初一数学经典应用题汇总考试最常见

合集下载

(完整word版)初一数学一元一次方程应用题各类型经典题

(完整word版)初一数学一元一次方程应用题各类型经典题

初一数学一元一次方程应用题各类型经典题一、行程问题:包括相遇、追击、环形跑道和飞行、航行的速度问题其基本关系是:路程=时间×速度(一)相遇问题的等量关系:甲行距离+乙行距离=总路程(二)追击问题的等量关系:(1)同时不同地:慢者行的距离+两者之间的距离=快者行的距离(2)同地不同时:甲行距离=乙行距离或慢者所用时间=快者所用时间+多用时间(三)环形跑道常用等量关系:(1)同时同向出发:快的走的路程-环行跑道周长=慢的走的路程(第一次相遇)(2)同时反向出发:甲走的路程+乙走的路程=环行周长(第一次相遇)(四)航行问题常用的等量关系:(1)顺水速度=静水速度+水流速度(2)逆水速度=静水速度-水流速度(3)顺速–逆速= 2水速;顺速+ 逆速= 2船速(4)顺水的路程= 逆水的路程例题1、甲、乙两地相距162公里,一列慢车从甲站开出,每小时走48公里,一列快车从乙站开出,每小时走60公里试问:1)两列火车同时相向而行,多少时间可以相遇?2)两车同时反向而行,几小时后两车相距270公里?3)若两车相向而行,慢车先开出1小时,再用多少时间两车才能相遇?4)若两车相向而行,快车先开25分钟,快车开了几小时与慢车相遇?5)两车同时同向而行(快车在后面),几小时后快车可以追上慢车?6)两车同时同向而行(慢车在后面),几小时后两车相距200公里?例题2、某连队从驻地出发前往某地执行任务,行军速度是6千米/小时,18分钟后,驻地接到紧急命令,派遣通讯员小王必须在一刻钟内把命令传达到该连队,小王骑自行车以14千米/小时的速度沿同一路线追赶连队,问是否能在规定时间内完成任务?练习:1、小明每天早上要在7:20之前赶到距家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上了他。

问:(1)爸爸追上小明用了多长时间?(2)追上小明时,距离学校还有多远?2、一架飞机飞行两城之间,顺风时需要5小时30分钟,逆风时需要6小时,已知风速为每小时24公里,求两城之间的距离和无风时飞机的速度?3、甲、乙两人环绕周长是400米的跑道散步,如果两人从同一地点背道而行,那么过2分钟他们两人就要相遇。

初一数学应用题分类汇总(分类全)

初一数学应用题分类汇总(分类全)

应用题练习 行程问题1.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。

两车的速度各是多少?2、甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?3、一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?4、甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?5、.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分.(1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?6. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?二、工程类问题1、有水桶两只,甲桶的容量是400升,乙桶的容量是150升,如果从甲桶放出的水是乙桶放出的2倍,则甲桶剩的水是乙桶所剩的4倍。

问每桶放出了多少升水?2、一项任务由甲完成一半以后,乙完成其余的部分,两人共用2小时。

如果甲完成任务的31以后,由乙完成其余部分,则两人共用1小时50分钟。

间由甲、乙两人单独完成分别要用几小时?3、车工班原计划每天生产50个零件,改进操作方法后,实际上每天比原计划多生产6个零件,结果比原计划提前5天,并超额8个零件,间原计划车工班应该生产4、*工厂甲、乙、丙三个工人每天生产的零件数,甲和乙的比是3:4,乙和丙的比是2:3。

