2015-2016学年重庆一中七年级(上)期末数学试卷(含解析)
2015-2016学年七年级(上)期末数学试卷
七年级(上)期末数学试卷一、请你仔细选一选(本大题共12个小题,每小题2分,共24分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.(2分)(2014•资阳)的相反数是()A. B.﹣2 C.D.22.(2分)(2014秋•石家庄期末)下列各式中结果为负数的是()A.﹣(﹣3)B.(﹣3)2C.|﹣3| D.﹣|﹣3|3.(2分)(2014秋•石家庄期末)下列表示数a、b的点在数轴上的位置如图所示,若a>b >0,则其中正确的是()A.B.C.D.4.(2分)(2014秋•石家庄期末)下列各式中运算正确的是()A.4m﹣m=3 B.a2b﹣ab2=0 C.2a3﹣3a3=a3D.xy﹣2xy=﹣xy5.(2分)(2014秋•石家庄期末)如图,点C、D在线段AB上,若AC=DB,则()A.AC=CD B.AD=CB C.AD=2DB D.CD=DB6.(2分)(2014秋•石家庄期末)一个角的度数比它的余角的度数大20°,则这个角的度数是()A.35°B.45°C.55°D.65°7.(2分)(2014秋•石家庄期末)若|m﹣3|+(n+2)2=0,则m+2n的值为()A.﹣1 B.1 C.4 D.78.(2分)(2014秋•惠安县期末)将一副直角三角尺按如图所示的不同方式摆放,则图中∠α与∠β相等的是()A.B.C.D.9.(2分)(2014秋•石家庄期末)有理数a、b在数轴上的位置如图所示,则a﹣b的值在()A.﹣3与﹣2之间B.﹣2与﹣1之间C.0与1之间D.2与3之间10.(2分)(2014秋•石家庄期末)某工厂计划每天烧煤5吨,实际每天少烧2吨,m吨煤多烧了20天,则下列方程正确的是()A.﹣=20 B.﹣=20 C.﹣=20 D.﹣=2011.(2分)(2014秋•裕安区期末)如图,将长方形纸片ABCD的角C沿着GF折叠(点F 在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH 的度数α是()A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF位置的变化而变化12.(2分)(2014秋•石家庄期末)当x分别取2与﹣2时,x7+2x4的值()A.互为相反数B.互为倒数C.相等 D.异号但绝对值不等二、认真填一填(本大题共6个小题,每小题3分,共18分,请把答案写在横线上)13.(3分)(2014秋•石家庄期末)若关于x、y的单项式x m y与﹣2x2y是同类项,则m的值为.14.(3分)(2013•邵东县模拟)若关于x的一元一次方程ax+3x=2的解是x=1,则a=.15.(3分)(2014秋•石家庄期末)时钟的分针由9点20分的位置转到9点50分的位置所旋转的角度是.16.(3分)(2014秋•石家庄期末)已知y=2﹣x,则4x+4y﹣3的值为.17.(3分)(2014秋•石家庄期末)在数轴上,点A、B分别表示有理数a、b,原点O恰是AB的中点,则=.18.(3分)(2014秋•石家庄期末)观察图形:请用你发现的规律直接写出图4中y的值.三、细心解答(本大题共4个小题,19、20每小题8分,21、22每小题8分,共28分)19.(8分)(2014秋•石家庄期末)计算:(1)﹣2+1﹣(﹣5)﹣|﹣3|.(2)﹣22﹣[(﹣3)×(﹣)﹣(﹣2)3].20.(8分)(2014秋•石家庄期末)解方程:(1)2x﹣9=8x+1(2)﹣=1.21.(6分)(2014秋•石家庄期末)先化简,再求值:已知x2﹣(2x2﹣4y)+2(x2﹣y),其中x=﹣1,y=.22.(6分)(2014秋•石家庄期末)如图所示,点C在线段AB的延长线上,且BC=2AB,D是AC的中点,若AB=2cm,求BD的长.解:∵AB=2cm,BC=2AB,∴BC=4cm.∴AC=AB+=cm.∵D是AC的中点,∴AD==cm.∴BD=AD﹣=cm.四、解答题(共4小题,满分30分)23.(6分)(2014秋•韶关期末)如图,已知平面上有四个点A,B,C,D.(1)连接AB,并画出AB的中点P;(2)作射线AD;(3)作直线BC与射线AD交于点E.24.(8分)(2014秋•石家庄期末)阅读下述文字,并给出合理的数学解释.网上发布了“明天的气温是今天气温的2倍”的信息,各地有不同的反应:(1)一位南方的网友做出的第一反应是:“明天升温了”;(2)一位北方的网友做的第一反应是:“明天降温了”;(3)另一位北方的网友做出的第一反应是:“明天的气温没有变化”.请运用所学的知道解释不同的道理.25.(8分)(2014秋•石家庄期末)小明和姐姐从家到图书馆,以6km/h的速度行进,,立即以8km/h的速度返回家取图书证,然后继续以此速度追赶姐姐,在距图书馆1km处追上了姐姐,求小明家到图书馆的距离?请你从以下三个条件中选择一个条件把题目补充完整,并用方程解答.(1)出发5分种后,小明发现自己忘了带图书证(取证时间不计)(2)出发0.5km后,小明发现自己忘了带图书证(取证时间不计);(3)出发0.5km后,小明发现自己忘了带图书证,且取证用了5分钟.26.(8分)(2015春•万州区期末)如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.七年级(上)期末数学试卷参考答案一、请你仔细选一选(本大题共12个小题,每小题2分,共24分,在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的代码填在题后的括号内)1.C;2.D;3.A;4.D;5.B;6.C;7.A;8.C;9.D;10.D;11.C; 12.D;二、认真填一填(本大题共6个小题,每小题3分,共18分,请把答案写在横线上)13.2;14.-1; 15.180°;16.5;17.-1; 18.12;三、细心解答(本大题共4个小题,19、20每小题8分,21、22每小题8分,共28分)19.;20.;21.;22.BC;6;AC;3;AB;1;四、解答题(共4小题,满分30分)23.;24.;25.出发0.5km后,小明发现自己忘了带图书证(取证时间不计);26.;。
七年级上册重庆市一中数学期末试卷专题练习(解析版)
七年级上册重庆市一中数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知长方形纸片ABCD,点E,F,G分别在边AB,DA,BC上,将三角形AEF沿EF翻折,点A落在点处,将三角形EBG沿EG翻折,点B落在点处.(1)点E,,共线时,如图,求的度数;(2)点E,,不共线时,如图,设,,请分别写出、满足的数量关系式,并说明理由.【答案】(1)解:如图中,由翻折得: ,(2)解:如图,结论: .理由:如图中,由翻折得:,如图,结论:,理由: ,,.【解析】【分析】(1)根据翻折不变性得:,由此即可解决问题.(2)根据翻折不变性得到:,根据分别列等式可得图和的结论即可.2.如图,在数轴上有三个点A、B、C,完成下列问题:(1)将点B向右移动六个单位长度到点D,在数轴上表示出点D.(2)在数轴上找到点E,使点E为BA的中点(E到A、C两点的距离相等),井在数轴上标出点E表示的数,求出CE的长.(3)O为原点,取OC的中点M,分OC分为两段,记为第一次操作:取这两段OM、CM 的中点分别为了N1、N2,将OC分为4段,记为第二次操作,再取这两段的中点将OC分为8段,记为第三次操作,第六次操作后,OC之间共有多少个点?求出这些点所表示的数的和.【答案】(1)解:如图所示,(2)解:如图所示,点E表示的数为:﹣3.5,∵点C表示的数为:4,∴CE=4﹣(﹣3.5)=7.5(3)解:∵第一次操作:有3=(21+1)个点,第二次操作,有5=(22+1)个点,第三次操作,有9=(23+1)个点,∴第六次操作后,OC之间共有(26+1)=65个点;∵65个点除去0有64个数,∴这些点所表示的数的和=4×()=130.【解析】【分析】(1)根据数轴上的点移动时的大小变化规律“左减右加”即可求解;(2)根据题意和数轴上两点间的距离等于两坐标之差的绝对值即可求解;(3)由题意可得点数依次是2的指数次幂+1,再求和即可求解.3.如图(1)如图1,找到长方形纸片的宽DC的中点E,将∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′),请说明∠CEF与∠DEG的关系,并说明理由;(2)将(1)中的纸片沿GF剪下,得梯形纸片ABFG,再将GF沿GM折叠,F落在F′处,GF′与BF交于H,且ABHG为长方形(如图2);再将纸片展开,将AG沿GN折叠,使A 点落于GF上一点A,(如图3).在两次折叠的过程中,求两条折痕GM、GN所成角的度数?【答案】(1)解:∵∠C过E点折起一个角,折痕为EF,再将∠D过点E折起,折痕为GE,且C、D均落在GF上的一点C′(D′)∴GE平分∠DED′,FE平分∠CED′,∴∠DED′=2∠DEG,∠CED′=2∠CEF∴∠DED′+∠CED′=180°即2∠CEF+2∠DEG=180°∴∠CEF+∠DEG=90°答:∠CEF与∠DEG的关系是互余.(2)解:如图,由题意得:GM平分∠FGF, GN平分∠AGF设∠FGM=∠F'GM=x,∠FGN=∠AGN=y∴2y-2x=90°,即y-x=45°,∴∠MGN=∠FGN-∠FGM=45°答:两条折痕GM、GN所成角的度数为45°.【解析】【分析】(1)根据折叠的性质,可知GE平分∠DED′,FE平分∠CED′,再利用角平分线的性质,可证得∠DED′=2∠DEG,∠CED′=2∠CEF,然后根据平角的定义,可解答。
重庆市重庆一中七年级数学上学期期末考试试题
重庆市重庆一中2015年七年级数学上学期期末考试试题(时间:120分钟 满分:150分)一. 精心选一选(本大题共12个小题,每小题4分,共48分)请将正确答案的序号填入下面表格中. 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.-2的相反数是( ). A .21 B . 2 C .2- D .21- 2.如图是由4个大小相同的正方体搭成的几何体,其主视图是( ).A .B .C .D .3.下面各式中正确的是( ). A .mnmna a a⋅= B .mm m aa a 2=+ C .m n n m a a )()(= D .mm ab ab =)(4.下列调查方式中,应采用 “普查”方式的是 ( ).A .调查某品牌手机的市场占有率B .调查我市市民实施低碳生活的情况C .对我国首架歼15战机各个零部件的调查D .调查某型号炮弹的射程5.未来三年,我国将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿 用科学记数法表示为( ).A . 0.845×104亿元 B . 8.45×103亿元 C . 8.45×104亿元 D . 84.5×102亿元 6.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就 这个问题来说,下面说法中正确的是( ).A . 2000名运动员是总体B . 每个运动员是个体C . 100名运动员是抽取的一个样本D . 抽取的100名运动员的年龄是样本 7.计算20162015)2()2(-+-等于( ) .A .40312- B .20152- C .20142D .201528.若x 2-x -m=(x -m)(x+1)且x ≠0,则m 等于( ).A .-1B . 0C . 1D . 29.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,共卖得金额87元.若设铅笔卖出x 支,则依题意可图③图②图①列出的一元一次方程为( ).A .1.2×0.8x+2×0.9(60+x )=87B .1.2×0.8x+2×0.9(60﹣x )=87C .2×0.9x+1.2×0.8(60+x )=87D . 2×0.9x+1.2×0.8(60﹣x )=87 10.已知 32=-xy x ,532=+y xy ,则222y xy x ++的值是( ). A .8 B . 2 C .11 D .1311.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为( ).A . 84B . 108C . 135D . 15212.甲、乙、丙三辆车均在A 、B 两地间往返,三辆车在A 、B 两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A 地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发( )小时后,三辆车第三次同时汇合于A 地. A . 50 B . 51 C . 52 D . 53二.耐心填一填(本大题共6个小题,每小题4分,共24分)请将每小题的正确答案填入下面的表格中.13.单项式22xy 的系数是 . 14.如图(1)所示,点M ,N 在线段AB 上,且cm MB 5=,cm NB 14=,N 是线段AM的中点,则线段AB 为 cm .15.2332x mx x -+-与的积不含x 的二次项,则m 的值是 . 16.钟面上3点40分时,时针与分针的夹角的度数是 度. 17.已知||3x =,214y =,且x+y<0,则 x ﹣y 的值等于__________. 18.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是 .三.解答题(本大题共3个小题,19题11分,20题5分,21题10分,共26分)解答时每小题必须给出必要的演算过程或图(1)MNBA推理步骤.19.计算(共11分,其中(1)小题5分, (2)小题6分) (1) (3)2-244-⨯+÷()﹣(﹣3)(2) -5+(﹣3)2﹣03.14)π-(×-212⎛⎫- ⎪⎝⎭÷20151-()20.计算(5分)2232232()()(2)(2)a a b a b a b -⋅-+-÷-21.解方程(每题5分,共10分)(1)4(1)13(2)x x --=- (2)322132x x x +--=-四.解答题(本大题共个3小题,每小题10分,共30分)解答时每小题必须给出必要的演算过程或推理步骤.22.先化简,再求值(10分)[](3)(32)(3)(23)(3)b a b a a b a b a b a --++--÷-, 其中 a 、b 满足0582=--b a .23.(10分)重庆一中渝北分校积极组织学生开展课外阅读活动,为了解全校学生每周课 外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t <2,2≤t <3,3≤t <4,t ≥4分为四个等级,并分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求这次抽查的学生总数是多少人,并求出x 的值;(2)将不完整的条形统计图补充完整;(3)若该校共有学生3600人,试估计每周课外阅读时间量满足2≤t<4的人数.24.列方程解应用题 (10分)甲、乙两人同时从相距25千米的A地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好 3小时,求两人的速度各是多少?五.解答题(本大题共2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.(10分)如图,直线AB 与CD 相交于点O ,90AOM ∠=︒. (1)如图1,若OC 平分AOM ∠,求AOD ∠的度数;(2)如图2,若4BOC NOB ∠=∠,且OM 平分NOC ∠,求MON ∠的度数.(图1)OACBMDOACBMD(图2)N26.某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2014年 10月前奖励办法以下表计算奖励金额,2014年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A 型和B 型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A 型和B 型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%. 2014年10月前奖励办法:(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?(2)在新办法出台前一个月,该经销商销售的A 型和B 型汽车分别为多少台?(3)若A 型汽车每台售价为10万元,B 型汽车每台售价为12万元.新奖励办法是:每销售一台A 型汽车按每台汽车售价的%a 给予奖励,每销售一台B 型汽车按每台汽车售价的(0.2)%a +给予奖励.新奖励办法出台后的第二个月,A 型汽车的销售量比出台后的第一个月增加了10%a ; 而B 型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了20%a ,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求a 的值.重庆一中初2017级14—15学年度上期期末考试数学答案一. 精心选一选(本大题共12个小题,每小题4分,共48分)请将正确答案的序号填入下面表格中.推理步骤.19. (1)解:原式=-6-6+3.........3分 =-9..........5分(2)解:原式=5+9-1×4÷(-1)..........5分=14+4 =18..........6分20.解:原式=)2(2323b a b a -+⋅- ...........3分 =233b a -...........5分21.(1)解:63144-=--x x ...3分(2)解:)2(36)23(26--=+-x x x 2分 1-=x ..5分 636466+-=--x x x 3分 3x=16 ...4分 163x =...5分22.解: 285a b -= 254=-b a 254-=+-b a ...........2分 )3()3296233(2222a b ab ab a ab a b b a -÷+--+---⋅2(312)(3)452a ab a a b=-÷-=-+=-...........8分...........10分23.解:(1)调查的总人数=90÷45%=200(人),...........2分 ∵x %+15%+10%+45%=1,∴x =30; ...........4分 (2)∵ 调查的总人数是200人 ∴B 等级人数=200×30%=60(人);C 等级人数=200×10%=20(人),如图: ...........8分 (2)3600×(10%+30%)=1440(人),所以估计每周课外阅读时间量满足2≤t <4的人数为1440人 ..........10分24.解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,则 225)60403(3⨯=-+-x x ........6分3x+9x-2x=5010x=50 x=53x=15(千米/小时) 答: 甲的速度为15千米/小时,乙的速度为5千米/小时.......10分 25.解(1)090,AOM OC AOM ∠=∠Q 平分 0045902121=⨯=∠=∠∴AOM AOC 0180=∠+∠AOD AOC Θ00013545180180=-=∠-=∠∴AOC AOD即AOD ∠的度数为1350.............5分(2)∵∠BOC=4∠NOB∴设∠NOB=x 0,∠BOC=4x 0∴∠CON=∠COB-∠BON=4x 0-x 0=3x 0∵OM 平分∠CON ∴∠COM=∠MON=21∠CON=023x ∵9023=+x x x=36 ∴∠MON=023x =00543623=⨯ 即∠MON 的度数为540.............10分26.解(1)413×1000=413000(元).................4分(2)设新办法出台前一个月销售A 型x 台,则B 型(413-x )台 则25%x+(413-x)20%=510-4139751)413(41=⨯-+x x 5x+4(413-x)=97×205x+1652-4x=1940 x=288413-288=125(台)答:新办法出台前一个月销售A 型288台,B 型125台 ........8分 (3)新办法出台第一个月销量:A 型288(1+25%)=360(台) B 型125(1+20%)=150(台) 由题意:355680)100201(1501002.0120000)100101(360100100000=-⨯+⋅++⨯⨯a a a a 355680)511)(51(180000)1011(360000=-+++a a a a35568)2515151(1800036003600022=-+-++a a a a35568720360036001800036003600022=-+-++a a a a54000a-720a=35568-360053280a=31968a=0.6答:a 值为0.6 ..........12分重庆一中初2017级14—15学年度上期期末考试 数 学 试 卷 2015.01.27 (时间:120分钟 满分:150分)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1.-2的相反数是( ).A . 21B . 2C .2-D .21-2.如图是由4个大小相同的正方体搭成的几何体,其主视图是( ).A .B .C .D .3.下面各式中正确的是( ).A .m n mn a a a ⋅=B .m m m a a a 2=+C .m n n m a a )()(=D .m m ab ab =)(4.下列调查方式中,应采用 “普查”方式的是 ( ).图③图②图① A .调查某品牌手机的市场占有率 B .调查我市市民实施低碳生活的情况 C .对我国首架歼15战机各个零部件的调查 D .调查某型号炮弹的射程5.未来三年,我国将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿 用科学记数法表示为( ).A . 0.845×104亿元B . 8.45×103亿元C . 8.45×104亿元D . 84.5×102亿元 6.