹣1,
∴△=(﹣3)2﹣4×1×(﹣1)=13>0,
则x= ,
即x1= ,x2= .
开方得: ,
解得: ,
则四个步骤中出现错误的是④.
故选: .
【点睛】此题考查了解一元二次方程 配方法,熟练掌握完全平方公式是解本题的关键.
2.方程x2=3x的解为( )
A.x=3B.x=0C.x1=0,x2=﹣3D.x1=0,x2=3
【答案】D
【解析】
【分析】

2020-2021学年浙江省杭州十三中九年级(上)开学数学试卷 (解析版)

2020-2021学年浙江省杭州十三中九年级(上)开学数学试卷 (解析版)

2020-2021学年浙江省杭州十三中九年级(上)开学数学试卷一、选择题(共10小题).1.下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.若为二次根式,则m的取值范围是()A.m<3B.m≤3C.m≥3D.m>33.下列各式中正确的是()A.=±6B.=﹣2C.=D.(﹣)2=﹣7 4.如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是()A.B.2C.D.35.用反证法证明“四边形至少有一个角是钝角或直角”时,应先假设()A.四边形中每个角都是锐角B.四边形中每个角都是钝角或直角C.四边形中有三个角是锐角D.四边形中有三个角是钝角或直角6.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差7.如图,一块长方形绿地的长为100m,宽为50m,在绿地中开辟两条道路后剩余绿地面积为4704m2,则根据题意可列出方程()A.5000﹣150x=4704B.5000﹣150x﹣x2=4704C.5000﹣150x+=4704D.(100﹣x)(50﹣x)=47048.如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则CD长为()A.13B.C.12D.179.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.10.如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为8,最小值为8,则菱形ABCD的边长为()A.4B.10C.12D.16二、填空题(共6小题,每小题4分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是.12.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是.13.已知一组数据x1,x2,…x n的方差是2,则另一组数据x1﹣a,x2﹣a,…,x n﹣a的方差是.14.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为.15.若反比例函数y1=(k>0,x>0)的图象与直线y2=x﹣1在第一象限内的交点为A,点A的横坐标为m,且满足2<m<3,则k的取值范围是.16.如图,在矩形ABCD中,点P是对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连结PB,PD.若PB=2,PD=5,图中阴影部分的面积和为8,则矩形ABCD的周长为.三、解答题(本题有8小题,共66分)17.(1)计算:×(3+).(2)解方程:(x+2)2﹣3(x+2)=0.18.某校举行了主题为“新冠肺炎防护”的知识竞赛活动,对八年级的两班学生进行了预选,其中各班前5名学生的成绩(百分制,单位:分)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a8585d(1)直接写出表中a,b,c,d的值:a=,b=,c=,d=.(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.19.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y 轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.20.若关于x的一元二次方程(m﹣1)x2﹣2mx+m=2有实数根.(1)求m的取值范围;(2)如果m是符合条件的最小整数,且一元二次方程(k+1)x2+x+k﹣3=0与方程(m ﹣1)x2﹣2mx+m=2有一个相同的根,求此时k的值.21.如图,在▱ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=10,AE+CF=EF,求EG的长.22.已知反比例函数y=.(1)若点(﹣t+,﹣2)在此反比例函数图象上,求t的值.(2)若点(x1,y1)和(x2,y2)是此反比例函数图象上的任意两点,①当x1>0,x2>0,且x1=x2+2时,求的值;②当x1>x2时,试比较y1,y2的大小.23.如图,在正方形ABCD中,点E,F分别是CD,AD的中点,BE与CF相交于点P.(1)求证:BE⊥CF.(2)若AB=a.①求CP和AP的长(用含a的代数式表示).②连结DP,直接写出∠DPF的度数.参考答案一.选择题(共10小题).1.下列四种标志图案中,既是轴对称图形又是中心对称图形的是()A.B.C.D.解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、不是轴对称图形,是中心对称图形;D、不是轴对称图形,不是中心对称图形.故选:B.2.若为二次根式,则m的取值范围是()A.m<3B.m≤3C.m≥3D.m>3解:∵为二次根式,∴3﹣m≥0,解得:m≤3,故选:B.3.下列各式中正确的是()A.=±6B.=﹣2C.=D.(﹣)2=﹣7解:A、=6,故此选项错误;B、=2,故此选项错误;C、=,正确;D、(﹣)2=7,故此选项错误.4.如图,在▱ABCD中,AB=6,BC=4,BE平分∠ABC,交CD于点E,则DE的长度是()A.B.2C.D.3解:∵四边形ABCD为平行四边形,∴AB∥CD,CD=AB=6,∴∠ABE=∠CEB,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠CBE=∠CEB,∴CE=BC=4,∴DE=CD﹣CE=6﹣4=2.故选:B.5.用反证法证明“四边形至少有一个角是钝角或直角”时,应先假设()A.四边形中每个角都是锐角B.四边形中每个角都是钝角或直角C.四边形中有三个角是锐角D.四边形中有三个角是钝角或直角解:用反证法证明“四边形中至少有一个角是钝角或直角”时第一步应假设:四边形中每个角都是锐角.故选:A.6.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差解:去掉一个最高分和一个最低分对中位数没有影响,7.如图,一块长方形绿地的长为100m,宽为50m,在绿地中开辟两条道路后剩余绿地面积为4704m2,则根据题意可列出方程()A.5000﹣150x=4704B.5000﹣150x﹣x2=4704C.5000﹣150x+=4704D.(100﹣x)(50﹣x)=4704解:依题意,得:(100﹣x)(50﹣x)=4704,故选:D.8.如图,将矩形ABCD的四个角向内折叠铺平,恰好拼成一个无缝隙无重叠的矩形EFGH,若EH=5,EF=12,则CD长为()A.13B.C.12D.17解:由折叠可得,∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=×180°=90°,同理可得:∠EHG=∠EFG=90°,∴四边形EFGH为矩形,∴EF=GH,∵AD∥BC,∴∠DHF=∠BFH,由折叠可得,∠DHG=∠DHF,∠BFE=∠BFH,∴∠DHG=∠BFE,又∵∠D=∠B=90°,∴△DHG≌△BFE(AAS),∴DH=BF=FM,又∵AH=MH,∴AH+DH=MH+FM,即AD=FH,又∵Rt△EFH中,EH=5,EF=12,∴HF==13,∴AD=13,由折叠可得,△AEH≌△MEH,△BEF≌△MEF,△CFG≌△NFG,△DGH≌△NGH,∴S矩形ABCD=2S矩形EFGH=2×EF•EH=2×5×12=120,∴CD==,故选:B.9.函数y=与y=kx2﹣k(k≠0)在同一直角坐标系中的图象可能是()A.B.C.D.解:①当k>0,则﹣k<0,双曲线在二、四象限,抛物线开口向上,顶点在y轴负半轴上;②k<0时,则﹣k>0,双曲线在一、三象限,抛物线开口向下,顶点在y轴正半轴上;故选项B符合题意;故选:B.10.如图,点P,Q分别是菱形ABCD的边AD,BC上的两个动点,若线段PQ长的最大值为8,最小值为8,则菱形ABCD的边长为()A.4B.10C.12D.16解:如图,过点C作CH⊥AB,交AB的延长线于H,∵四边形ABCD是菱形,∴AD=AB=BC,∵点P,Q分别是菱形ABCD的边AD,BC上的两个动点,∴当点P与点A重合,点Q与点C重合时,PQ有最大值,即AC=8,当PQ⊥BC时,PQ有最小值,即直线AD,直线BC的距离为8,∵S菱形ABCD=AD×8=AB×CH,∴CH=8,∴AH===16,∵BC2=CH2+BH2,∴BC2=(16﹣BC)2+64,∴BC=10,故选:B.二、填空题(共6小题,满分24分,每小题4分)11.若一个多边形的每一个外角都等于40°,则这个多边形的边数是9.解:360÷40=9,即这个多边形的边数是9.12.若关于x的方程x2+ax+a=0有一个根为﹣3,则a的值是 4.5.解:把x=﹣3代入方程x2+ax+a=0得9﹣3a+a=0,解得a=4.5.故答案为:4.5.13.已知一组数据x1,x2,…x n的方差是2,则另一组数据x1﹣a,x2﹣a,…,x n﹣a的方差是2.解:根据题意得;数据x1,x2,…,x n的平均数设为m,则数据x1﹣a,x2﹣a,…,x n ﹣a的平均数为m﹣a,根据方差公式:S2=[(x1﹣m)2+(x2﹣m)2+…(x n﹣m)2]=2.则S2={[(x1﹣a)﹣(m﹣a)]2+[(x2﹣a)﹣(m﹣a)]2+…(x n﹣a)﹣(m﹣a)]}2=[(x1﹣m)2+(x2﹣m)2+…(x n﹣m)2]=2.故答案为:2.14.设A(﹣2,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+a上的三点,则y1,y2,y3的大小关系为y1>y2>y3.解:如图:y1>y2>y3.故答案为y1>y2>y3.15.若反比例函数y1=(k>0,x>0)的图象与直线y2=x﹣1在第一象限内的交点为A,点A的横坐标为m,且满足2<m<3,则k的取值范围是2<k<6.解:∵点A的横坐标为m,且满足2<m<3,∴当x=2时,y2=1;当x=3时,y2=2;∴A纵坐标y的取为1<y<2,∵反比例函数y1=(k>0,x>0)的图象与直线y2=x﹣1在第一象限内的交点为A,∴2<k<6,所以k的取值范围为2<k<6,故答案为2<k<6.16.如图,在矩形ABCD中,点P是对角线AC上一点,过点P作EF∥BC,分别交AB,CD于点E,F,连结PB,PD.若PB=2,PD=5,图中阴影部分的面积和为8,则矩形ABCD的周长为12+2.解:作PM⊥AD于M,交BC于N,如图所示:则四边形AEPM,四边形DFPM,四边形CFPN,四边形BEPN都是矩形,∴AM=PE=BN,AE=MP=DF,MD=PF=NC,BE=PN=FC,S△ADC=S△ABC,S△AMP=S△AEP,S△PBE=S△PBN,S△PFD=S△PDM,S△PFC=S△PCN,∴S△EBP=S△DPF,且S△EBP+S△DPF=8,∴EP×BE=PF×DF,且EP×BE+PF×DF=8,∴EP×BE=PF×DF=4,∵PB=2,PD=5,∴BE2+EP2=BP2=20,PF2+DF2=PD2=25,∴BE+EP=6,PF+DF=,∴BE+EP+PF+DF=6+,∴AB+AD=6+,∴矩形ABCD的周长=2(AB+AD)=12+2,故答案为:12+2.三、解答题(本题有8小题,共66分)17.(1)计算:×(3+).(2)解方程:(x+2)2﹣3(x+2)=0.解:(1)原式=3+=6+4;(2)分解因式得:(x+2)[(x+2)﹣3]=0,可得x+2=0或x﹣1=0,解得:x1=﹣2,x2=1.18.某校举行了主题为“新冠肺炎防护”的知识竞赛活动,对八年级的两班学生进行了预选,其中各班前5名学生的成绩(百分制,单位:分)分别为:八(1)班86,85,77,92,85;八(2)班79,85,92,85,89.通过数据分析,列表如下:班级平均分中位数众数方差八(1)85b c22.8八(2)a8585d (1)直接写出表中a,b,c,d的值:a=86,b=85,c=85,d=19.2.(2)根据以上数据分析,你认为哪个班前5名同学的成绩较好?说明理由.解:(1)八(2)班的平均分a=(79+85+92+85+89)÷5=86,八(2)班的方差d=[(79﹣86)2+(85﹣86)2+(92﹣86)2+(85﹣86)2+(89﹣86)2]÷5=19.2.将八(1)班的前5名学生的成绩按从小到大的顺序排列为:77,85,85,86,92,第三个数是85,所以中位数b=85,85出现了2次,次数最多,所以众数c=85.故答案为86,85,85,19.2;(2)由数据可知,两班成绩中位数,众数相同,而八(2)班平均成绩更高,且方差更小,成绩更稳定,∴八(2)班前5名同学的成绩较好.19.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)和B(3,0),与y 轴交于点C.(I)求二次函数的表达式.(2)求二次函数图象的顶点坐标和对称轴.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)函数的对称轴为直线x=﹣=﹣=2,当x=2时,y=x2﹣4x+3=4﹣8+3=﹣1,故顶点坐标为(2,﹣1).20.若关于x的一元二次方程(m﹣1)x2﹣2mx+m=2有实数根.(1)求m的取值范围;(2)如果m是符合条件的最小整数,且一元二次方程(k+1)x2+x+k﹣3=0与方程(m ﹣1)x2﹣2mx+m=2有一个相同的根,求此时k的值.解:(1)化为一般式:(m﹣1)x2﹣2mx+m﹣2=0,∴,解得:m≥且m≠1(2)由(1)可知:m是最小整数,∴m=2,∴(m﹣1)x2﹣2mx+m=2化为x2﹣4x=0,解得:x=0或x=4,∵(k+1)x2+x+k﹣3=0与(m﹣1)x2﹣2mx+m=2有一个相同的根,∴当x=0时,此时k﹣3=0,k=3,当x=4时,16(k+1)+4+k=0,∴k=﹣1,∵k+1≠0,综上所述,k=3.21.如图,在▱ABCD中,点G,H分别是AB,CD的中点,点E,F在对角线AC上,且AE=CF.(1)求证:四边形EGFH是平行四边形;(2)连接BD交AC于点O,若BD=10,AE+CF=EF,求EG的长.解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,∴∠GAE=∠HCF,∵点G,H分别是AB,CD的中点,∴AG=CH,∵AE=CF,∴△AGE≌△CHF(SAS),∴GE=HF,∠AEG=∠CFH,∴∠GEF=∠HFE,∴GE∥HF,又∵GE=HF,∴四边形EGFH是平行四边形;(2)连接BD交AC于点O,如图:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BD=10,∵AE=CF,OA=OC,∴OE=OF,∵AE+CF=EF,∴2AE=EF=2OE,∴AE=OE,又∵点G是AB的中点,∴EG是△ABO的中位线,∴EG=OB=2.5.∴EG的长为2.5.22.已知反比例函数y=.(1)若点(﹣t+,﹣2)在此反比例函数图象上,求t的值.(2)若点(x1,y1)和(x2,y2)是此反比例函数图象上的任意两点,①当x1>0,x2>0,且x1=x2+2时,求的值;②当x1>x2时,试比较y1,y2的大小.解:(1)把点(﹣t+,﹣2)代入y=﹣得(﹣t+)×(﹣2)=﹣4,解得t=;(2)∵点(x1,y1)和(x2,y2)是反比例函数y=﹣图象上的两点,∴y1=﹣,y2=﹣,∴=﹣=﹣+=﹣(x1﹣x2)∵x1=x2+2,∴=﹣×2=﹣;(3)当x1>x2>0或0>x1>x2,则y1>y2;当x1>0>x2时,y1<y2.23.如图,在正方形ABCD中,点E,F分别是CD,AD的中点,BE与CF相交于点P.(1)求证:BE⊥CF.(2)若AB=a.①求CP和AP的长(用含a的代数式表示).②连结DP,直接写出∠DPF的度数.解:(1)证明:在△CDF和△BCE中,,∴△CDF≌△BCE(SAS),∴∠CEB=∠CFD,∵∠DCF+∠CFD=90°,∴∠DCF+∠CEB=90°,∴∠EPC=90°,∴BE⊥CF;(2)①如图1,延长CF交BA延长线于点M,在△CFD和△MFA中,,∴△CFD≌△MFA(ASA),∴CD=MA=AB=a,∵BP⊥CF,∴AP为Rt△MPB斜边BM上的中线,是斜边的一半,即AP=BM=×2a=a;∵CP⊥BE,∴CP×BE=CE×BC=,∵BE===a,∴CP==a.②如图2,连接DP,EF,∵点E,F分别是CD,AD的中点,∴DE=CD,DF=AD,∵正方形ABCD中,AD=DC,∠D=90°,∴DE=DF,∴∠DEF=∠DFE=45°,∵∠D=∠EPF=90°,∴D、F、P、E四点共圆,∴∠DPF=∠DEF=45°.。