若乙每天所生产的件数比甲和丙两人的和少945件,问每个工人各生产多少件?5、一项工程,甲队单独做10小时完成,乙队单独做15小时完成,丙队单独做20小时完成。

七年级数学方程应用题

七年级数学方程应用题

七年级数学方程应用题一、行程问题1. 例题:甲、乙两人从相距36千米的两地相向而行。

如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。

甲、乙两人每小时各走多少千米?解析:设甲每小时走公式千米,乙每小时走公式千米。

根据“甲比乙先走2小时,他们在乙出发后2.5小时相遇”,可得到方程公式,即公式。

根据“乙比甲先走2小时,他们在甲出发后3小时相遇”,可得到方程公式,即公式。

将第一个方程公式两边同时乘以2,得到公式。

用公式减去公式,即公式,得到公式,解得公式。

把公式代入公式,得到公式,公式,公式,解得公式。

2. 练习:A、B两地相距20千米,甲从A地向B地前进,同时乙从B地向A地前进,2小时后二人在途中相遇,相遇后,甲返回A地,乙仍向A地前进,甲回到A地时,乙离A地还有2千米,求甲、乙二人的速度。

解析:设甲的速度为公式千米/小时,乙的速度为公式千米/小时。

根据“A、B两地相距20千米,2小时后二人在途中相遇”,可得方程公式,化简为公式。

甲返回A地仍用2小时,这2小时乙走了公式千米,可得方程公式,化简为公式。

将公式与公式相加,公式,得到公式,解得公式。

把公式代入公式,得公式,解得公式。

二、工程问题1. 例题:一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:设总工程为单位“1”,甲的工作效率为公式,乙的工作效率为公式。

两人合作4天的工作量为公式先计算括号内的值:公式。

那么公式。

剩下的工作量为公式。

乙单独完成剩下部分需要的时间为公式根据除法运算法则,公式(天)。

2. 练习:某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。

(1)求乙工程队单独做需要多少天完成?(2)将工程分两部分,甲做其中一部分用了x天,乙做另一部分用了y天,其中x、y均为正整数,且公式,求x、y的值。

初一数学经典25道应用题

初一数学经典25道应用题

初一数学经典25道应用题1.为节约能源,某单位按以下规定收取每月电费:用电不超过140度,按每度0.43元收费;如果超过140度,超过部分按每度0.57元收费。

若墨用电户四月费的电费平均每度0.5元,问该用电户四月份应缴电费多少元?设总用电x度:[(x-140)*0.57+140*0.43]/x=0.50.57x-79.8+60.2=0.5x0.07x=19.6x=280再分步算: 140*0.43=60.2(280-140)*0.57=79.879.8+60.2=1402.某大商场家电部送货人员与销售人员人数之比为1:8。

由于家电购买量明显增多,家电部经理从销售人员中抽调了22人去送货。

结果送货人员与销售人数之比为2:5。

求这个商场家电部原来各有多少名送货人员和销售人员?设送货人员有X人,则销售人员为8X人。

(X+22)/(82)=2/55*(X+22)=2*(82)5X+110=16X-4411X=154X=148X=8*14=112这个商场家电部原来有14名送货人员,112名销售人员3.现对某商品降价10%促销,为了使销售金额不变,销售量要比按原价销售时增加百分之几?设:增加x%90%*(1+x%)=1解得: x=1/9所以,销售量要比按原价销售时增加11.11%4.甲.乙两种商品的原单价和为100元,因市场变化,甲商品降10%,乙商品提价5%调价后两商品的单价和比原单价和提高2%,甲.乙两商品原单价各是多少/设甲商品原单价为X元,那么乙为100-X(1-10%)X+(1+5%)(100-X)=100(1+2%)结果X=20元甲100-20=80 乙5.甲车间人数比乙车间人数的4/5少30人,如果从乙车间调10人到甲车间去,那么甲车间的人数就是乙车间的3/4。

求原来每个车间的人数。

设乙车间有X人,根据总人数相等,列出方程:X+4/5X-30=X-10+3/4(X-10)X=250所以甲车间人数为250*4/5-30=170.说明:等式左边是调前的,等式右边是调后的6.甲骑自行车从A地到B地,乙骑自行车从B地到A地,两人都均速前进,以知两人在上午8时同时出发,到上午10时,两人还相距36千米,到中午12时,两人又相距36千米,求A.B两地间的路程?(列方程)设A,B两地路程为Xx-(x/4)=x-72x=288答:A,B两地路程为2887.甲、乙两车长度均为180米,若两列车相对行驶,从车头相遇到车尾离开共12秒;若同向行驶,从甲车头遇到乙车尾,到甲车尾超过乙车头需60秒,车的速度不变,求甲、乙两车的速度。

