核糖体与核酶知识

合集下载

第六章 核糖体与核酶

第六章  核糖体与核酶

裂殖酵母中N-端氨基酸对蛋白质半衰期的影响 裂殖酵母中 端氨基酸对蛋白质半衰期的影响
末端氨基酸 残基 Arg Lys Phe Leu Trp His Asp Asn Tyr Gln 半衰期 2 min 3 min 3 min 3 min 3 min 3 min 3 min 3 min 10 min 10 min 末端氨基端 残基 Ile Glu Pro Cys Ala Ser Thr Gly Val Met 半衰期 30 min 30 min >5 hr >30 hr >30 hr >30 hr >30 hr >30 hr >30 hr >30 hr
6.3.1 核糖体的功能位点: 核糖体的功能位点:
原核生物核糖体中有四种与RNA分子结合的 分子结合的 原核生物核糖体中有四种与 位点,其中一个是与mRNA结合的位点,另 结合的位点, 位点,其中一个是与 结合的位点 三个是与tRNA结合的位点 。 三个是与 结合的位点 ● A位点 site) :与新掺入氨酰tRNA结合位 位点(A 与新掺入氨酰 结合位 位点 点 ● P位点 site):与肽酰tRNA结合位点 位点(P : 结合位点 位点 位点(exit site ,E site):空载位点 ● E 位点 : ● mRNA结合位点 结合位点
E.coli小亚基 种蛋白质的排列 小亚基21种蛋白质的排列 小亚基
6.1.3 细菌核糖体的结构模型
6.2 核糖体的生物发生 核糖体的生物发生(biogenesis) 6.2.1 核糖体 核糖体rRNA基因的转录与加工 基因的转录与加工 编码rRNA基因的过量扩增 ■ 编码 基因的过量扩增 细胞为了满足大量需求的rRNA,通过两种 , 细胞为了满足大量需求的 方式扩大rRNA基因的拷贝数: 基因的拷贝数: 方式扩大 基因的拷贝数 在染色体上增加rRNA基因的拷贝数 基因的拷贝数; ● 在染色体上增加 基因的拷贝数 通过基因扩增 基因扩增(gene amplification)。 ● 通过基因扩增 。

第六章核糖体和核酶

第六章核糖体和核酶

1. 发现核糖体及核糖体功能鉴定的两个关键技术是什么?答:核糖体最早是Albert Claude于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(Microsomes),直到1950s中期,George Palade在电子显微镜下观察到这种颗粒的存在。

当时George Palade和他的同事研究了多种生物的细胞, 发现细胞质中有类似的颗粒存在, 尤其在进行蛋白质合成的细胞中特别多。

后来Philip Siekevitz 用亚细胞组份分离技术分离了这种颗粒, 并发现这些颗粒总是伴随内质网微粒体一起沉积。

化学分析揭示, 这种微粒富含核苷酸, 随之命名为ribosome,主要成分是核糖体RNA(rRNA),约占60%、蛋白质(r蛋白质)约占40%。

核糖体的蛋白质合成功能是通过放射性标记实验发现的。

将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。

后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。

两个关键技术是亚细胞组份分离技术和放射性标记技术。

2•说明人体单倍体染色体组中四种rRNA基因的组成、排列方式和拷贝数。

答:在人基因组的四种rRNA基因中,18S、5.8S和28S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S的rRNA基因则是编码在另一条染色体上。

前3个基因组成一组,分布在人的13、14、15、21、22 等5条染色体上。

在间期核中,所有这5条染色体rRNA基因区域,转录时聚集在一起,形成一个核仁。

在人体单倍体染色体组中,每组rRNA基因有200个拷贝。

每一拷贝为一个rDNA 转录单位。

这 3 个基因是纵向串联排列在核仁组织者的DNA 上。

真核细胞核糖体的5S rRNA基因则是独立存在于一个或几个染色体上,拷贝数达几千个。

在人的细胞中,该基因的拷贝有24000 个之多,它们串联排列在 1 号染色体接近末端处。

6核糖体与核酶共6页

6核糖体与核酶共6页

1. 核糖体(riboso me)核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。

按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。

原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为2.5x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为3.9~4.5x103 kDa, 由60S和40S两个亚基组成。

在真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体, 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。