为了解参加运动会的2000名运动员的年龄情况,从中抽查了100•名运动员的年龄.就 这个问题来说,下面说法中正确的是( ). A . 2000名运动员是总体 B . 每个运动员是个体C . 100名运动员是抽取的一个样本D . 抽取的100名运动员的年龄是样本7.计算20162015)2()2(-+-等于( ) .A .40312- B .20152- C .20142D .201528.若x2-x -m=(x -m)(x+1)且x≠0,则m 等于( ).A .-1B . 0C . 1D . 29.某文具店一支铅笔的售价为1.2元,一支圆珠笔的售价为2元.该店在“6•1儿童节”举行文具优惠售卖活动,铅笔按原价打8折出售,圆珠笔按原价打9折出售,结果两种笔共卖出60支,共卖得金额87元.若设铅笔卖出x 支,则依题意可列出的一元一次方程为( ).A .1.2×0.8x+2×0.9(60+x )=87B .1.2×0.8x+2×0.9(60﹣x )=87C .2×0.9x+1.2×0.8(60+x )=87D . 2×0.9x+1.2×0.8(60﹣x )=8710.已知 32=-xy x ,532=+y xy ,则222y xy x ++的值是( ).A .8B . 2C .11D .1311.下列图形都是由同样大小的棋子按一定的规律组成,其中第①个图形有3颗棋子,第②个图形一共有9颗棋子,第③个图形一共有18颗棋子,…,则第⑧个图形中棋子的颗数为( ).A . 84B . 108C . 135D . 15212.甲、乙、丙三辆车均在A 、B 两地间往返,三辆车在A 、B 两地间往返一次所需时间分别为5小时、3小时和2小时.现在三辆车同时在A 地视为第一次汇合,甲车先出发,1 小时后乙车出发,再经过2小时后丙车出发.那么丙车出发( )小时后,三辆车第三次同时汇合于A 地. A . 50 B . 51 C . 52 D . 5313.单项式212xy的系数是 .14.如图(1)所示,点M ,N 在线段AB 上,且cm MB 5=,cm NB 14=,N 是线段AM的中点,则线段AB 为 cm .15.2332x mx x -+-与的积不含x 的二次项,则m 的值是 .16.钟面上3点40分时,时针与分针的夹角的度数是 度. 17.已知||3x =,214y =,且x+y<0,则 x ﹣y 的值等于__________.18.某网店老板经营销售甲、乙两种款式的浮潜装备,每件甲种款式的利润率为30%,每件乙种款式的利润率为50%,当售出的乙种款式的件数比甲种款式的件数少40%时,这个老板得到的总利润率是40%;当售出的乙种款式的件数比甲种种款式的件数多80%时,这个老板得到的总利润率是 .三.解答题(本大题共3个小题,19题11分,20题5分,21题10分,共26分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算(共11分,其中(1)小题5分, (2)小题6分)(1) (3)2-244-⨯+÷()﹣(﹣3)(2) -5+(﹣3)2﹣03.14)π-(×-212⎛⎫- ⎪⎝⎭÷20151-()20.计算(5分)2232232()()(2)(2)a a b a b a b -⋅-+-÷-图(1)MNBA21.解方程(每题5分,共10分)(1)4(1)13(2)x x --=- (2)322132x x x +--=-四.解答题(本大题共个3小题,每小题10分,共30分)解答时每小题必须给出必要的演算过程或推理步骤. 22.先化简,再求值(10分)[](3)(32)(3)(23)(3)b a b a a b a b a b a --++--÷-,其中 a 、b 满足0582=--b a .23.(10分)重庆一中渝北分校积极组织学生开展课外阅读活动,为了解全校学生每周课 外阅读的时间量t (单位:小时),采用随机抽样的方法抽取部分学生进行了问卷调查,调查结果按0≤t<2,2≤t<3,3≤t<4,t≥4分为四个等级,并分别用A 、B 、C 、D 表示,根据调查结果统计数据绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:(1)求这次抽查的学生总数是多少人,并求出x的值;(2)将不完整的条形统计图补充完整;(3)若该校共有学生3600人,试估计每周课外阅读时间量满足2≤t<4的人数.24.列方程解应用题 (10分)甲、乙两人同时从相距25千米的A地去B 地,甲骑车乙步行,甲的速度是乙的速度的3倍,甲到达B地停留40分钟,然后从B地返回A地,在途中遇见乙,这时距他们出发的时间恰好 3小时,求两人的速度各是多少?五.解答题(本大题共2个小题,25题10分,26题12分,共22分)解答时每小题必须给出必要的演算过程或推理步骤. 25.(10分)如图,直线AB 与CD 相交于点O ,90AOM ∠=︒. (1)如图1,若OC 平分AOM ∠,求AOD ∠的度数;(2)如图2,若4BOC NOB ∠=∠,且OM 平分NOC ∠,求MON ∠的度数. (图1)OACBMDOACBMD(图2)N26.某品牌汽车生产厂为了占领市场提高销售量,对经销商采取销售奖励活动,在2014年 10月前奖励办法以下表计算奖励金额,2014年10月后以新奖励办法执行.某经销商在新奖励办法出台前一个月共售出某品牌汽车的A 型和B 型共413台,新奖励办法出台后的第一个月售出这两种型号的汽车共510台,其中A 型和B 型汽车的销售量分别比新奖励办法出台前一个月增长25%和20%. 2014年10月前奖励办法:(1)在新办法出台前一个月,该经销商共获得奖励金额多少元?(2)在新办法出台前一个月,该经销商销售的A 型和B 型汽车分别为多少台?(3)若A 型汽车每台售价为10万元,B 型汽车每台售价为12万元.新奖励办法是:每销售一台A 型汽车按每台汽车售价的%a 给予奖励,每销售一台B 型汽车按每台汽车售价的(0.2)%a +给予奖励.新奖励办法出台后的第二个月,A 型汽车的销售量比出台后的第一个月增加了10%a ; 而B 型汽车受到某问题零件召回的影响,销售量比出台后的第一个月减少了20%a ,新奖励办法出台后的第二个月该经销商共获得的奖励金额355680元,求a 的值.重庆一中初2017级14—15学年度上期期末考试 数学答案三.解答题(本大题共3个小题,19题11分,20题5分,21题10分,共26分)解答时每小题必须给出必要的演算过程或推理步骤.19. (1)解:原式=-6-6+3 .........3分 =-9 ..........5分(2)解:原式=5+9-1×4÷(-1) ..........5分 =14+4=18 ..........6分解:原式=)2(2323b a b a -+⋅- ...........3分 =233b a -...........5分(1)解:63144-=--x x ...3分(2)解:)2(36)23(26--=+-x x x 2分 1-=x..5分636466+-=--x x x 3分3x=16 ...4分163x =...5分22.解: 285a b -=254=-b a 254-=+-b a ...........2分)3()3296233(2222a b ab ab a ab a b b a -÷+--+---⋅2(312)(3)452a ab a a b=-÷-=-+=-...........8分...........10分23. 解:(1)调查的总人数=90÷45%=200(人),...........2分 ∵x%+15%+10%+45%=1,∴x=30; ...........4分 (2)∵ 调查的总人数是200人 ∴B 等级人数=200×30%=60(人); C 等级人数=200×10%=20(人),如图: ...........8分 (2)3600×(10%+30%)=1440(人),所以估计每周课外阅读时间量满足2≤t<4的人数为1440人 ..........10分24.解:设乙的速度为x 千米/小时,则甲的速度为3x 千米/小时,则225)60403(3⨯=-+-x x........6分3x+9x-2x=5010x=50 x=53x=15(千米/小时) 答: 甲的速度为15千米/小时,乙的速度为5千米/小时.......10分25.解(1)90,AOM OC AOM ∠=∠Q 平分 0045902121=⨯=∠=∠∴AOM AOC180=∠+∠AOD AOC Θ135********=-=∠-=∠∴AOC AOD即AOD ∠的度数为1350 .............5分 (2)∵∠BOC=4∠NOB∴设∠NOB=x0,∠BOC=4x0 ∴∠CON=∠COB-∠BON =4x0-x0=3x0 ∵OM 平分∠CON∴∠COM=∠MON=21∠CON=023x∵9023=+x xx=36∴∠MON=023x =00543623=⨯即∠MON 的度数为540 .............10分 26.解(1)413×1000=413000(元).................4分(2)设新办法出台前一个月销售A 型x 台,则B 型(413-x )台 则25%x+(413-x)20%=510-4139751)413(41=⨯-+x x5x+4(413-x)=97×205x+1652-4x=1940 x=288413-288=125(台)答:新办法出台前一个月销售A 型288台,B 型125台 ........8分 新办法出台第一个月销量:A 型288(1+25%)=360(台) B 型125(1+20%)=150(台) 由题意:355680)100201(1501002.0120000)100101(360100100000=-⨯+⋅++⨯⨯a a a a355680)511)(51(180000)1011(360000=-+++a a a a35568)2515151(1800036003600022=-+-++a a a a35568720360036001800036003600022=-+-++a a a a54000a-720a=35568-360053280a=31968 a=0.6答:a 值为0.6 ..........12分。
七年级上册重庆市一中数学期末试卷专题练习(解析版)
七年级上册重庆市一中数学期末试卷专题练习(解析版)一、初一数学上学期期末试卷解答题压轴题精选(难)1.已知,∠AOB=∠COD=90°,射线OE,FO分别平分∠AOC和∠BOD.(1)当OB和OC重合时,如图(1),求∠EOF的度数;(2)当∠AOB绕点O逆时针旋转至图(2)的位置(0°<∠BOC<90°)时,求∠EOF的度数.【答案】(1)解:当OB和OC重合时,∠AOD=∠AOC+∠BOD=180°,又∵射线OE,FO分别平分∠AOC和∠BOD,∴∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COF+∠BOF= (∠AOC+∠BOD)= ×180°=90°(2)解:∵∠AOB=∠COD=90°,∠COE= ∠AOC,∠BOF= ∠BOD,∴∠EOF=∠COE+∠BOF﹣∠BOC= ∠AOC+ ∠BOD﹣∠BOC= (∠AOC+∠BOD)﹣∠BOC= (∠AOB+∠BOC+∠COD+∠BOC)﹣∠BOC= (180°+2∠BOC)﹣∠BOC=90°+∠BOC﹣∠BOC=90°【解析】【分析】(1)由角平分线的性质可得∠COE=∠AOC,∠BOF=∠BOD;由平角的定义可得∠AOC+∠BOD=180°,由角的构成可得∠EOF=∠COE+∠BOF,代入计算即可求解;(2)同理可求解。
2.如图,已知直线AB与直线CD相交于点O,∠BOE=90°,FO平分∠BOD,∠BOC:∠AOC=1:3.(1)求∠DOE、∠COF的度数.(2)若射线OF、OE同时绕O点分别以2°/s、4°/s的速度,顺时针匀速旋转,当射线OE、OF的夹角为90°时,两射线同时停止旋转.设旋转时间为t,试求t值.【答案】(1)解:∵∠BOC:∠AOC=1:3,∴∠BOC=180°× =45°,∴∠AOD=45°,∵∠BOE=90°,∴∠AOE=90°,∴∠DOE=45°+90°=135°,∠BOD=180°-45°=135°,∵FO平分∠BOD,∴∠DOF=∠BOF=67.5°,∴∠COF=180°-67.5°=112.5°(2)解:∠EOF=90°+67.5°=157.5°,依题意有4t-2t=157.5-90,解得t=33.75.故t值为33.75.【解析】【分析】(1)根据∠BOC:∠AOC=1:3,∠BOC+∠AOC=180°,即可算出∠BOC 的度数,然后根据对顶角相等由∠AOD = ∠BOC得出∠AOD 的度数,根据平角的定义,由∠AOE=∠AOB-∠BOE算出∠AOE的度数,进而根据∠DOE=∠AOE+∠AOD算出∠DOE的度数,∠BOD=∠AOB-∠AOD算出∠BOD的度数,再根据角平分线的定义得出∠BO 的度数,最后根据∠COF=∠COB+∠BOF即可算出答案;(2)根据角的和差,由∠EOF=∠EOB+∠BOF算出∠EOF的度数,根据题意OE转过的角度为4t°,OF转过的角度为2t°,根据题意列出方程 4t-2t=157.5-90,求解即可。
重庆一中七年级期末试题1
未经允许,请勿外传!!!重庆一中2015-2016学年七年级(上)期中数学试卷一、精心选一选(每小题4分,共48分,在每小题给出的四个选项中,只有一项是符合题目要求的,将答案填写在下面方框里)1.1的相反数是()A.4B.﹣4C.﹣D.2.用一个平面去截正方体,截面不可能是()A.七边形B.六边形C.五边形D.四边形3.整式﹣5x2y,0,﹣a+b,﹣xy,﹣ab2﹣1中单项式的个数为()A.2个B.3个C.4个D.5个4.若多项式(k+1)x2﹣3x+1中不含x2项,则k的值为()A.0B.1C.﹣1D.不确定5.过多边形的一个顶点共有3条对角线,则这个多边形是()A.四边形B.五边形C.六边形D.七边形6.下列计算正确的是()A.(﹣1)2015×1=﹣1B.(﹣3)2=﹣9C.﹣(﹣8)=﹣8D.(﹣6)÷3×(﹣)=67.如果单项式﹣3x m+3y n和﹣x5y3是同类项,那么m+n的值为()A.2B.3C.5D.88.下面去括号正确的是()A.2y+(﹣x﹣y)=2y+x﹣y B.y﹣(﹣x﹣y)=y﹣x+yC.a﹣2(3a﹣5)=a﹣6a+10D.x2+2(﹣x+y)=x2﹣2x+y9.如图,OC是∠AOB的平分线,若∠AOC=75°,则∠AOB的度数为()A.145°B.150°C.155°D.160°10.已知a,b互为相反数,c,d互为倒数,|e|=,则代数式5(a+b)2+cd﹣2e的值为()A.﹣B.C.或﹣D.﹣或11.下列图形都是由同样大小的圆按照一定规律摆放而成,其中第①个图形有5个小圆,第②个图形有9个小圆,第③个图形有13个小圆,…,按此规律排列,则第10个图形中小圆的个数为()A.37B.40C.41D.4212.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+c B.c﹣a C.﹣a﹣c D.a+2b﹣c二、认真填一填(每小题4分,共32分,将答案填写在下面方框里)13.由徐峥导演的作品《港囧》再一次大卖,票房到10月初已经突破1560000000,数据1560000000用科学记数法表示为.14.单项式的次数是;系数是.15.小明为自己是重庆一中的学子感到很自豪,他特制了一个写有“我爱重庆一中”的正方体盒子,其展开图如图所示,则原正方体中与“重”字所在的面相对的面上的字是.16.比较大小(用“>”、“<”或者“=”填写)(1)﹣﹣(2)﹣|﹣1|﹣(+1.25)17.单位换算:(1)4.5°=′;(2)4680″=°.18.已知2a2+b=﹣3,则﹣2b﹣4a2﹣7的值为.19.定义新运算a⊕b=,例如:2⊕3==﹣,那么[(﹣3)⊕1]⊕(﹣2)的值为.20.下面有一数值转换器,原理如图所示,若开始输入的x的值是22,则第1次输出的结果是11,第2次输出的结果是16,依次继续下去,则第2015次输出的结果是.三、解答题:(本大题8个小题,共70分)解答时每小题必须给出必要的演算过程或推理步骤.21.作图题:(1)画出如图1所示的几何体从三个方向看到的图形.解:从正面看:从左面看:从上面看:别忘记了画图要用铅笔和直尺哦!!(2)如图2,已知线段CD,用尺规作一条线段AB,使得AB=2CD.(请保留作图痕迹,并写出结论)22.计算下列各题(1)﹣2+10﹣15;(2)3÷(﹣)+×(﹣);(3)|﹣2|÷(﹣)2+(﹣+)×(﹣48).23.合并同类项(1)x3﹣2x2﹣x3﹣5+5x2+4;(2)2(a2b﹣3ab2)﹣3(2ab2﹣a2b).24.如图所示,已知线段AB=36,点C、D分别是线段AB上的两点,且满足AC:CD:DB=3:4:5,点K是线段CD的中点,求线段KB的长度.解:设AC=3x,则CD=4x,DB=,∵AB=AC+CD+DB∴AB=(用含x的代数式表示)=36∴x=∵点K是线段CD的中点∴KD==∴KB=KD+DB=.25.重庆一中举行校园歌手比赛,有10位评委按10分制评分,每一轮由评委给出分后,去掉一个最高分,去掉一个最低分,剩下8位评委分数的平均分即为该选手的最终得分.已知初一(1)班陈同学一曲《蓝莲花》结束,评委给出了分数,为方便记录,以9.5分为基础,超过记为正,不足记为负,记录如下:0.2,﹣0.3,0,0.3,0.5,0.4,﹣0.4,﹣0.2,0.2,0.4,求陈同学最终得分为多少分?26.先化简,再求值:﹣2(x2﹣3y)﹣[x2﹣3(2x2﹣3y)],其中x和y满足(x+1)2+|y+2|=0.27.阅读下列材料:“数学王子”高斯从小就善于观察和思考.在他读小学时就能在课堂上快速地计算出1+2+3+…+99+100=5050,今天我们可以将高斯的做法归纳如下:令S=1+2+3+…+99+100①,S=100+99+98+…+2+1②①+②:有2S=(1+100)+(2+99)+…+(99+2)+(100+1)=101×100解得:S=5050请类比以上做法,回答下列问题:(1)计算:1+2+3+…+(n﹣1)+n=;(2)计算:2+4+6+…+998+1000=;(3)若n为正整数,3+5+7+…+(2n﹣1)+(2n+1)=255,求n的值.28.王先生想买一套二手房,户型图如下图所示,已知二手房交易的相关手续费如下表:卖方需要承担的税费:营业税个人所得税印花税土地交易费房价的5.5%(房产证满2年免征)房价的1%(房产证满2年且是业主唯一一套住房可免)房价的0.05%(90平方米(含)以下可免)3元/平方米买方需要承担的税费:契税土地交易费印花税登记费90平方米(含)以下,房价的1%;超过903元/平方米房价的0.05%(90平方80元米(含)以下可免)平方米但不超过144平方米,房价的1.5%;超过144平方米,房价的3%如果通过中介交易,中介费用为房价的2%,由买卖双方均摊.(1)求这套房子的面积S.(结果用含a和c的代数式表示)(2)已知卖方李先生这套房子面积在144平方米以下,其房产证不满2年,李先生通过中介出售的房价为x元.由于李先生的房子地段好,很抢手,他要求买方承担买卖双方的全部税费和中介费用,如果王先生买李先生这套房子总共要花多少元钱?(结果用含x和S的代数式表示)(3)后来王先生从朋友那里得知在李先生楼上同一户型的另一套房子也要出售,该业主江先生的房产证已经满2年,不是唯一一套住房,可省去中介费,但江先生仍然要求买方承担买卖双方的全部税费.由于装修比较好,房价比李先生的高5万元,已知该户型面积为99平方米,李先生的房价为68万元,则王先生买谁的房子划算?(单位:米)。
2015-2016学年重庆市合川区七年级(上)期末数学试卷(含解析)