浙江省台州市天台县外国语学校2022-2023学年九年级下学期第一次月考数学试卷

浙江省台州市天台县外国语学校2022-2023学年九年级下学期第一次月考数学试卷

浙江省台州市天台县外国语学校2022-2023学年九年级下学期第一次月考数学试卷学校:___________姓名:___________班级:___________考号:___________一、单选题A....5.下列计算中,正确的是()A.()437a a=.26a a⋅336÷=a a a+=824a a a6.一组数据为1,4,5,,这组数据的众数、中位数分别为()A.4,5.3,25,45,4.5 中,弦,CD7.如图,在O度数为()A.30︒B.8.“十一”黄金周,几名同学乘坐一辆客车前去元,出发时,又增加了两名同学,结果每个同学比原来少分摊了xA.①②B.①③10.如图,正方形ABCD的边长为到直线m,直线m分别交A.4B.6二、填空题11.因式分解:22-=x x15.如图,平行四边形OABC 的顶点一象限,反比例函数1y x =的图象经过点则k =.16.已知点O 是边长为6的等边ABC ∆PCA V 的面积分别记为0S ,1S ,S 是.三、解答题17.计算:2sin 6012(5π︒++--18.解不等式组451342x x x x ->+⎧⎪⎨-≤⎪⎩,并求出其整数解的和.19.为了弘扬爱国主义精神,某校组织了秀)、B (良好)、C (合格)、D (不合格)四个等级.小李随机调查了部分同学的竞赛成绩,绘制了如下统计图.(1)求证:四边形AECF是平行四边形.(1)(2)求该汽车最快需要多少时间可以通过停车线2l .(3)若A 路口绿灯亮起29s 后B 路口绿灯亮起,且B 路口绿灯的持续时间为23s .该汽车先加速行驶,然后一直匀速行驶.若该汽车在B 路口绿灯期间能顺利通过停车线2l ,求该汽车匀速行驶过程中速度的取值范围.24.如果三角形的两个内角α与β满足290αβ+=︒,那么我们称这样的三角形为“准互余三角形”.(1)若ABC 是“准互余三角形”,90,60C A ∠>︒∠=︒,则B ∠=________.(2)如图(1),AB 是半圆的直径,10,6,AB BC C ==是半圆上的点,D 是 AC 上的点,BD 交AC 于点E .①若D 是 AC 的中点,则图中共有_______个“准互余三角形”;②当DEC 是“准互余三角形”时,求CE 的长;③如图(2)所示,若F 是 BC 上的点(不与B C 、重合),G 为射线AF 上一点,且满足2CBG CAB ∠=∠.当ABG 是“准互余三角形”时,求AG 的长.。

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第1章《二次函数》单元测试卷(有答案)