真核细胞含有较多的核糖体, 每个细胞平均有106~107个, 而原核细胞中核糖体较少每个细胞平均只有15×102~18×103个。

典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。

在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。

50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。

30S小亚基含有21种蛋白质和一个16S的rRNA分子。

真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。

在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA 和5.8S rRNA。

小亚基含有大约33种蛋白质,一种18S的rRNA。

2. 基因扩增(gene a mp li fica tion)细胞内选择性复制DNA, 产生大量的拷贝。

如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。

基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。

第6章 核糖体与核酶

第6章  核糖体与核酶
滚环复制(rolling circle replication) 卵母细胞中rRNA基因扩增的机制,有人认为归因于 从染色体上分离出来的环状DNA分子,这种环状 DNA中含有rRNA基因。由于环状DNA能够通过滚 环复制的方式进行复制,因而能够产生大量的 rRNA基因。
14
rRNA 基 因 扩 增
24
5S rRNA基因
25
在3种RNA聚合酶中,RNA聚合酶III通常 是与位于转录部分内的启动子结合,而不 是与转录起始位点上游的启动子结合; 也就是说RNA聚合酶III使用的是内部启动 子,其他的两种酶使用的是上游启动子。 内部启动子的实验证明: ?
26
确定内部启动子的实验
27
原核生物rRNA基因及转录
23
5S rRNA基因的转录与加工
在真核生物中,5S rRNA基因与其他3种rRNA基因不 在同一条染色体上,它是由核仁以外的染色体基因 转录的,然后才运输到核仁内参与核糖体的装配。 5S rRNA基因是由RNA聚合酶III转录的,原初转录物 的5‘端与成熟的5S rRNA的5’端完全相同;3‘端则通 常含有多余的核苷酸,在加工时要被切除。
36
人细胞中核糖体装配的主要过程
37
第三节 核糖体的功能
核糖体的RNA结合位点 与mRNA结合的位点:SD序列 蛋白质合成中各位点的协同性 多聚核糖体(polysome) 蛋白质合成的抑制剂 蛋白质合成的基本过程 蛋白质寿命
38
核糖体的功能位点
39
真核与原核mRNA的差异
40
SD(Shine-Delgarno) sequence
RNA)
是指与mRNA互补的RNA分子。
46
一、真核细胞中的小分子RNA

核糖体与核酶

核糖体与核酶

1. 核糖体(riboso me)核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。

按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。

原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为2.5x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为3.9~4.5x103 kDa, 由60S和40S两个亚基组成。

在真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体, 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。

真核细胞含有较多的核糖体, 每个细胞平均有106~107个, 而原核细胞中核糖体较少每个细胞平均只有15×102~18×103个。

典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。

在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。

50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。

30S小亚基含有21种蛋白质和一个16S的rRNA分子。

真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。

在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA 和5.8S rRNA。

小亚基含有大约33种蛋白质,一种18S的rRNA。

2. 基因扩增(gene a mp li f ica tion)细胞内选择性复制DNA, 产生大量的拷贝。

如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。

基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。

第9章 核糖体和核酶

第9章 核糖体和核酶

25
26
RNA在生命起源 RNA在生命起源 中的地位及其演 化过程
27
生命是自我复制的体系
三种生物大分子,只有 三种生物大分子,只有RNA既具有信息载体 既具有信息载体 功能又具有酶的催化功能。因此,推测RNA 功能又具有酶的催化功能。因此,推测 可能是生命起源中最早的生物大分子。 可能是生命起源中最早的生物大分子。 核酶(ribozyme):具有催化作用的RNA。 :具有催化作用的 核酶 。 由RNA催化产生了蛋白质 催化产生了蛋白质
9
核糖体的化学组成
10
核糖体的装配
原核生物核糖体的装配 ◆小亚基的rRNA和蛋白质的装配关系: 小亚基的rRNA和蛋白质的装配关系: 小亚基的rRNA和蛋白质的装配关系 组成核糖体的蛋白质和rRNA 在大小 组成核糖体的蛋白质和 rRNA在大小 rRNA 亚基中均有一定的空间排布。 亚基中均有一定的空间排布。
5
核 糖 体 的 大 小 亚 基
6
Mg2+ 浓度对大小亚基的聚合和解离的 影响: 影响:
70S 核糖体在Mg 的浓度小于1mm/L的溶液中 ◆70S 核糖体在 Mg2+ 的浓度小于 1mm/L 的溶液中 易解离; 易解离; 浓度大于10 10mm/L, ◆当Mg2+ 浓度大于10mm/L, 两个核糖体通常形 100S的二聚体。 成100S的二聚体。
21
r蛋白质的主要功能
折叠成有功能的三维结构是十分重要的; 对rRNA 折叠成有功能的三维结构是十分重要的; 在蛋白质合成中, 某些 蛋白可能对核糖体的构象 在蛋白质合成中 某些r蛋白可能对核糖体的构象 微调”作用; 起“微调”作用; 在核糖体的结合位点上甚至可能在催化作用中, 核 在核糖体的结合位点上甚至可能在催化作用中 糖体蛋白与rRNA共同行使功能。 共同行使功能。 糖体蛋白与 共同行使功能4核糖体的类型