2015-2016学年重庆市合川区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列数中,是负数的是()A.|﹣2| B.(﹣1)2C.0 D.﹣32.|﹣|的相反数是()A.B.﹣C.3 D.﹣33.下列方程中,是一元一次方程的为()A.2x﹣y=1 B.x2﹣y=2 C.﹣2y=3 D.y2=44.已知﹣2x m+1y3与x2y n﹣1是同类项,则m,n的值分别为()A.m=1,n=4 B.m=1,n=3 C.m=2,n=4 D.m=2,n=35.若x表示一个两位数,把数字3放在x的右边,组成一个三位数是()A.3x B.10x+3 C.100x+3 D.3×100+x6.2.30万是精确到()A.百分位B.十分位C.百位D.千位7.若关于x的方程ax+3x=2的解是x=1,则a的值是()A.﹣1 B.5 C.1 D.﹣58.整式﹣0.3x2y,0,,,x2,﹣y,﹣ab2+中,单项式的个数有()A.3个B.4个C.5个D.6个9.如图,检测4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数.从轻重的角度看,最接近标准的是()A.B.C.D.10.4月20日《情系玉树大爱无疆──抗震救灾大型募捐活动》在中央电视台现场直播,截至当晚11时30分特别节目结束,共募集善款21.75亿元.将21.75亿元用科学记数法表示(保留两位有效数字)为()A.21×108元B.22×108元C.2.2×109元D.2.1×109元11.有理数a、b在数轴上的位置如图所示,则下列结论正确的是()A.a+b>0 B.a﹣b<0 C.|b|>|a| D.ab<012.下列各组数中,数值相等的是()A.和B.﹣12013和(﹣1)2015C.﹣32和(﹣3)2D.﹣和二、填空题(每小题4分,共24分)13.单项式﹣的系数是,次数是.14.若|a|=4,|b|=2,且ab<0,则a+b=.15.﹣3的倒数是.16.写出一个关于x的一元一次方程,使它的解为x=﹣1,这个方程是.17.如果方程(m﹣1)x+2=0是关于x的一元一次方程,那么m的取值范围是.18.a为有理数,定义运算符号△:当a>﹣2时,△a=﹣a;当a<﹣2时,△a=a;当a=﹣2时,△a =0.根据这种运算,则△[4+△(2﹣5)]的值为.三、解答题(共78分)19.(8分)计算题:(1)﹣18﹣32÷(﹣2)×(2)﹣12﹣(﹣+)×24.20.(10分)解方程:(1)2x﹣4(x﹣5)=3﹣5x (2)﹣=1.21.(8分)某单位今年为灾区捐款2万5千元,比去年的2倍还多1000元,去年该单位为灾区捐款多少元?22.(10分)先化简再求值:求2(x2y+xy2)﹣(x2y+2xy2)的值,其中x=﹣1,y=2.23.(10分)将一批工业最新动态信息输入管理储存网络,甲独做需6小时,乙独做需4小时,甲先做30分钟,然后甲、乙一起做,则甲、乙一起做还需多少小时才能完成工作?24.(10分)一家商店将某种服装按成本价提高40%标价,又以8折优惠卖出,结果每件仍获利15元,这种服装每件的成本多少元?25.(10分)观察下面的变形规律:;;;…解答下面的问题:(1)若n为正整数,请你猜想=;(2)根据规律计算:的值.26.(12分)某商场计划拨款9万元从厂家购进50台电视机,已知该厂家生产三种不同型号的电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号电视机共50台,用去9万元,请你研究一下商场的进货方案;(2)若商场销售一台甲种电视机可获利150元,销售一台乙种电视机可获利200元,销售一台丙种电视机可获利250元.在同时购进两种不同型号电视机的方案中,为使销售利润最多,你选择哪一种进货方案?参考答案与试题解析1.【解答】解:∵|﹣2|=2,(﹣1)2=1,∴在|﹣2|,(﹣1)2,0,﹣3中比0小的数是﹣3.故选:D.2.【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.3.【解答】解:A、2x﹣y=1是二元一次方程,故本选项错误;B、x2﹣y=2是二元二次方程,故本选项错误;C、﹣2y=3是一元一次方程,故本选项正确;D、y2=4是一元二次方程,故本选项错误.故选:C.4.【解答】解:∵﹣2x m+1y3与x2y n﹣1是同类项,∴m+1=2,n﹣1=3,∴m=1,n=4,故选:A.5.【解答】解:组成一个三位数是10x+3,故选:B.6.【解答】解:.30万精确到百位.故选:C.7.【解答】解:将x=1代入方程得:a+3=2,解得:a=﹣1.故选:A.8.【解答】解:整式﹣0.3x2y,0,,,x2,﹣y,﹣ab2+中,单项式的个数有﹣0.3x2y,0,x2,﹣y共4个.故选:B.9.【解答】解:∵|﹣0.6|<|+0.7|<|+2.5|<|﹣3.5|,∴﹣0.6最接近标准,10.【解答】解:21.75亿=2 175 000 000=2.175×109≈2.2×109.故选:C.11.【解答】解:由点在数轴上的位置可知:a<0,b<0,|a|>|b|,A、∵a<0,b<0,∴a+b<0,故A错误;B、∵a<b,∴a﹣b<0,故B正确;C、|a|>|b|,故C错误;D、ab>0,故D错误.故选:B.12.【解答】解:A、=,()2=,数值不相等;B、﹣12013=(﹣1)2015=﹣1,数值相等;C、﹣32=﹣9,(﹣3)2=9,数值不相等;D、﹣=﹣,=,数值不相等.故选:B.13.【解答】解:单项式﹣的系数是﹣,次数是4,故答案为:﹣,4.14.【解答】解:∵|a|=4,|b|=2,∴a=±4,b=±2,∵ab<0,∴a+b=4﹣2=2;或a+b=﹣4+2=﹣2.故答案为2或﹣2.15.【解答】解:﹣3的倒数是﹣.16.【解答】解:x+1=0.故答案是:x+1=0(答案不唯一).17.【解答】解:∵方程(m﹣1)x+2=0是关于x的一元一次方程,解得:m≠1.故答案为:m≠1.18.【解答】解:根据题中的新定义得:△(2﹣5)=△(﹣3)=﹣3,则原式=△(4﹣3)=△1=﹣1,故答案为:﹣119.【解答】解:(1)原式=﹣18+16×=﹣18+4=﹣14;(2)原式=﹣1﹣8+6﹣3=﹣6.20.【解答】解:(1)去括号得:2x﹣4x+20=3﹣5x,移项合并得:3x=﹣17,解得:x=﹣;(2)去分母得:3(3x﹣7)﹣4(x﹣8)=12,去括号得:9x﹣21﹣4x+32=12,移项合并得:5x=1,解得:x=0.2.21.【解答】解:设去年该单位为灾区捐款x元,则:2x+1000=25000,解得x=12000.答:去年该单位为灾区捐款12000元.22.【解答】解:原式=2x2y+2xy2﹣x2y﹣2xy2=(2﹣1)x2y+)(2﹣2)xy2=x2y,当x=﹣1,y=2时,原式(﹣1)2×2=2.23.【解答】解:设甲、乙一起做还需x小时才能完成工作.根据题意,得×+(+)x=1,解这个方程,得x=,小时=2小时12分,答:甲、乙一起做还需2小时12分才能完成工作.24.【解答】解:设这种服装每件的成本为x元,根据题意得:80%(1+40%)x﹣x=15,解得:x=125.答:这种服装每件的成本为125元.25.【解答】解:(1)根据题意得:=﹣;(2)原式=1﹣+﹣+…+﹣=1﹣=.故答案为:﹣.26.【解答】解:(1)解分三种情况计算:①设购甲种电视机x台,乙种电视机y台.解得.②设购甲种电视机x台,丙种电视机z台.则,解得:.③设购乙种电视机y台,丙种电视机z台.则解得:(不合题意,舍去);(2)方案一:25×150+25×200=8750.方案二:35×150+15×250=9000元.答:购甲种电视机25台,乙种电视机25台;或购甲种电视机35台,丙种电视机15台.购买甲种电视机35台,丙种电视机15台获利最多。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.如图,已知线段AB 的长度为a ,CD 的长度为b ,则图中所有线段的长度和为( )A .3a+bB .3a-bC .a+3bD .2a+2b2.﹣3的相反数是( ) A .13-B .13C .3-D .33.下列每对数中,相等的一对是( ) A .(﹣1)3和﹣13 B .﹣(﹣1)2和12 C .(﹣1)4和﹣14D .﹣|﹣13|和﹣(﹣1)34.在0,1-, 2.5-,3这四个数中,最小的数是( ) A .0B .1-C . 2.5-D .35.已知线段AB a ,,,C D E 分别是,,AB BC AD 的中点,分别以点,,C D E 为圆心,,,CB DB EA 为半径作圆得如图所示的图案,则图中三个阴影部分图形的周长之和为( )A .9a πB .8a πC .98a πD .94a π6.在实数:3.1415935-π2517,0.1313313331…(每2个1之间依次多一个3)中,无理数的个数是( ) A .1个B .2个C .3个D .4个7.王老师有一个实际容量为()201.8GB 1GB 2KB =的U 盘,内有三个文件夹.已知课件文件夹占用了0.8GB 的内存,照片文件夹内有32张大小都是112KB 的旅行照片,音乐文件夹内有若干首大小都是152KB 的音乐.若该U 盘内存恰好用完,则此时文件夹内有音乐()首. A .28B .30C .32D .348.观察下列算式,用你所发现的规律得出22015的末位数字是( ) 21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…. A .2 B .4 C .6 D .8 9.下列四个数中最小的数是( ) A .﹣1B .0C .2D .﹣(﹣1)10.下列变形不正确的是( )A .若x =y ,则x+3=y+3B .若x =y ,则x ﹣3=y ﹣3C .若x =y ,则﹣3x =﹣3yD .若x 2=y 2,则x =y11.墙上钉着用一根彩绳围成的梯形形状的饰物,如图实线所示(单位:cm ).小颖将梯形下底的钉子去掉,并将这条彩绳钉成一个长方形,如图虚线所示.小颖所钉长方形的长、宽各为多少厘米?如果设长方形的长为xcm ,根据题意,可得方程为( )A .2(x+10)=10×4+6×2B .2(x+10)=10×3+6×2C .2x+10=10×4+6×2D .2(x+10)=10×2+6×212.如果方程组223x y x y +=⎧⎨-=⎩的解为5x y =⎧⎨=⎩,那么“口”和“△”所表示的数分别是( )A .14,4B .11,1C .9,-1D .6,-4 13.如果+5米表示一个物体向东运动5米,那么-3米表示( ).A .向西走3米B .向北走3米C .向东走3米D .向南走3米14.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨. A .415010⨯ B .51510⨯C .70.1510⨯D .61.510⨯15.如果单项式13a x y +与2b x y 是同类项,那么a b 、的值分别为( )A .2,3a b ==B .1,2a b ==C .1,3a b ==D .2,2a b ==二、填空题16.已知方程22x a ax +=+的解为3x =,则a 的值为__________. 17.将0.09493用四舍五入法取近似值精确到百分位,其结果是_____.18.把四张形状大小完全相同的小长方形卡片(如图1)按两种不同的方式,不重叠地放在一个底面为长方形(一边长为4)的盒子底部(如图2、图3),盒子底面未被卡片覆盖的部分用阴影表示.已知阴影部分均为长方形,且图2与图3阴影部分周长之比为5:6,则盒子底部长方形的面积为_____.19.5535______.20.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.21.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元. 22.若方程11222m x x --=++有增根,则m 的值为____. 23.某水果点销售50千克香蕉,第一天售价为9元/千克,第二天降价6元/千克,第三天再降为3元/千克.三天全部售完,共计所得270元.若该店第二天销售香蕉t 千克,则第三天销售香蕉 千克.24.据科学家估计,地球的年龄大约是4600000000年,将4600000000用科学记数法表示 为_________.25.化简:2x+1﹣(x+1)=_____.26.当x= 时,多项式3(2-x )和2(3+x )的值相等.27.如图,在平面直角坐标系中,动点P 按图中箭头所示方向从原点出发,第1次运动到P 1(1,1),第2次接着运动到点P 2(2,0),第3次接着运动到点P 3(3,-2),…,按这的运动规律,点P 2019的坐标是_____.28.方程x +5=12(x +3)的解是________. 29.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______. 30.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)三、压轴题31.如图1,O 为直线AB 上一点,过点O 作射线OC ,∠AOC =30°,将一直角三角板(其中∠P =30°)的直角顶点放在点O 处,一边OQ 在射线OA 上,另一边OP 与OC 都在直线AB 的上方.将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周. (1)如图2,经过t 秒后,OP 恰好平分∠BOC . ①求t 的值;②此时OQ 是否平分∠AOC ?请说明理由;(2)若在三角板转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分∠POQ ?请说明理由;(3)在(2)问的基础上,经过多少秒OC 平分∠POB ?(直接写出结果).32.已知AOD α∠=,OB 、OC 、OM 、ON 是AOD ∠内的射线.(1)如图1,当160α=︒,若OM 平分AOB ∠,ON 平分BOD ∠,求MON ∠的大小; (2)如图2,若OM 平分AOC ∠,ON 平分BOD ∠,20BOC ∠=︒,60MON ∠=︒,求α.33.已知有理数a ,b ,c 在数轴上对应的点分别为A ,B ,C ,且满足(a-1)2+|ab+3|=0,c=-2a+b .(1)分别求a ,b ,c 的值;(2)若点A 和点B 分别以每秒2个单位长度和每秒1个单位长度的速度在数轴上同时相向运动,设运动时间为t 秒.i )是否存在一个常数k ,使得3BC-k•AB 的值在一定时间范围内不随运动时间t 的改变而改变?若存在,求出k 的值;若不存在,请说明理由.ii )若点C 以每秒3个单位长度的速度向右与点A ,B 同时运动,何时点C 为线段AB 的三等分点?请说明理由.34.我国著名数学家华罗庚曾经说过,“数形结合百般好,隔裂分家万事非.”数形结合的思想方法在数学中应用极为广泛.观察下列按照一定规律堆砌的钢管的横截面图:用含n的式子表示第n个图的钢管总数.(分析思路)图形规律中暗含数字规律,我们可以采用分步的方法,从图形排列中找规律;把图形看成几个部分的组合,并保持结构,找到每一部分对应的数字规律,进而找到整个图形对应的数字规律.如:要解决上面问题,我们不妨先从特例入手: (统一用S表示钢管总数)(解决问题)(1)如图,如果把每个图形按照它的行来分割观察,你发现了这些钢管的堆砌规律了吗?像n=1、n=2的情形那样,在所给横线上,请用数学算式表达你发现的规律.S=1+2 S=2+3+4 _____________ ______________(2)其实,对同一个图形,我们的分析眼光可以是不同的.请你像(1)那样保持结构的、对每一个所给图形添加分割线,提供与(1)不同的分割方式;并在所给横线上,请用数学算式表达你发现的规律:_______ ____________ _______________ _______________(3)用含n的式子列式,并计算第n个图的钢管总数.35.已知:如图数轴上两点A、B所对应的数分别为-3、1,点P在数轴上从点A出发以每秒钟2个单位长度的速度向右运动,点Q在数轴上从点B出发以每秒钟1个单位长度的速度向左运动,设点P的运动时间为t秒.(1)若点P和点Q同时出发,求点P和点Q相遇时的位置所对应的数;(2)若点P比点Q迟1秒钟出发,问点P出发几秒后,点P和点Q刚好相距1个单位长度;(3)在(2)的条件下,当点P和点Q刚好相距1个单位长度时,数轴上是否存在一个点C,使其到点A、点P和点Q这三点的距离和最小,若存在,直接写出点C所对应的数,若不存在,试说明理由.36.在数轴上,图中点A表示-36,点B表示44,动点P、Q分别从A、B两点同时出发,相向而行,动点P、Q的运动速度比之是3∶2(速度单位:1个单位长度/秒).12秒后,动点P到达原点O,动点Q到达点C,设运动的时间为t(t>0)秒.(1)求OC的长;(2)经过t秒钟,P、Q两点之间相距5个单位长度,求t的值;(3)若动点P到达B点后,以原速度立即返回,当P点运动至原点时,动点Q是否到达A点,若到达,求提前到达了多少时间,若未能到达,说明理由.37.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).38.如图,已知线段AB=12cm,点C为AB上的一个动点,点D、E分别是AC和BC的中点.(1)若AC=4cm,求DE的长;(2)试利用“字母代替数”的方法,说明不论AC取何值(不超过12cm),DE的长不变;(3)知识迁移:如图②,已知∠AOB=α,过点O画射线OC,使∠AOB:∠BOC=3:1若OD、OE分别平分∠AOC和∠BOC,试探究∠DOE与∠AOB的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】【分析】依据线段AB长度为a,可得AB=AC+CD+DB=a,依据CD长度为b,可得AD+CB=a+b,进而得出所有线段的长度和.【详解】∵线段AB长度为a,∴AB=AC+CD+DB=a,又∵CD长度为b,∴AD+CB=a+b,∴图中所有线段的长度和为:AB+AC+CD+DB+AD+CB=a+a+a+b=3a+b,故选A.【点睛】本题考查了比较线段的长度和有关计算,主要考查学生能否求出线段的长度和知道如何数图形中的线段.2.D解析:D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.3.A解析:A 【解析】 【分析】根据乘方和绝对值的性质对各个选项进行判断即可. 【详解】A.(﹣1)3=﹣1=﹣13,相等;B.﹣(﹣1)2=﹣1≠12=1,不相等;C.(﹣1)4=1≠﹣14=﹣1,不相等;D. ﹣|﹣13|=﹣1≠﹣(﹣1)3=1,不相等. 故选A.4.C解析:C 【解析】 【分析】由题意先根据有理数的大小比较法则比较大小,再选出选项即可. 【详解】解:∵ 2.5-<1-<0<3, ∴最小的数是 2.5-, 故选:C . 【点睛】本题考查有理数的大小比较的应用,主要考查学生的比较能力,注意正数都大于0,负数都小于0,正数大于一切负数,两个负数比较大小,其绝对值大的反而小.5.D解析:D 【解析】 【分析】根据中点的定义及线段的和差关系可用a 表示出AC 、BD 、AD 的长,根据三个阴影部分图形的周长之和等于三个圆的周长之和即可得答案. 【详解】∵AB a ,C 、D 分别是AB 、BC 的中点, ∴AC=BC=12AB=12a ,BD=CD=12BC=14a , ∴AD=AC+BD=34a , ∴三个阴影部分图形的周长之和=aπ+12aπ+34aπ=94a π, 故选:D.本题考查线段中点的定义,线段上一点,到线段两端点距离相等的点是线段的中点;正确得出三个阴影部分图形的周长之和等于三个圆的周长之和是解题关键.6.C解析:C【解析】【分析】无理数就是无限不循环小数,依据定义即可判断.【详解】解:在3.14159π17,0.1313313331…(每2个1之间依次多一个3)π、0.1313313331…(每2个1之间依次多一个3)这3个,故选:C.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7.B解析:B【解析】【分析】根据同底数幂的乘除法法则,进行计算即可.【详解】解:(1.8−0.8)×220=220(KB),32×211=25×211=216(KB),(220−216)÷215=25−2=30(首),故选:B.【点睛】本题考查了同底数幂乘除法运算,熟练掌握运算法则是解题的关键.8.D解析:D【解析】【分析】【详解】解:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,….2015÷4=503…3,∴22015的末位数字和23的末位数字相同,是8.故选D.【点睛】本题考查数字类的规律探索.解析:A【解析】【分析】首先根据有理数大小比较的方法,把所给的四个数从大到小排列即可.【详解】解:﹣(﹣1)=1,∴﹣1<0<﹣(﹣1)<2,故选:A.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.10.D解析:D【解析】【分析】根据等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.【详解】解:A、两边都加上3,等式仍成立,故本选项不符合题意.B、两边都减去3,等式仍成立,故本选项不符合题意.C、两边都乘以﹣3,等式仍成立,故本选项不符合题意.D、两边开方,则x=y或x=﹣y,故本选项符合题意.故选:D.【点睛】本题主要考查了等式的基本性质.解题的关键是掌握等式的基本性质,等式的两边同时加上(或减去)同一个数(或字母),等式仍成立;等式的两边同时乘以(或除以)同一个不为0数(或字母),等式仍成立.11.A解析:A【解析】【分析】首先根据题目中图形,求得梯形的长.由图知,长方形的一边为10厘米,再设另一边为x 厘米.根据长方形的周长=梯形的周长,列出一元一次方程.【详解】解:长方形的一边为10厘米,故设另一边为x厘米.根据题意得:2×(10+x)=10×4+6×2.故选:A.【点睛】本题考查一元一次方程的应用.解决本题的关键是理清题目中梯形变化为矩形,其周长不变.12.B解析:B【解析】【分析】把5x y =⎧⎨=⎩x=5代入方程x-2y=3可求得y 的值,然后把x 、y 的值代入2x+y=口即可求得答案. 【详解】把x=5代入x-2y=3,得5-2y=3,解得:y=1,即△表示的数为1,把x=5,y=1代入2x+y=口,得10+1=口, 所以口=11,故选B.【点睛】本题考查了二元一次方程组的解,熟知二元一次方程组的解满足方程组中每一个方程是解题的关键.13.A解析:A【解析】∵+5米表示一个物体向东运动5米,∴-3米表示向西走3米,故选A.14.D解析:D【解析】【分析】将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.【详解】150万=1500000=61.510⨯,故选:D.【点睛】本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.15.C解析:C【解析】【分析】由题意根据同类项的定义即所含字母相同,相同字母的指数相同,进行分析即可求得.解:根据题意得:a+1=2,b=3,则a=1.故选:C.【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:相同字母的指数相同,是易混点,要注意.二、填空题16.2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能解析:2【解析】【分析】把x=3代入方程计算即可求出a的值.【详解】解:把x=3代入方程得:6+a=3a+2,解得:a=2.故答案为:2【点睛】此题考查了一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.17.09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.本题考查了近似数和解析:09.【解析】【分析】把千分位上的数字4进行四舍五入即可.【详解】解:将0.09493用四舍五入法取近似值精确到百分位,其结果是0.09.故答案为0.09.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.18.【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为解析:【解析】【分析】设小长方形卡片的长为2m,则宽为m,观察图2可得出关于m的一元一次方程,解之即可求出m的值,设盒子底部长方形的另一边长为x,根据长方形的周长公式结合图2与图3阴影部分周长之比为5:6,即可得出关于x的一元一次方程,解之即可得出x的值,再利用长方形的面积公式即可求出盒子底部长方形的面积.【详解】解:设小长方形卡片的长为2m,则宽为m,依题意,得:2m+2m=4,解得:m=1,∴2m=2.再设盒子底部长方形的另一边长为x,依题意,得:2(4+x﹣2):2×2(2+x﹣2)=5:6,整理,得:10x=12+6x,解得:x=3,∴盒子底部长方形的面积=4×3=12.故答案为:12.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.19.【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:,5,都大于0,则,,故答案为:.