2020-2021学年九年级上册数学第 1章《二次函数》单元测试卷式是()1. 卜列关于X 的函数一定为二次函数的是( A . y=4xB , y= 5x2 - 3xC. y=ax 2+bx+cD , y=x 3-2x+12.将二次函数y= 2x 2+5的图象先向左平移 3个单位,再向下平移 1个单位,则平移后的函数关系A. y=2 (x+3) 2+6 B . y=2 (x+3) 2+4 C. y=2 (x- 3) 2+6D. y=2 (x-3) 2+43. 如图,某农场拟建一间矩形奶牛饲养室,打算一边利用房屋现有的墙(墙足够长) ,其余三边除大门外用栅栏围成,栅栏总长度为 50m,门宽为2m.若饲养室长为 xm,占地面积为ym 2,则关于x 的函数表达式为(:2+26x (2<x<52)B. C. -2 .y= - . x +50x (2w x< 52) y= - x 2+52x (2< x< 52) - 2 一 一 一 __________ y=一方x2+27x- 52 (2<x< 52)(aw0)在同一坐标系中的图象可能是(D .5.以下抛物线的顶点坐标为(2, 0)的是(10.如图,已知顶点为(-3, -6)的抛物线y=ax 2+bx+c 经过点(-1, -4),则下列结论:-1;⑤若点(-2, m ) , (- 5, n )在抛物线上,则 m>n,其中正确的个数共有(二.填空题⑥y= ( x+1 ) 2- x 2.这六个式子中,二次函数有12.把二次函数 y=x 2- 4x+5化为y=a (x —h ) 2+k 的形式,那么h+k=A . y= 3x 2+2B . y= 3x2 - 2C. y=3 (x — 2) 2D. y=3 (x+2) 26.二次函数y= ax 2+bx+c 的图象如图所示,其对称轴是x=-1, 卜列结论中正确的是(8.二次函数C. 2a+b=0D. a - b+c>2 (x-1) 2+b (aw0)的图象经过点(0, 2) a+b 的值是( B. - 1C. 2D. 3 x 2- 2x+c 在-3< x< 2的范围内有最大值为一5, 则c 的值是(B. 3C. - 3D. - 69.二次函数 y=ax 2—2ax+b 中,当—1wxw 4 时,—2wyw3,贝U b — a 的值为( B. - 6或 7C. 3D. 3 或—2①b 2>4ac ;② ax 2+bx+c< - 6;③ 9a- 3b+c= - 6;④关于 x 的二次方程 ax 2+ bx+ c= - 4 的根为B. 2个C. 3个D. 4个11.观察:① y = 6x 2;② y=- 3x 2+5;③2 1y=200x 2+400x+200;④ y=x 3-2x;⑤ ¥二工 二.(只填序号)13. 一名男生参加抛实心球测试,已知球的高度 y (m )与水平距离 x (m )之间的关系是7.二次函数 y= a2B. 4ac< b -114 .已知抛物线的顶点坐标是(-2, 3),其图象是由抛物线 y=-8x 2+1平移得到的,则该抛物线的解析式为.15 .抛物线y=a (x- h) 2+k (a<0)经过(-1,3)、( 5, 3)两点,则关于 x 的不等式a (x- h -1) 2+k<3的解集为.16 .已知二次函数 y=ax 2+bx+c (aw0, a, b, c,为常数),对称轴为直线 x=1,它的部分自变量x 与函数值y 的对应值如下表.请写出ax 2+bc+c= 0的一个正数解的近似值 (精确到0.1)x - 0.4 — 0.3 — 0.2 — 0.117 .若函数y=x 2+2x+m 的图象与x 轴没有交点,则 m 的取值范围是 .18 .已知二次函数 y=ax 2+ (a-1) x- 2a+1,当1vxv3时,y 随x 的增大而减小,则 a 的取值范围是.19 .如果二次函数y=a (x-1) 2(aw0)的图象在它的对称轴右侧部分是上升的,那么a 的取值范围是.20 .小甬是一个喜欢探究钻研的同学,他在和同学们一起研究某条抛物线y=-/父2的性质时,将一个直角三角板的直角顶点置于平面直角坐标系的原点 O,两直角边与该抛物线交于A, B 两点 (如图),对该抛物线,小甬将三角板绕点 O 旋转任意角度时惊奇地发现,交点A, B 的连线段总经过一个固定的点,则该点的坐标是三.解答题21 .已知二次函数 y=2x 2+4x- 6,(1)将二次函数的解析式化为y= a (x-h) 2+k 的形式.(2)写出二次函数图象的开口方向、对称轴、顶点坐标. 22 .已知二次函数(k 为常数),求k 的值.__ 1 2 产12工m,则这名男生抛实心球的成绩是3m.y= ax 2+ bx+c0.920.38—0.12—0.5823.在平面直角坐标系xOy中,抛物线y= ax2+4ax+4a-4 (aw0)的顶点为A.(1)求顶点A的坐标;(2)过点(0, 5)且平行于x轴的直线1,与抛物线y=ax2+4ax+4-4 (aw 0)交于B、C两点.①当a=1时,求线段BC的长;②当线段BC的长不小于8时,直接写出a的取值范围.532 -11— I I E II」] ■ I J 、-5 一4 4-2 口, 1 2 3 4 5x-2~-3-4-5 _____________24.已知二次函数的图象y=- x2+bx+c如图所示,它与轴的交点坐标为(- 1,0), (3, 0)(1)求b, c的值;(2)根据图象,直接写出函数值y<0时,自变量x的取值范围.25.二次函数y=ax2+bx+c (aw0)与一次函数y=x+k (kw0)的图象如图所示,根据图象解答下列问题:(1)写出方程ax2+bx+c=0的两个根;(2)写出不等式ax2+bx+c- x- k< 0的解集;(3)写出二次函数值y随x的增大而减小的自变量x的取值范围;(4)若方程ax2+bx+c= m有两个不等的实数根,求m的取值范围;26.如图,一段长为45m的篱笆围成一个一边靠墙的矩形花园,墙长为27m,设花园的面积为sm2,平行于墙的边为xm.若x不小于17m,(1)求出s关于x的函数关系式;(2)求s的最大值与最小值.花园27.在平面直角坐标系xOy中,二次函数y = x2-2mx+1图象与y轴的交点为A,将点A向右平移4个单位长度,向上平移1个单位长度得到点B.(1)直接写出点A的坐标为,点B的坐标为;(2)若函数y=x2-2mx+1的图象与线段AB恰有一个公共点,求m的取值范围.参考答案与试题解析・选择题1.解:A、是一次函数,故此选项不符合题意;B、是二次函数,故此选项符合题意;C、当a=0时不是二次函数,故此选项不符合题意;D、不是二次函数,故此选项不符合题意;故选:B.2.解:根据“左加右减,上加下减”的法则可知,将抛物线y= 2x2+5向左平移3个单位,再向下平移1个单位,那么所得到抛物线的函数关系式是y=2 (x+3) 2+4.故选:B.3.解:y关于x的函数表达式为:y=g (50+2-x) x b-l= ---- x+26x (2W x<52).故选:A.4,解:①当a>0时,二次函数y= ax2-a的图象开口向上、对称轴为y轴、顶点在y轴负半轴,一次函数y= ax - a (aw0)的图象经过第一、三、四象限,且两个函数的图象交于y轴同一点;②当a<0时,二次函数y= ax2-a的图象开口向下、对称轴为y轴、顶点在y轴正半轴,一次函数y=ax-a (aw0)的图象经过第一、二、四象限,且两个函数的图象交于y轴同一点.对照四个选项可知D正确.故选:D.5.解:抛物线y= 3x2+2的顶点为(0, 2);抛物线y= 3x2-2的顶点为(0, - 2);抛物线y=3 (x-2) 2的顶点为(2, 0);抛物线y=3 (x+2) 2的顶点为(-2, 0);故选:C.6.解:A、由抛物线的开口向下知a<0,对称轴在y轴的左侧,a、b同号,即b<0,与y轴的交点为在y轴的正半轴上,. 0,因此abc>0,故错误;B、抛物线与x轴有两个交点,b2 - 4ac>0,即4acv b2,故正确;C、对称轴为x= ----- --= - 1,得2a = b,23.2a- b= 0,故错误;D、•.当x= - 1 时,y>0• -a- b+c>0,故错误.故选:B.7.解:二.二次函数y=a (x- 1) 2+b (aw0)的图象经过点(0, 2),a+b = 2.故选:C.8.解:把二次函数y= - x2-2x+c转化成顶点坐标式为y= - (x+1) 2+c+l,又知二次函数的开口向下,对称轴为x=- 1,故当x= - 1时,二次函数有最大值为- 5,故-1+2+c= - 5,故c= - 6.故选:D.2 29.解::抛物线y=ax — 2ax+b=a (x—1) +b- a,「•顶点(1, b - a)当a>0 时,当-1WxW4 时,—2WyW3,函数有最小值,b - a= - 2,当a<0 时,当—1wxw4 时,—2wyw3,函数有最大值,b - a= 3,故选:D.10.解:二•抛物线与x轴有2个交点,•・△= b2- 4ac>0,即b2>4ac,所以①正确;•.•抛物线的顶点坐标为(-3, - 6),即x= - 3时,函数有最小值,•.ax2+bx+c> - 6,所以②错误;•.•抛物线的顶点坐标为(-3, - 6),•••9a-3b+c= - 6,所以③正确;•••抛物线y= ax2+bx+c 经过点(-1, - 4),而抛物线的对称轴为直线x= - 3,.二点(-1, - 4)关于直线x= - 3的对称点(-5, - 4)在抛物线上,••・关于x的一元二次方程ax2+bx+c= - 4的两根为-5和-1 ,所以④错误;•••抛物线开口向上,对称轴为直线x= - 3,而点(-2, m) , ( - 5, n)在抛物线上,: - 3 - ( - 5) > - 2 - ( - 3),m<n,所以⑤错误.故选:B.二.填空题11.解:这六个式子中,二次函数有:①y=6x2;②y=- 3x2+5;③y= 200x2+400x+200;故答案为:①②③.12.解:y=x —4x+5= ( x _ 2) 2+1,. .h=2, k= 1,h+k=2+1= 3.故答案为:3.13.解:•••一名男生参加抛实心球测试,已知球的高度y (m)与水平距离x (m)之间的关系是7T小亭卷i 2: 1・・・当y=0,则0 = - y;5-x2+Vx+—, _L 乙O R-J解得:x1= 10, x2= - 2,,这名男生抛实心球的成绩为10m,故答案为:10.14.解:,•,该抛物线是由抛物线y= - 8x2+1平移得到的,a= - 8,又•••抛物线的顶点坐标是(- 2, 3),该抛物线的解析式为y=- 8 (x+2) 2+3.故答案为:y=- 8 (x+2) 2+3.15.解:二.抛物线y=a (x-h) 2+k (a>0)经过(-1, 3) , ( 5, 3)两点,,大致图象如图所示:•1-y= a (x- h- 1) 2+k (a>0)经过(0, 3) , (6, 3)两点则关于x的不等式a (x-h-1) 2+kW3的解集为:x< 0或x>6.故答案为:*^0或*>6.16.解:由表可知,当x= - 0.2时,y的值最接近0, 所以,方程ax2+bx+c= 0一个解的近似值为-0.2, 设正数解的近似值为a,.•.对称轴为直线x=1,一+(一。

2021-2022学年天津外国语大学附属外国语学校九年级(上)第一次月考数学试卷 (解析版)

2021-2022学年天津外国语大学附属外国语学校九年级(上)第一次月考数学试卷 (解析版)