06核糖体与核酶解析

06核糖体与核酶解析

第六章.核糖体与核酶核糖体(r i b o s o me),是细胞内一种核糖核蛋白颗粒(r i b o n u c l e o p r o t e i n p a r t i c l e),其惟一功能是按照mR N A的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

核糖体最早是Al b e r t C l a u d e于20世纪30年代后期发现的,其后又证明了其蛋白质合成功能。

随着分子生物学的发展,核糖体概念的涵意有了进一步的发展。

细胞内除了从事蛋白质合成的核糖体外,还有许多其它功能的核糖核蛋白体颗粒,通常是一些小分子的R N A同蛋白质组成的颗粒,它们参与R N A的加工、R N A的编辑、基因表达的调控等。

发现核糖体及核糖体功能鉴定的两个关键技术是什么?(答案)答:核糖体最早是Al b e r t C l a u d e于1930s后期用暗视野显微镜观察细胞的匀浆物时发现的,当时称为微体(M i c r o s o me s),直到1950s中期,Ge o r g e P a l a d e在电子显微镜下观察到这种颗粒的存在。

当时G e o r g e P a l a d e和他的同事研究了多种生物的细胞,发现细胞质中有类似的颗粒存在,尤其在进行蛋白质合成的细胞中特别多。

后来P h i l i p S i ek e v i t z用亚细胞组份分离技术分离了这种颗粒,并发现这些颗粒总是伴随内质网微粒体一起沉积。

化学分析揭示,这种微粒富含核苷酸,随之命名为r i b o so me,主要成分是核糖体R N A(r R N A),约占60%、蛋白质(r蛋白质)约占40%。

核糖体的蛋白质合成功能是通过放射性标记实验发现的。

将细胞与放射性标记的氨基酸短暂接触后进行匀浆,然后分级分离,发现在微粒体部分有大量新合成的放射性标记的蛋白质。

后将微粒体部分进一步分离,得到核糖体和膜微粒,这一实验结果表明核糖体与蛋白质合成有关。

名词解释-核糖体与核酶

名词解释-核糖体与核酶

在原核生物中, 核糖体中与mRNA结合位点位于16S rRNA 的3'端,mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence),它是1974年由J.Shine 和 L.Dalgarno发现的,故此而命名。SD序列是mRNA中5'端富含嘌呤的短核苷酸序列,一般位于mRNA的起始密码AUG的上游5~10个碱基处,并且同16S rRNA 3'端的序列互补。
5. P位点(P site)
即肽酰tRNA位点(peptidyl-tRNA site), 又叫供位(donor site), 或肽酰基位点, 主要位于大亚基, 是肽基tRNA移交肽链后肽酰tRNA所占据的位置, 即与延伸中的肽酰tRNA结合位点。
6. E 位点(exit site, E site)
蛋白酶体存在于所有真核细胞中,其活性受γ干扰素的调节。
12. 核酶(ribozyme)
核酶一词用于描述具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。核酶的功能很多,有的能够切割RNA, 有的能够切割DNA, 有些还具有RNA 连接酶、磷酸酶等活性。与蛋白质酶相比,核酶的催化效率较低ibosomes)
在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体(polysome 或polyribosomes)。
在mRNA的起始密码子部位,核糖体亚基装配成完整的起始复合物,然后向mRNA的3'端移动,直到到达终止密码子处。当第一个核糖体离开起始密码子后,空出的起始密码子的位置足够与另一个核糖体结合时,第二个核糖体的小亚基就会结合上来,并装配成完整的起始复合物,开始蛋白质的合成。同样,第三个核糖体、第四个核糖体、……依次结合到mRNA上形成多聚核糖体。根据电子显微照片推算,多聚核糖体中,每个核糖体间相隔约80个核苷酸。

细胞学核糖体和核酶

细胞学核糖体和核酶
20
人细胞核糖体的合成与装配
21
7.3 核糖体的功能
◆核糖体的功能位点 ◆蛋白质合成的基本过程
22
核糖体的功能位点
23
核糖体的功能位点
大亚基: A位点:氨酰tRNA 位点(Aminoacyl-tRNA site)
P位点:肽酰tRNA 位点(Peptidyl-tRNA site)
E位点(Exit site):脱氨酰tRNA离开核糖体时的 临时停留点 小亚基: 与mRNA结合位点
29
第一个氨酰tRNA进入核糖体的P位点
原核生物: 携带甲酰甲硫氨酸的tRNA通过反密码子与
mRNA中的AUG的识别进入核糖体。起始tRNA与 GTP、IF2结合形成GTP-IF2-tRNAfmet复合物,复 合物与mRNA的AUG结合后,结合小亚基的IF3释 放。
30
完整复合物的装配
起始tRNA与AUG结合后,大亚基与GTPIF2-tRNAfmet复合物结合,形成核糖体-mRNA 起始复合物。
细胞有两种主要类型的核糖体:
◆原核细胞的核糖体: 沉降系数为70S,分子量为2.5×106,由50S和30S 两个亚基组成。
◆真核细胞(细胞质)的核糖体
沉降系数是80S,分子量为4.8×106,由60S和40S 两个亚基组成。
32
各种来源的核糖体亚基组成
来源 完整核糖体 核糖体亚基 核糖体RNA
细胞质 80S 60S(大亚基) 28S,5.8S,5S
(高等植物)
45S(小亚基) 18S
叶绿体 70S 50S(大亚基) 23S,5S
30S(小亚基) 16S 4
核糖体的化学组成
5
7.2 Ribosome Biogenesis(核糖体的生 物发生 )