【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进5<<【解析】【分析】分别对其进行6次方,比较最后的大小进而得出答案.【详解】解:50,则62636555=<=<,5<<,5<<. 【点睛】本题考查的是根式的比较大小,解题关键是把带根式的数化为常数进行比较即可. 20.10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE +∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′P解析:10°.【解析】【分析】由对称性得:∠BPE=∠B′PE ,∠CPF=∠C′PF ,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF -∠B′PC′=180°计算即可.【详解】解:由对称性得:∠BPE =∠B ′PE ,∠CPF =∠C ′PF ,∴2∠B ′PE+2∠C ′PF ﹣∠B ′PC ′=180°,即2(∠B ′PE+∠C ′PF )﹣∠B ′PC ′=180°,又∵∠EPF =∠B ′PE+∠C ′PF ﹣∠B ′PC ′=85°,∴∠B ′PE+∠C ′PF =∠B ′PC ′+85°,∴2(∠B ′PC ′+85°)﹣∠B ′PC ′=180°,解得∠B ′PC ′=10°.故答案为:10°.【点睛】此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.21.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系. 22.2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4解析:2【解析】【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到x+2=0,求出x 的值代入整式方程即可求出m 的值【详解】去分母得:m-1-1=2x+4将x=-2代入得:m-2=-4+4故答案为:2【点睛】此题考查分式方程的增根,掌握运算法则是解题关键23.30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30解析:30﹣【解析】试题分析:设第三天销售香蕉x千克,则第一天销售香蕉(50﹣t﹣x)千克,根据三天的销售额为270元列出方程:9(50﹣t﹣x)+6t+3x=270,则x==30﹣,故答案为:30﹣.考点:列代数式24.6×【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 010解析:6×9【解析】试题解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.由于4 600 000 000有10位,所以可以确定n=10-1=9.所以,4 600 000 000=4.6×109.故答案为4.6×109.25.x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.解析:x【解析】【分析】首先去括号,然后再合并同类项即可.【详解】解:原式=2x+1﹣x﹣1=x,故答案为:x.【点睛】此题主要考查了整式的加减,解题的关键是正确掌握去括号法则.26.【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.解析:【解析】试题解析:根据题意列出方程3(2-x)=2(3+x)去括号得:6-3x=6+2x移项合并同类项得:5x=0,化系数为1得:x=0.考点:解一元一次方程.27.(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动解析:(2019,-2)【解析】【分析】观察不难发现,点的横坐标等于运动的次数,纵坐标每4次为一个循环组循环,用2019除以4,余数是几则与第几次的纵坐标相同,然后求解即可.【详解】∵第1次运动到点(1,1),第2次运动到点(2,0),第3次接着运动到点(3,-2),第4次运动到点(4,0),第5次运动到点(5,1)…,∴运动后点的横坐标等于运动的次数,第2019次运动后点P的横坐标为2019,纵坐标以1、0、-2、0每4次为一个循环组循环,∵2019÷4=504…3,∴第2019次运动后动点P的纵坐标是第504个循环组的第3次运动,与第3次运动的点的纵坐标相同,为-2,∴点P(2019,-2),故答案为:(2019,-2).【点睛】本题是对点的坐标的规律的考查,根据图形观察出点的横坐标与纵坐标的变化规律是解题的关键.28.x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.解析:x=-7【解析】去分母得,2(x+5)=x+3,去括号得,2x+10=x+3移项合并同类项得,x=-7.29.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解x=-解析:5【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解30.【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得故答案为.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.解析:416x+【解析】【分析】首先根据题意分别列出四个数的关系,然后即可求得其和.【详解】由题意,得()()()1771416x x x x x+++++++=+故答案为416x+.【点睛】此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.三、压轴题31.(1)①5;②OQ平分∠AOC,理由详见解析;(2)5秒或65秒时OC平分∠POQ;(3)t=703秒.【解析】【分析】(1)①由∠AOC=30°得到∠BOC=150°,借助角平分线定义求出∠POC度数,根据角的和差关系求出∠COQ度数,再算出旋转角∠AOQ度数,最后除以旋转速度3即可求出t 值;②根据∠AOQ和∠COQ度数比较判断即可;(2)根据旋转的速度和起始位置,可知∠AOQ=3t,∠AOC=30°+6t,根据角平分线定义可知∠COQ=45°,利用∠AOQ、∠AOC、∠COQ角之间的关系构造方程求出时间t;(3)先证明∠AOQ与∠POB互余,从而用t表示出∠POB=90°﹣3t,根据角平分线定义再用t表示∠BOC度数;同时旋转后∠AOC=30°+6t,则根据互补关系表示出∠BOC度数,同理再把∠BOC度数用新的式子表达出来.先后两个关于∠BOC的式子相等,构造方程求解.【详解】(1)①∵∠AOC=30°,∴∠BOC=180°﹣30°=150°,∵OP平分∠BOC,∴∠COP=12∠BOC=75°,∴∠COQ=90°﹣75°=15°,∴∠AOQ=∠AOC﹣∠COQ=30°﹣15°=15°, t=15÷3=5;②是,理由如下:∵∠COQ=15°,∠AOQ=15°,∴OQ平分∠AOC;(2)∵OC平分∠POQ,∴∠COQ=12∠POQ=45°.设∠AOQ=3t,∠AOC=30°+6t,由∠AOC﹣∠AOQ=45°,可得30+6t﹣3t=45,解得:t=5,当30+6t﹣3t=225,也符合条件,解得:t=65,∴5秒或65秒时,OC平分∠POQ;(3)设经过t秒后OC平分∠POB,∵OC平分∠POB,∴∠BOC=12∠BOP,∵∠AOQ+∠BOP=90°,∴∠BOP=90°﹣3t,又∠BOC=180°﹣∠AOC=180°﹣30°﹣6t,∴180﹣30﹣6t=12(90﹣3t),解得t=70 3.【点睛】本题主要考查一元一次方程的应用,根据角度的和差倍分关系,列出方程,是解题的关键. 32.(1)80°;(2)140°【解析】【分析】(1)根据角平分线的定义得∠BOM=12∠AOB,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOB+∠BOD,∠MON=∠BOM+∠BON,结合三式求解;(2)根据角平分线的定义∠MOC=12∠AOC,∠BON=12∠BOD,再根据角的和差得∠AOD=∠AOC+∠BOD-∠BOC,∠MON=∠MOC+∠BON-∠BOC结合三式求解.【详解】解:(1)∵OM平分∠AOB,ON平分∠BOD,∴∠BOM=12∠AOB,∠BON=12∠BOD,∴∠MON=∠BOM+∠BON=12∠AOB+12∠BOD=12(∠AOB+∠BOD).∵∠AOD=∠AOB+∠BOD=α=160°,∴∠MON=12×160°=80°;(2)∵OM平分∠AOC,ON平分∠BOD,∴∠MOC=12∠AOC,∠BON=12∠BOD,∵∠MON=∠MOC+∠BON-∠BOC,∴∠MON=12∠AOC+12∠BOD -∠BOC=12(∠AOC+∠BOD )-∠BOC.∵∠AOD=∠AOB+∠BOD,∠AOC=∠AOB+∠BOC,∴∠MON=12(∠AOB+∠BOC+∠BOD )-∠BOC=12(∠AOD+∠BOC )-∠BOC,∵∠AOD=α,∠MON=60°,∠BOC=20°,∴60°=12(α+20°)-20°,∴α=140°.【点睛】本题考查了角的和差计算,角平分线的定义,明确角之间的关系是解答此题的关键. 33.(1)1,-3,-5(2)i)存在常数m,m=6这个不变化的值为26,ii)11.5s 【解析】【分析】(1)根据非负数的性质求得a、b、c的值即可;(2)i)根据3BC-k•AB求得k的值即可;ii)当AC=13AB时,满足条件.【详解】(1)∵a、b满足(a-1)2+|ab+3|=0,∴a-1=0且ab+3=0.解得a=1,b=-3.∴c=-2a+b=-5.故a,b,c的值分别为1,-3,-5.(2)i)假设存在常数k,使得3BC-k•AB不随运动时间t的改变而改变.则依题意得:AB=5+t,2BC=4+6t.所以m•AB-2BC=m(5+t)-(4+6t)=5m+mt-4-6t与t的值无关,即m-6=0,解得m=6,所以存在常数m ,m=6这个不变化的值为26.ii )AC=13AB , AB=5+t ,AC=-5+3t-(1+2t )=t-6,t-6=13(5+t ),解得t=11.5s . 【点睛】 本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.34.(1)3456;45678S S =+++=++++ ;(2) 方法不唯一,见解析;(3)方法不唯一,见解析【解析】【分析】先找出前几项的钢管数,在推出第n 项的钢管数.【详解】 (1)3456;45678S S =+++=++++(2)方法不唯一,例如:12S =+ 1233S =+++ 123444S =+++++ 12345555S =+++++++ (3)方法不唯一,例如:()()12.....2S n n n n =++++++()()()()=.....12.. (1112)n n n n n n n n +++++++=+++ ()312n n =+ 【点睛】 此题主要考察代数式的规律探索及求和,需要仔细分析找到规律.35.(1)13-;(2)P 出发23秒或43秒;(3)见解析. 【解析】【分析】(1)由题意可知运动t 秒时P 点表示的数为-3+2t ,Q 点表示的数为1-t ,若P 、Q 相遇,则P 、Q 两点表示的数相等,由此可得关于t 的方程,解方程即可求得答案;(2)由点P 比点Q 迟1秒钟出发,则点Q 运动了(t+1)秒,分相遇前相距1个单位长度与相遇后相距1个单位长度两种情况分别求解即可得;(3)设点C 表示的数为a ,根据两点间的距离进行求解即可得.【详解】(1)由题意可知运动t 秒时P 点表示的数为-5+t ,Q 点表示的数为10-2t ;若P ,Q 两点相遇,则有-3+2t=1-t ,解得:t=43, ∴413233-+⨯=-, ∴点P 和点Q 相遇时的位置所对应的数为13-;(2)∵点P 比点Q 迟1秒钟出发,∴点Q 运动了(t+1)秒,若点P 和点Q 在相遇前相距1个单位长度,则()2t 1t 141+⨯+=-, 解得:2t 3=; 若点P 和点Q 在相遇后相距1个单位长度,则2t+1×(t+1) =4+1, 解得:4t 3=, 综合上述,当P 出发23秒或43秒时,P 和点Q 相距1个单位长度; (3)①若点P 和点Q 在相遇前相距1个单位长度, 此时点P 表示的数为-3+2×23=-53,Q 点表示的数为1-(1+23)=-23, 设此时数轴上存在-个点C ,点C 表示的数为a ,由题意得 AC+PC+QC=|a+3|+|a+53|+|a+23|, 要使|a+3|+|a+53|+|a+23|最小, 当点C 与P 重合时,即a=-53时,点C 到点A 、点P 和点Q 这三点的距离和最小; ②若点P 和点Q 在相遇后相距1个单位长度, 此时点P 表示的数为-3+2×43=-13,Q 点表示的数为1-(1+43)=-43, 此时满足条件的点C 即为Q 点,所表示的数为43-,。
重庆市七年级(上)期末数学试卷含答案
重庆市七年级(上)期末数学试卷含答案七年级(上)期末数学试卷题号⼀⼆三四总分得分⼀、选择题(本⼤题共12⼩题,共36.0分)1.以下四个数中,最⼤的数是( )A. 0B.C. 1D.622.如图是由6个⼤⼩相同的⼩⽴⽅体搭成的⼏何体,从正⾯看到的图形是( )A.B.C.D.3.下列运算正确的是( )A. B. C. D.x2+x3=x5x2?x3=x6(3x3)2=6x6x6÷x3=x3 4.某校为了了解初⼀年级1200名学⽣的视⼒情况,从中随机抽取了300名学⽣进⾏视⼒情况的调查,下列说法错误的是( )A. 总体是1200名学⽣的视⼒情况B. 样本容量是300C. 样本是抽取的300名学⽣D. 个体是每名学⽣的视⼒情况5.如图,点A位于点O的( )A. 南偏东⽅向上B. 东偏南⽅向上25°65°C. 南偏东⽅向上D. 南偏东⽅向上65°55°6.下列调查中,最适合全⾯调查普查的是()( )A. 对某班全体同学出⽣⽇期的调查B. 对重庆市七年级学⽣使⽤⼿机情况的调查C. 对嘉陵江重庆段⽔质情况的调查D. 对⼀批⽜奶中某种添加剂的含量检测7.下列说法正确的是( )A. 射线AB 和射线BA 是同⼀条射线B. 六边形的对⾓线⼀共有9条C. 两点之间,直线最短D. 连接两点的线段叫两点间的距离8.⼩蓉在某⽉的⽇历上提出了如图所⽰的四个数a 、b 、c 、d ,则这四个数的和可能是( )A. 24B. 27C. 28D. 309.甲队有100⼈,⼄队有170⼈,在总⼈数不变的情况下,如果要求甲队⼈数是⼄队⼈数的,应从甲队调多少⼈去⼄队,如果设应从甲队调x ⼈到⼄队,列出的⽅程12正确的是( )A. B. 100+x =12(170?x)12(100+x)=170?x C. D. 100?x =12(170+x)12(100?x)=170+x 10.下列图形都是由相同⼤⼩的⽅块按照⼀定规律组成的.其中第个图形中⼀共有4①个⽅块,第个图形中⼀共有7个⽅块,第个图形中⼀共有10个⽅块,,照②③…此规律排列下去,第个图形中⽅块的个数为⑧( )A. 22B. 25C. 28D. 3111.按如图所⽰的运算程序,能输出的结果为20的是( )A. ,B. ,x =2y =2x =?3y =2C. , D. ,x =?3y =?2x =3y =?212.设⼀列数、、、、中任意三个相邻数之和都是20,已知,a 1a 2a 3…a 2014…a 2=2x ,,那么a 18=13a 65=6?x a 2020=( )A. 2B. 3C. 4D. 13⼆、填空题(本⼤题共14⼩题,共42.0分)13.实验表明,⼈体内某种细胞的形状可近似地看作球体,它的直径约为,数字⽤科学记数法表⽰为______.0.00000156m 0.0000015614.单项式的系数是______.?2x 2y 315.如图是正⽅体的表⾯展开图,则与“细”字相对的字是______.16.若a 与b 互为相反数,c 与d 互为倒数,则______.2021a +cd +2021b =17.若⽅程是关于x 的⼀元⼀次⽅程,则x 的值为______.(1?a)x a?3+a =018.若,,则______2021m =62021n =420212m?n =19.今天下午的数学考试将在4:30结束,此时时针与分针的夹⾓为______度.20.九章算术中有⼀道阐述“盈不⾜术”的问题,原⽂如下:今有⼈共买物,⼈出《》⼋,盈三;⼈出七,不⾜四,问⼈数,物价各⼏何?译⽂为:现有⼀些⼈共同买⼀个物品,每⼈出8元,还盈余3元;每⼈出7元,则还差4元,那么这个物品的价格是______元.21.如图,⼀纸⽚沿直线AB 折成的V 字形图案,已知图中,则的度数______.∠1=62°∠2=22.若关于x 的⽅程有⽆数解,则ab 的值为______.3x 2+ax +23=b 23.已知有理数a 、b 、c 在数轴上的对应点如图所⽰且,化简:|a|>|b|______.|c|?|a +b|?|c?b|=24.若,则的值为______.x 2+2x?5=0x 3+3x 2?3x?525.如图,将⼀根绳⼦对折后⽤线段AB 表⽰,现从P 处将绳⼦剪断,剪断后的各段绳⼦中最长的⼀段为60cm ,若,则这条绳⼦的原AP =23PB 长为______cm .26.某商店新进⼀批衬⾐和数对暖瓶⼀对为2件,暖瓶的对数正好是衬⾐件数的⼀半,()每件衬⾐的进价是40元,每对暖瓶的进价是60元暖瓶成对出售,商店将这批物()品以⾼出进价的价格售出,最后留下了17件物品未卖出,这时,商店发现卖10%出物品的总售价等于所有货物总进价的,则最初购进这批暖瓶______对.90%三、计算题(本⼤题共3⼩题,共25.0分)27.(1)?12019+(23)?2+(π?3)0+|14?1|(2)?112÷3+36×(59+16?712)28.(1)2a 2?4a 4b 3+(?2a 2b )3?a 5÷a 3(2)x(y?1)?(x?y )2?(y?x )3÷(x?y )429.列⼀元⼀次⽅程解决问题()2018年末,“诺如”病毒突现⼭城,某药店计划购进A 、B 两种瓶装的免洗消毒液共1200瓶这两种消毒液的进价,售价如下表所⽰:A 种B 种进价元瓶(/)2040售价元瓶(/)3055要使该商场售完这批消毒液的利润恰好为总进价的,A 种消毒液应购进多少45%瓶?四、解答题(本⼤题共6⼩题,共47.0分)30.(1)x?6=8?4(x +1)(2)2x?0.30.5?x +0.40.3=131.,其中,.2x 2?[?3(?23x 2+xy)?2xy ?y 2]?y(3x +xy )2x =12y =?132.如图,已知B 是线段AC 的中点,D 是线段CE 的中点,若,,求线段BD 的长.AB =4CE =34AC33.2018是我国改⾰开放四⼗周年,某校政治组采取随机抽样的⽅法对该校学⽣进⾏了“改⾰开放四⼗周年成果”的问卷调查,调查结果分别为A“⾮常了解”、B“⽐较了解”、C“基本了解”和D“不了解”四个等级.⽼师根据调查结果绘制了如下统计图,请根据图中提供的信息解答下列问题(1)本次参与调查问卷的学⽣有______⼈;扇形统计图中“基本了解”部分所对应的扇形圆⼼⾓是______度;(2)请补全条形统计图;(3)估计该校2000名学⽣中对“改⾰开放四⼗周年成果”不了解的⼈数约有多少?()写出必要的计算过程(2)34.如图,某校初⼀班组织学⽣从A地到B地步⾏野营,匀速前进,该班师⽣共56⼈,每8⼈排成⼀排,相邻两排之间间隔1⽶,途中经过⼀座桥CD,队伍从开始上桥到刚好完全离开桥共⽤了150秒,当队尾刚好⾛到桥的⼀端D处时,排在队1.5尾的班长发现⼩萍还在桥的另⼀端C处拍照,于是以队伍倍的速度返回去找⼩萍,同时队伍仍按原速度继续前⾏,30秒后,⼩萍发现游班长返回来找他,便⽴2.1/刻以⽶秒的速度向游班长⽅向⾏进,⼩萍⾏进40秒后与游班长相遇,相遇后两⼈以队伍2倍的速度前⾏追赶队伍.(1)(2)初⼀班的队伍长度为______⽶;求班级队伍⾏进的速度列⼀元⼀次⽅程解决问题;(2)()请问:班长从D 处返回找⼩萍开始到他们两⼈追上队⾸的刘⽼师⼀共⽤了多少(3)时间?35.如图,平⾯上顺时针排列射线OA 、OB 、OC 、OD ,,在∠BOC =90°∠AOD ∠BOC外部且为钝⾓,::8,射线OM 、ON 分别平分、题∠AOB ∠COD =7∠AOC ∠AOD.(⽬中所出现的⾓均⼩于且⼤于180°0°)若,则______,______;(1)∠AOD =120°∠AOM =∠CON =当的⼤⼩发⽣改变时,和之间是否存在着固定的数量关系?(2)∠AOD ∠AOM 7∠CON 如果存在、求出它们之间的数量关系;如果不存在,请说明理由;在的条件下,将绕点O 以每秒的速度顺时针旋转得到、(3)(1)∠AOB 6°∠A 1O B 1(OA OB 的对应边分别是、,同时将绕点O 以每秒的速度顺时针旋转O A 1O B 1)∠COD 2°得到、OD 的对应边分别是、,当第2次与重合时结束,∠C 1O D 1(OC O C 1O D 1)O A 1O C 1若旋转时间为t 秒,求出t 为何值时,?∠A 1O C 1=12∠B 1O D 1。
重庆初一初中数学期末考试带答案解析