七年级数学应用题大全

七年级数学应用题大全

七年级数学应用题(60题)1、运送吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为吨的货车运。

还要运几次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米3、某车间计划四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米5、某校六年级有两个班,上学期级数学平均成绩是85分。

已知六(1)班40人,平均成绩为分;六(2)班有42人,平均成绩是多少分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵10、一块三角形地的面积是840平方米,底是140米,高是多少米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

每件大人衣服用米,每件儿童衣服用布多少米12、3年前母亲岁数是女儿的6倍,今年母亲33岁,女儿今年几岁13、一辆时速是50千米的汽车,需要多少时间才能追上2小时前开出的一辆时速为40千米汽车14、小东到水果店买了3千克的苹果和2千克的梨共付15元,1千克苹果比1千克梨贵元,苹果和梨每千克各多少元15、甲、乙两车分别从A、B两地同时出发,相向而行,甲每小时行50千米,乙每小时行40千米,甲比乙早1小时到达中点。

甲几小时到达中点16、甲、乙两人分别从A、B两地同时出发,相向而行,2小时相遇。

如果甲从A地,乙从B 地同时出发,同向而行,那么4小时后甲追上乙。

已知甲速度是15千米/时,求乙的速度。

17.两根同样长的绳子,第一根剪去15米,第二根比第一根剩下的3倍还多3米。

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总

初一数学上册一元一次方程的应用12种经典题型汇总题型1:增长率问题某石油进口国这个月的石油进口量比上个月减少了5%,由于国际油价上涨,这个月进口石油的费用反而比上个月增加了14%.求这个月的石油价格相对上个月的增长率?解:设这个月的石油价格相对上个月的增长率为x.根据题意,得(1+x)x(1-5%)=1+14%解得x=0.2=20%答:这个月的石油价格相对上个月的增长率20%题型2:配套问题某服装厂要做一批某种型号的学生校服,已知某种布料每3m长可做2件上衣或3条裤子,一件上衣和一条裤子为一套,计划用600m长的这种布料做学生校服,应分别用多少米布料做上衣和裤子,才能恰好配套?解:设用x m布料做上衣,则用(600-x)m布料做裤子,则上衣共做2x/3件,裤子共做(600-x)条因为一件上衣配一条裤子,所以2x/3=600-x.解得x=360.所以600-360=240(m)答:应用360m布料做上衣,240m布料做裤子.题型3:销售问题某商品的进价是2000元,标价为3000元,商店将以利润率为5%的售价打折出售此商品,则该商店打几折出售此商品?解:设利润率为5%时售价为x元.根据题意(x-2000)/2000·100%=5%解得x=2100.所以2100/3000=7/10答:该商店打7折出售此商品.题型4:储蓄问题李明以两种方式储蓄了500元钱,一种方式储蓄的年利率是5%,另一种是4%,一年后共得利息23元5角,求两种储蓄各存了多少元钱?解:设年利率是5%的储蓄存了x元,则年利率是4%的储蓄存了(500-x)元.根据题意,得x·5%·1+(500-x)·4%·1=23.5解得x=350所以500-x=500-350=150答:年利率是5%和4%的储蓄分别存了350元和150元.题型5:等积变形问题用直径为4cm的圆钢,铸造3个直径为2cm,高为16cm的圆柱形零件,求需要截取多长的圆钢.解:设需要截取x cm长的圆钢.根据题意,得4·π·(4/2)^2=3·π·(2/2)^2·16解得x=12答:需要截取12cm长的圆钢。