2021-2022学年天津外国语大学附属外国语学校九年级第一学期第一次月考数学试卷一、选择题(3×10=30)1.下列图形中是中心对称图形的是()A.B.C.D.2.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣63.在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+24.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y15.在同一平面直角坐标系中,函数y=mx+n与y=mx2﹣nx的图象可能是()A.B.C.D.6.如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)7.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b<a+c,③4a+2b+c >0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是()A.②④⑤B.①②④C.①③④D.①③④⑤8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.99.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个B.2个C.3个D.4个10.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A 运动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.二、填空题:(4×8=32)11.已知二次函数y=x2+(2m﹣1)x,当﹣2<x<0时,y随x的增大而减小,则m的取值范围是.12.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为.13.二次函数y=ax2+bx+c图象上部分点的坐标满足如表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…若关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m的取值范围是.14.当0≤x≤1时,二次函数y=x2+ax﹣+有最大值2,则a的值为.15.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C 两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=.16.二次函数y=x2+bx的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(b、t为实数)在﹣1<x<4的范围内有解,则t的取值范围是.17.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为.18.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是.三、解答题19.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1•x2﹣1,求k的值.20.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3)(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,求△PBC周长取得最小值时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M使得ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.21.已知天津市某水产养殖户进行小龙新养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间t(t为整数)的函数关系为日销量y是时间第t天的一次函数,通过调查发现第1天的销量是198千克,第80天的销量是40千克.(1)求日销量y与时间t的函数解析式;(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天利润不低于2400元.22.抛物线y=x2+bx+c的图象经过点A(﹣1,0),B(0,﹣3).(Ⅰ)求这个抛物线的解析式;(Ⅱ)抛物线与x轴的另一交点为C,抛物线的顶点为D,判断△CBD的形状;(Ⅲ)直线BN∥x轴,交抛物线于另一点N,点P是直线BN下方的抛物线上的一个动点(点P不与点B和点N重合),过点P作x轴的垂线,交直线BC于点Q,当四边形BPNQ的面积最大时,求出点P的坐标.参考答案一、选择题(3&#215;10=30)1.下列图形中是中心对称图形的是()A.B.C.D.【分析】根据中心对称图形的概念对各图形分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.解:A.不是中心对称图形,故本选项不合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不合题意;D.不是中心对称图形,故本选项不合题意.故选:B.2.已知0≤x≤,那么函数y=﹣2x2+8x﹣6的最大值是()A.﹣10.5B.2C.﹣2.5D.﹣6【分析】把二次函数的解析式整理成顶点式形式,然后确定出最大值.解:∵y=﹣2x2+8x﹣6=﹣2(x﹣2)2+2.∴该抛物线的对称轴是直线x=2,且在x<2上y随x的增大而增大.又∵0≤x≤,∴当x=时,y取最大值,y最大=﹣2(﹣2)2+2=﹣2.5.故选:C.3.在平面直角坐标系中,将抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是()A.y=﹣(x﹣1)2﹣2B.y=﹣(x+1)2﹣2C.y=﹣(x﹣1)2+2D.y=﹣(x+1)2+2【分析】先利用配方法得到抛物线y=x2+2x+3的顶点坐标为(﹣1,2),再写出点(﹣1,2)关于原点的对称点为(1,﹣2),由于旋转180°,抛物线开口相反,于是得到抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.解:y=x2+2x+3=(x+1)2+2,抛物线y=x2+2x+3的顶点坐标为(﹣1,2),点(﹣1,2)关于原点的对称点为(1,﹣2),所以抛物线y=x2+2x+3绕着原点旋转180°,所得抛物线的解析式是y=﹣(x﹣1)2﹣2.故选:A.4.已知二次函数y=3(x﹣1)2+k的图象上有三点A(,y1),B(2,y2),C(﹣,y3),则y1、y2、y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y3>y2>y1【分析】根据函数解析式的特点为顶点式,其对称轴为x=1,图象开口向上;利用y随x的增大而增大,可判断y1<y2,根据二次函数图象的对称性可判断y3>y2;于是y3>y2>y1.解:A(,y1),B(2,y2)在对称轴的右侧,y随x的增大而增大,因为<2,故y1<y2,根据二次函数图象的对称性可知,C(﹣,y3)中,|﹣﹣1|>|2﹣1|,故有y3>y2;于是y3>y2>y1.故选:D.5.在同一平面直角坐标系中,函数y=mx+n与y=mx2﹣nx的图象可能是()A.B.C.D.【分析】利用一次函数的性质判定m、n的符号,进一步判定二次函数的开口方向和对称轴的位置进行判断.解:若函数y=mx+n经过一二三象限,m>0,n>0,则二次函数y=mx2﹣nx的图象开口向上,对称轴x=﹣>0,在y轴的右侧;若函数y=mx+n经过一二四象限,m<0,n>0,则二次函数y=mx2﹣nx的图象开口向下,对称轴x=﹣<0,在y轴的左侧;故选:C.6.如图,在平面直角坐标系xOy中,△ABC经过中心对称变换得到△A′B′C′,那么对称中心的坐标为()A.(0,0)B.(﹣1,0)C.(﹣1,﹣1)D.(0,﹣1)【分析】根据点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C 与点C′关于(﹣1,0)对称,得出△ABC与△A′B′C′关于点(﹣1,0)成中心对称.解:由图可知,点A与点A'关于(﹣1,0)对称,点B与点B'关于(﹣1,0)对称,点C与点C′关于(﹣1,0)对称,所以△ABC与△A′B′C′关于点(﹣1,0)成中心对称,故选:B.7.二次函数y=ax2+bx+c的图象如图所示,则下列结论:①abc<0,②b<a+c,③4a+2b+c >0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正确的是()A.②④⑤B.①②④C.①③④D.①③④⑤【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.解:①由图象可知:a<0,b>0,c>0,abc<0,故此选项正确;②当x=﹣1时,y=a﹣b+c<0,即b>a+c,错误;③由对称知,当x=2时,函数值大于0,即y=4a+2b+c>0,故此选项正确;④当x=3时函数值小于0,y=9a+3b+c<0,且x=﹣=1,即a=﹣b,代入得9(﹣b)+3b+c<0,得2c<3b,故此选项正确;⑤当x=1时,y的值最大.此时,y=a+b+c,而当x=m时,y=am2+bm+c,所以a+b+c>am2+bm+c,故a+b>am2+bm,即a+b>m(am+b),故此选项错误.故①③④正确.故选:C.8.如图,抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,点D是直线BC上方的抛物线上的一个动点,连接DC,DB,则△BCD的面积的最大值是()A.7B.7.5C.8D.9【分析】要求△BCD的最大值,只要表示出△BCD的面积即可,根据题目中的信息可以求出抛物线的解析式和直线的解析式,从而可以表示出三角形BCD的面积,从而可以求得△BCD的最大值.解:设抛物线的解析式是y=ax2+bx+c,∵抛物线经过A(1,0),B(4,0),C(0,﹣4)三点,∴解得,∴y=﹣x2+5x﹣4,设过点B(4,0),C(0,﹣4)的直线的解析式为y=kx+m解得,即直线BC的直线解析式为:y=x﹣4,设点D的坐标是(x,﹣x2+5x﹣4)∴=﹣2(x﹣2)2+8,∴当x=2时,△BCD的面积取得最大值,最大值是8.故选:C.9.如图是抛物线y=ax2+bx+c(a≠0)的部分图象,其顶点坐标为(1,n),且与x轴的一个交点在点(3,0)和(4,0)之间,则下列结论:①a﹣b+c>0;②3a+b=0;③b2=4a(c﹣n);④一元二次方程ax2+bx+c=n﹣1有两个互异实根.其中正确结论的个数是()A.1个B.2个C.3个D.4个【分析】利用抛物线的对称性得到抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间,则当x=﹣1时,y>0,于是可对①进行判断;利用抛物线的对称轴为直线x =﹣=1,即b=﹣2a,则可对②进行判断;利用抛物线的顶点的纵坐标为n得到=n,则可对③进行判断;由于抛物线与直线y=n有一个公共点,则抛物线与直线y=n﹣1有2个公共点,于是可对④进行判断.解:∵抛物线与x轴的一个交点在点(3,0)和(4,0)之间,而抛物线的对称轴为直线x=1,∴抛物线与x轴的另一个交点在点(﹣2,0)和(﹣1,0)之间.∴当x=﹣1时,y>0,即a﹣b+c>0,所以①正确;∵抛物线的对称轴为直线x=﹣=1,即b=﹣2a,∴3a+b=3a﹣2a=a,所以②错误;∵抛物线的顶点坐标为(1,n),∴=n,∴b2=4ac﹣4an=4a(c﹣n),所以③正确;∵抛物线与直线y=n有一个公共点,∴抛物线与直线y=n﹣1有2个公共点,∴一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根,所以④正确.故选:C.10.如图,正方形ABCD的边长为4,点M是CD的中点,动点E从点B出发,沿BC运动,到点C时停止运动,速度为每秒1个长度单位;动点F从点M出发,沿M→D→A 运动,速度也为每秒1个长度单位:动点G从点D出发,沿DA运动,速度为每秒2个长度单位,到点A后沿AD返回,返回时速度为每秒1个长度单位,三个点的运动同时开始,同时结束.设点E的运动时间为x,△EFG的面积为y,下列能表示y与x的函数关系的图象是()A.B.C.D.【分析】(1)当x≤2时,各点位置与原图所示,则y=S△EFG=S正方形ABCD﹣S梯形ABGE﹣S﹣S△EFD;△EFC(2)当x>2时,y=S△EFG直接计算即可.解:(1)当x≤2时,各点位置与原图所示,此时,BE=x,MF=x,GD=2x,则y=S△EFG=S正方形ABCD﹣S梯形ABGE﹣S△EFC﹣S△GFD,将有关数据代入整理得:y=S△EFG=1.5x2﹣x+4,对应图象是二次函数;(2)当x>2时,各点位置与下图所示,此时y=S△EFG=•GF•AB=﹣4x+16,对应图象是直线,故选:A.二、填空题:(4&#215;8=32)11.已知二次函数y=x2+(2m﹣1)x,当﹣2<x<0时,y随x的增大而减小,则m的取值范围是m.【分析】先根据函数的解析式和二次函数的性质得出函数的对称轴和开口方向,再根据已知和对称轴得出关于m的不等式,求出不等式的解集即可.解:二次函数y=x2+(2m﹣1)x的对称轴是直线x=﹣=﹣,∵二次函数y=x2+(2m﹣1)x中a=1>0,∴函数的图象的开口向上,∴当x时,y随x的增大而减小,∵当﹣2<x<0时,y随x的增大而减小,∴﹣≥0,解得:m,故答案为:m.12.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为0或2或﹣2.