第六章核糖体与核酶

第六章核糖体与核酶

第六章核糖体与核酶姓名:李淼学号:09352044 班级:生科一班日期:11.17核糖体是细胞内一种核糖蛋白颗粒,含有rRNA和r蛋白质。

核糖体可分为真核生物核糖体和原核生物核糖体,前者有细胞质核糖体、线粒体核糖体和叶绿体核糖体之分。

核糖体均有大小两个亚基组成,进行蛋白质合成时才结合在一起。

原核生物核糖体沉降系数为70S,由50S大亚基(含33种不同的蛋白质以及23S和5S rRNA)和30S小亚基(含21种蛋白质以及16S rRNA)组成;真核生物核糖体沉降系数为80S,由60S大亚基(含大约49种蛋白质以及28S、5S和5.8S rRNA)和40S 小亚基(含大约33种蛋白质以及18S rRNA)组成。

核糖体的组成成分是蛋白质和rRNA,所以编码核糖体的基因分为两类,一类是编码蛋白质的基因,另一类是rRNA基因。

细胞为了满足大量需求的rRNA,有两种方法扩大rRNA 的拷贝数。

第一是在染色体上增加rRNA基因的拷贝数,第二是通过基因扩增来实现。

真核生物的18S、5.8S和28S rRNA基因首先转录成一个45S的前rRNA,能够转录这3个前rRNA的DNA区域称为一个转录单位。

参与rRNA基因转录的酶是RNA聚合酶I,合成地点是核仁,转录间隔区被讲解掉。

原核生物的16S、23S、5S 3种rRNA基因组成一个转录单位。

5S rRNA是核糖体大亚基的一个组分,原核生物和真核生物都有,并且结构相似。

5SrRNA基因是由RNA聚合酶III 在核仁外转录的,只需要进行简单的加工或者不需要加工。

RNA聚合酶III通常是与位于转录部分内的启动子结合,而不是与转录起始位点上游的启动子结合。

核糖体的功能是进行蛋白质多肽链的合成。

核糖体的中有一个mRNA结合位点和3个tRNA结合位点:A、P、E位点。

A位点是氨酰基位点,是与新掺入的氨酰tRNA结合位点,又叫受位。

主要位于大亚基。

P位点是肽酰tRNA位点,又叫供位。

第11章 核糖体与核酶

第11章 核糖体与核酶

E.coli (a)核糖体小亚单位中的部分r蛋白与rRNA的结合位点) (b)及其在小亚单位上的部位
(三)核糖体的装配
• 1、rRNA的转录与加工
• (1)真核生物:18S、5.8S和28S基因是串联一起, 每个基因被间隔区隔开。该基因在RNA聚合酶Ⅰ 作用下,首先转录成一个45S的前rRNA,然后 被加工成41S前rRNA,再被切割成20S前rRNA 和32S前rRNA,20S rRNA加工为成熟的18S rRNA,32S rRNA加工为28S和5.8S rRNA • 5SrRNA基因位于不同染色体上,由RNA聚合酶Ⅲ 转录,仅进行简单加工或不加工
原核生物与真核生物核糖体成分的比较
二、核糖体的结构
(一)核糖体结构与功能的分析方法
离子交换树脂可分离纯化各种r蛋白; 纯化的r蛋白与纯化的rRNA进行核糖体的重组装, 显示核糖体中r蛋白与rRNA的结构关系 双向电泳技术可显示出E.coli核糖体在装配各阶段中, 与rRNA结合的蛋白质的类型 双功能的交联剂和双向电泳分离可用于研究r蛋白在 结构上的相互关系 电镜负染色与免疫标记技术结合,研究r蛋白在核糖 体的亚单位上的定位。 70S核糖体小亚基16S rRNA结构及与全部r蛋白关系
(二)蛋白质合成的基本过程
1、链的起始: • (1)30S亚基与mRNA的结合:在原核生物, mRNA依靠SD序列只和游离的30S小亚基结合; 真核生物,小亚基识别mRNA5’端甲基化帽结构, 然后沿mRNA滑动,直到遇到识别序列,典型的 识别序列为5’-CCACCAUGC-3’,含AUG • 小亚基与mRNA结合还需要起始因子(initiation factor, IF)的帮助.原核生物命名为IF,有IF1,IF2和 IF3,IF3帮助mRNA与核糖体结合;真核生物为eIF, 至少有10个,eIF4帮助mRNA与核糖体结合.