七年级数学应用题大全及答案

七年级数学应用题大全及答案

七年级数学应用题大全及答案1. 张三和李四的年龄比较张三今年25岁,比他年长的李四比他小2岁。

请问李四今年多少岁?解答:李四今年25 - 2 = 23岁。

2. 餐厅打折活动某餐厅举办了一次打折活动,原价10元的饭菜现在只要打8折,那么现在售价是多少?解答:原价10元的饭菜打8折,售价为10 * 0.8 = 8元。

3. 运动员比赛成绩对比小明和小红是两名小学生,他们参加了一次跳远比赛。

小明跳远3.5米,小红跳远比小明还远0.2米。

请问小红跳远了多少米?解答:小红跳远了3.5 + 0.2 = 3.7米。

4. 袋子里的水果一个袋子里有10个苹果和5个橘子,如果小明随机从袋子里取出一个水果,取到苹果的概率是多少?解答:袋子里总共有10 + 5 = 15个水果,其中苹果有10个,所以小明取到苹果的概率是10 / 15 = 2 / 3。

5. 零食分配班级里有30名学生,老师要将20包零食分给这些学生,每人分到几包零食?解答:每人分到的零食包数是20 / 30 = 2 / 3包。

6. 兔子的繁殖问题一对兔子,每个月可以生一对小兔子,并且小兔子出生后的第三个月才能繁殖。

如果开始时只有一对兔子,请问经过6个月后有多少对兔子?解答:第一个月只有一对兔子,第二个月还是一对兔子,第三个月有两对兔子,第四个月有三对兔子,第五个月有五对兔子,第六个月有八对兔子。

所以经过6个月后有8对兔子。

7. 造纸问题某工厂每天生产60吨纸张。

如果每吨纸张需耗费2棵树,那么每天需要砍伐多少棵树?解答:每天需要砍伐60 * 2 = 120棵树。

8. 车速问题小明骑自行车从A地出发,以每小时15公里的速度向B地骑行,骑行1小时后,他发现还剩6公里就到B地了。

请问他离B地还有多远?解答:小明每小时骑行15公里,骑行1小时后已经骑行了15 * 1 = 15公里。

剩下的路程是6公里,所以他离B地还有15 - 6 = 9公里。

9. 比例问题小明家的花园长40米,宽是长度的一半。

数学初一应用题及答案

数学初一应用题及答案

数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。

原价为500元,打8折,即支付原价的80%。

计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。

2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。

答案:长方形的面积可以通过长乘以宽来计算。

计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。

3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。

根据题意,男生和女生的总人数为40人。

我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。

4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。

求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。

已知距离是2公里,速度是每小时5公里。

计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。

5. 问题:一个数的3倍加上4等于20,求这个数。

答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。

初一数学应用题带答案

初一数学应用题带答案

初一数学应用题带答案1. 问题:小明骑自行车去上学,他的速度是每小时15公里。

如果他骑了40分钟,那么他骑了多远?答案:首先,我们需要将40分钟转换为小时,因为速度的单位是公里/小时。

40分钟等于2/3小时。

然后,我们使用公式:距离 = 速度× 时间。

所以,小明骑的距离是 15公里/小时× 2/3小时 = 10公里。

2. 问题:一个长方形的长是宽的两倍,如果宽是5米,那么长方形的周长是多少?答案:首先,我们知道长方形的长是宽的两倍,所以长是5米× 2 = 10米。

长方形的周长公式是:周长= 2 × (长 + 宽)。

将已知的长和宽代入公式,我们得到周长= 2 × (10米 + 5米) = 2 × 15米 = 30米。

3. 问题:一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?答案:根据题目,每名学生需要2本练习册。

所以,总共需要的练习册数量是 40名学生× 2本/学生 = 80本。

4. 问题:一个游泳池的长是25米,宽是10米,如果游泳池的水深是2米,那么游泳池的容积是多少立方米?答案:游泳池的容积可以通过体积公式计算,即体积 = 长× 宽× 高。

将游泳池的尺寸代入公式,我们得到体积 = 25米× 10米× 2米 = 500立方米。

5. 问题:一个苹果的重量是150克,如果一箱苹果有20个,那么一箱苹果的总重量是多少克?答案:一箱苹果的总重量可以通过将单个苹果的重量乘以苹果的数量来计算。

所以,总重量 = 150克/个× 20个 = 3000克。

6. 问题:一个工厂每天生产500个零件,如果一周工作5天,那么一周内工厂生产了多少个零件?答案:一周内工厂生产的零件数量可以通过将每天生产的零件数量乘以一周的工作天数来计算。