【分析】当m=0时,函数为一次函数与x轴有一个交点,当m≠0时,Δ=0时,抛物线与x轴只有一个交点.解:当m=0时,函数为y=2x+1,其图象与x轴只有一个交点.当m≠0时,Δ=0,即(m+2)2﹣4m()=0.解得:m=±2.∴当m=0,或m=±2时,函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点.故答案为:0或2或﹣2.13.二次函数y=ax2+bx+c图象上部分点的坐标满足如表:x…﹣3﹣2﹣101…y…﹣3﹣2﹣3﹣6﹣11…若关于x的一元二次方程ax2+bx+c﹣m=0有两个不相等的实数根,则m的取值范围是m <﹣2.【分析】利用表中数据得到抛物线的对称轴为直线x=﹣2,抛物线的顶点坐标为(﹣2,﹣2),由于抛物线开口向下,抛物线有最大值为﹣2,从而得到一元二次方程ax2+bx+c =﹣2有两个相等的实数根,所以当m<﹣2得到关于x的一元二次方程ax2+bx+c=m有两个不相等的实数根.解:∵x=﹣3和x=﹣1时,y=﹣3,∴抛物线的对称轴为直线x=﹣2,抛物线的顶点坐标为(﹣2,﹣2),抛物线开口向下,∴抛物线有最大值为﹣2,即一元二次方程ax2+bx+c=﹣2有两个相等的实数根,∵关于x的一元二次方程ax2+bx+c=m有两个不相等的实数根,∴m<﹣2.故答案为m<﹣2.14.当0≤x≤1时,二次函数y=x2+ax﹣+有最大值2,则a的值为﹣6或.【分析】根据当0≤x≤1时,二次函数y=x2+ax﹣+有最大值2,利用分类讨论的方法和二次函数的性质可以求得a的值.解:∵二次函数y=x2+ax﹣+=(x+)2﹣﹣+,当0≤x≤1时,二次函数y =x2+ax﹣+有最大值2,∴当>1时,得a<﹣2,在0≤x≤1中,当x=0时,该函数取得最大值,即﹣+=2,得a=﹣6,当<0时,得a>0,在0≤x≤1中,当x=1时,该函数取得最大值,即1+a﹣+=2,得a=,由上可得,a的值是﹣6或,故答案为:﹣6或.15.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=(x≥0)于B、C 两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则=5﹣.【分析】设A点坐标为(0,a),利用两个函数解析式求出点B、C的坐标,然后求出BC的长度,再根据CD∥y轴,利用y1的解析式求出D点的坐标,然后利用y2求出点E 的坐标,从而得到DE的长度,然后求出比值即可得解.解:设A点坐标为(0,a),(a>0),则x2=a,解得x=,∴点B(,a),=a,则x=,∴点C(,a),∴BC=﹣.∵CD∥y轴,∴点D的横坐标与点C的横坐标相同,为,∴y1=()2=5a,∴点D的坐标为(,5a).∵DE∥AC,∴点E的纵坐标为5a,∴=5a,∴x=5,∴点E的坐标为(5,5a),∴DE=5﹣,∴==5﹣.故答案是:5﹣.16.二次函数y=x2+bx的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣t=0(b、t为实数)在﹣1<x<4的范围内有解,则t的取值范围是﹣1≤t<8.【分析】根据对称轴求出b的值,从而得到x=﹣1、4时的函数值,再根据一元二次方程x2+bx﹣t=0(t为实数)在﹣1<x<4的范围内有解相当于y=x2+bx与y=t在x的范围内有交点解答.解:对称轴为直线x=﹣=1,解得b=﹣2,所以,二次函数解析式为y=x2﹣2x,y=(x﹣1)2﹣1,x=﹣1时,y=1+2=3,x=4时,y=16﹣2×4=8,∵x2+bx﹣t=0相当于y=x2+bx与直线y=t的交点的横坐标,∴当﹣1≤t<8时,在﹣1<x<4的范围内有解.故答案为:﹣1≤t<8.17.如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为24+9.【分析】连接PQ,如图,根据等边三角形的性质得∠BAC=60°,AB=AC,再根据旋转的性质得AP=PQ=6,∠PAQ=60°,则可判断△APQ为等边三角形,所以PQ=AP =6,接着证明△APC≌△ABQ得到PC=QB=10,然后利用勾股定理的逆定理证明△PBQ 为直角三角形,再根据三角形面积公式,利用S四边形APBQ=S△BPQ+S△APQ进行计算.解:连接PQ,如图,∵△ABC为等边三角形,∴∠BAC=60°,AB=AC,∵线段AP绕点A顺时针旋转60°得到线段AQ,∴AP=PQ=6,∠PAQ=60°,∴△APQ为等边三角形,∴PQ=AP=6,∵∠CAP+∠BAP=60°,∠BAP+∠BAQ=60°,∴∠CAP=∠BAQ,在△APC和△ABQ中,,∴△APC≌△ABQ,∴PC=QB=10,在△BPQ中,∵PB2=82=64,PQ2=62,BQ2=102,而64+36=100,∴PB2+PQ2=BQ2,∴△PBQ为直角三角形,∠BPQ=90°,∴S四边形APBQ=S△BPQ+S△APQ=×6×8+×62=24+9.故答案为24+9.18.小刚家、公交车站、学校在一条笔直的公路旁(小刚家、学校到这条公路的距离忽略不计).一天,小刚从家出发去上学,沿这条公路步行到公交站恰好乘上一辆公交车,公交车沿这条公路匀速行驶,小刚下车时发现还有4分钟上课,于是他沿着这条公路跑步赶到学校(上、下车时间忽略不计),小刚与学校的距离s(单位:米)与他所用的时间t(单位:分钟)之间的函数关系如图所示.已知小刚从家出发7分钟时与家的距离是1200米,从上公交车到他到达学校共用10分钟.下列说法:①公交车的速度为400米/分钟;②小刚从家出发5分钟时乘上公交车;③小刚下公交车后跑向学校的速度是100米/分钟;④小刚上课迟到了1分钟.其中正确的序号是①②③.【分析】根据公交车第7至12分钟行驶的路程可得其速度;由公交车速度及其行驶的路程可知其行驶这段距离的时间,根据公交车到达的时间即可知其出发时间,即可判断;根据从上公交车到他到达学校共用10分钟及公交车的行驶时间可知小刚跑步所用时间,再由跑步的路程即可得其速度;根据小刚下车时发现还有4分钟上课即可判断④.解:∵小刚从家出发7分钟时与家的距离是1200米,即小刚从家出发7分钟时距离学校3500﹣1200=2300m,∴公交车的速度为:=400米/分钟,故①正确;由①知公交车速度为400米/分钟,∴公交车行驶的时间为=7分钟,∴小刚从家出发乘上公交车是在第12﹣7=5分钟时,故②正确;∵从上公交车到他到达学校共用10分钟,∴小刚下公交车后跑向学校的速度是=100米/分钟,故③正确;∵小刚从下车至到达学校所用时间为5+10﹣12=3分钟,而小刚下车时发现还有4分钟上课,∴小刚下车较上课提前1分钟,故④错误;故答案为:①②③三、解答题19.已知关于x的方程x2﹣2(k﹣1)x+k2=0有两个实数根x1,x2.(1)求k的取值范围;(2)若|x1+x2|=x1•x2﹣1,求k的值.【分析】(1)根据判别式的意义得到Δ=[﹣2(k﹣1)]2﹣4×1×k2≥0,然后解不等式即可;(2)利用根与系数的关系得到x1+x2=2(k﹣1),x1x2=k2,然后代入|x1+x2|=x1•x2﹣1,得到关于k的方程,解方程即可求解.解:(1)由方程有两个实数根,可得Δ=b2﹣4ac=4(k﹣1)2﹣4k2=4k2﹣8k+4﹣4k2=﹣8k+4≥0,解得k≤;答:k的取值范围是k≤;(2)依据题意可得,x1+x2=2(k﹣1),x1x2=k2,由(1)可知k≤,∴2(k﹣1)<0,x1+x2<0,∴﹣x1﹣x2=﹣(x1+x2)=x1•x2﹣1,∴﹣2(k﹣1)=k2﹣1,解得k1=1(舍去),k2=﹣3,∴k的值是﹣3.答:k的值是﹣3.20.如图,抛物线y=ax2+bx+c经过点A(﹣3,0),B(1,0),C(0,﹣3)(1)求抛物线的解析式;(2)若点P为抛物线对称轴上一点,求△PBC周长取得最小值时点P的坐标;(3)设抛物线的顶点为D,DE⊥x轴于点E,在y轴上是否存在点M使得ADM是直角三角形?若存在,请求出点M的坐标;若不存在,请说明理由.【分析】(1)已知抛物线上的三点坐标,利用待定系数法可求出该二次函数的解析式;(2)如图1,连接AC交对称轴于P,此时△PBC周长最小;(3)分三种情况进行讨论:①以A为直角顶点;②以D为直角顶点;③以M为直角顶点;设点M的坐标为(0,t),根据勾股定理列出方程,求出t的值即可.解:(1)由于抛物线y=ax2+bx+c经过A(﹣3,0),B(1,0),可设抛物线的解析式为:y=a(x+3)(x﹣1),将C点坐标(0,﹣3)代入,得:a(0+3)(0﹣1)=﹣3,解得a=1,则y=(x+3)(x﹣1)=x2+2x﹣3,所以抛物线的解析式为:y=x2+2x﹣3;(2)如图1中,连接AC交对称轴于P,∵PB=PA,∴PB+PC=PB+PA,∴此时PB+PC最短,△PBC的周长最短,设直线AC解析式为y=kx+b,则.解得,∴直线AC解析式为y=﹣x﹣3,∵对称轴x=﹣1,∴点P坐标(﹣1,﹣2).(3)在y轴上是存在点M,能够使得△ADM是直角三角形.理由如下:∵y=x2+2x﹣3=y=(x+1)2﹣4,∴顶点D的坐标为(﹣1,﹣4),∵A(﹣3,0),∴AD2=(﹣1+3)2+(﹣4﹣0)2=20.设点M的坐标为(0,t),分三种情况进行讨论:①当A为直角顶点时,如图2,由勾股定理,得AM2+AD2=DM2,即(0+3)2+(t﹣0)2+20=(0+1)2+(t+4)2,解得t=,所以点M的坐标为(0,);②当D为直角顶点时,如图3,由勾股定理,得DM2+AD2=AM2,即(0+1)2+(t+4)2+20=(0+3)2+(t﹣0)2,解得t=﹣,所以点M的坐标为(0,﹣);③当M为直角顶点时,如图4,由勾股定理,得AM2+DM2=AD2,即(0+3)2+(t﹣0)2+(0+1)2+(t+4)2=20,解得t=﹣1或﹣3,所以点M的坐标为(0,﹣1)或(0,﹣3);综上可知,在y轴上存在点M,能够使得△ADM是直角三角形,此时点M的坐标为(0,)或(0,﹣)或(0,﹣1)或(0,﹣3).21.已知天津市某水产养殖户进行小龙新养殖.已知每千克小龙虾养殖成本为6元,在整个销售旺季的80天里,销售单价P(元/千克)与时间t(t为整数)的函数关系为日销量y是时间第t天的一次函数,通过调查发现第1天的销量是198千克,第80天的销量是40千克.(1)求日销量y与时间t的函数解析式;(2)哪一天的日销售利润最大?最大利润是多少?(3)该养殖户有多少天利润不低于2400元.【分析】(1)设日销量y与时间t的函数解析式为y=kt+b,将(1,198),(80,40)代入,求得k和b的值,再代入y=kt+b即可;(2)设日销售利润为w,则w=(P﹣6)y,分以下两种情况分别写出w的函数表达式:①当1≤t≤40时②当41≤t≤80时,并分别求出其最大值,然后比较二者的大小即可得答案;(3)根据(2)中的函数关系式,令其函数值等于2400,分别求出t的值,从而可得符合题意的天数.解:(1)设日销量y与时间t的函数解析式为y=kt+b将(1,198),(80,40)代入得:解得:∴y=﹣2t+200(1≤x≤80,t为整数).(2)设日销售利润为w,则w=(P﹣6)y①当1≤t≤40时w=(+16﹣6)(﹣2t+200)=﹣(t﹣30)2+2450∴当t=30时,日销售利润最大,最大利润是2450元.②当41≤t≤80时w=(﹣t+46﹣6)(﹣2t+200)=(t﹣90)2﹣100∴当t=41时,日销售利润最大,最大利润为2301元∵2450>2301∴第30天的日销售利润最大,最大利润为2450元.(3)由(2)得:当1≤t≤40时,w=﹣(t﹣30)2+2450令w=2400,即﹣(t﹣30)2+2450=2400解得:t1=20,t2=40由函数w=﹣(t﹣30)2+2450的二次项系数为负值,对称轴为t=30,可知当20≤t≤40时,日销售利润不低于2400元;当41≤t≤80时,w的最大值为2301,2301<2400∴t的取值范围是20≤t≤40时∴该养殖户有21天利润不低于2400元.22.抛物线y=x2+bx+c的图象经过点A(﹣1,0),B(0,﹣3).(Ⅰ)求这个抛物线的解析式;(Ⅱ)抛物线与x轴的另一交点为C,抛物线的顶点为D,判断△CBD的形状;(Ⅲ)直线BN∥x轴,交抛物线于另一点N,点P是直线BN下方的抛物线上的一个动点(点P不与点B和点N重合),过点P作x轴的垂线,交直线BC于点Q,当四边形BPNQ的面积最大时,求出点P的坐标.【分析】(Ⅰ)把A、B点的坐标代入y=x2+bx+c得到关于b、c的方程组,然后解方程组即可得到抛物线的解析式;(Ⅱ)先求出OC=OB,得出∠OBC=45°,进而判断出DE=BE,得出∠DBE=45°,即可得出结论;(Ⅲ)先确定出点N坐标,进而得出BN=2,再设出点P坐标,表示出Q坐标,利用面积和即可得出结论.解:(Ⅰ)根据题意得,解得∴抛物线的解析式为y=x2﹣2x﹣3;(Ⅱ)如图1,当y=0时,x2﹣2x﹣3=0,解得x1=﹣1,x2=3,则C(3,0),∴OC=3,∵B(0,﹣3),∴OB=3=OC,∴∠OBC=45°,由(1)知,y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点D的坐标为(1,﹣4),过点D作DE⊥y轴于E,∴DE=1,OE=4,∴BE=OE﹣OB=1=DE,∴∠DBE=45°,∴∠CBD=180°﹣∠DBE﹣∠OBC=90°,∴△BCD是直角三角形;(Ⅲ)如图,由抛物线的对称性知,N(2,﹣3),∴BN=2,∵BN∥x轴,PQ⊥x轴,∴BN⊥PQ,设P(m,m2﹣2m﹣3)(0<m<2),∵B(0,﹣3),C(3,0),∴直线BC的解析式为y=x﹣3,∴Q(m,m﹣3),∴PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m=﹣(m﹣)2+,∴S四边形BPNQ=S△PBQ+S△PNQ=PQ•BN=[﹣(m﹣)2+]×2=﹣(m﹣)2+,当m=时,S四边形BPNQ最大,最大值为,此时P(,﹣).。