6. 核糖体与核酶

6. 核糖体与核酶

录像6.核糖体与核酶核糖体(r ib os o m e),是细胞内一种核糖核蛋白颗粒(r i b on u c l eop r ot e in p art i c l e), 其惟一功能是按照m RNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

核糖体最早是A l b ert Cl a u de于20世纪30年代后期发现的, 其后又证明了其蛋白质合成功能。

随着分子生物学的发展,核糖体概念的涵意有了进一步的发展。

细胞内除了从事蛋白质合成的核糖体外,还有许多其它功能的核糖核蛋白体颗粒,通常是一些小分子的RNA同蛋白质组成的颗粒,它们参与RNA的加工、RN A的编辑、基因表达的调控等。

发现核糖体及核糖体功能鉴定的两个关键技术是什么?6.1 核糖体的形态结构核糖体是细胞内数量最多的细胞器,原核细胞和真核细胞都有核糖体,功能也相同,但是结构组成却有很大差别。

6.1.1 核糖体的类型和化学组成■核糖体的类型●按存在的部位:有三种类型核糖体,细胞质核糖体、线粒体核糖体、叶绿体核糖体。

●按存在的生物类型: 分为两种类型,即真核生物核糖体和原核生物核糖体。

原核细胞的核糖体较小,沉降系数为70S,相对分子质量为 2.5x103 kD a,由50S 和30S两个亚基组成(图6-1);而真核细胞的核糖体体积较大,沉降系数是80S,相对分子质量为 3.9~4.5x103kD a,由60S和40S两个亚基组成。

图6-1 从两个不同角度观察的 E.c o l i 核糖体的三维结构● M g2+的浓度对于大小亚基的聚合和解离有很大的影响,体外实验表明:70S 核糖体在M g2+的浓度小于1m m o l/L的溶液中易解离;当M g2+浓度大于10m mo l/L,两个核糖体通常形成100S的二聚体(图6-2)。

图6-2 通过区带离心鉴定核糖体的亚基在低浓度的M g2+时,完整的核糖体将分成大小两个亚基。

第六章:核糖体与核酶

第六章:核糖体与核酶

核糖体是细胞内一种核糖核蛋白颗粒,含有rRNA和r蛋白质。

核糖体可分为真核生物核糖体和原核生物核糖体,前者有细胞质核糖体、线粒体核糖体和叶绿体核糖体3中类型。

核糖体均由大小两个亚基组成,进行蛋白质合成时才结合在一起。

Mg2+的浓度对大小亚基的聚合和解离有很大的影响。

原核生物核糖体沉降系数为70S,由50S大亚基(含33种不同的蛋白质以及23S和5SrRNA)he30S小亚基(含21种蛋白质以及16SRNA)组成;真核生物核糖体沉降系数为80S,由60S大亚基(含大约49种蛋白质以及28S、5S和5.8SrRNA)和40S小亚基(含大约33种蛋白质以及18SrRNA)组成。

核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装等。

在细胞中增加编码基因的拷贝数有两种方法:一是在染色体上增加rRNA基因的拷贝数;二是通过通过形成几千个核进行基因扩增。

真核生物的18S、5.8S、28SrRNA基因组成一个转录单位,转录成一个45S前体。

前rRNA有两个独特的特点,一是含有大量的甲基化的核苷,另一个就是具有许多假尿苷。

原核生物的16S、23S、5S3种rRNA基因组成一个转录单位。

原核生物rRNA 基因也是多拷贝的,并且也要被转录成一个前体,然后再加工成成熟的rRNA。

细菌的rRNA 也有甲基化,但比真核生物rRNA甲基化程度低。

核糖体是自我装配的细胞器,当蛋白质和rRNA合成加工成熟之后就要开始装配核糖体的大小两个亚基。

在核糖体重新装配过程中,可以通过减去某一种蛋白质来验证该蛋白质在亚基装配及亚基中的作用。

真核生物核糖体亚基在核仁中装配,原核生物核糖体亚基在细胞质中装配。

核糖体的功能是在进行蛋白质多肽链的合成。

在核糖体上合成的只是蛋白质的一级结构,即多肽链。

合成是从多肽链的N端开始,到C端结束。

核糖体中有一个mRNA结合位点和3个tRNA结合位点:A位点、P位点、E位点。

原核生物mRNA通过5’端的SD序列与核糖体16SrRNA结合,真核生物则依赖于mRNA5’端甲基化帽子结构将mRNA与核糖体小亚基结合。

《细胞生物学》核糖体与核酶自习报告

《细胞生物学》核糖体与核酶自习报告

核糖体与核酶引言:1.核糖体(ribosome)是细胞内的一种核糖蛋白颗粒,其唯一的功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