所以,一周内生产的零件数量 = 500个/天× 5天 = 2500个。

初中数学应用题归纳总结完整版

初中数学应用题归纳总结完整版

初中数学应用题归纳列出方程(组)解应用题的一般步骤是:1审题:弄清题意和题目中的已知数、未知数;2找等量关系:找出能够表示应用题全部含义的一个(或几个)相等关系3设未知数:据找出的相等关系选择直接或间接设置未知数4列方程(组):根据确立的等量关系列出方程5解方程(或方程组),求出未知数的值;6检验:针对结果进行必要的检验;7作答:包括单位名称在内进行完整的答语。

一,行程问题基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。

基本公式路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置.相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差流水问题:顺水行程=(船速+水速)×顺水时间逆水行程=(船速-水速)×逆水时间顺水速度=船速+水速逆水速度=船速-水速静水速度=(顺水速度+逆水速度)÷2 水速=(顺水速度-逆水速度)÷2 二、利润问题现价=原价*折扣率折扣价=现价/原价*100%每件商品的利润=售价-进货价=利润率*进价毛利润=销售额-费用利润率=(售价--进价)/进价*100%标价=售价=现价进价=售价-利润售价=利润+进价三、计算利息的基本公式储蓄存款利息计算的基本公式为:利息=本金×存期×利率税率=应纳数额/总收入*100% 本息和=本金+利息税后利息=本金*存期*利率*(1- 税率)税后利息=利息*税率利率-利息/存期/本金/*100%利率的换算:年利率、月利率、日利率三者的换算关系是:年利率=月利率×12(月)=日利率×360(天);月利率=年利率÷12(月)=日利率×30(天);日利率=年利率÷360(天)=月利率÷30(天)。

使用利率要注意与存期相一致。

初一数学应用题60题

初一数学应用题60题

初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。

请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。

那么面包车的数量为600辆-200辆-150辆=250辆。

2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。

所以小明最终花的钱为160元×80%=128元。

3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。

男生人数为40名同学-30人=10人。

所以男生占总人数的十分之一。

4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。

请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。

5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。

然后再减去20元。

所以最后的售价为160元×30%-20元=28元。

6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。

所以还剩下的重量为5千克的一半=2.5千克(或2500克)。

7. 甲乙两个人一起行走,甲每走30步,乙走5步。

假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。

所以乙走的步数为180步÷30步×5步=30步。

8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。

初一数学经典应用题大汇总

初一数学经典应用题大汇总

1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。

还要运几次才能完?还要运*次才能完29.5-3*4=2.5*17.5=2.5**=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是*米*(7+11)=90*218*=180*=10它的高是10米3、*车间方案四月份生产零件5480个。

已生产了9天,再生产908个就能完成生产方案,这9天中平均每天生产多少个?这9天中平均每天生产*个9*+908=54089*=4500*=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。

甲每小时行45千米,乙每小时行多少千米?乙每小时行*千米3(45+*)+17=2723(45+*)=25545+*=85*=40乙每小时行40千米5、*校六年级有两个班,上学期级数学平均成绩是85分。

六〔1〕班40人,平均成绩为87.1分;六〔2〕班有42人,平均成绩是多少分?平均成绩是*分40*87.1+42*=85*823484+42*=697042*=3486*=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱*盒10*=250+55010*=800*=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。

男生分成5组去踢足球,平均每组多少人?平均每组*人5*+80=2005*=160*=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。

食堂运来面粉多少千克?食堂运来面粉*千克3*-30=1503*=180*=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。

平均每行梨树有多少棵?平均每行梨树有*棵6*-52=206*=72*=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是*米140*=840*2140*=1680*=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。