2020-2021青一外国语学校九(上)第三次月考数学试卷

2020-2021青一外国语学校九(上)第三次月考数学试卷

2020-2021青一外国语学校九(上)第三次月考数学试卷一.选择题(共12小题)1.化简(﹣1)2020的值是()A.2020B.﹣2020C.1D.﹣12.下列几何图形既是轴对称图形又是中心对称图形的是()A.B.C.D.3.2020年5月,中科院沈阳自动化所主持研制的“海斗一号”万米海试成功,下潜深度超10900米,刷新我国潜水器最大下潜深度记录.将数据10900用科学记数法表示为()A.1.09×103B.1.09×104C.10.9×103D.0.109×105 4.下列各式中,运算正确的是()A.2+3=5B.C.a6÷a3=a2D.(a3)2=a5 5.下列式子中,y不是x的函数的是()A.y=x2 B.y=x﹣2 C.y=(x≥1)D.y=±(x≥0)6.跳伞运动员小李在200米的空中测得地面上的着落点A的俯角为60°,那么此时小李离着落点A的距离是()A.200米B.400米C.米D.米7.不等式组的解集在数轴上表示正确的是()A.B.C.D.8.众所周知,“石头、剪刀、布”游戏规则是比赛时双方任意出“石头”、“剪刀”、“布”这三种手势中的一种.石头胜剪刀,剪刀胜布,布胜石头,若双方出相同手势,则算打平.小明和小红玩这个游戏,他们随机出一种手势,则小明获胜的概率为()A.B.C.D.9.下列实数,,,0.101001,其中无理数有()A.1个B.2个C.3个D.4个10.如图,直线m∥n,∠1=70°,∠ADB=30°,则∠A=()A.50°B.40°C.30°D.20°11.学校为了丰富学生知识,需要购买一批图书,其中科普类图书平均每本的价格比文学类图书平均每本的价格多8元,已知学校用15000元购买科普类图书的本数与用12000元购买文学类图书的本数相等.设文学类图书平均每本x元,则列方程正确的是()A.=B.=C.=D.=+812.二次函数y=ax2+bx+c(a≠0,a,b,c为常数)的部分对应值列表如下:x…﹣2﹣1012…y…7 4.6714.226.2…则代数式16a﹣4b+c的值为()A.4.6B.7C.14.2D.26.2二.填空题(共4小题)13.为了参加中学生足球联赛,某校足球队准备购买13双运动鞋,收集尺码,并整理如下统计表:尺码/cm2525.52626.527购买量/双52321则这组数据的中位数是.14.圆锥的底面半径为3,侧面积为12π,则这个圆锥的母线长为.15.如图1,小长方形纸片的长为2,宽为1,将4张这样的小长方形纸片按图2所示的方式不重叠的放在大长方形内,未被覆盖的部分恰好被分割为两个长方形Ⅰ和Ⅱ,设长方形Ⅰ和Ⅱ的周长分别为C1和C2,则C1C2(填“>”、“=”或“<”).16.如图,AB是半圆O的直径,点C在半径OA上,过点C做CD⊥AB交半圆O于点D.以CD,CA为边分别向左、下作正方形CDEF,CAGH.过点B作GH的垂线与GH的延长线交于点I,M为HI的中点.记正方形CDEF,CAGH,四边形BCHI的面积分别为S1,S2,S3.(1)若AC:BC=1:3,则的值为;(2)若D,O,M在同一条直线上,则的值为.三.解答题(共9小题)17.计算:2sin60°+(﹣)﹣2+(π﹣2020)0+|2﹣|.18.先化简,再求值:(1﹣)÷,其中a=+1.19.△ABC中D是BC边上一点,连接AD.(1)如图(1),AD是中线,则AB+AC2AD(填>,<或=);(2)如图(2),AD是角平分线,求证AB﹣AC>BD﹣CD.20.深圳市政府计划投资1.4万亿元实施东进战略.为了解深圳市民对东进战略的关注情况.某校数学兴趣小组随机采访部分深圳市民,对采访情况制作了统计图表的一部分如下:关注情况频数频率A.高度关注m0.1B.一般关注1000.5C.不关注30nD.不知道500.25(1)根据上述统计图可得此次采访的人数为人,m=,n=;(2)根据以上信息补全条形统计图;(3)根据上述采访结果,请估计在15000名深圳市民中,高度关注东进战略的深圳市民约有人.21.如图,△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,点E为AC延长线上一点,且DE是⊙O的切线.(1)求证:∠CDE=∠BAC;(2)连接AD,若tan∠CAD=,CE=4,求⊙O的半径.22.已知用2辆A型车和1辆B型车装满货物一次可运货11吨;用3辆A型车和2辆B型车装满货物一次可运货19吨,某物流公司现有50吨货物,计划同时租用A型车a辆,B 型车b辆,一次运转,且恰好每辆车都装满货物.根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计,有几种租车方案?(3)若A型车每辆需租金100元/次,B型车每辆需租金120元/次,请选出最省钱的租车方案,并求出最少租车费.23.矩形ABCD中,∠ACB=30°,直角三角形AEF中,∠EAF=90°,∠AFE=30°.(1)如图①,连接BE和CF,求证:△ABE∽△ACF;(2)将直角三角形AEF绕A旋转至图②位置,使得点F落在BC上,此时,求此时的值;(3)将直角三角形AEF绕A旋转至图③位置,此时有∠ABF=30°,BF=4,BE=2,求此时AB的长度.24.一般地,在画一个图形关于某点的中心对称图形时,首先找到对称中心,将关键点与对称中心相连,并延长至等长,最后将所得的对应点连接即可得到对称图形.若将函数C1的图象沿某一点旋转180度,与函数C2的图象重合,则称函数C1与C2关于这个点互为“中心对称函数”,这个点叫做函数C1、C2的“对称中心”,如:求函数y=x的关于(1,0)的中心对称函数,可以在函数上取(0,0)和(1,1),两个点关于(1,0)中心对称点分别是(2,0)和(1,﹣1),这样我们就可以得到函数y=x关于(1,0)中心对称函数y=x﹣2.(1)求函数y=3x+2关于(1,0)的中心对称函数;(2)若函数C1:y=2x+b,对称中心是(0,﹣b),此时C1的关于(0,﹣b)的中心对称函数C2的图象与函数y=﹣的图象有且只有一个交点,求b的值;(3)若函数C1:y=x2+11,对称中心是(1,10),当0≤x≤4时,此时函数C1关于(1,10)的中心对称函数C2的图象与函数y=kx+3k的图象始终有交点,求k的取值范围.25.如图1,二次函数y=ax2+bx+c(a<0)顶点为A(﹣2,4),二次函数的图象与y轴交于点B,BC平行x轴,过点B作射线BD交二次函数的图象于点D,BC平分∠ABD.(1)用含a的代数式分别表示b,c;(2)求证:为定值;(3)若直线y=kx+4与y轴及该抛物线的交点依次为P、M、N,其中线段MN长为m,当满足,且3≤m≤3时,试确定a的取值范围.2020-2021学年湖南省长沙市开福区青竹湖湘一外国语学校九年级(上)第三次月考数学试卷参考答案与试题解析一.选择题(共12小题)1.C.2.B.3.B.4.B.5.D.6.D.7.A.8.B.9.B.10.B.11.B.12.D12.【解答】解:∵x=0和x=﹣2时y的值相同都是7,∴点(﹣2,7)和点(0,7)关于二次函数的对称轴对称,∴对称轴为:x==﹣1,∴点(﹣4,26.2)和点(2,26.2)关于二次函数的对称轴对称,∴x=﹣4时对应的函数值y=26.2,∴16a﹣4b+c=26.2,二.填空题(共4小题)13.25.5.14.4.15.=.16.【解答】解:(1)8.(2).三.解答题(共9小题)17.【解答】解:原式=2×+9+1+2﹣=+12﹣=12.18.【解答】解:==a﹣1,把a=+1代入a﹣1=+1﹣1=.19.【解答】(1)解:如图1,延长AD至点E,使得DE=AD,连接BE、CE,∵BD=DC,∴四边形ABEC是平行四边形,∴AC=BE,△ABE中,AB+BE>AE,即AB+AC>2AD,故答案为>;(2)证明:如图2,在AB上截取AE=AC,连接DE,在△ADE和△ADC中,,∴△ADE≌△ADC(SAS),∴ED=CD,在△BDE中,BE>BD﹣ED,即AB﹣AC>BD﹣CD.20.【解答】解:(1)此次采访的人数为100÷0.5=200(人),m=0.1×200=20,n=30÷200=0.15;(2)如图所示;(3)高度关注东进战略的深圳市民约有0.1×15000=1500(人).21.【解答】解:(1)如图,连接OD,AD,∵AC是直径,∴∠ADC=90°,∴AD⊥BC,∵AB=AC,∴∠CAD=∠BAD=BAC,∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°,∴∠ADC=∠ODE,∴∠CDE=∠ADO,∵OA=OD,∴∠CAD=∠ADO,∴∠CDE=∠CAD,∵∠CAD=BAC,∴∠CDE=∠BAC;(2)解:∵AD⊥BC,∴tan∠CAD==,∴AD=3CD,设DC=x,则AD=3x,CE=4,∴AC==x,∵∠CDE=∠CAD,∠DEC=∠AED,∴△CDE∽△DAE,∴==,∴==,∴DE=12,x=,∴AC=x=32,∴⊙O的半径为16.22.【解答】解:(1)设1辆A型车和1辆B型车一次分别可以运货x吨,y吨,根据题意得:,解得:,则1辆A型车和1辆B型车一次分别可以运货3吨,5吨;(2)∵某物流公司现有50吨货物,计划同时租用A型车a辆,B型车b辆,∴3a+5b=50,则有,解得:0≤a≤16,∵a为整数,∴a=0,1,2,…,10,11,12,13,14,15,16.∵b=为整数,∴a=0,5,10,15,∴a=0,b=10,a=5,b=7;a=10,b=4;a=15,b=1,∴满足条件的租车方案一共有4种,a=0,b=10,a=5,b=7;a=10,b=4;a=15,b=1;(3)∵A型车每辆需租金100元/次,B型车每辆需租金120元/次,当a=0,b=10,租车费用为:W=100×0+10×120=1200元;当a=5,b=7,租车费用为:W=100×5+7×120=1340元;当a=10,b=4,租车费用为:W=100×10+4×120=1480元;当a=15,b=1,租车费用为:W=100×15+1×120=1620元,∴当租用A型车0辆,B型车10辆时,租车费最少.23.【解答】(1)证明:∵四边形ABCD是矩形,∴∠BAC=90°,∵∠ACB=30°,∠AFE=30°,∴,,∴,∴,又∵∠EAF=∠BAC=90°,∴∠EAB=∠F AC,∴△ABE∽△ACF;(2)解:如图②,连接BE,设CF=x,则AF=x,在Rt△AEF中,AE=AF•tan30°==x,由(1)可知△ABE∽△ACF,∴,∠ABE=∠ACF,∴,∴BE=,又∵∠ACF=∠AFE=30°,∴∠ABE=∠AFE,∵∠BME=∠AMF,∴△FMA∽△BME,∴=3.(3)解:如图③,连接CF,∵∠AFE=∠ACB=30°,∴,∵∠F AE=∠BAC=90°,∴∠F AC=∠EAB,∴△F AC∽△EAB,∴,∵BE=2,∴,∴CF=6,∵∠ABF=30°,∠ABC=60°,∴∠FBC=∠ABF+∠ABC=30°+60°=90°,∴==2,∴AB=BC=.24.【解答】解:(1)由题意得:可在y=3x+2上取(0,2)和(﹣,0),两个点关于(1,0)的中心对称点分别是(2,﹣2)和(,0),则得到函数y=3x+2关于(1,0)的中心对称函数y=3x﹣8;(2)可在函数C1:y=2x+b上取(0,b)和(﹣,0),两个点关于(0,﹣b)的中心对称点分别是(0,﹣3b)和(,﹣2b),则得到函数y=2x+b关于(0,﹣b)的中心对称函数C2:y=2x﹣3b,又∵函数C2的图象与函数y=﹣的图象有且只有一个交点,∴2x+b=﹣,化简得:2x2﹣3bx+2=0,∵△=9b2﹣16=0,∴b=±;(3)在函数C1:y=x2+11上取(0,11)、(1,12),两个点关于(1,10)的中心对称点分别是(2,9)、(1,8),则得到函数C2的解析式:y=﹣x2+4x+5,当x=4时,y=5,∴A(4,5),∵函数C2的图象与函数y=kx+3k的图象在0≤x≤4上始终有交点,∴﹣x2+4x+5=kx+3k,∴﹣x2+(4﹣k)x+5﹣3k=0,∵△=(4﹣k)2+4×(5﹣3k)=0,∴k2﹣20k+36=0,解得:k1=2,k2=18,把A(4,5)代入y=kx+3k得k=,∴k的取值范围为≤k≤2.25.