6.1 核糖体的形态结构1.核酶是具有催化活性的反义RNA6.1.1 核糖体的类型和化学组成6.1.1.1 核糖体的类型和大小1.核糖体有种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体2.核糖体分为:真核生物核糖体和原核生物核糖体3.核糖体由大小两个不同的亚基组成,在不进行蛋白质合成时是分开的,各自游离在细胞质中,在进行蛋白质合成时结合在一起4.在真核细胞中,核糖体在进行蛋白质合成时:1.游离在细胞质中称游离核糖体2.附着在内质网的表面,称膜旁核糖体或附着核糖体。

6.1.1.2 核糖体的化学组成1.核糖体的大小两个亚基都是由核糖体RNA(rRNA)和核糖体蛋白质组成。

6.1.2核糖体的蛋白质与rRNA6.1.2.1 核糖体蛋白1. E.coli核糖体21个小亚基,为S1~S21,大亚基的核糖体蛋白命名为L1~L336.1.2.2 核糖体rRNA1.30S核糖体亚基的形态主要是由16S rRNA决定的6.1.3细菌核糖体的结构模型1.S4、S5、S8、S12等4个蛋白定位在核糖体的小亚基上,并且是背向大亚基。

2.小亚基中确定了与信使RNA(mRNA)和转移RNA(tRNA)结合位点3.催化肽键形成的位点位于大亚基,和GTP水解的功能区6.2核糖体的生物发生1.在细胞内,核糖体是自我装配的。

2.核糖体的生物发生包括蛋白质和rRNA的合成、核糖体亚基的组装等。

6.2.1 核糖体rRNA基因的转录与加工1.编码核糖体的基因分为两类:一类是编码蛋白质的基因,另一类是rRNA基因6.2.1.1 编码rRNA基因的过量扩增1.细胞为了满足大量需求的rRNA,在进化的过程中形成了一种机制:增加编码rRNA基因的拷贝数。

2.增加拷贝数有两种方法:1.在染色体上增加rRNA基因的拷贝数2.通过基因扩增6.2.1.2 真核生物18S、5.8S、28S rRNA和5S rRNA基因1.在真核生物的染色体中,18S、5.8S、28S rRNA和5S rRNA基因是串联在一起的,每个基因被间隔区隔开,5S rRNA基因位于不同的染色体上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1. 核糖体(riboso me)核糖体是细胞内一种核糖核蛋白颗粒(ribonucleoprotein particle), 其惟一功能是按照mRNA的指令将氨基酸合成蛋白质多肽链,所以核糖体是细胞内蛋白质合成的分子机器。

按核糖体存在的部位可分为三种类型:细胞质核糖体、线粒体核糖体、叶绿体核糖体。

按存在的生物类型可分为两种类型:真核生物核糖体和原核生物核糖体。

原核细胞的核糖体较小, 沉降系数为70S,相对分子质量为2.5x103 kDa,由50S和30S两个亚基组成; 而真核细胞的核糖体体积较大, 沉降系数是80S,相对分子质量为3.9~4.5x103 kDa, 由60S和40S两个亚基组成。

在真核细胞中, 核糖体进行蛋白质合成时,既可以游离在细胞质中, 称为游离核糖体, 也可以附着在内质网的表面, 称为膜旁核糖体或附着核糖体。

真核细胞含有较多的核糖体, 每个细胞平均有106~107个, 而原核细胞中核糖体较少每个细胞平均只有15×102~18×103个。

典型的原核生物大肠杆菌核糖体是由50S大亚基和30S小亚基组成的。

在完整的核糖体中,rRNA约占2/3, 蛋白质约为1/3。

50S大亚基含有34种不同的蛋白质和两种RNA分子,相对分子质量大的rRNA的沉降系数为23S,相对分子质量小的rRNA为5S。

30S小亚基含有21种蛋白质和一个16S的rRNA分子。

真核细胞核糖体的沉降系数为80S,大亚基为60S,小亚基为40S。

在大亚基中,有大约49种蛋白质,另外有三种rRNA∶28S rRNA、5S rRNA 和5.8S rRNA。

小亚基含有大约33种蛋白质,一种18S的rRNA。

2. 基因扩增(gene a mp li fica tion)细胞内选择性复制DNA, 产生大量的拷贝。

如两栖类卵母细胞在发育的早期,rRNA基因的数量扩增到1000多倍。

基因扩增是通过形成几千个核进行的,每个核里含有几百拷贝的编码28S、18S和5.8S的rRNA基因,最后卵母细胞中的这些rRNA基因的拷贝数几乎达到50万个,而在相同生物的其它类型细胞中,这些rRNA基因的拷贝数只有几百个。