初一数学经典试题及答案

初一数学经典试题及答案

初一数学经典试题及答案【试题一】题目:某班有48名学生,其中男生人数是女生人数的2倍。

问男生和女生各有多少人?【答案】设女生人数为x,则男生人数为2x。

根据题意,x + 2x = 48,解得x = 16。

所以女生有16人,男生有32人。

【试题二】题目:一个数的3倍加上5等于这个数的5倍减去10,求这个数。

【答案】设这个数为x,根据题意可得方程:3x + 5 = 5x - 10。

解方程得:2x = 15,所以x = 7.5。

【试题三】题目:一个长方形的长是宽的2倍,若长和宽都增加2米,面积增加了28平方米。

求原长方形的长和宽。

【答案】设原长方形的宽为x米,则长为2x米。

根据题意,(2x + 2) * (x + 2) - 2x * x = 28。

化简得:4x + 4 = 28,解得x = 6。

所以原长方形的长为12米,宽为6米。

【试题四】题目:一个数的平方减去这个数的3倍等于5,求这个数。

【答案】设这个数为x,根据题意可得方程:x^2 - 3x = 5。

将方程化为标准形式:x^2 - 3x - 5 = 0。

利用求根公式解得x1 = 5,x2 = -1。

【试题五】题目:某工厂原计划每天生产100个零件,实际每天多生产了20个。

若生产了30天,问实际生产了多少个零件?【答案】原计划每天生产100个零件,实际每天生产了100 + 20 = 120个零件。

生产30天,总共生产了120 * 30 = 3600个零件。

结束语:以上是初一数学的一些经典试题及答案,希望同学们能够通过这些题目加深对数学概念的理解和应用,提高解题能力。

数学学习是一个不断积累和思考的过程,希望同学们能够持之以恒,不断进步。

七年级经典应用题十六类

七年级经典应用题十六类

七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。

2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。

3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。

4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。

5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。

6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。

7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。

8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。

9.方程问题:通过列方程或方程组,求解未知量的问题。

10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。

11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。

12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。

13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。

14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。

15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。

16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。

以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。

初一数学应用题

初一数学应用题

初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。

如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。

如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。

女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。

如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。

如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。

如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。

一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。

如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。

2024年七年级上册数学应用题

2024年七年级上册数学应用题

2024年七年级上册数学应用题一、行程问题。

1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。

根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。

所以2小时后两人相遇。

2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。

返回时速度为每小时45千米,求汽车往返的平均速度。

- 解析:A地到B地的距离为60×3 = 180千米。

返回时所用时间为180÷45=4小时。

往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。

则平均速度为360÷7=(360)/(7)≈51.43千米/小时。

3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。

求环形跑道的周长。

- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。

所以周长为40×40 = 1600米。

二、工程问题。

4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。

把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。

根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。

所以两人合作需要6天完成。

5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。

实际每天修500米,那么实际完成天数为10000÷500 = 20天。

七年级上册数学题应用题

七年级上册数学题应用题

七年级上册数学题应用题一、行程问题1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?解析:设小时后两人相遇。

根据路程 = 速度×时间,甲走的路程为千米,乙走的路程为千米。

由于两人是相向而行,总路程为20千米,所以可列方程。

合并同类项得,解得。

2. 一艘轮船在两个码头间航行,顺水航行需4小时,逆水航行需5小时,水流速度为2千米/时,求轮船在静水中的速度。

解析:设轮船在静水中的速度为千米/时。

顺水速度 = 静水速度+水流速度,即千米/时;逆水速度=静水速度 - 水流速度,即千米/时。

根据两个码头间的距离不变,可列方程。

去括号得,移项得,合并同类项得,解得。

二、工程问题1. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析:把这项工程的工作量看作单位“1”。

甲的工作效率为,乙的工作效率为。

两人合作4天的工作量为。

剩下的工作量为。

乙单独完成剩下部分需要的时间为天。

2. 某工程队承建一项工程,要用12天完成。

如果只让其中的甲、乙两个小队交换一下工作内容,那么全工程就要推迟3天完成;如果让其中甲、乙两个小队交换一下工作内容的同时,也让丙、丁两个小队交换工作内容,仍然可以按期完成全工程。