重庆初一初中数学期末考试班级:___________ 姓名:___________ 分数:___________一、选择题1.(2015•鄂尔多斯一模)﹣的相反数是()A.5B.﹣5C.D.﹣2.(2015秋•石柱县期末)我县某地2016年元旦的最高气温为7℃,最低气温为﹣2℃,那么该地这天的最高气温比最低气温高()A.﹣9℃B.﹣5℃C.5℃D.9℃3.(2015•徐州模拟)从正面观察如图的两个物体,看到的是()A.B.C.D.4.(2015秋•石柱县期末)下列等式正确的是()A.﹣|﹣5|=5B.﹣2(a+3b)=﹣2a+6bC.3m+2n=5mnD.x2y﹣2x2y=﹣x2y5.(2015秋•石柱县期末)如果x=﹣2是关于x的方程3a﹣2x=7的解,那么a的值是()A.B.a=1C.D.6.(2015秋•石柱县期末)如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B7.(2010•莱芜)如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.|a|﹣|b|>08.(2015秋•石柱县期末)下列说法不正确的是()A.有理数包括正有理数、0和负有理数B.次数相同的单项式是同类项C.单项式﹣2πa2b的系数是﹣2πD.线段AB和线段BA是同一条线段9.(2015秋•石柱县期末)甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原来存粮x吨,则有()A.(1﹣60%)x﹣(1﹣40%)(450﹣x)=30B.60%x﹣40%•(450﹣x)=30C.(1﹣40%)(450﹣x)﹣(1﹣60%)x=30D.40%•(450﹣x)﹣60%•x=3010.(2015秋•石柱县期末)某个商贩同时卖出两件上衣,售价都是135元.按成本计算,其中一件盈利25%,另一件亏损25%,在这次交易中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元11.(2015秋•石柱县期末)土家传统建筑的窗户上常有一些精致花纹,小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“O”代表的就是精致的花纹,请问有35个精致花纹的是第()个图.A.13B.11C.9D.712.(2015秋•石柱县期末)小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()A.B.C.D.二、填空题1.(2015秋•石柱县期末)为了缓解群众“看病难,看病贵”的问题.国家从2013年到2015年三年中,共投入850000000000元,数据850000000000用科学记数法表示为.2.(2015秋•石柱县期末)一个角是70°,则这个角的余角为度.3.(2015秋•石柱县期末)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“我”的对面上所写的字是.4.(2015秋•石柱县期末)如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB= .5.(2015秋•石柱县期末)若x+5y=﹣1时,则代数式2015﹣x﹣5y的值为.6.(2015秋•石柱县期末)数学家莫伦在1925年发现了世界上第一个完美长方形.如图是一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注番号1的正方形边长为5,则这个完美长方形的面积为.三、计算题(2015秋•石柱县期末)计算:﹣14﹣×[(﹣4)2﹣(7﹣3)×].四、解答题1.(2015秋•石柱县期末)解方程:.2.(2015秋•石柱县期末)(1)化简:(2y2﹣ay+1)﹣2(y2﹣2ay+3)(2)已知:A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,求整式A.3.(2015秋•石柱县期末)某学校组织学生参加全市七年级数学竞赛,22名同学获市一等奖和市二等奖,为鼓励这些同学,学校准备拿出2000元资金给这些获奖学生买奖品,一等奖每人200元,二奖等奖每人50元,求得到一等奖和二等奖的学生分别是多少人?4.(2015秋•石柱县期末)如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.5.(2015秋•石柱县期末)已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,(1)求(a+b)2015的值.(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.6.(2015秋•石柱县期末)某农户承包荒山若干亩种果树2000棵,每年需对果园投资7800元,水果年总产量为18000千克,此水果在市场上每千克售a元,在果园自助销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需3人帮忙,每人每天付工资80元,农用车运费及其他各项税费平均每天60元,假定两种方式都能将水果全部销售出去.(1)直接写出一年中两种方式出售水果的总销售金额是多少元.(用含a,b的最简式子表示)(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?(3)为了提高收益,该农户明年准备增加投入资金加强果园管理,预计每增加投入1元,水果产量增加5千克,力争到明年纯收入达到16500元,而且该农户采用了(2)中较好的出售方式出售,销售单价与(2)一样,那么该农户要增加投资多少元?7.(2015秋•石柱县期末)如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时间是多少.重庆初一初中数学期末考试答案及解析一、选择题1.(2015•鄂尔多斯一模)﹣的相反数是()A.5B.﹣5C.D.﹣【答案】C【解析】根据相反数的定义,即可解答.解:﹣的相反数是,故选:C.【考点】相反数.2.(2015秋•石柱县期末)我县某地2016年元旦的最高气温为7℃,最低气温为﹣2℃,那么该地这天的最高气温比最低气温高()A.﹣9℃B.﹣5℃C.5℃D.9℃【答案】D【解析】先根据题意列出算式,然后利用减法法则计算即可.解:7﹣(﹣2)=7+2=9℃.故选:D.【考点】有理数的减法.3.(2015•徐州模拟)从正面观察如图的两个物体,看到的是()A.B.C.D.【答案】A【解析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解:从正面看第一个图为矩形,第二个图形为正方形.故选A.【考点】简单组合体的三视图.4.(2015秋•石柱县期末)下列等式正确的是()A.﹣|﹣5|=5B.﹣2(a+3b)=﹣2a+6bC.3m+2n=5mnD.x2y﹣2x2y=﹣x2y【答案】D【解析】根据绝对值的性质,去括号,合并同类项的法则,对各选项分析判断后利用排除法求解.解:A、应为﹣|﹣5|=﹣5,故本选项错误;B、应为﹣2(a+3b)=﹣2a﹣6b,故本选项错误;C、3m+2n不能合并,故本选项错误;D、x2y﹣2x2y=﹣x2y,故本选项正确;故选D.【考点】合并同类项;绝对值;去括号与添括号.5.(2015秋•石柱县期末)如果x=﹣2是关于x的方程3a﹣2x=7的解,那么a的值是()A.B.a=1C.D.【答案】B【解析】把x=﹣2代入方程3a﹣2x=7,求出方程的解即可.解:把x=﹣2代入方程3a﹣2x=7,得:3a+4=7,解得:a=1,故选B.【考点】一元一次方程的解.6.(2015秋•石柱县期末)如图,从A到B最短的路线是()A.A﹣G﹣E﹣B B.A﹣C﹣E﹣B C.A﹣D﹣G﹣E﹣B D.A﹣F﹣E﹣B【答案】D【解析】根据题图,要从A地到B地,一定要经过E点且必须经过线段EB,所以只要考虑A到E的路线最短即可,根据“两点之间线段最短“的结论即可解答.解:根据图形,从A地到B地,一定要经过E点且必须经过线段EB,所以只要找出从A到E的最短路线,根据“两点之间线段最短“的结论,从A到E的最短路线是线段AE,即A﹣F﹣E,所以从A地到B地最短路线是A﹣F﹣E﹣B.故选:D.【考点】两点间的距离.7.(2010•莱芜)如图,数轴上A、B两点分别对应实数a、b,则下列结论正确的是()A.ab>0 B.a﹣b>0 C.a+b>0 D.|a|﹣|b|>0【答案】D【解析】先根据数轴得到a,b,0之间的大小关系,再依次判断下列选项是否正确.解:∵a<﹣1<0<b<1,A、∵a<﹣1<0<b<1,∴ab<0,故选项错误;B、∵a<﹣1<0<b<1,∴a﹣b<0,故选项错误;C、∵a<﹣1<0<b<1,∴a+b<0,故选项错误;D、∵a<﹣1<0<b<1,∴|a|﹣|b|>0,故选项正确.故选D.【考点】实数与数轴.8.(2015秋•石柱县期末)下列说法不正确的是()A.有理数包括正有理数、0和负有理数B.次数相同的单项式是同类项C.单项式﹣2πa2b的系数是﹣2πD.线段AB和线段BA是同一条线段【答案】B【解析】根据有理数的分类可得A说法正确;根据同类项定义:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项可得B说法错误;根据单项式中的数字因数叫做单项式的系数可得C说法正确;根据线段的表示方法:用两个表示端点的字母可得D说法正确.解:A、有理数包括正有理数、0和负有理数,说法正确;B、次数相同的单项式是同类项,说法错误;C、单项式﹣2πa2b的系数是﹣2π,说法正确;D、线段AB和线段BA是同一条线段,说法正确;故选:B.【考点】直线、射线、线段;有理数;同类项;单项式.9.(2015秋•石柱县期末)甲仓库与乙仓库共存粮450 吨、现从甲仓库运出存粮的60%.从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食多30 吨.若设甲仓库原来存粮x吨,则有()A.(1﹣60%)x﹣(1﹣40%)(450﹣x)=30B.60%x﹣40%•(450﹣x)=30C.(1﹣40%)(450﹣x)﹣(1﹣60%)x=30D.40%•(450﹣x)﹣60%•x=30【答案】C【解析】要求甲,乙仓库原来存粮分别为多少,就要先设出未知数,找出题中的等量关系列方程求解.题中的等量关系为:从甲仓库运出存粮的60%,从乙仓库运出存粮的40%.结果乙仓库所余的粮食比甲仓库所余的粮食30吨.解:设甲仓库原来存粮x吨,根据题意得出:(1﹣40%)(450﹣x)﹣(1﹣60%)x=30;故选:C.【考点】由实际问题抽象出一元一次方程.10.(2015秋•石柱县期末)某个商贩同时卖出两件上衣,售价都是135元.按成本计算,其中一件盈利25%,另一件亏损25%,在这次交易中,该商贩()A.不赔不赚B.赚9元C.赔18元D.赚18元【答案】C【解析】要知道赔赚,就要先算出两件衣服的原价,要算出原价就要先设出未知数,然后根据题中的等量关系列方程求解.解:设在这次买卖中原价都是x,则可列方程:(1+25%)x=135解得:x=108比较可知,第一件赚了27元第二件可列方程:(1﹣25%)x=135解得:x=180,比较可知亏了45元,两件相比则一共亏了18元.故选C.【考点】一元一次方程的应用.11.(2015秋•石柱县期末)土家传统建筑的窗户上常有一些精致花纹,小辰对土家传统建筑非常感兴趣,他观察发现窗格的花纹排列呈现有一定规律,如图.其中“O”代表的就是精致的花纹,请问有35个精致花纹的是第()个图.A.13B.11C.9D.7【答案】B【解析】结合图形找出规律,找对规律即可解决该题.解:第一幅图有精致的花纹5个,第二幅有8个,第三幅11个,结合图形可知没往后一幅加3个,∵(35﹣5)÷3=10,10+1=11,∴有35个精致花纹的是第( 11 )个图.故选B.【考点】规律型:图形的变化类.12.(2015秋•石柱县期末)小张在某月的日历上圈出了相邻的三个数a、b、c,并求出了它们的和为33,这三个数在日历中的排布不可能是()A.B.C.D.【答案】B【解析】日历中的每个数都是整数且上下相邻是7,左右相邻相差是1.根据题意可列方程求解.解:A、设最小的数是x.x+x+1+x+2=33,x=10.故本选项正确.B、设最小的数是x.x+x+6+x+7=33,x=,故本选项错误.C、设最小的数是x.x+x+7+x+8=33,x=6,故本选项正确.D、设最小的数是x.x+x+7+x+14=33,x=4,本选项正确.故选B.【考点】列代数式.二、填空题1.(2015秋•石柱县期末)为了缓解群众“看病难,看病贵”的问题.国家从2013年到2015年三年中,共投入850000000000元,数据850000000000用科学记数法表示为.【答案】8.5×1011【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解:850 000 000 000=8.5×1011,故答案为:8.5×1011.【考点】科学记数法—表示较大的数.2.(2015秋•石柱县期末)一个角是70°,则这个角的余角为度.【答案】20【解析】根据余角的定义即可得出结论.解:∵一个角是70°,∴这个角的余角=90°﹣70°=20°.故答案为:20.【考点】余角和补角.3.(2015秋•石柱县期末)一个正方体的每个面都写有一个汉字,其平面展开图如图所示,那么在该正方体中,和“我”的对面上所写的字是.【答案】丽【解析】根据正方体展开中相对的两个面不存在公共点回答即可.解:∵由展开图可知“丽”所在的面与“我”所在的面不存在公共点,∴“丽”所在的面是“我”字所在面是对面.故答案为:丽.【考点】正方体相对两个面上的文字.4.(2015秋•石柱县期末)如图,∠AOC和∠DOB都是直角,如果∠DOC=28°,那么∠AOB= .【答案】152°【解析】从图形中可看出∠AOC和∠DOB相加,再减去∠DOC即为所求.解:∵∠AOC=∠DOB=90°,∠DOC=28°,∴∠AOB=∠AOC+∠DOB﹣∠DOC,=90°+90°﹣28°,=152°.故答案为:152°【考点】角的计算.5.(2015秋•石柱县期末)若x+5y=﹣1时,则代数式2015﹣x﹣5y的值为.【答案】2016【解析】原式后两项提取﹣1变形后,将已知等式代入计算即可求出值.解:∵x+5y=﹣1,∴原式=2015﹣(x+5y)=2015+1=2016,故答案为:2016【考点】代数式求值.6.(2015秋•石柱县期末)数学家莫伦在1925年发现了世界上第一个完美长方形.如图是一个完美长方形,它恰能被分割成10个大小不同的正方形,其中标注番号1的正方形边长为5,则这个完美长方形的面积为.【答案】3055.【解析】设标注番号2的正方形边长是x,根据各个正方形的边的和差关系分别表示出其余各正方形的边长,再根据完美长方形的宽相等列出方程,求解即可.解:设标注番号2的正方形边长是x,标注番号1的正方形边长为5,则第3个正方形的边长是x+5;第4个正方形的边长是x+x+5=2x+5;第5个正方形的边长是x+2x+5=3x+5;第6个正方形的边长是3x+5+x﹣5=4x;第7个正方形的边长是4x﹣5;第10个正方形的边长是4x﹣5﹣5﹣(x+5)=3x﹣15;第8个正方形的边长是4x﹣5+3x﹣15=7x﹣20;第9个正方形的边长是3x﹣15+7x﹣20=10x﹣35;根据题意得3x+5+4x=7x﹣20+10x﹣35,解得x=6,则完美长方形的宽为3x+5+4x=7x+5=47,完美长方形的长为4x+4x﹣5+7x﹣20=15x﹣25=65,所以完美长方形的面积为65×47=3055.故答案为3055.【考点】一元一次方程的应用.三、计算题(2015秋•石柱县期末)计算:﹣14﹣×[(﹣4)2﹣(7﹣3)×].【答案】﹣3.【解析】原式先计算乘方运算,再计算乘法运算,最后算加减运算即可得到结果.解:原式=﹣1﹣×(16﹣4×)=﹣1﹣×(16﹣6)=﹣1﹣×10=﹣1﹣2=﹣3.【考点】有理数的混合运算.四、解答题1.(2015秋•石柱县期末)解方程:.【答案】x=.【解析】方程去分母,去括号,移项合并,把x系数化为1,即可求出解.解:去分母得:2(2x+1)﹣(x﹣3)=12,去括号得:4x+2﹣x+3=12,移项合并得:3x=7,解得:x=.【考点】解一元一次方程.2.(2015秋•石柱县期末)(1)化简:(2y2﹣ay+1)﹣2(y2﹣2ay+3)(2)已知:A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,求整式A.【答案】(1)3ay﹣5;(2)A=﹣a2+5ab+14.【解析】(1)先去括号,再合并同类项即可;(2)根据题意列出整式相加减的式子,再去括号,合并同类项即可.解:(1)原式=2y2﹣ay+1﹣2y2+4ay﹣6=3ay﹣5;(2)∵A﹣2B=7a2﹣7ab,B=﹣4a2+6ab+7,∴A=(7a2﹣7ab)+2B=(7a2﹣7ab)+2(﹣4a2+6ab+7)=7a2﹣7ab﹣8a2+12ab+14=﹣a2+5ab+14.【考点】整式的加减.3.(2015秋•石柱县期末)某学校组织学生参加全市七年级数学竞赛,22名同学获市一等奖和市二等奖,为鼓励这些同学,学校准备拿出2000元资金给这些获奖学生买奖品,一等奖每人200元,二奖等奖每人50元,求得到一等奖和二等奖的学生分别是多少人?【答案】得到一等奖和二等奖的学生分别为6人,16人.【解析】等量关系为:200×一等奖的人数+50×二等奖的人数=2000,把相关数值代入计算即可.解:设得到一等奖的人数为x人,则得到二等奖的人数为(22﹣x)人.200x+50×(22﹣x)=2000,解得x=6,22﹣x=16.答:得到一等奖和二等奖的学生分别为6人,16人.【考点】一元一次方程的应用.4.(2015秋•石柱县期末)如图所示,已知C、D是线段AB上的两个点,M、N分别为AC、BD的中点.(1)若AB=10cm,CD=4cm,求AC+BD的长及M、N的距离.(2)如果AB=a,CD=b,用含a、b的式子表示MN的长.【答案】(1)7cm;(2)(a+b).【解析】(1)根据AC+BD=AB﹣CD列式进行计算即可求解,根据中点定义求出AM+BN的长度,再根据MN=AB﹣(AM+BN)代入数据进行计算即可求解;(2)根据(1)的求解,把AB、CD的长度换成a、b即可.解:(1)∵AB=10cm,CD=4cm,∴AC+BD=AB﹣CD=10﹣4=6cm,∵M、N分别为AC、BD的中点,∴AM+BN=AC+BD=(AC+BD)=3cm,∴MN=AB﹣(AM+BN)=10﹣3=7cm;(2)根据(1)的结论,AM+BN=AC+BD=(AC+BD)=(a﹣b),∴MN=AB﹣(AM+BN)=a﹣(a﹣b)=(a+b).【考点】两点间的距离.5.(2015秋•石柱县期末)已知:数轴上A、B两点表示的有理数分别为a、b,且(a﹣1)2+|b+2|=0,(1)求(a+b)2015的值.(2)数轴上的点C与A、B两点的距离的和为7,求点C在数轴上表示的数c的值.【答案】(1)﹣1;(2)c的值是﹣4或3.见解析【解析】(1)根据(a﹣1)2+|b+2|=0,可以求得a、b的值,从而可以得到(a+b)2015的值;(2)由第(1)问中求得的a的值和数轴上的点C与A、B两点的距离的和为7,可知点C可能在点B的左侧或点C可能在点A的右侧两种情况,然后进行计算即可解答本题.解:(1)∵(a﹣1)2+|b+2|=0,∴a﹣1=0,b+2=0,解得a=1,b=﹣2,∴(a+b)2015=(1﹣2)2015=(﹣1)2015=﹣1;(2)∵a=1,b=﹣2,数轴上A、B两点表示的有理数分别为a、b,数轴上的点C与A、B两点的距离的和为7,∴点C可能在点B的左侧或点C可能在点A的右侧,当点C在点B的左侧时,1﹣c+﹣2﹣c=7,得c=﹣4,当点C在点A的右侧时,c﹣1+c﹣(﹣2)=7,得c=3,即点C在数轴上表示的数c的值是﹣4或3.【考点】数轴;非负数的性质:绝对值;非负数的性质:偶次方.6.(2015秋•石柱县期末)某农户承包荒山若干亩种果树2000棵,每年需对果园投资7800元,水果年总产量为18000千克,此水果在市场上每千克售a元,在果园自助销售每千克售b元(b<a).该农户将水果拉到市场出售平均每天出售1000千克,需3人帮忙,每人每天付工资80元,农用车运费及其他各项税费平均每天60元,假定两种方式都能将水果全部销售出去.(1)直接写出一年中两种方式出售水果的总销售金额是多少元.(用含a,b的最简式子表示)(2)若a=1.3元,b=1.1元,且两种出售水果方式都在相同的时间内售完全部水果,请你通过计算说明选择哪种出售方式较好?(3)为了提高收益,该农户明年准备增加投入资金加强果园管理,预计每增加投入1元,水果产量增加5千克,力争到明年纯收入达到16500元,而且该农户采用了(2)中较好的出售方式出售,销售单价与(2)一样,那么该农户要增加投资多少元?【答案】(1)18000b元.(2)应选择在果园直接出售.(3)农户要增加投资1000元.【解析】(1)市场出售收入=水果的总收入﹣额外支出,水果直接在果园的出售收入为:18000b.(2)根据(1)中得到的代数式,将a=1.3,b=1.1代入代数式计算即可.(3)设该农户要增加投资x元,根据明年纯收入为16500元建立方程,求解即可.解:(1)将这批水果拉到市场上出售收入为18000a﹣×3×80﹣×60=18000a﹣4320﹣1080=18000a﹣5400(元),在果园直接出售收入为18000b元.(2)当a=1.3时,市场收入为18000a﹣5400=18000×1.3﹣5400=18000(元).当b=1.1时,果园收入为18000b=18000×1.1=19800(元).因18000<19800,所以应选择在果园直接出售.(3)设该农户要增加投资x元,则水果产量增加5x千克,由题意,得(18000+5x)×1.1﹣(7800+x)=16500,解得x=1000.答:该农户要增加投资1000元.【考点】一元一次方程的应用;列代数式;代数式求值.7.(2015秋•石柱县期末)如图,两个形状、大小完全相同的含有30゜、60゜的三角板如图①放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)直接写出∠DPC的度数.(2)若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度(如图②),若PF平分∠APD,PE平分∠CPD,求∠EPF的度数;(3)如图③,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3゜/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2゜/秒,(当PC转到与PM重合时,两三角板都停止转动),在旋转过程中,当2∠CPD=3∠BPM,求旋转的时间是多少.【答案】(1)90゜;(2)30゜(3)22.5秒.【解析】(1)利用含有30゜、60゜的三角板得出∠DPC=180°﹣∠CPA﹣∠DPB,进而求出即可;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,进而利用∠CPA=60゜求出即可;(3)设旋转时间为t秒,则∠BPM=2t°,∠CPD=90°﹣t°,得到2(90﹣t)=3×2t,即可解答.解:(1)∵∠DPC=180°﹣∠CPA﹣∠DPB,∠CPA=60°,∠DPB=30°,∴∠DPC=180゜﹣30゜﹣60゜=90゜;(2)设∠CPE=∠DPE=x,∠CPF=y,则∠APF=∠DPF=2x+y,∵∠CPA=60゜,∴y+2x+y=60゜,∴x+y=30゜∴∠EPF=x+y=30゜(3)设旋转时间为t秒,则有:∠BPM=2t°,∠CPD=180°﹣30°﹣60°﹣3t°+2t°=90°﹣t°∴2(90﹣t)=3×2t∴t="22.5" 即当2∠CPD=3∠BPM,旋转的时间为22.5秒.【考点】角的计算.。