【解答】(1)解:∵二次函数y=ax2+bx+c(a<0)顶点为A(﹣2,4),∴﹣=﹣2,=4,∴b=4a,c=4a+4;(2)证明:过A作AE⊥BC于E,过D作DF⊥BC于F,如图:由(1)知:b=4a,c=4a+4,∴抛物线解析式为y=ax2+4ax+4a+4,令x=0得y=4a+4,∴B(0,4a+4),∵A(﹣2,4),BC平行x轴,∴BE=2,AE=4﹣(4a+4)=﹣4a,AB==2,设D(m,am2+4am+4a+4),则BF=﹣m,DF=(4a+4)﹣(am2+4am+4a+4)=﹣am2﹣4am,∵BC平分∠ABD,∴∠ABE=∠DBF,而∠AEB=∠DFB=90°,∴△ABE∽△DBF,∴=,即=,解得m=﹣6或m=0(舍去),∴D(﹣6,16a+4),∴BD=6,∴==3;(3)解:如图:设M(x1,y1),N(x2,y2),由消去y得:ax2+(4a﹣k)x+4a=0,∴x1+x2=①,x1•x2=4②,∵,∴=,∴=,即|x2|=4|x1|,由②知x1、x2同号,∴x2=4x1③,由②③解得x1=1,x2=4或x1=﹣1,x2=﹣4,代入①得k=9a或k=﹣a,且(x1﹣x2)2=9,此时ax2+(4a﹣k)x+4a=0的判别式△均大于0,∵线段MN长为m,∴m2=(x1﹣x2)2+(y1﹣y2)2=(x1﹣x2)2+[(kx1+4)﹣(kx2+4)]2=(k2+1)(x1﹣x2)2=9(k2+1),∴m=3,∵3≤m≤3,∴3≤3≤3,∴≤≤,解得≤k≤2或﹣2≤k≤﹣,当k=9a时,得≤9a≤2或﹣2≤9a≤﹣,∴≤a≤或﹣≤a≤﹣,当k=﹣a时,得≤﹣a≤2或﹣2≤﹣a≤﹣,∴﹣2≤a≤﹣或≤a≤2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷一、选择题(共10题;共30分)1.(3分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯2.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.3.(3分)抛物线y=2x2+c的顶点坐标为(0,1),则抛物线的解析式为()A.y=2x2+1B.y=2x2﹣1C.y=2x2+2D.y=2x2﹣2 4.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+25.(3分)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2﹣2)>0D.若x1>x2,则a(x1+x2﹣2)<06.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.7.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.8.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.9.(3分)如图,在边长为2的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于点E,MF⊥CD于点F,连接EF,则EF的最小值为()A.1B.C.D.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个二、填空题(共6题;共24分)11.(3分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为.(精确到0.1)12.(3分)在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有个.13.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.14.(3分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是个.15.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是.16.(3分)如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C 在点A右侧),则线段BC的长为.三、解答题(共8题;共66分)17.(8分)已知一条抛物线分别过点(3,﹣2)和(0,1),且它的对称轴为直线x=2,试求这条抛物线的解析式.18.(8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求出一个回合能确定两人下棋的概率.19.(8分)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如表:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率(2)该厂生产乒乓球优等品的概率约为多少?20.(8分)已知二次函数y=0.5x2﹣x﹣0.5求顶点坐标,小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的②③④几个步骤中开始出现错误的是步,请将此题正确的求顶点的计算过程写在下面的方框内.小明的计算过程:y=0.5x2﹣x﹣0.5=x2﹣2x﹣1 ①=x2﹣2x+1﹣1﹣1 ②=(x﹣1)2﹣2 ③∴顶点坐标是(1,﹣2)④.21.(8分)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)22.(10分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.23.(10分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?24.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.2020-2021学年浙江省杭州外国语学校九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共10题;共30分)1.(3分)下列事件中,是必然事件的是()A.从一个只有白球的盒子里摸出一个球是白球B.任意买一张电影票,座位号是3的倍数C.掷一枚质地均匀的硬币,正面向上D.汽车走过一个红绿灯路口时,前方正好是绿灯【分析】根据事件发生的可能性大小判断.【解答】解:A、从一个只有白球的盒子里摸出一个球是白球,是必然事件;B、任意买一张电影票,座位号是3的倍数,是随机事件;C、掷一枚质地均匀的硬币,正面向上,是随机事件;D、汽车走过一个红绿灯路口时,前方正好是绿灯,是随机事件;故选:A.2.(3分)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为()A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:共有9种等可能的情况数,其中恰有一个篮子为空的有6种,则恰有一个篮子为空的概率为=.3.(3分)抛物线y=2x2+c的顶点坐标为(0,1),则抛物线的解析式为()A.y=2x2+1B.y=2x2﹣1C.y=2x2+2D.y=2x2﹣2【分析】根据顶点式的坐标特点,可得出c=1,即可得到抛物线的解析式为=2x2+1.【解答】解:∵抛物线y=2x2+c的顶点坐标为(0,1),∴c=1,∴抛物线的解析式为y=2x2+1,故选:A.4.(3分)将抛物线C1:y=x2﹣2x+3向左平移1个单位长度,得到抛物线C2,抛物线C2与抛物线C3关于x轴对称,则抛物线C3的解析式为()A.y=﹣x2﹣2B.y=﹣x2+2C.y=x2﹣2D.y=x2+2【分析】根据抛物线C1的解析式得到顶点坐标,根据顶点式及平移前后二次项的系数不变可得抛物线C2的得到坐标,而根据关于x轴对称的两条抛物线的顶点的横坐标相等,纵坐标互为相反数,二次项系数互为相反数可得到抛物线C3所对应的函数表达式.【解答】解:∵抛物线C1:y=x2﹣2x+3=(x﹣1)2+2,∴抛物线C1的顶点为(1,2),∵向左平移1个单位长度,得到抛物线C2,∴抛物线C2的顶点坐标为(0,2),∵抛物线C2与抛物线C3关于x轴对称,∴抛物线C3的开口方向相反,顶点为(0,﹣2),∴抛物线C3的解析式为y=﹣x2﹣2,故选:A.5.(3分)已知直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象的对称轴,点A(x1,y1)和点B(x2,y2)为其图象上的两点,且y1<y2,()A.若x1<x2,则x1+x2﹣2<0B.若x1<x2,则x1+x2﹣2>0C.若x1>x2,则a(x1+x2﹣2)>0D.若x1>x2,则a(x1+x2﹣2)<0【分析】根据二次函数的性质和二次函数的图象及二次函数上点的坐标特征即可求解.【解答】解:∵直线x=1是二次函数y=ax2+bx+c(a,b,c是实数,且a≠0)的图象∴x=﹣=1,∴b=﹣2a,∴y=ax2﹣2ax+c,∵点A(x1,y1)和点B(x2,y2)为其图象上的两点,∴y1=ax12﹣2ax1+c,y2=ax22﹣2ax2+c,当x1<x2,y1<y2即y1﹣y2<0,∴ax12﹣2ax1+c﹣(ax22﹣2ax2+c)<0,整理得:a(x1﹣x2)(x1+x2﹣2)<0,∵x1﹣x2<0,∴a(x1+x2﹣2)>0,故A,B不符合题意;当x1>x2,y1<y2即y1﹣y2<0,∴ax12﹣2ax1+c﹣(ax22﹣2ax2+c)<0,整理得:a(x1﹣x2)(x1+x2﹣2)<0,∵x1﹣x2>0,∴a(x1+x2﹣2)<0,故C不符合题意,D符合题意;故选:D.6.(3分)从马鸣、杨豪、陆畅、江宽四人中抽调两人参加“寸草心”志愿服务队,恰好抽到马鸣和杨豪的概率是()A.B.C.D.【分析】根据题意画出树状图得出所有等可能的情况数,再找出恰好抽到马鸣和杨豪的情况数,然后根据概率公式即可得出答案.【解答】解:根据题意画图如下:共有12种等可能情况数,其中恰好抽到马鸣和杨豪的有2种,则恰好抽到马鸣和杨豪的概率是=;故选:C.7.(3分)在一个不透明的袋子中装有黑球m个、白球n个、红球3个,除颜色外无其它差别,任意摸出一个球是红球的概率是()A.B.C.D.【分析】用红球的个数除以球的总个数即可得.【解答】解:∵袋子中一共有(m+n+3)个小球,其中红球有3个,∴任意摸出一个球是红球的概率是,故选:B.8.(3分)如图,直线y1=kx与抛物线y2=ax2+bx+c交于A、B两点,则y=ax2+(b﹣k)x+c的图象可能是()A.B.C.D.【分析】根据题意和题目中给出的函数图象,可以得到函数y=ax2+(b﹣k)x+c的大致图象,从而可以解答本题.【解答】解:设y=y2﹣y1,∵y1=kx,y2=ax2+bx+c,∴y=ax2+(b﹣k)x+c,由图象可知,在点A和点B之间,y>0,在点A的左侧或点B的右侧,y<0,故选项B符合题意,选项A、C、D不符合题意;故选:B.9.(3分)如图,在边长为2的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于点E,MF⊥CD于点F,连接EF,则EF的最小值为()A.1B.C.D.【分析】连接MC,证出四边形MECF为矩形,由矩形的性质得出EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,得出MC即可得出结果.【解答】解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=,∴EF的最小值为;故选:D.10.(3分)如图,二次函数y=ax2+bx+c(a≠0)图象与x轴交于A,B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a ﹣2b+c<0;③b2﹣4ac>0;④当y<0时,x<﹣1或x>2.其中正确的有()A.4个B.3个C.2个D.1个【分析】根据二次函数的图象和二次函数的性质,可以判断各个小题中的结论是否成立,从而可以解答本题.【解答】解:∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,∴﹣=1,得2a+b=0,故①正确;当x=﹣2时,y=4a﹣2b+c<0,故②正确;该函数图象与x轴有两个交点,则b2﹣4ac>0,故③正确;∵二次函数y=ax2+bx+c(a≠0)的对称轴为x=1,点B坐标为(﹣1,0),∴点A(3,0),∴当y<0时,x<﹣1或x>3,故④错误;故选:B.二、填空题(共6题;共24分)11.(3分)表中记录了某种苹果树苗在一定条件下移植成活的情况:移植的棵数n200500800200012000成活的棵数m187446730179010836成活的频率0.9350.8920.9130.8950.903由此估计这种苹果树苗移植成活的概率约为0.9.(精确到0.1)【分析】用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【解答】解:根据表格数据可知:苹果树苗移植成活的频率近似值为0.9,所以估计这种苹果树苗移植成活的概率约为0.9.故答案为:0.9.12.