如果只让丙、丁两个小队交换工作内容,那么可以使全工程提前几天完成?解析:设甲、乙、丙、丁的工作效率分别为、、、。

正常情况下工作效率为。

甲、乙交换工作内容后,工作效率为。

两式相减可得,即(这里说明甲、乙交换工作内容后效率降低了)。

当甲、乙交换且丙、丁交换时能按期完成,说明丙、丁交换后弥补了甲、乙交换带来的效率降低。

设丙、丁交换工作内容后,全工程需要天完成,则,因为且,所以丙、丁交换工作内容后效率提高了。

如果只让丙、丁交换工作内容,工作效率变为,所以需要10天完成,提前天。

三、销售问题1. 某商品的进价为200元,标价为300元,折价销售时的利润率为5%,求此商品是按几折销售的?解析:设此商品是按折销售的。

初一上学期数学应用题型汇总

初一上学期数学应用题型汇总

5.某商店出售甲、乙两种成衣,其中甲种成衣卖价120元盈 利20% ,乙种成衣卖价也是120元但亏损20% ,问该商店在 本次销售中实际上是盈还是亏,盈或亏多少钱?
6、某种商品的进价为100元,若要使利润率达20% ,则该 商品的销售价格应为多少元?此时每件商品可获利润多少 元?
二、行程问题 路程=速度×时间 时间=路程÷速度 速度=路
千米.甲每小时行45千米,乙每小时行多少千米? 乙每小时行x千米 3(45+x)+17=272 3(45+x)=255 45+x=85 x=40 乙每小时行40千米 5、某校六年级有两个班,上学期级数学平均成绩是85分.已知六(1)班 40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分? 平均成绩是x分 40*87.1+42x=85*82 3484+42x=6970 42x=3486 x=83 平均成绩是83分 6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒? 平均每箱x盒 10x=250+550 10x=800 x=80 平均每箱80盒 7、四年级共有学生200人,课外活动时,80名女生都去跳绳.男生分成5组 去踢足球,平均每组多少人? 平均每组x人 5x+80=200 5x=160 x=32 平均每组32人 8、食堂运来150千克大米,比运来的面粉的3倍少30千克.食堂运来面粉多 少千克? 食堂运来面粉x千克 3x-30=150 3x=180 x=60 食堂运来面粉60千克 9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵.平均每行梨树有多
一、销售题答案: 1.解:设该品牌电脑每台售价x元。 x(1-0.3)=4200 x=6000 答:去年台电脑价6000元。 2.解:设该商品的进价为x元。 1890*0.8-x=10%x 3.解:设最多降x元出售此商品。 (1500-x)-1000=1000*5% 4.解:设至多打x折。 1200*0.1x-800=800*5% 5.解:设甲种成衣的成本为x元,乙种成衣的成本为y元
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初一经典应用题汇总1、绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?解:(1) (2420+1980)×13%=572答: 可以享受政府572元的补贴.(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得2320x+1 900(40-x)≤85000,x≥(40-x).解不等式组,得≤x≤∵x为正整数.∴x= 19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台,彩电购买19台.②设商场获得总利润y元,根据题意,得y=(2 420 - 2 320)x+(1 980 -1 900)(40-x)=20x+3 200∵20>0, ∴y随x的增大而增大∴当x=21时,y最大=20×21+3 200=3 620答:方案三商场获得利润最大,最大利润是3 620元2、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒2个.①根据题意,完成以下表格:竖式纸盒(个) 横式纸盒(个)x正方形纸板(张) 2(100-x)长方形纸板(张) 4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是.(写出一个即可)3、为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)若该县的类学校不超过5所,则类学校至少有多少所?(3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?解:(1)设改造一所类学校和一所类学校所需的改造资金分别为万元和万元.依题意得:解之得答:改造一所类学校和一所类学校所需的改造资金分别为60万元和85万元.(2)设该县有、两类学校分别为所和所.则∵类学校不超过5所∴∴即:类学校至少有15所.(3)设今年改造类学校所,则改造类学校为所,依题意得:解之得∵取整数∴即:共有4种方案.说明:本题第(2)问若考生由方程得到正确结果记2分.4、某公司计划生产甲、乙两种产品共20件,其总产值(万元)满足:1150<<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值(万元)甲45乙75解:设计划生产甲产品件,则生产乙产品件,根据题意,得解得.为整数,∴此时,(件).答:公司应安排生产甲产品11件,乙产品9件.5、在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含的代数式表示).(2)初三(1)班至少有多少名同学?最多有多少名解:(1)这批树苗有()棵(2)根据题意,得解这个不等式组,得40<≤44答:初三(1)班至少有41名同学,最多有44名同学.6、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为元,求与的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?解:(1)根据题意,得解得为整数当时,当时,当时,∴一共有三种方案:加工原味核桃巧克力18块,加工益智巧克力32块;加工原味核桃巧克力19块,加工益智巧克力31块,加工原味核桃巧克力20块,加工益智巧克力30块.6分(2)=随的增大而减小当时,有最小值,的最小值为84.当加工原味核桃巧克力20块、加工益智巧克力30块时,总成本最低.总成本最低是84元.7、“教师节”快要到了,张爷爷欲用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册.(1)若设8元的图书购买册,6元的图书购买册,求与之间的函数关系式.(2)若每册图书至少购买2册,求张爷爷有几种购买方案?并写出取最大值和取最小值时的购买方案.解:(1)依题意:解得:.(2)依题意:解得:.是整数,的取值为2,3,4,5,6.)即张爷爷有5种购买方案.一次函数随的增大而减小,当取最大值时,,.此时的购买方案为:8元的买2册,6元的买14册,5元的买4册.当取最小值时,.此时的购买方案为:8元的买6册,6元的买2册,5元的买12册.8、某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件。