2015-2016学年重庆市九龙坡区七年级(上)期末数学试卷(含解析)
2015-2016学年重庆市九龙坡区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.四个有理数0,﹣1,2,﹣3中,最小的数是()A.0 B.﹣1 C.2 D.﹣32.下列各组中的两项是同类项的是()A.﹣m2n和mn2B.8zy2和﹣y2z C.﹣m2和3m D.0.5a和0.5b3.已知等式a=b,c为任意有理数,则下列等式中,不一定成立的是()A.a﹣c=b﹣c B.a+c=b+c C.﹣ac=﹣bc D.4.如图所示的几何体是由形状、大小都完全相同的小正方体组合而成的,则下列图形不可能是它的三视图的是()A.B.C.D.5.未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为()A.0.845×104亿元B.8.45×103亿元C.8.45×104亿元D.84.5×102亿元6.如图所示,已知O是直线AB上一点,∠1=40°,OD平分∠BOC,则∠2的度数是()A.20°B.25°C.30°D.70°7.如图,是正方体包装盒的平面展开图,如果在其中的三个正方形A、B、C内分别填上适当的数,使得将这个平面展开图折成正方体后,相对面上的两数字互为相反数,则填在A、B、C内的三个数字依次为()A.0,1,﹣2 B.1,0,﹣2 C.﹣2,0,1 D.0,﹣2,18.下列方程的解法,其中正确的个数是()①,去分母得2(x﹣1)﹣4﹣x=6;②,去分母得2(x﹣2)﹣3(4﹣x)=1;③2(x﹣1)﹣3(2﹣x)=5,去括号得2x﹣2﹣6﹣3x=5;④3x=﹣2,系数化为1得.A.3 B.2 C.1 D.09.若|m|=3,n2=49,且m﹣n>0,则m+n的值是()A.10 B.4 C.﹣10或﹣4 D.4或﹣410.下列图形都是由同样大小的小圆圈按一定规律所组成的,其中第①个图形中一共有6个小圆圈,第②个图形中一共有9个小圆圈,第③个图形中一共有12个小圆圈,…,按此规律排列,则第⑩个图形中小圆圈的个数为()A.24 B.27 C.30 D.3311.小黄做一道题“已知两个多项式A,B,计算A﹣B”.小黄误将A﹣B看作A+B,求得结果是9x2﹣2x+7.若B=x2+3x﹣2,请你帮助小黄求出A﹣B的正确答案()A.8x2﹣5x+9 B.7x2﹣8x+11 C.10x2+x+5 D.7x2+4x+312.如图,用8块相同的长方形地砖拼成一个大长方形,则每个长方形地砖的面积是()A.200cm2B.300cm2C.600cm2D.2400cm2二、填空题(每小题4分,共24分)13.若单项式的系数是m,次数是n,则mn=.14.若a为负数,则化简|a|﹣|﹣2a|=.15.已知∠A=64°,则∠A的余角等于°.16.若关于x的方程3x﹣7=2x+a的解与方程4x+3=7的解相同,则a的值为.17.若x=1,代数式px3+qx+1=﹣2016,则当x=﹣1时,代数式px3+qx+1的值为.18.按下面的程序计算:若输入x=100,则输出结果是501;若输入x=25,则输出结果是631;若开始输入的数x为正整数,最后输出结果为781,则开始输入的数x的所有可能的值为.三、解答题(共78分)19.(10分)计算(1)﹣8﹣6+22﹣9 (2)﹣12016+(﹣18)×||﹣42÷(﹣2).20.(10分)解方程(1)5(x﹣1)﹣2(1﹣x)=3+2x (2).21.(10分)先化简,再求值:2x2+3(﹣x2+3xy﹣y2)﹣(﹣x2﹣xy+2y2),其中x、y满足(2x﹣1)2+|y+2|=0.22.(8分)某寄宿制学校有大、小两种类型的学生宿舍共50间,大宿舍每间可住8人,小宿舍每间可住6人,该校360名住宿生恰好住满这50间宿舍.求大、小宿舍各有多少间?23.(8分)陈老师和学生做一个猜数游戏,他让学生按照以下步骤进行计算:①任想一个两位数a,把a乘以2,再加上9,把所得的和再乘以2;②把a乘以2,再加上30,把所得的和除以2;③把①所得的结果减去②所得的结果,这个差即为最后的结果.陈老师说:只要你告诉我最后的结果,我就能猜出你最初想的两位数a.学生周晓晓计算的结果是96,陈老师立即猜出周晓晓最初想的两位数是31.请:(1)用含a的式子表示游戏的过程;(2)用字母a解释陈老师猜数的方法.24.(8分)如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)已知∠AOC=30°,∠BOD=60°,求∠MON的度数;(2)如果只已知“∠COD=90°”,你能求出∠MON的度数吗?如果能,请求出;如果不能,请说明理由.25.(12分)阅读以下材料:高斯是德国著名的大科学家,他最出名的故事就是在他10岁时,小学老师出了一道算术难题:计算1+2+3+…+100=?在其他同学还在犯难时,却很快传来了高斯的声音:“老师,我已经算好了!”老师很吃惊,高斯解释道:因为1+100=101,2+99=101,3+98=101,…,49+52=101,50+51=101,而像这样的等于101的组合一共有50组,所以答案很快就可以求出:101×50=5050.根据以上的信息,请同学们:(1)计算1+3+5+7+…+99的值.(2)计算2+4+6+8+…+200的值.(3)用含a和n的式子表示运算结果:求a+2a+3a+…+na的值.26.(12分)如图,数轴上有A、B、C、D四个点,分别对应的数为a、b、c、d,且满足a,b是方程|x+9|=1的两根(a<b),(c﹣16)2与|d﹣20|互为相反数,(1)求a、b、c、d的值;(2)若A、B两点以6个单位长度/秒的速度向右匀速运动,同时C、D两点以2个单位长度/秒向左匀速运动,并设运动时间为t秒,问t为多少时,A、B两点都运动在线段CD上(不与C、D两个端点重合)?(3)在(2)的条件下,A、B、C、D四个点继续运动,当点B运动到点D的右侧时,问是否存在时间t,使B与C的距离是A与D的距离的4倍?若存在,求时间t;若不存在,请说明理由.参考答案与试题解析1.【解答】解:根据有理数比较大小的方法,可得﹣3<﹣1<0<2,∴四个有理数0,﹣1,2,﹣3中,最小的数是﹣3.故选:D.2.【解答】解:A、﹣m2n和mn2字母的指数不同,不是同类项;B、8zy2和﹣y2z是同类项;C、﹣m2和3m字母的指数不同,不是同类项;D、0.5a和0.5b字母不同不是同类项.故选:B.3.【解答】解:A、根据等式性质1,等式两边都减c,即可得到a﹣c=b﹣c;B、根据等式性质1,等式两边都加c,即可得到a+c=b+c;C、根据等式性质2,等式两边都乘以﹣c,即可得到﹣ac=﹣bc;D、根据等式性质2,等式两边都除以c时,应加条件c≠0,所以D错误;故选:D.4.【解答】解:从正面看第一层三个小正方形,第二层左边一个小正方形,右边一个小正方形,故D正确;从左边看第一层两个小正方形,第二层左边一个小正方形,故C正确;从上边看第二层三个小正方形,第一层左边一个小正方形,故B正确;错误的是A,故选:A.5.【解答】解:将8450亿元用科学记数法表示为8.45×103亿元.故选:B.6.【解答】解:∵∠1=40°,∴∠COB=180°﹣40°=140°,∵OD平分∠BOC,∴∠2=∠BOC=×140°=70°.故选:D.7.【解答】解:由正方体的展开图的特点可知B的对面是0,C的对面是﹣1,A的对面是2.由相反数的定义可知:A、B、C表示的数分别为﹣2,O,1.故选:C.8.【解答】解:①方程去分母得:2(x﹣1)﹣(4﹣x)=6,错误;②方程去分母得:2(x﹣2)﹣3(4﹣x)=6,错误;③方程去括号得:2x﹣2﹣6+3x=5,错误;④方程系数化为1得:x=﹣,错误,则其中正确的个数是0.故选:D.9.【解答】解:由题意得:m=±3,n=±7,由m﹣n>0,得到m>n,∴m=3,n=﹣7;m=﹣3,n=﹣7,则m+n=﹣10或﹣4.故选:C.10.【解答】解:∵第1个图形有3+3×1=6个圆圈,第2个图形有3+3×2=9个圆圈,第3个图形有3+3×3=12个圆圈,…∴第n个图形有3+3n个圆圈.则第⑩个图形中小圆圈的个数为3+3×10=33.故选:D.11.【解答】解:根据题意得:(9x2﹣2x+7)﹣2(x2+3x﹣2)=9x2﹣2x+7﹣2x2﹣6x+4=7x2﹣8x+11.故选:B.12.【解答】解:设每个小长方形地砖的长为xcm,宽为ycm,由题意可得,即,解之,所以每个长方形地砖的面积是300cm2.故选:B.13.【解答】解:∵单项式的系数是m,次数是n,∴m=﹣,n=5,则mn=﹣×5=﹣3.故答案为:﹣3.14.【解答】解:∵a为负数,∴a<0,﹣2a>0,∴|﹣2a|=﹣2a,|a|=﹣a,∴|a|﹣|﹣2a|=﹣a﹣(﹣2a)=a.故答案为:a.15.【解答】解:∠A的余角等于:90°﹣64°=26°.故答案是:26.16.【解答】解:∵4x+3=7解得:x=1将x=1代入:3x﹣7=2x+a得:a=﹣6.故答案为:﹣6.17.【解答】解:把x=1代入代数式得:p+q+1=﹣2016,即p+q=﹣2017,则当x=﹣1时,﹣p﹣q+1=﹣(p+q)+1=2017+1=2018,故答案为:201818.【解答】解:若5x+1=781,解得:x=156;若5x+1=156,解得:x=31;若5x+1=31,解得:x=6;若5x+1=6,解得:x=1,故答案为:1或6或31或15619.【解答】解:(1)原式=﹣8﹣6﹣9+22=﹣23+22=﹣1;(2)原式=﹣1﹣4+8=3.20.【解答】解:(1)去括号,得5x﹣5﹣2+2x=3+2x,合并,得7x﹣7=3+2x,移项,得7x﹣2x=3+7,合并,得5x=10,系数化为1,得x=2;(2)去分母,得4(2x﹣1)﹣3(1﹣3x)=﹣24,去括号,得8x﹣4﹣3+9x=﹣24,移项,得8x+9x=﹣24+4+3,合并,得17x=﹣17,系数化为1,得x=﹣1.21.【解答】解:原式=2x2﹣3x2+9xy﹣3y2+x2+xy﹣2y2=10xy﹣5y2,∵(2x﹣1)2+|y+2|=0,∴2x﹣1=0,y+2=0,解得:x=,y=﹣2,则原式=﹣10﹣20=﹣30.22.【解答】解:设大宿舍有x间,小宿舍有y间,由题意,得,解得:.答:大宿舍有30间,小宿舍有20间.23.【解答】解:(1)由题意可知,第①步运算的结果为2(2a+9)=4a+18;第②步运算的结果为(2a+30)=a+15;则最后结果为(4a+18)﹣(a+15)=3a+3=3(a+1);(2)若最后结果为96,则3(a+1)=96,解得:a=31,陈老师猜数a的方法是:将学生所得的最后结果除以3,再减去1;或者将学生所得的最后结果减去3,再除以3.24.【解答】解:(1)∵∠AOB是平角,∠AOC=30°,∠BOD=60°,∴∠COD=∠A0B﹣∠AOC﹣∠BOD=180﹣30﹣60=90°,∵OM、ON分别是∠AOC、∠BOD的平分线,∴∠MOC=∠AOC=15°,∠NOD=∠BOD=30°,∴∠MON=∠MOC+∠COD+∠NOD=15+90+30=135°;(2)能.∵OM、ON分别是∠AOC、∠BOD的平分线.∴∠MOC+∠NOD,=∠AOC+∠BOD,=(∠AOC+∠BOD),=(180﹣90)=45°,∴∠MON=∠MOC+∠NOD+∠COD=90+45=135°.25.【解答】解:(1)原式=(1+99)×50÷2=100×25=2500;(2)原式=2×(1+2+3+ (100)=2×5050=10100;(3)原式=a(1+2+…+n)=an(1+n).26.【解答】解:(1)∵a,b是方程|x+9|=1的两根(a<b),解得:a=﹣10,b=﹣8,∵(c﹣16)2与|d﹣20|互为相反数,∵(c﹣16)2≥0,|d﹣20|≥0,∴c﹣16=0,d﹣20=0,可得:c=16,d=20;(2)经时间t时,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,要使A、B两点都运动在线段CD上,则必须满足条件:A在C的右侧,B在D的左侧,列出不等式:,解得:<t<,故t的范围是:<t<.(3)①点A运动到点D的左边,点B运动到点D的右边,此时<t≤,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,AD=20﹣2t﹣(6t﹣10)=30﹣8t,BC=6t﹣8﹣(16﹣2t)=8t﹣24,由题意得:8t﹣24=4(30﹣8t),解得:t=,满足<t≤,②点A、点B均在点D的右边,此时t>,A的值为6t﹣10,B的值为6t﹣8,C的值为16﹣2t,D的值为20﹣2t,AD=6t﹣10﹣(20﹣2t)=8t﹣30,BC=6t﹣8﹣(16﹣2t)=8t﹣24,由题意得,8t﹣24=4(8t﹣30),解得:t=4,满足t>;综上可得存在时间t=或t=4,使B与C的距离是A与D的距离的4倍。
重庆市一中人教版(七年级)初一上册数学期末测试题及答案
重庆市一中人教版(七年级)初一上册数学期末测试题及答案一、选择题1.购买单价为a 元的物品10个,付出b 元(b >10a ),应找回( )A .(b ﹣a )元B .(b ﹣10)元C .(10a ﹣b )元D .(b ﹣10a )元2.如图,直线AB ⊥直线CD ,垂足为O ,直线EF 经过点O ,若35BOE ∠=,则FOD ∠=( )A .35°B .45°C .55°D .125° 3.计算(3)(5)-++的结果是( ) A .-8B .8C .2D .-2 4.在223,2,7-四个数中,属于无理数的是( ) A .0.23 B 3 C .2- D .2275.下列调查中,适宜采用全面调查的是()A .对现代大学生零用钱使用情况的调查B .对某班学生制作校服前身高的调查C .对温州市市民去年阅读量的调查D .对某品牌灯管寿命的调查6.有 m 辆客车及 n 个人,若每辆客车乘 40 人,则还有 25 人不能上车;若每辆客车乘 45 人,则还有 5 人不能上车.有下列四个等式:① 40m +25=45m +5 ;②2554045n n +-=;③2554045n n ++=;④ 40m +25 = 45m - 5 .其中正确的是( ) A .①③ B .①② C .②④ D .③④7.下列方程变形正确的是( )A .方程110.20.5x x --=化成1010101025x x --= B .方程 3﹣x=2﹣5(x ﹣1),去括号,得 3﹣x=2﹣5x ﹣1C .方程 3x ﹣2=2x+1 移项得 3x ﹣2x=1+2D .方程23t=32,未知数系数化为 1,得t=1 8.如图,能判定直线a ∥b 的条件是( )A .∠2+∠4=180°B .∠3=∠4C .∠1+∠4=90°D .∠1=∠49.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x ) 10.将方程212134x x -+=-去分母,得( ) A .4(21)3(2)x x -=+ B .4(21)12(2)x x -=-+C .(21)63(2)x x -=-+D .4(21)123(2)x x -=-+11.图中是几何体的主视图与左视图, 其中正确的是( )A .B .C .D .12.用一个平面去截:①圆锥;②圆柱;③球;④五棱柱,能得到截面是圆的图形是( )A .①②④B .①②③C .②③④D .①③④二、填空题13.如图,点A 在点B 的北偏西30方向,点C 在点B 的南偏东60︒方向.则ABC ∠的度数是__________.14.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需____元.15.36.35︒=__________.(用度、分、秒表示)16.小明妈妈支付宝连续五笔交易如图,已知小明妈妈五笔交易前支付宝余额860元,则五笔交易后余额__________元.支付宝帐单日期 交易明细10.16 乘坐公交¥ 4.00-10.17 转帐收入¥200.00+10.18 体育用品¥64.00-10.19 零食¥82.00-10.20餐费¥100.00-17.若3750'A ∠=︒,则A ∠的补角的度数为__________.18.如图,若12l l //,1x ∠=︒,则2∠=______.19.16的算术平方根是 .20.4是_____的算术平方根.21.若关于x 的方程1210m x m -++=是一元一次方程,则这个方程的解是_______.22.如下图是一组有规律的图案,第1个图案由4个基础图形组成,第2个图案由7个基础图形组成,……,根据这些规律,则第2013个图案中是由______个基础图形组成.23.一个长方体水箱从里面量得长、宽、高分别是50cm 、40cm 和30cm ,此时箱中水面高8cm ,放进一个棱长为20cm 的正方体实心铁块后,此时水箱中的水面仍然低于铁块的顶面,则水箱中露在水面外的铁块体积是______3cm .24.a ※b 是新规定的这样一种运算法则:a ※b =a ﹣b+2ab ,若(﹣2)※3=_____.三、解答题25.先化简, 再求值.已知222213,222A x xy yB x y =-+=- ()1求2A B -()2当3,1x y时,求2A B -的值26.计算:(1)23(1)27|2|-+-+-(2)2311(6)()232-⨯--27.如图,在四边形ABCD 中,BE 平分ABC ∠交线段AD 于点E, 12∠=∠.(1)判断AD 与BC 是否平行,并说明理由.(2)当,140A C ︒∠=∠∠=时,求D ∠的度数. 28.O 为数轴的原点,点A 、B 在数轴上表示的数分别为a 、b ,且满足(a ﹣20)2+|b+10|=0.(1)写出a 、b 的值;(2)P 是A 右侧数轴上的一点,M 是AP 的中点.设P 表示的数为x ,求点M 、B 之间的距离;(3)若点C 从原点出发以3个单位/秒的速度向点A 运动,同时点D 从原点出发以2个单位/秒的速度向点B 运动,当到达A 点或B 点后立即以原来的速度向相反的方向运动,直到C 点到达B 点或D 点到达A 点时运动停止,求几秒后C 、D 两点相距5个单位长度?29.某中学学生步行到郊外旅行,七年级()1班学生组成前队,步行速度为4千米/小时,七()2班的学生组成后队,速度为6千米/小时;前队出发1小时后,后队才出发,同时后队派一名联络员骑自行车在两队之间不间断地来回联络,他骑车的速度为10千米/小时. ()1后队追上前队需要多长时间?()2后队追上前队的时间内,联络员走的路程是多少?()3七年级()1班出发多少小时后两队相距2千米?30.如图,O 为直线AB 上一点,OD 平分AOC ∠,90DOE ∠=︒.(1)若50AOC ∠=︒,求COE ∠和∠BOE 的度数;(2)猜想:OE 是否平分BOC ∠?请直接写出你猜想的结论;(3)与COD ∠互余的角有:______.四、压轴题31.已知∠AOB =110°,∠COD =40°,OE 平分∠AOC ,OF 平分∠BOD .(1)如图1,当OB 、OC 重合时,求∠AOE ﹣∠BOF 的值;(2)如图2,当∠COD 从图1所示位置绕点O 以每秒3°的速度顺时针旋转t 秒(0<t <10),在旋转过程中∠AOE ﹣∠BOF 的值是否会因t 的变化而变化?若不发生变化,请求出该定值;若发生变化,请说明理由.(3)在(2)的条件下,当∠COF =14°时,t = 秒.32.如图,已知数轴上点A 表示的数为10,B 是数轴上位于点A 左侧一点,且AB=30,动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为秒.(1)数轴上点B 表示的数是________,点P 表示的数是________(用含的代数式表示);(2)若M 为线段AP 的中点,N 为线段BP 的中点,在点P 运动的过程中,线段MN 的长度会发生变化吗?如果不变,请求出这个长度;如果会变化,请用含的代数式表示这个长度;(3)动点Q 从点B 处出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P 、Q 同时出发,问点P 运动多少秒时与点Q 相距4个单位长度?33.如图,A 、B 、P 是数轴上的三个点,P 是AB 的中点,A 、B 所对应的数值分别为-20和40.(1)试求P 点对应的数值;若点A 、B 对应的数值分别是a 和b ,试用a 、b 的代数式表示P 点在数轴上所对应的数值;(2)若A 、B 、P 三点同时一起在数轴上做匀速直线运动,A 、B 两点相向而行,P 点在动点A 和B 之间做触点折返运动(即P 点在运动过程中触碰到A 、B 任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A 、B 两点相遇,停止运动.如果A 、B 、P 运动的速度分别是1个单位长度/s ,2个单位长度/s ,3个单位长度/s ,设运动时间为t .①求整个运动过程中,P 点所运动的路程.②若P 点用最短的时间首次碰到A 点,且与B 点未碰到,试写出该过程中,P 点经过t 秒钟后,在数轴上对应的数值(用含t 的式子表示);③在②的条件下,是否存在时间t ,使P 点刚好在A 、B 两点间距离的中点上,如果存在,请求出t 值,如果不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意知:花了10a 元,剩下(b ﹣10a )元.【详解】购买单价为a 元的物品10个,付出b 元(b >10a ),应找回(b ﹣10a )元.故选D .【点睛】本题考查了列代数式,能读懂题意是解答此题的关键.2.C解析:C【解析】【分析】根据对顶角相等可得:BOE AOF ∠=∠,进而可得FOD ∠的度数.【详解】解:根据题意可得:BOE AOF ∠=∠,903555FOD AOD AOF ∴∠=∠-∠=-=.故答案为:C.【点睛】本题考查的是对顶角和互余的知识,解题关键在于等量代换.3.C解析:C【解析】【分析】根据有理数加法法则计算即可得答案.【详解】(3)(5)-++=5+-3-=2故选:C.【点睛】本题考查有理数加法,同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;互为相反数的两个数相加得0;一个数与0相加,仍得这个数;熟练掌握有理数加法法则是解题关键.4.B解析:B【解析】【分析】根据无理数为无限不循环小数、开方开不尽的数、含π的数判断即可.【详解】0.23是有限小数,是有理数,不符合题意,是开方开不尽的数,是无理数,符合题意,-2是整数,是有理数,不符合题意,22是分数,是有理数,不符合题意,7故选:B.