(3分)在一个盒子中装有若干乒乓球,小明为了探究盒子中所装乒乓球的数量,他先从盒子中取出一些乒乓球,记录了所取乒乓球的数量为m个,并在这些乒乓球上做了记号“*”,然后将它们放回盒子中,充分摇匀;接下来,他又从这个盒子中再次取出一些乒乓球,记录了所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,小明根据实验所得的数据m、n、p,可估计出盒子中乒乓球的数量有个.【分析】首先确定样本中乒乓球的频率,然后用样本估计总体即可.【解答】解:∵所取乒乓球的数量为n个,其中带有记号“*”的乒乓球有p个,∴带有记号“*”的乒乓球的频率为,∴乒乓球的总个数为m÷=,故答案为:.13.(3分)从﹣,﹣1,1,2,5中任取一数作为a,使抛物线y=ax2+bx+c的开口向上的概率为.【分析】使抛物线y=ax2+bx+c的开口向上的条件是a>0,据此从所列5个数中找到符合此条件的结果,再利用概率公式求解可得.【解答】解:在所列的5个数中任取一个数有5种等可能结果,其中使抛物线y=ax2+bx+c 的开口向上的有3种结果,∴使抛物线y=ax2+bx+c的开口向上的概率为,故答案为:.14.(3分)某快递公司在甲地和乙地之间共设有29个服务驿站(包括甲站、乙站),一辆快递货车由甲站出发,依次途经各站驶往乙站,每停靠一站,均要卸下前面各站发往该站的货包各1个,又要装上该站发往后面各站的货包各1个.在整个行程中,快递货车装载的货包数量最多是210个.【分析】根据理解题意找出题目中所给的等量关系,找出规律,写出货包数量的函数解析式,再根据二次函数最值的求法求出快递货车装载的货包数量最多的站.【解答】解:当一辆快递货车停靠在第x个服务驿站时,快递货车上需要卸下已经通过的(x﹣1)个服务驿站发给该站的货包共(x﹣1)个,还要装上下面行程中要停靠的(n﹣x)个服务驿站的货包共(n﹣x)个.根据题意,完成下表:服务驿站序号在第x服务驿站启程时快递货车货包总数1n﹣12(n﹣1)﹣1+(n﹣2)=2(n﹣2)32(n﹣2)﹣2+(n﹣3)=3(n﹣3)43(n﹣3)﹣3+(n﹣4)=4(n﹣4)54(n﹣4)﹣4+(n﹣5)=5(n﹣5)……n0由上表可得y=x(n﹣x).当n=29时,y=x(29﹣x)=﹣x2+29x=﹣(x﹣14.5)2+210.25,当x=14或15时,y取得最大值210.故答案为:210.15.(3分)抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,则当y<0时,x的取值范围是﹣3<x<1.【分析】根据物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x 轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.【解答】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点坐标为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.故答案为:﹣3<x<1.16.(3分)如图,在平面直角坐标系中,抛物线y=a(x+1)2+b与y=a(x﹣2)2+b+1交于点A.过点A作y轴的垂线,分别交两条抛物线于点B、C(点B在点A左侧,点C在点A右侧),则线段BC的长为6.【分析】设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x﹣2)2+b+1的对称轴与线段BC交于点F,由抛物线的对称性结合BC═2(AE+AF),即可求出结论.【解答】解:设抛物线y=a(x+1)2+b的对称轴与线段BC交于点E,抛物线y=a(x ﹣2)2+b+1的对称轴与线段BC交于点F,如图所示.由抛物线的对称性,可知:BE=AE,CF=AF,∴BC=BE+AE+AF+CF=2(AE+AF)=2×[2﹣(﹣1)]=6.故答案为:6.三、解答题(共8题;共66分)17.(8分)已知一条抛物线分别过点(3,﹣2)和(0,1),且它的对称轴为直线x=2,试求这条抛物线的解析式.【分析】根据题意设抛物线的解析式为y=a(x﹣2)2+b,把(3,﹣2),(0,1)代入求得a、b即可.【解答】解:∵抛物线的对称轴为x=2,∴可设抛物线的解析式为y=a(x﹣2)2+b,把(3,﹣2),(0,1)代入解析式得,解得a=1,b=﹣3,∴所求抛物线的解析式为y=(x﹣2)2﹣3.18.(8分)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;(2)求出一个回合能确定两人下棋的概率.【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合能确定两人下棋的情况,再根据概率公式求解即可.【解答】解:(1)根据题意画图如下:(2)一共有8种等可能的结果,一个回合能确定两人下棋的有6种,则一个回合能确定两人下棋的概率是=.19.(8分)对某厂生产的直径为4cm的乒乓球进行产品质量检查,结果如表:(1)计算各次检查中“优等品”的频率,填入表中;抽取球数n5010050010005000优等品数m45924558904500优等品频率0.90.920.910.890.9(2)该厂生产乒乓球优等品的概率约为多少?【分析】(1)利用频率的定义计算;(2)根据频率估计概率,频率都在0.9左右波动,所以可以估计这批乒乓球“优等品”概率的估计值是0.9.【解答】解:(1)如表所示,求得事件A的概率公式为.;;;;;故答案为:0.9;0.92;0.91;0.89;0.9;(2)若想求得该厂生产乒乓球优等品的概率为多少,需要求得本次抽查的总数,和抽取优等品的总数,以总体优等品的概率表示该厂生产优等品的概率,即:.20.(8分)已知二次函数y=0.5x2﹣x﹣0.5求顶点坐标,小明的计算结果与其他同学的不同,请你帮他检查一下,在标出的②③④几个步骤中开始出现错误的是①步,请将此题正确的求顶点的计算过程写在下面的方框内.小明的计算过程:y=0.5x2﹣x﹣0.5=x2﹣2x﹣1 ①=x2﹣2x+1﹣1﹣1 ②=(x﹣1)2﹣2 ③∴顶点坐标是(1,﹣2)④.【分析】利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式.【解答】解:y=0.5x2﹣x﹣0.5=0.5(x2﹣2x)﹣0.5 ①=0.5(x2﹣2x+1﹣1)﹣0.5 ②=0.5(x﹣1)2﹣1③∴顶点坐标是(1,﹣1)④;故答案为:①;①;②;③;④;21.(8分)小红的爸爸积极参加社区抗疫志愿服务工作.根据社区的安排,志愿者被随机分到A组(体温检测)、B组(便民代购)、C组(环境消杀).(1)小红的爸爸被分到B组的概率是;(2)某中学王老师也参加了该社区的志愿者队伍,他和小红爸爸被分到同一组的概率是多少?(请用画树状图或列表的方法写出分析过程)【分析】(1)共有3种等可能出现的结果,被分到“B组”的有1中,可求出概率.(2)用列表法表示所有等可能出现的结果,进而计算“他与小红的爸爸”分到同一组的概率.【解答】解:(1)共有3种等可能出现的结果,被分到“B组”的有1中,因此被分到“B组”的概率为;(2)用列表法表示所有等可能出现的结果如下:共有9种等可能出现的结果,其中“他与小红的爸爸”在同一组的有3种,∴P(他与小红爸爸在同一组)==.22.(10分)在一个不透明的口袋中装有4个依次写有数字1,2,3,4的小球,它们除数字外都相同,每次摸球前都将小球摇匀.(1)从中随机摸出一个小球,小球上写的数字不大于3的概率是.(2)若从中随机摸出一球不放回,再随机摸出一球,请用画树状图或列表的方法,求两次摸出小球上的数字和恰好是偶数的概率.【分析】(1)列表确定出所有等可能的情况数,找出小球上写的数字不大于3的情况数,即可求出所求概率;(2)列表确定出所有等可能的情况数,找出两次摸出小球上的数字和恰好是偶数的情况数,即可求出所求概率.【解答】解:(1)从中随机摸出一个小球,小球上写的数字所有等可能情况有:1,2,3,4,共4种,其中数字不大于3的情况有:1,2,3,共3种,则P(小球上写的数字不大于3)=;故答案为:;(2)列表得:1234 1﹣﹣﹣(1,2)(1,3)(1,4)2(2,1)﹣﹣﹣(2,3)(2,4)3(3,1)(3,2)﹣﹣﹣(3,4)4(4,1)(4,2)(4,3)﹣﹣﹣所有等可能的数有12种,两次摸出小球上的数字和恰好是偶数的情况有:(1,3),(2,4),(3,1),(4,2),共4种,则P(两次摸出小球上的数字和恰好是偶数)==.23.(10分)某服装厂生产A品种服装,每件成本为71元,零售商到此服装厂一次性批发A品牌服装x件时,批发单价为y元,y与x之间满足如图所示的函数关系,其中批发件数x为10的正整数倍.(1)当100≤x≤300时,y与x的函数关系式为y=﹣x+110.(2)某零售商到此服装厂一次性批发A品牌服装200件,需要支付多少元?(3)零售商到此服装厂一次性批发A品牌服装x(100≤x≤400)件,服装厂的利润为w 元,问:x为何值时,w最大?最大值是多少?【分析】(1)利用待定系数法求出一次函数解析式即可;(2)当x=200时,代入y=﹣x+110,确定批发单价,根据总价=批发单价×200,进而求出答案;(3)首先根据服装厂获利w元,当100≤x≤300且x为10整数倍时,得出w与x的函数关系式,进而得出最值,再利用当300<x≤400时求出最值,进而比较得出即可.【解答】解:(1)当100≤x≤300时,设y与x的函数关系式为:y=kx+b,根据题意得出:,解得:,∴y与x的函数关系式为:y=﹣x+110,故答案为:y=﹣x+110;(2)当x=200时,y=﹣20+110=90,∴90×200=18000(元),答:某零售商一次性批发A品牌服装200件,需要支付18000元;(3)分两种情况:①当100≤x≤300时,w=(﹣x+110﹣71)x=﹣+39x=﹣(x﹣195)2+3802.5,∵批发件数x为10的正整数倍,∴当x=190或200时,w有最大值是:﹣(200﹣195)2+3802.5=3800;②当300<x≤400时,w=(80﹣71)x=9x,当x=400时,w有最大值是:9×400=3600,∴一次性批发A品牌服装x(100≤x≤400)件时,x为190元或200元时,w最大,最大值是3800元.24.(12分)如图,抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),C(0,6)三点.(1)求抛物线的解析式.(2)抛物线的顶点M与对称轴l上的点N关于x轴对称,直线AN交抛物线于点D,直线BE交AD于点E,若直线BE将△ABD的面积分为1:2两部分,求点E的坐标.(3)P为抛物线上的一动点,Q为对称轴上动点,抛物线上是否存在一点P,使A、D、P、Q为顶点的四边形为平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.【分析】(1)设抛物线解析式为:y=a(x﹣1)(x﹣3),把点C坐标代入解析式,可求解;(2)先求出点M,点N坐标,利用待定系数法可求AD解析式,联立方程组可求点D 坐标,可求S△ABD=×2×6=6,设点E(m,2m﹣2),分两种情况讨论,利用三角形面积公式可求解;(3)分两种情况讨论,利用平行四边形的性质可求解.【解答】解:(1)∵抛物线y=ax2+bx+c(a≠0)的图象经过A(1,0),B(3,0),∴设抛物线解析式为:y=a(x﹣1)(x﹣3),∵抛物线y=a(x﹣1)(x﹣3)(a≠0)的图象经过点C(0,6),∴6=a(0﹣1)(0﹣3),∴a=2,∴抛物线解析式为:y=2(x﹣1)(x﹣3)=2x2﹣8x+6;(2)∵y=2x2﹣8x+6=2(x﹣2)2﹣2,∴顶点M的坐标为(2,﹣2),∵抛物线的顶点M与对称轴l上的点N关于x轴对称,∴点N(2,2),设直线AN解析式为:y=kx+b,由题意可得:,解得:,∴直线AN解析式为:y=2x﹣2,联立方程组得:,解得:,,∴点D(4,6),∴S△ABD=×2×6=6,设点E(m,2m﹣2),∵直线BE将△ABD的面积分为1:2两部分,∴S△ABE=S△ABD=2或S△ABE=S△ABD=4,∴×2×(2m﹣2)=2或×2×(2m﹣2)=4,∴m=2或3,∴点E(2,2)或(3,4);(3)若AD为平行四边形的边,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD=PQ,∴x D﹣x A=x P﹣x Q或x D﹣x A=x Q﹣x P,∴x P=4﹣1+2=5或x P=2﹣4+1=﹣1,∴点P坐标为(5,16)或(﹣1,16);若AD为平行四边形的对角线,∵以A、D、P、Q为顶点的四边形为平行四边形,∴AD与PQ互相平分,∴,∴x P=3,∴点P坐标为(3,0),综上所述:当点P坐标为(5,16)或(﹣1,16)或(3,0)时,使A、D、P、Q为顶点的四边形为平行四边形.。

相关文档
最新文档