(1) 求A 、B 两种纪念品的进价分别为多少?(2) 若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?解:(1)设A 、B 两种纪念品的进价分别为x 元、y 元。

由题意,得 ⎩⎨⎧=+=+38061038087y x y x解之,得⎩⎨⎧==3020y x答:A 、B 两种纪念品的进价分别为20元、30元(2)设上点准备购进A 种纪念品a 件,则购进B 种纪念品(40-x )件, 由题意,得 解之,得:…∵总获利是a 的一次函数,且w 随a 的增大而减小∴当a=30时,w 最大,最大值w=-2×30+280=220. ∴40-a=10∴应进A 种纪念品30件,B 种纪念品10件,在能是获得利润最大,最大值是220元。

9、2008年北京奥运会的比赛已经圆满闭幕.当时某球迷打算用8000元预订10张下表中比赛项目的门票.(下表为当时北京奥运会官方票务网站公布的几种球类决赛的门票价格)(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500解:(1)设预订男篮门票张,则乒乓球门票张.由题意,得解得..答:可订男篮门票张,乒乓球门票张(2)设男篮门票与足球门票都订张,则乒乓球门票张。

由题意,得解得:由为正整数可得.答:他能预订男篮门票张,足球门票张,乒乓球门票张10、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解:(1)设每支钢笔x元,每本笔记本y元依题意得:解得:答:每支钢笔3元,每本笔记本5元(2)设买a支钢笔,则买笔记本(48-a)本依题意得:解得:所以,一共有5种方案.即购买钢笔、笔记本的数量分别为:20,28;21,27;22,26;23,25;24,24.11、某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)2200 2600售价(元/台)2800 3000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学。

其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.解:(1)设生产A型冰箱x台,则B型冰箱为(100-x)台,由题意得:47500≤(28002200)x+(30002600)×(100x)≤48000解得:37.5≤x≤40∵x是正整数∴x取38,39或40有以下三种生产方案:方案一方案二方案三A型/台38 39 40B型/台62 61 60(2)设投入成本为y元,由题意有:y=2200x+2600 (100-x)=-400x+260000∵-400<0∴y随x的增大而减小∴当x=40时,y有最小值即生产A型冰箱40台,B型冰箱60台,该厂投入成本最少此时,政府需补贴给农民(2800×40+3000×60)×13%=37960(元)(3)实验设备的买法共有10种。

相关文档
最新文档