【点睛】本题考查无理数概念,无理数为无限不循环小数、开方开不尽的数、含π的数,熟练掌握无理数的定义是解题关键.5.B解析:B【解析】【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A、对现代大学生零用钱使用情况的调查,工作量大,用抽样调查,故此选项错误;B、对某班学生制作校服前身高的调查,需要全面调查,故此选项正确;C、对温州市市民去年阅读量的调查,工作量大,用抽样调查,故此选项错误;D、对某品牌灯管寿命的调查,有破坏性,用抽样调查,故此选项错误.故选:B.【点睛】本题考查的是调查方法的选择,正确选择调查方式要根据全面调查和抽样调查的优缺点再结合实际情况去分析.6.A解析:A【解析】【分析】首先要理解清楚题意,知道总的客车数量及总的人数不变,然后采用排除法进行分析从而得到正确答案.【详解】根据总人数列方程,应是40m+25=45m+5,①正确,④错误;根据客车数列方程,应该为2554045n n++=,③正确,②错误;所以正确的是①③.故选A.【点睛】此题主要考查了由实际问题抽象出一元一次方程,关键是正确理解题意,把握总的客车数量及总的人数不变.7.C解析:C【解析】【分析】各项中方程变形得到结果,即可做出判断.【详解】解:A、方程x1x10.20.5--=化成10x1010x25--=1,错误;B、方程3-x=2-5(x-1),去括号得:3-x=2-5x+5,错误;C、方程3x-2=2x+1移项得:3x-2x=1+2,正确,D、方程23t32=,系数化为1,得:t=94,错误;所以答案选C.【点睛】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.8.D解析:D【解析】【分析】根据平行线的判定方法逐一进行分析即可得.【详解】A. ∠2+∠4=180°,互为邻补角,不能判定a//b,故不符合题意;B. ∠3=∠4,互为对顶角,不能判定a//b,故不符合题意;C. ∠1+∠4=90°,不能判定a//b,故不符合题意;D. ∠1=∠4,根据同位角相等,两直线平行可以判定a//b,故符合题意,故选D.【点睛】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.D解析:D【解析】【分析】方程两边同乘12即可得答案.【详解】方程212134x x-+=-两边同时乘12得:4(21)123(2)x x-=-+故选:D.【点睛】本题考查一元一次方程去分母,找出分母的最小公倍数是解题的关键,注意不要漏乘.11.D解析:D【解析】【分析】从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.【详解】解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D.【点睛】本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.12.B解析:B【解析】【分析】根据圆锥、圆柱、球、五棱柱的形状特点判断即可.【详解】圆锥,如果截面与底面平行,那么截面就是圆;圆柱,如果截面与上下面平行,那么截面是圆;球,截面一定是圆;五棱柱,无论怎么去截,截面都不可能有弧度.故选B.二、填空题13.【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC解析:150【解析】【分析】由题意根据方向角的表示方法,可得∠ABD=30°,∠EBC=60°,根据角的和差,可得答案.【详解】解:如图:由题意,得∠ABD=30°,∠EBC=60°,∴∠FBC=90°-∠EBC=90°-60°=30°,∠ABC=∠ABD+∠DBF+∠FBC=30°+90°+30°=150°,故答案为150︒.【点睛】本题考查方向角,利用方向角的表示方法得出∠ABD=30°,∠EBC=60°是解题关键.14.【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元,共用去:(2a+3b)元解析:(23)a b +【解析】【分析】用单价乘数量得出买2千克苹果和3千克香蕉的总价,再进一步相加即可.【详解】买单价为a 元的苹果2千克用去2a 元,买单价为b 元的香蕉3千克用去3b 元, 共用去:(2a +3b )元.故选C.【点睛】此题主要考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系.15.【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点解析:3621'o【解析】【分析】进行度、分、秒的转化运算,注意以60为进制,即1°=60′,1′=60″.【详解】解:36.35°=36°+0.35×60′=36°21′.故答案为:36°21′.【点睛】本题主要考查了度分秒的换算,相对比较简单,注意以60为进制,熟记1°=60′,1′=60″.16.810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛解析:810【解析】【分析】根据有理数的加减运算法则,对题干支出与收入进行加减运算即可.【详解】解:由题意五笔交易后余额为860+200-4-64-82-100=810元,故填810.【点睛】本题考查有理数的加减运算,理解题意根据题意对支出与收入进行加减运算从而求解.17.【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵,∴的补角=180°-=.故填.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒解析:14210'︒【解析】【分析】由题意根据互为补角的两个角的和等于180°列式进行计算即可得解.【详解】解:∵3750'A ∠=︒,∴A ∠的补角=180°-3750'︒=14210'︒.故填14210'︒.【点睛】本题考查补角的定义,难度较小,要注意度、分、秒是60进制.18.(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故解析:(180﹣x)°.【解析】【分析】根据平行线的性质得出∠2=180°﹣∠1,代入求出即可.【详解】∵l1∥l2,∠1=x°,∴∠2=180°﹣∠1=180°﹣x°=(180﹣x)°.故答案为(180﹣x)°.【点睛】本题考查了平行线的性质的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.19.【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵∴16的平方根为4和-4∴16的算术平方根为4解析:【解析】【分析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为420.【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.解析:【解析】试题解析:∵42=16,∴4是16的算术平方根.考点:算术平方根.21.【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解解析:5x =-【解析】【分析】【详解】由题意知m-1=1,因此m=2,把m=2代入原方程x+2m+1=0可得x=-5.考点:一元一次方程的概念及解22.6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1解析:6040【解析】【分析】根据前3个图,得出基础图形的个数规律,写出第n 个图案中的基础图形个数表达式,代入2013即可得出答案.【详解】第1个图案中有1+3=4个基础图案,第2个图案中有1+3+3=7个基础图案,第3个图案中有1+3+3+3=10个基础图案,……第n个图案中有1+3+3+3+…3=(1+3n)个基础图案,当n=2013时,1+3n=1+3×2013=6040,故答案为:6040.【点睛】本题考查图形规律问题,由前3个图案得出规律,写出第n个图案中的基础图形个数表达式是解题的关键.23.4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=解析:4000【解析】【分析】设铁块沉入水底后水面高hcm,根据铁块放入水中前后水的体积不变列出方程并解答.【详解】设放入正方体铁块后水面高为hcm,由题意得:50×40×8+20×20×h=50×40×h,解得:h=10,则水箱中露在水面外的铁块的高度为:20-10=10(cm),所以水箱中露在水面外的铁块体积是:20×20×10=4000(cm3).故答案为:4000.【点睛】此题考查一元一次方程的实际运用,掌握长方体的体积计算公式是解决问题的关键.24.-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果.【详解】∵a※b=a﹣b+2ab,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣解析:-17【解析】【分析】根据题中的新定义将所求式子化为算式-2-3+2×(-2)×3,计算即可得到结果. 【详解】∵a ※b =a ﹣b+2ab ,∴(﹣2)※3=﹣2﹣3+2×(﹣2)×3=﹣2﹣3﹣12=﹣17.故答案为:﹣17.【点睛】此题考查了有理数的混合运算,属于新定义题型,弄清题中的新定义是解本题的关键.三、解答题25.(1)2264x xy y --+;(2)13.【解析】【分析】(1)将A,B 代入2A B -后化简即可;(2)将x,y 的值代入2A B -化简后的式子求值即可.【详解】 解:(1)222222221223)(22)62222A B x xy y x y x xy y x y -=-+--=-+-+(2264x xy y =--+;(2)当3,1x y 时,222-3-63(1)4(1)13A B -=⨯⨯-+⨯-=.【点睛】本题主要考查整式的化简求值,解题的关键是利用法则化简整式.26.(1)0;(2)-14【解析】【分析】(1)根据平方、立方根及绝对值的运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】(1)2(1)|2|--132=-+0=(2)2311(6)()232-⨯-- 113636832=⨯-⨯- 12188=--14=-【点睛】本题考查实数的运算,熟练掌握运算法则是解题关键.27.(1)AD//BC ,理由见解析;(2)80︒【解析】【分析】(1)根据BE 平分∠ABC 可得∠2=∠CBE ,再根据∠1=∠2,可得∠1=∠CBE ,可判断AD 与BC 平行;(2)根据∠1=40°,可得∠EBC =∠2=∠1=40°,由此可以求出∠C =∠A =100°,再根据四边形的内角和求得∠D =80°.【详解】解:(1)AD//BC ,理由:∵BE 平分∠ABC∴∠2=∠CBE∵∠1=∠2∴∠1=∠CBE∴AD//BC (内错角相等,两直线平行) ;(2)∵∠1=40°,∴∠EBC =∠2=40°,∴∠A =180°−∠1−∠2=100°,∵∠A =∠C ,∴∠C =∠A =100°,∴∠D =360°−∠A−∠2−∠EBC−∠C =360°−100°−40°−40°−100°=80°.【点睛】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.28.(1)a =20,b =﹣10;(2)20+2x ;(3)1秒、11秒或13秒后,C 、D 两点相距5个单位长度【解析】【分析】(1)利用绝对值及偶次方的非负性,可求出a ,b 的值;(2)由点A,P表示的数可找出点M表示的数,再结合点B表示的数可求出点M、B之间的距离;(3)当0≤t≤203时,点C表示的数为3t,当203<t≤503时,点C表示的数为20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t,当5<t≤20时,点D表示的数为﹣10+2(t﹣5)=2t﹣20.分0≤t≤5,5<t≤203及203<t≤503,三种情况,利用CD=5可得出关于x的一元一次方程,解之即可得出结论.【详解】解:(1)∵(a﹣20)2+|b+10|=0,∴a﹣20=0,b+10=0,∴a=20,b=﹣10.(2)∵设P表示的数为x,点A表示的数为20,M是AP的中点.∴点M表示的数为202x+.又∵点B表示的数为﹣10,∴BM=202x+﹣(﹣10)=20+2x.(3)当0≤t≤203时,点C表示的数为3t;当203<t≤503时,点C表示的数为:20﹣3(t﹣203)=40﹣3t;当0≤t≤5时,点D表示的数为﹣2t;当5<t≤20时,点D表示的数为:﹣10+2(t﹣5)=2t﹣20.当0≤t≤5时,CD=3t﹣(﹣2t)=5,解得:t=1;当5<t≤203时,CD=3t﹣(2t﹣20)=5,解得:t=﹣15(舍去);当203<t≤503时,CD=|40﹣3t﹣(2t﹣20)|=5,即60﹣5t=5或60﹣5t=﹣5,解得:t=11或t=13.答:1秒、11秒或13秒后,C、D两点相距5个单位长度.【点睛】本题考查了一元一次方程的应用、数轴、绝对值及偶次方的非负性,解题的关键是:(1)利用绝对值及偶次方的非负性,求出a,b的值;(2)根据各点之间的关系,用含x的代数式表示出BM的长;(3)找准等量关系,正确列出一元一次方程.29.(1)后队追上前队需要2小时;(2)联络员走的路程是20千米;(3)七年级()1班出发12小时或2小时或4小时后,两队相距2千米 【解析】【分析】 (1) 设后队追上前队需要x 小时,由后队走的路程=前队先走的路程+前队后来走的路程,列出方程,求解即可;(2)由路程=速度×时间可求联络员走的路程;(3)分三种情况讨论,列出方程求解即可.【详解】()1设后队追上前队需要x 小时,根据题意得:()64x 41-=⨯x 2∴=,答:后队追上前队需要2小时;()210220⨯=千米,答:联络员走的路程是20千米;()3设七年级()1班出发t 小时后,两队相距2千米,当七年级()2班没有出发时,21t 42==, 当七年级()2班出发,但没有追上七年级()1班时,()4t 6t 12=-+,t 2∴=,当七年级()2班追上七年级()1班后,()6t 14t 2-=+,t 4∴=,答:七年级()1班出发12小时或2小时或4小时后,两队相距2千米. 【点睛】本题考查了一元一次方程的应用,分类讨论的思想,找准等量关系,正确列出一元一次方程是解题的关键.30.(1)65COE ∠=︒,65BOE ∠=︒;(2)平分;(3)COE ∠、∠BOE .【解析】【分析】(1)根据角平分线和直角的性质,即可得出∠COE ,然后根据平角的性质即可得出∠BOE ;(2)根据角平分线的性质得出12COD AOD AOC ∠=∠=∠,然后根据余角的性质得出∠COE=∠BOE ,即可得出OE 平分BOC ∠;(3)根据余角的性质,即可判定.【详解】(1)∵OD 平分AOC ∠,50AOC ∠=︒, ∴11502522COD AOD AOC ∠=∠=∠=⨯︒=︒, ∵90DOE ∠=︒.∴902565COE DOE COD ∠=∠-∠=︒-︒=︒, 180180259065BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒;(2)平分∵OD 平分AOC ∠, ∴12COD AOD AOC ∠=∠=∠ ∵90DOE ∠=︒∴∠DOC+∠COE=∠AOD+∠BOE=90°∴∠COE=∠BOE∴OE 平分BOC ∠;(3)由题意,得∠DOE=∠DOC+∠COE=90°∠AOD+∠BOE=90°,∠AOD=∠DOC∴与COD ∠互余的角有:COE ∠、∠BOE【点睛】此题主要考查角平分线以及余角、平角的性质,熟练掌握,即可解题.四、压轴题31.(1)35°;(2)∠AOE ﹣∠BOF 的值是定值,理由详见解析;(3)4.【解析】【分析】(1)首先根据角平分线的定义求得∠AOE 和∠BOF 的度数,然后根据∠AOE ﹣∠BOF 求解;(2)首先由题意得∠BOC =3t°,再根据角平分线的定义得∠AOC =∠AOB+3t°,∠BOD =∠COD+3t°,然后由角平分线的定义解答即可;(3)根据题意得∠BOF =(3t+14)°,故3314202t t +=+,解方程即可求出t 的值. 【详解】解:(1)∵OE 平分∠AOC ,OF 平分∠BOD , ∴11AOE AOC 11022︒∠=∠=⨯=55°,11AOF BOD 402022︒︒∠=∠=⨯=, ∴∠AOE ﹣∠BOF =55°﹣20°=35°;(2)∠AOE ﹣∠BOF 的值是定值由题意∠BOC =3t°,则∠AOC =∠AOB+3t°=110°+3t°,∠BOD =∠COD+3t°=40°+3t°,∵OE 平分∠AOC ,OF 平分∠BOD ,()11AOE AOC 1103t =22︒︒∴∠=∠=⨯+3552t ︒︒+ ∴()113BOF BOD 403t 20t 222︒︒︒︒∠=∠=+=+, ∴33AOE BOF 55t 20t 3522︒︒︒︒︒⎛⎫⎛⎫∠-∠=+-+= ⎪ ⎪⎝⎭⎝⎭, ∴∠AOE ﹣∠BOF 的值是定值,定值为35°;(3)根据题意得∠BOF =(3t+14)°,∴3314202t t +=+, 解得4t =.故答案为4.【点睛】本题考查了角度的计算以及角的平分线的性质,理解角度之间的和差关系是关键.32.(1)-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.(3)13秒或17秒【解析】【分析】(1)根据已知可得B 点表示的数为10-30;点P 表示的数为10-5t ;(2)分类讨论:①当点P 在点A 、B 两点之间运动时,②当点P 运动到点B 的左侧时,利用中点的定义和线段的和差易求出MN .(3) 分①点P 、Q 相遇之前,②点P 、Q 相遇之后,根据P 、Q 之间的距离恰好等于2列出方程求解即可;【详解】解:(1))∵点A 表示的数为10,B 在A 点左边,AB=30,∴数轴上点B 表示的数为10-30=-20;∵动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t (t >0)秒,∴点P 表示的数为10-5t ;故答案为-20,10-5t ;(2)线段MN 的长度不发生变化,都等于15.理由如下:①当点P 在点A 、B 两点之间运动时,∵M 为线段AP 的中点,N 为线段BP 的中点,∴MN=MP+NP=AP+BP=(AP+BP )=AB=15;②当点P 运动到点B 的左侧时:∵M为线段AP的中点,N为线段BP的中点,∴MN=MP-NP=AP-BP=(AP-BP)=AB=15,∴综上所述,线段MN的长度不发生变化,其值为15.(3)若点P、Q同时出发,设点P运动t秒时与点Q距离为4个单位长度.①点P、Q相遇之前,由题意得4+5t=30+3t,解得t=13;②点P、Q相遇之后,由题意得5t-4=30+3t,解得t=17.答:若点P、Q同时出发,13或17秒时P、Q之间的距离恰好等于4;【点睛】本题考查了数轴一元一次方程的应用,用到的知识点是数轴上两点之间的距离,关键是根据题意画出图形,注意分两种情况进行讨论.33.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【解析】【分析】(1)根据数轴上两点间的距离公式结合A、B两点表示的数,即可得出结论;(2)①点P运动的时间与A、B相遇所用时间相等,根据路程=速度×时间即可求得;②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的;③点P与点A的距离越来越小,而点P与点B的距离越来越大,不存在PA=PB的时候.【详解】解:(1)∵A、B所对应的数值分别为-20和40,∴AB=40-(-20)=60,∵P是AB的中点,∴AP=60=30,∴点P表示的数是-20+30=10;∵如图,点A、B对应的数值分别是a和b,∴AB=b-a,∵P是AB的中点,∴AP=(b-a)∴点P表示的数是a+(b-a) =(a+b).(2)①点A和点B相向而行,相遇的时间为=20(秒),此即整个过程中点P运动的时间.所以,点P的运动路程为3×20=60(单位长度),故答案是60个单位长度.②由P点用最短的时间首次碰到A点,且与B点未碰到,可知开始时点P是和点A相向而行的.所以这个过程中0≤t≤7.5.P点经过t秒钟后,在数轴上对应的数值为10-3t.故答案是:10-3t,0≤t≤7.5.③不存在.由②可知,点P是和点A相向而行的,整个过程中,点P与点A的距离越来越小,而点P 与点B的距离越来越大,所以不存在相等的时候.故答案为:(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.【点睛】本题考查了数轴上点与点的距离和动点问题.。
重庆一中初2015级七年级上期末数学试卷(含答案)
的每度电价比基本用电量的每度电价高 20%. 某用户在 5 月份 用电 100 度,共缴电费 56 元,则基本用电量 a 是 度.
15. 如图,将一张长为 1 、宽为 a 的长方形纸片(
1 a 1 )折一下,剪下一个边长等于 2
宽度 a 的正方形(称为第一次操作) ;再将剩下的长方形如图折一 下,再次剪下一 个边 长等于该长方形宽 度的正方形(称为第二次操作)……如此反复操作下去, 直到第 n 次 操作后,剩下的小长方形为正方形时停止操作.当 n 3 时, a 的值为________. 1
2
=4× 7+18-5…………3 分 =28+18-5 =41……………………6 分 18. 计算: 14 4
3 1 3 24 5 8 6 4
=-1+[4-(9+4-18)]÷5…………3 分 =-1+[4-(-5)] ÷ 5 =-1+ =
2 ………………………6 分 7
四、解答题: (本大题共 4 个小题,每小题 10 分,共 40 分)解答时每小题请给出必要的演 算过程或推理步骤. 21. 先化简,再求值: 若 x 3 y 2 0 ,求代数式 3x y [ xy 2(2 xy 3x y) x y] 4 xy 的值.
2
2
2
2
2
2
2
22.列方程解应用题: 小明和小东两人练习跑步,都从甲地出发跑到乙地,小明每分钟跑 250 米,小东每 分钟跑 200 米,小明让小东先出发 3 分钟之后再出发,结果两人同时到达乙地,求甲、 乙两地之间的路程是多少米?