卵母细胞中有如此众多的rRNA基因拷贝,为卵细胞在受精后的发育过程中合成大量核糖体创造了条件。

至于卵母细胞中rRNA基因扩增的机制,有人认为可能是通过从染色体上分离出来的环状DNA分子,这种环状DNA中含有rRNA基因,但是第一个含有rRNA基因的环状DNA是如何形成的尚不清楚。

由于环状DNA 能够通过滚环复制(rolling circle replication)的方式进行复制,因而能够产生大量的rRNA基因。

3. 5S rRNA基因(5S rRNAgene)5S rRNA是核糖体大亚基的一个组份,原核生物和真核生物都有5S rRNA,而且结构相似。

真核生物的5S rRNA基因与其它三种rRNA基因不在同一条染色体上,它是由核仁以外的染色体基因转录的,然后运输到核仁内参与核糖体的装配。

5S rRNA基因的数量比45S rRNA转录单位多,人的5S rRNA基因有500个拷贝,并且在染色体上串连排列。

非洲爪蟾的5S rRNA基因的一个重复单位含有一个5S rRNA基因、一个不转录的假基因(101bp的5S rRNA基因的片段),每个重复单位间被不转录的间隔序列隔开,间隔序列的长度变化不定,最长达400bp;5S rRNA基因转录的速度很快,其结果产生过量的5S rRNA,有些最后要被降解掉。

5S rRNA基因是由RNA聚合酶Ⅲ转录的,原初转录物的5'端与成熟的5S rRNA的5'端完全相同。

在某些生物中,3'端通常含有多余的核苷酸,在加工时要被切除。

所以,5S rRNA只需要进行简单的加工,或者根本不需要进行加工。

4. A位点(A si te)即氨酰基位点,是与新掺入的氨酰tRNA(aminoacyl-tRNA )结合的位点, 又叫受位(entry site),主要位于大亚基,是接受氨酰tRNA的部位。

5. P位点(P si te)即肽酰tRNA位点(peptidyl-tRNA site), 又叫供位(donor site), 或肽酰基位点, 主要位于大亚基, 是肽基tRNA移交肽链后肽酰tRNA所占据的位置, 即与延伸中的肽酰tRNA结合位点。

6. E 位点(exit site, E si te)E位点是脱氨酰tRNA(deaminoacyl-tRNA)离开A位点到完全从核糖体释放出来的一个中间停靠点,只是作暂时的停留。

当E位点被占据之后,A 位点同氨酰tRNA的亲和力降低,防止了氨酰tRNA的结合,直到核糖体准备就绪,E位点腾空,才会接受下一个氨酰tRNA。

7. SD序列(SD sequence)在原核生物中, 核糖体中与mRNA结合位点位于16S rRNA 的3'端,mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence),它是1974年由J.Shine 和L.Dalgarno发现的,故此而命名。

SD序列是mRNA 中5'端富含嘌呤的短核苷酸序列,一般位于mRNA的起始密码AUG的上游5~10个碱基处,并且同16S rRNA 3'端的序列互补。

8. 多聚核糖体(po lyriboso mes)在蛋白质合成过程中,同一条mRNA分子能够同多个核糖体结合,同时合成若干条蛋白质多肽链,结合在同一条mRNA上的核糖体就称为多聚核糖体(polysome 或polyribosomes)。

在mRNA的起始密码子部位,核糖体亚基装配成完整的起始复合物,然后向mRNA的3'端移动,直到到达终止密码子处。

当第一个核糖体离开起始密码子后,空出的起始密码子的位置足够与另一个核糖体结合时,第二个核糖体的小亚基就会结合上来,并装配成完整的起始复合物,开始蛋白质的合成。

同样,第三个核糖体、第四个核糖体、……依次结合到mRNA 上形成多聚核糖体。

根据电子显微照片推算,多聚核糖体中,每个核糖体间相隔约80个核苷酸。

9. 嘌呤霉素(pu romyci n)嘌呤霉素是一种蛋白质合成抑制剂,它具有与tRNA分子末端类似的结构, 能够同氨基酸结合,代替氨酰化的tRNA同核糖体的A位点结合,并掺入到生长的肽链中。