23.如下的两幅不完整的统计图反映了重庆一中校男子篮球队的年龄分布情况:
2015-2016学年重庆市永川区七年级(上)期末数学试卷(含解析)
2015-2016学年重庆市永川区七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每小题4分,共48分)1.下列四个实数中,比﹣1小的数是()A.﹣2 B.0 C.1 D.22.下列四个图形中,能用∠1、∠AOB、∠O三种方法表示同一个角的图形是()A.B.C.D.3.下列各数中,负数是()A.﹣(﹣3)B.﹣|﹣3| C.(﹣3)2D.﹣(﹣3)34.a,b是有理数,它们在数轴上的对应点的位置如图所示,把a,﹣a,b,﹣b按照从小到大的顺序排列()A.﹣b<﹣a<a<b B.﹣a<﹣b<a<b C.﹣b<a<﹣a<b D.﹣b<b<﹣a<a5.用一副三角板画角,不能画出的角的度数是()A.15°B.75°C.145°D.165°6.∠A的补角为125°12′,则它的余角为()A.54°18′B.35°12′C.35°48′D.以上都不对7.如果x=2是方程x+2a=﹣1的解,那么a的值是()A.﹣2 B.﹣1 C.0 D.18.已知∠AOB=3∠BOC,若∠BOC=30°,则∠AOC等于()A.120°B.120°或60°C.30°D.30°或90°9.单项式﹣x a+b y a﹣1与3x2y是同类项,则a﹣b的值为()A.2 B.0 C.﹣2 D.110.永川重百商场为庆祝“元旦”,特搞促销活动,有两件进价不同的衣服均卖了80元,其中一件盈利60%,另一件亏本20%,这次买卖交易中商家()A.不赔不赚B.赚了8元C.赚了10元D.赚了32元11.有m辆客车及n个人,若每辆客车乘40人,则还有10人不能上车,若每辆客车乘43人,则只有1人不能上车,有下列四个等式:①40m+10=43m﹣1;②;③;④40m+10=43m+1,其中正确的是()A.①②B.②④C.②③D.③④12.如果2a+b=0(a≠0),则|﹣1|+|﹣2|的值为()A.1或2 B.2或3 C.3 D.4二、填空题(每小题4分,共24分)13.我国最长的河流长江全长约为6300千米,用科学记数法表示为千米.14.一个角是70°29′,则这个角的余角为.15.若单项式﹣x2m﹣1y2的次数是5,则m的值是.16.x﹣(y﹣z)﹣[(x﹣y)﹣z]=.17.对于两个有理数a、b,我们规定运算符号⊗的意义是:当a>b时,a⊗b=a+b;当a≤b时,a⊗b=a ﹣b.按上述规定,计算(3⊗1)﹣(﹣2⊗1)的值为.18.如图,两人沿着边长为70米的正方形,按A→B→C→D→A…的方向行走.甲从A点以65米/分的速度、乙从B点以72米/分的速度行走,甲、乙两人同时出发,当乙第一次追上甲时,将在正方形的边上.三、解答题(共78分)19.(10分)计算:(1)﹣22﹣|﹣7|+3﹣2×(﹣);(2)﹣14+[4﹣(+﹣)×24]÷5.20.(7分)先化简,再求值.x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=.21.(7分)某服装店以每件82元的价格购进了30套保暖内衣,销售时,针对不同的顾客,这30套保暖内衣的售价不完全相同,若以100元为标准,将超过的钱数记为正,不足的钱数记为负,则记录结果如表所示:售出件数7 6 7 8 2售价(元)+5 +1 0 ﹣2 ﹣5请你求出该服装店在售完这30套保暖内衣后,共赚了多少钱?22.(10分)设y1=1﹣,y2=(1)当x为何值时,y1,、y2互为相反数;(2)当x为何值时,y1、y2相等.23.(10分)如图,已知O为直线AB上一点,过点O向直线AB上方引三条射线OC、OD、OE,且OC平分∠AOD,∠2=3∠1,∠COE=70°,求∠2的度数.24.(10分)如图所示,A B、C是一条公路边的三个村庄,A、B间的距离为100km,A、C间的距离为40km,现要从A、B之间设一个车站P,设P、C的距离为xkm;(1)用x表示车站到三个村庄的距离和;(2)若车站到三个村庄的距离之和为105km,问车站应设在何处?(3)若要使车站到三个村庄的距离之和最小,问车站应设在何处?25.(12分)(1)如图,点C在线段AB上,AC=8cm,CB=6cm,点M、N分别是AC、BC的中点,求线段MN 的长;(2)若C为线段上任一点,满足AC+CB=acm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?并说明理由;(3)若C在线段AB的延长线上,且满足AC﹣BC=bcm,点M、N分别是AC、BC的中点,你能猜想MN的长度吗?请画出图形,并说明理由.26.(12分)李先生准备在永川某小区内购买一套小户型商品房,他去某楼盘了解情况得知,该户型商品房的单价是8000元/m2,面积如图所示(单位:m,卫生间的宽未定,设宽为xm),售房部为李先生提供了以下两种优惠方案:方案一:整套房的单价是8000元/m2,其中厨房可免费赠送的面积;方案二:整套房按原销售总金额的9折出售.(1 )用y1表示方案一中购买一套该户型商品房的总金额,用y2表示方案二中购买一套该户型商品房的总金额,分别求出y1、y2与x的关系式;(2)求x取何值时,两种优惠方案的总金额一样多?(3)李先生因现金不够,于2015年1月在建行借了9万元住房贷款,贷款期限为6年,从开始贷款的下一个月起逐月偿还,贷款月利率是0.5%,每月还款数额=平均每月应还的贷款本金数额+月利息,月利息=上月所剩贷款本金数额×月利率.①李先生借款后第一个月应还款数额是多少元?②假设贷款月利率不变,若李先生在借款后第n(1≤n≤72,n是正整数)个月的还款数额为P,请写出P 与n之间的关系式.参考答案与试题解析1.【解答】解:∵﹣1<0,1>0,2>0,∴可排除B、C、D,∵﹣2<0,|﹣2|>|﹣1|,∴﹣2<﹣1.故选:A.2.【解答】解:A、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;B、能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项正确;C、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;D、不能用∠1,∠AOB,∠O三种方法表示同一个角,故本选项错误;故选:B.3.【解答】解:A、﹣(﹣3)=3>0,错误;B、﹣|﹣3|=﹣3<0,正确;C、(﹣3)2=9>0,错误;D、﹣(﹣3)3=27>0,错误.故选:B.4.【解答】解:观察数轴可知:b>0>a,且b的绝对值大于a的绝对值.在b和﹣a两个正数中,﹣a<b;在a和﹣b两个负数中,绝对值大的反而小,则﹣b<a.因此,﹣b<a<﹣a<b.故选:C.5.【解答】解:A、15°的角,60°﹣45°=15°;故本选项不符合题意;B、75°的角,45°+30°=75°;故本选项不符合题意;C、145°的角,无法用三角板中角的度数拼出;故本选项符合题意;D、165°的角,90°+45°+30°=165°;故本选项不符合题意.故选:C.6.【解答】解:∵∠A=180°﹣125°12′,∴∠A的余角为90°﹣∠A=90°﹣(180°﹣125°12′)=125°12′﹣90°=35°12′.故选:B.7.【解答】解:把x=2代入方程得:×2+2a=﹣1,解得:a=﹣1,故选:B.8.【解答】解:∵∠BOC=30°,∠AOB=3∠BOC,∴∠AOB=3×30°=90°(1)当OC在∠AOB的外侧时,∠AOC=∠AOB+∠BOC=90°+30°=120度;(2)当OC在∠AOB的内侧时,∠AOC=∠AOB﹣∠BOC=90°﹣30°=60度.故选:B.9.【解答】解:由同类项得定义得,,解得,则a﹣b=2﹣0=2.故选:A.10.【解答】解:设盈利60%的衣服的进价是a元,亏本20%的衣服的进价是b元,由题意得a(1+60%)=80;b(1﹣20%)=80,解得:a=50;b=100;总售价是80+80=160(元),总进价是50+100=150(元),所以这次买卖中商家赚了10元.故选:C.11.【解答】解:根据总人数列方程,应是40m+10=43m+1,①错误,④正确;根据客车数列方程,应该为,②错误,③正确;所以正确的是③④.故选:D.12.【解答】解:∵2a+b=0(a≠0),∴2a=﹣b∴,∴a,b异号,∴当a>0,b<0时,,|﹣1|+|﹣2|=||+|﹣|==3;当a<0,b>0时,,|﹣1|+|﹣2|=|﹣|+||==3;故选:C.13.【解答】解:6 300=6.3×103.故答案为:6.3×103.14.【解答】解:这个角的余角=90°﹣70°29′=19°31′.故答案为:19°31′.15.【解答】解:∵单项式﹣x2m﹣1y2的次数是5,∴2m﹣1+2=5,解得,m=2.∴m的值是2.16.【解答】解:原式=x﹣y+z﹣x+y+z=2z,故答案为:2z.17.【解答】解:根据题中的新定义得:原式=(3+1)﹣(﹣2﹣1)=4+3=7,故答案为:718.【解答】解:(1)设乙第一次追上甲用了x分钟,由题意得:72x﹣65x=70×3,解得:x=30,而72×30=2160=70×30+60,30÷4=7…2,所以乙走到D点,再走60米即可追上甲,即在AD边上.答:乙第一次追上甲是在AD边上.故答案为:AD.19.【解答】解:(1)原式=﹣4﹣7+3+1=﹣7;(2)原式=﹣1+(4﹣9﹣4+18)÷5=﹣1+=.20.【解答】解:原式=x﹣2x+y2﹣x+y2=﹣3x+y2,当x=﹣2,y=时,原式=6.21.【解答】解:7×(100+5)+6×(100+1)+7×100+8×(100﹣2)+2×(100﹣5)=735+606+700+784+190=3015,30×82=2460(元),3015﹣2460=555(元),答:共赚了555元.22.【解答】解:(1)根据题意得:1﹣+=0,去分母得:6﹣3(x﹣1)+2x=0,去括号得:6﹣3x+3+2x=0,移项合并得:x=9;(2)根据题意得:1﹣=,去分母得:6﹣3x+3=2x,移项合并得:5x=9,解得:x=1.8.23.【解答】解:设∠1=x,则∠2=3∠1=3x,(1分)∵∠COE=∠1+∠3=70°∴∠3=(70﹣x)(2分)∵OC平分∠AOD,∴∠4=∠3=(70﹣x)(3分)∵∠1+∠2+∠3+∠4=180°∴x+3x+(70﹣x)+(70﹣x)=180°(4分)解得:x=20(5分)∴∠2=3x=60°(6分)答:∠2的度数为60°.(7分)24.【解答】解:(1)如图1,路程之和为PA+PC+PB=40+x+100﹣(40+x)+x=(100+x)km;如图2,路程之和为PA+PC+PB=40﹣x+x+60+x=(100+x)km;综上所述:路程之和为PA+PC+PB=(100+x)km,答:用x表示车站到三个村庄的距离和为(100+x)km;(2)100+x=105,解得x=5,答:车站在C两侧5km处;(3)当x=0时,x+100=100,答:车站建在C处路程和最小,路程和为100km.25.【解答】解:(1)∵AC=8cm,点M是AC的中点,∴CM=0.5AC=4cm,∵BC=6cm,点N是BC的中点,∴CN=0.5BC=3cm,∴MN=CM+CN=7cm,∴线段MN的长度为7cm,(2)MN=a,由M,N分别是AC,BC的中点,得MC=AC,NC=BC.MN=MC+NC=AC+BC=(AC+BC)=a,∴当C为线段AB上一点,且M,N分别是AC,BC的中点,则存在MN=a,(3)当点C在线段AB的延长线时,如图:,则AC>BC,∵M是AC的中点,∴CM=AC,∵点N是BC的中点,∴CN=BC,∴MN=CM﹣CN=(AC﹣BC)=b.26.【解答】解:(1)∵厨房可免费赠送的面积;∴收费面积为:×2×3=2,∴y1=(18+12+×6+2x)×8000=(32+2x)×8000=16000x+256000,y2=(18+12+6+2x)×8000×90%=(36+2x)×8000×0.9=14400x+259200;(2)令(36+2x)×0.9=32+2x,解得x=2;故x=2时,两种优惠方案的总金额一样多;(3)90000÷(6×12)=1250元,1250+90000×0.5%=1250+450=1700(元),P=1250+[90000﹣(n﹣1)×1250]×0.5%=1250+450﹣6.25(n﹣1)=1700﹣6.25(n﹣1)=﹣6.25n+1706.25。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年重庆一中七年级(上)期末数学试卷(考试时间:120分钟满分:150分)一、选择题(每个题4分,共48分)1.2的相反数是()A.﹣B.C.2 D.﹣22.若x=1是方程2a+3x=9的解,则a的值为()A.B.1 C.3 D.63.如图的几何体是由若干形状、大小完全相同的小立方体组成,则从左面看几何体,看到的图形是()A.B.C.D.4.成渝高铁终于开通了,在百度搜索“成渝高铁”,相关结果约有62800个,高铁开通后,成都和重庆正式形成了1小时经济圈,沿线城市的交流、互动更加便捷和频繁.将62800用科学记数法表示为()A.0.628×105B.6.28×104C.62.8×103D.628×1025.下列调查方式中,最适合用普查的是()A.调查重庆市初中生每天体育锻炼所用的时间B.调查北京地区雾霾污染程度C.质检部门调查厂商生产的一批足球合格率D.调查深圳“12.20”滑坡事件的伤亡人数6.下列各式正确的是()A.x2•x3=x6B.(x3)2=x9C.(2x)3=2x3D.x3÷x2=x7.若(x﹣1)(x+3)=x2+mx+n,则m+n=()A.﹣1 B.﹣2 C.﹣3 D.28.如图,线段AB=4,延长AB到点C,使BC=2AB,若点D是线段AC的中点,则BD的长为()A.1.5 B.2 C.2.5 D.69.已知x+y=4,xy=3,则x2+y2的值为()A.22 B.16 C.10 D.410.校园“mama”超市出售2种中性笔,一种每盒有8支,另一种每盒有12支.由于近段时间某班全体上课状态很不错,班委准备每人发1支以示鼓励.若买每盒8支的中性笔x盒,则有3位同学没有中性笔;若买每盒12支的中性笔,则可以少买2盒,且最后1盒还剩1支,根据题意,可列方程为()A.8x﹣3=12(x﹣3)+11 B.8x+3=12(x﹣2)﹣1C.8x+3=12(x﹣3)+1 D.8x+3=12(x﹣2)+111.如图是由一些点组成的图形,按此规律,第⑥个图形中点的个数为()A.43 B.49 C.63 D.12712.如图,长方形ABCD中有6个形状、大小相同的小长方形,且EF=3,CD=12,则图中阴影部分的面积为()A.108 B.72 C.60 D.48二、填空题(每小题4分,共24分)13.﹣3的倒数是.14.已知多项式﹣3a2b+﹣ab+1,则这个多项式的次数是.15.小明在O点记录一辆正在行驶的笔直的公路l上的汽车的位置,第一次记录的汽车位置是在O点南偏西30°方向上的点A处,第二次记录的汽车位置是在O点南偏东45°方向上的点B处,则∠AOB=.16.已知5m=2,5n=3,则53m+2n=.17.一个两位数,个位数比十位数字大4,而且这个两位数比它的数字之和的3倍大2,则这个两位数是.18.小明正在离家9.5千米的地方放羊15只,突然风云变幻,不久后可能要下雨,羊必须尽快回家,现有一辆马车最多装羊10只,没有装羊时速度为18千米/时,装有羊时,为安全起见,速度控制为12千米/时,而羊独自回家的速度为3千米/时,若装卸羊的时间忽略不计,则所有羊都到家的最短时间是小时.三、解答题(共78分)19.(10分)计算:(1)|﹣5|+(﹣3)2×(π﹣2015)0++(﹣1)2018(2).20.(10分)解方程:(1)2x+3(x﹣1)=2(x+3)(2)=1.21.(8分)先化简,再求值:5(3a﹣1)+(2+a)(2﹣a)+(a﹣3)2,其中a=﹣1.22.(8分)每年5月的第2个星期日是母亲节.某班级就在今年母亲节当天以何种方式向母亲表达感谢面向全班同学开展了问卷调查,统计结果包含:仅用言语表达了对母亲的感谢、用行动表达对母亲的感谢、对母亲什么都没做三种结果,根据得到的数据绘制了如图所示的两幅不完整的统计图,请根据统计图所给的信息解答下列问题:(1)该班级一共有学生名,请补全条形统计图;(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数;(3)用行动来表达对母亲的感谢的同学中有4人(其中女生有2名)选择的是在母亲节当天为母亲做早餐,班主任决定从这4名同学中随机选择2名听取这样做的用意,请用列表法或画树状图的方法求选出的2人恰好是1男1女的概率.23.(10分)列方程解应用题:为喜迎“元旦节”,某商店购进某种气球200只,每只进价5元,在“元旦节”当天以11元的价格卖出气球150只,“元旦节”后,将剩下的气球全部降价销售,最终该商店从这批气球中共获利80%.求“元旦节”后此种气球每只降价多少元?24.(10分)如图,∠AOB=180°,∠BOC=80°,OD平分∠AOC,∠DOE=3∠COE,求∠BOE.25.(10分)规定符号△(x)(x是正整数)满足下列性质:①当x为质数时,△(x)=1②对于任意两个正整数p和q,有△(p•q)=p△(q)+q△(p)例如:△(9)=△(3×3)=3△(3)+3△(3)=3×1+3×1=6;△(15)=△(3×5)=3△(5)+5△(3)=3×1+5×1=8;△(30)=△(2×15)=2△(15)+15△(2)=2×8+15×1=31问:(1)填空:△(4)=,△(16)=,△(32)=;(2)求△(2016).26.(12分)已知某提炼厂10月份共计从矿区以每吨4000元价格购买了 72吨某矿石原料,该提炼厂提炼矿石材料的相关信息如下表所示:提炼方式每天可提炼原材料的吨数提炼率提炼后所得产品的售价(元/吨)每提炼1吨原材料消耗的成本(元)粗提炼7 90% 30000 1000精提炼 3 60% 90000 3000注:①提炼率指提炼后所得的产品质量与原材料的比值;②提炼后的废品不产生效益;③提炼厂每天只能做粗提炼或精提炼中的一种.受市场影响,提炼厂能够用于提炼矿石原材料的时间最多只有12天,若将矿石原材料直接在市场上销售,每吨的售价为5000元,现有3种提炼方案:方案①:全部粗提炼;方案②:尽可能多的精提炼,剩余原料在市场上直接销售(直接销售的时间忽略不计);方案③:一部分粗提炼,一部分精提炼,且刚好12天将所有原材料提炼完.问题:(1)若按照方案③进行提炼,需要粗提炼多少天?(2)哪个提炼方案获得的利润最大?最大利润是多少?(3)已知提炼厂会根据每月的利润按照一定的提成比例来计算每个月需要给工厂员工发放的总提成,具体计算方法如下表:提炼厂利润不超过150万元的部分超过150万元但不超过200万元的部分超过200万元的部分提成比例8% a% 15%现知按照(2)问中的最大利润给员工发放的 10月份的总提成为15.09万元,11月份和12月份提炼厂获得的总利润为 480万元,11月份和12月份给员工的总提成为50.6万元,且12月份的利润比11月份的利润大,求提炼厂12月份的利润.参考答案与试题解析1.【解答】解:根据相反数的定义可知:2的相反数是﹣2.故选:D.2.【解答】解:把x=1代入方程2a+3x=9得:2a+3=9,解得:a=3,故选:C.3.【解答】解:从左面看易知一共两列,第一列有2个正方形,第二列有1个正方形,故选:A.4.【解答】解:62800=6.28×104,故选:B.5.【解答】解:调查重庆市初中生每天体育锻炼所用的时间适合用抽样调查,A错误;调查北京地区雾霾污染程度适合用抽样调查,B错误;质检部门调查厂商生产的一批足球合格率适合用抽样调查,C错误;调查深圳“12.20”滑坡事件的伤亡人数适合用全面调查,D正确;故选:D.6.【解答】解:A、x2•x3=x5,故本选项错误;B、(x3)2=x6,故本选项错误;C、(2x)3=8x3,故本选项错误;D、x3÷x2=x,故本选项正确;故选:D.7.【解答】解:已知等式整理得:(x﹣1)(x+3)=x2+2x﹣3=x2+mx+n,∴m=2,n=﹣3,则m+n=2﹣3=﹣1.故选:A.8.【解答】解:∵AB=4cm,BC=2AB=8cm,∴AC=AB+BC=4+8=12cm,∵D是AC的中点,∴AD=AC=×12=6cm,∴BD=AD﹣AB=6﹣4=2cm.故选:B.9.【解答】解:∵x+y=4,xy=3,∴x2+y2=(x+y)2﹣2xy=42﹣2×3=10.故选:C.10.【解答】解:依据题意得全班级人数是一定的,所以:8x+3=12(x﹣2)﹣1,故选:B.11.【解答】解:∵第1个图形中点的个数为:1+1×(1+1)=3,第2个图形中点的个数为:1+2×(2+1)=7,第3个图形中点的个数为:1+3×(3+1)=13,…∴第6个图形中点的个数为:1+6×(6+1)=43,故选:A.12.【解答】解:设每小长方形的宽为x,则每小长方形的长为x+3,根据题意得:2(x+3)+x=12,解得:x=2,则每小长方形的长为2+3=5,则AD=2+2+5=9,阴影部分的面积为9×12﹣2×5×6=48;故选:D.13.【解答】解:﹣3的倒数是﹣.14.【解答】解:多项式﹣3a2b+﹣ab+1,则这个多项式的次数是:a2b3的次数,即为:2+3=5.故答案为:5.15.【解答】解:∠AOB=30°+45°=75°.故答案是:75°.16.【解答】解:53m+2n=53m•52n=(5m)3•(5n)2=8×9=72.故答案为:72.17.【解答】解:设十位数为x,个位数字为x+4,根据题意得:10x+x+4=3(x+x+4)+2,解得:x=2,则这个两位数是26;故答案为:26.18.【解答】解:设第一批羊拉了x千米后放下,则第一批羊到家的时间为(+)小时,第二批羊到家的时间为x÷12+[9.5﹣(x﹣x÷12×3)÷(18+3)×3﹣x÷12×3]÷12+(x﹣x÷12×3)÷(18+3)=(+﹣+)小时,由已知得:+=+﹣+,解得:x=7.羊到家的最短时间为+=小时.故答案为:.19.【解答】解:(1)原式=5+9+9+1=24;(2)原式=﹣1×8×+15﹣16+14=﹣18+15﹣16+14=﹣5.20.【解答】解:(1)去括号得:2x+3x﹣3=2x+6,移项合并得:3x=9,解得:x=3;(2)去分母得:3x﹣3﹣x﹣2=6,移项合并得:2x=11,解得:x=5.5.21.【解答】解:原式=15a﹣5+4﹣a2+a2﹣6a+9=9a+8,当a=﹣1时,原式=﹣9+8=﹣1.22.【解答】解:(1)∵用行动表达对母亲的感谢的有15人,占25%,∴该班级一共有学生:15÷25%=60(名),∴仅用言语表达了对母亲的感谢的有:60﹣15﹣10=35(名);故答案为:60;如图:(2)求扇形统计图中“仅用言语表达感谢”所对应的圆心角度数为:360°×=210°;(3)画树状图得:∵共有12种等可能的结果,选出的2人恰好是1男1女的有8种情况,∴选出的2人恰好是1男1女的概率为:=.23.【解答】解:设“元旦节”后此种气球每只降价x元,根据题意得:[11×150+(11﹣x)×(200﹣150)]﹣200×5=200×5×80%,解得:x=8,答:“元旦节”后此种气球每只降价8元.24.【解答】解:∵∠AOB=180°,∠BOC=80°,∴∠AOC=100°,∵OD平分∠AOC,∴∠COD=∠AOC=50°,又∵∠DOE=3∠COE,∴∠COE=∠COD=25°,∴∠BOE=∠BOC﹣∠COE=55°.25.【解答】解:(1)△(4)=△(2×2)=2△(2)+2△(2)=4△(2)=4×1=4,△(16)=△(4×4)=4△(4)+4△(4)=8△(4)=8×4=32,△(32)=△(2×16)=16△(2)+2△(16)=16+64=80;(2)△(2016)=△(32×63)=63△(32)+32△(63)=63×80+32△(7×9)=5040+32×(9△(7)+7△(9))=5040+32×(9+42)=6672.26.【解答】解:(1)设需要粗提炼x天,则精提炼12﹣x天,根据题意,得7x+3×(12﹣x)=72,整理,得4x=36,解得x=9.答:若按照方案③进行提炼,需要粗提炼9天.(2)所获利润按方案来分.方案①:利润为72×90%×30000﹣72×(4000+1000),=72×0.9×30000﹣72×5000,=1944000﹣360000,=1584000(元)=158.4(万元).方案②:12天精提炼12×3=36吨,剩余72﹣36=36吨.利润为36×60%×90000﹣36×(4000+3000)+36×(5000﹣4000),=36×0.6×90000﹣36×7000+36×1000,=1944000﹣252000+36000,=1728000(元)=172.8(万元).方案③:粗提炼7×9=63吨,精提炼3×(12﹣9)=9吨.利润为63×90%×30000﹣63×(4000+1000)+9×60%×90000﹣9×(4000+3000),=63×0.9×30000﹣63×5000+9×0.6×90000﹣9×7000,=1701000﹣315000+486000﹣63000,=1809000(元)=180.9(万元).综合①②③种方案可知,方案③利润最大,最大利润为180.9万元.(3)第(2)小问中的最大利润为1809000元,15.09万元=150900元,150万元=1500000元.10月份的提成为1500000×8%+(1809000﹣1500000)a%=150900,整理得3090a=30900,即a=10.设12月份的利润为M万元,则11月份的利润为(480﹣M)万元.①当480﹣M≤150时,11月份和12月份给员工的总提成:150×8%+(200﹣150)×10%+(M﹣200)×15%+(480﹣M)×8%=50.6,解得M=360,此时480﹣M=120万元.②当150<480﹣M≤200时,11月份和12月份给员工的总提成:150×8%+(200﹣150)×10%+(M﹣200)×15%+150×8%+(480﹣M﹣150)×10%=50.6,解得M=372,此时480﹣M=108万元(舍去).③当480﹣M>200时,11月份和12月份给员工的总提成:2×150×8%+2×(200﹣150)×10%+15%×(480﹣400),=24+10+12,=46≠50.6,即480﹣M>200不成立.综合①②③可得提炼厂12月份的利润为360万元。