虽然嘌呤霉素能够同A位点结合,但是不能参与随后的任何反应, 因而导致蛋白质合成的终止并释放出C-末端含有嘌呤霉素的不成熟的多肽。

10. N-端规则(N-end ru le)每一种蛋白质都有寿命特征, 称为半衰期(half-life)。

蛋白质的半衰期与多肽链N-端特异的氨基酸有关,它们对蛋白质的寿命有控制作用。

如末端是精氨酸或赖氨酸的多肽,寿命就很短,而末端是缬氨酸或甲硫氨酸的多肽,寿命就很长。

蛋白质N-末端与半衰期的关系,称为N端规则。

11. 蛋白酶体(p roteasomes)蛋白酶体既存在于细胞核中,又存在于胞质溶胶中, 是溶酶体外的蛋白水解体系, 由10~20个不同的亚基组成中空的圆桶形的结构,显示多种肽酶的活性,能够从碱性、酸性和中性氨基酸的羧基侧水解多种与遍在蛋白连接的蛋白质底物。

蛋白酶体对蛋白质的降解是与环境隔离的。

主要降解两种类型的蛋白质:一类是错误折叠的蛋白质,另一类就是需要进行数量调控的蛋白质。

蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,所以又称为泛素降解途径。

泛素是由76个氨基酸残基组成的小肽,它的作用主要是识别要被降解的蛋白质,然后将这种蛋白质送入蛋白酶体的圆桶中进行降解。

蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。

蛋白酶体存在于所有真核细胞中,其活性受γ干扰素的调节。

12. 核酶(rib ozyme)核酶一词用于描述具有催化活性的RNA, 即化学本质是核糖核酸(RNA), 却具有酶的催化功能。

核酶的作用底物可以是不同的分子, 有些作用底物就是同一RNA分子中的某些部位。

核酶的功能很多,有的能够切割RNA, 有的能够切割DNA, 有些还具有RNA 连接酶、磷酸酶等活性。

与蛋白质酶相比,核酶的催化效率较低,是一种较为原始的催化酶。

13. 小分子RNA(smal l RNA)存在于真核生物细胞核和细胞质中,它们的长度为100到300个碱基(酵母中最长的约1000个碱基)。

多的每个细胞中可含有105~106个这种RNA分子,少的则不可直接检测到, 它们由RNA聚合酶Ⅱ或RNA聚合酶Ⅲ所合成, 其中某些象mRNA一样可被加帽。

主要有两种类型的小分子RNA:一类是snRNA(small nuclear RNA),存在于细胞核中;另一类是scRNA(small cytoplasmic RNA),存在于细胞质中。

小分子RNA通常与蛋白质组成复合物, 在细胞的生命活动中起重要的作用, 某些snRNPs和剪接作用密切相关,它们分别与供体和受体剪接位点以及分支顺序相互补。

scRNA参与蛋白质的合成和运输, 如SRP颗粒就是一种由一个7SRNA和蛋白质组成的核糖核蛋白体颗粒,主要功能是识别信号肽, 并将核糖体引导到内质网。

14. 反义RNA(ant isense RNA)反义RNA是指与mRNA互补的RNA分子, 也包括与其它RNA互补的RNA分子。

由于核糖体不能翻译双链的RNA,所以反义RNA与mRNA特异性的互补结合, 即抑制了该mRNA的翻译。

通过反义RNA控制mRNA 的翻译是原核生物基因表达调控的一种方式,最早是在E.coli 的产肠杆菌素的Col E1质粒中发现的,许多实验证明在真核生物中也存在反义RNA。

近几年来通过人工合成反义RNA的基因, 并将其导入细胞内转录成反义RNA, 即能抑制某特定基因的表达,阻断该基因的功能, 有助于了解该基因对细胞生长和分化的作用。

细胞中反义RNA的来源有两种途径∶第一是反向转录的产物,在多数情况下, 反义RNA是特定靶基因互补链反向转录产物, 即产生mRNA和反义RNA的DNA是同一区段的互补链。

第二种来源是不同基因产物,如OMPF基因是大肠杆菌的膜蛋白基因,与透性有关,其反义基因MICFZE 则为另一基因。

15. 内含子(intron)内含子是基因内的间隔序列,不出现在成熟的RNA分子中,在转录后通过加工被切除。

大多数真核生物的基因都有内含子。

16. 外显子(exon)外显子是最后出现在成熟RNA中的基因序列, 又称表达序列。

17. 自我剪接(se lf-spl ici ng)具有自我催化能力,将自身的某些部位切除的现象称为自我剪接。

在酵母和真菌的线粒体mRNA和tRNA前体加工、叶绿体的tRNA 和rRNA 前体加工、某些细菌病毒的mRNA前体加工中都发现了自我剪接现象。

相关文档
最新文档