初一数学经典应用题汇总-考试最常见
初一数学必考应用题
![初一数学必考应用题](https://img.taocdn.com/s3/m/ebf3cd29cd7931b765ce0508763231126edb7792.png)
初一数学必考应用题初一数学必考应用题11.甲、乙两地相距189千米,一列快车从甲地开往乙地每小时行72千米,一列慢车从乙地去甲地每小时行54千米。
若两车同时发车,几小时后两车相距31.5千米?2.一个筑路队要筑1680米长的路。
已经筑了15天,平均每天筑60米。
其余的12天筑完,平均每天筑多少米?3.学校买来6张桌子和12把椅子,共付215.40元,每把椅子7.5元。
每张桌子多少元?4.菜场运来萝卜25筐,黄瓜32筐,共重1870千克。
已知每筐萝卜重30千克,黄瓜每筐重多少千克?5.用两段布做相同的套装,第一段布长75米,第二段长100米,第一段布比第二段布少做10套。
每套服装用布多少米?6.红光农具厂五月份生产农具600件,比四月份多生产25%,四月份生产农具多少件?7.红星纺织厂有女职工174人,比男职工人数的3倍少6人,全厂共有职工多少人?8.蓓蕾小学三年级有学生86人,比二年级学生人数的2倍少4人,二年级有学生多少人?9.某校有男生630人,男、女生人数的比是7∶8,这个学校女生有多少人?10.张华看一本故事书,第一天看了全书的15%少4页,这时已看的页数与剩下页数的比是1∶7。
这本故事书共有多少页?11.一个书架有两层,上层放书的本数是下层的3倍;如果把上层的书取30本放到下层,那么两层书的本数正好相等。
原来两层书架上各有书多少本?12.第一层书架放有89本书,比第二层少放了16本,第三层书架上放有的书是一、二两层和的1.5倍,第三层放有多少本书?艺书的本数与其他两种书的本数的比是1∶5,工具书和文艺书共有180本。
图书箱里共有图书多少本?13.有甲、乙两个同学,甲同学积蓄了27元钱,两人各为灾区人民捐款15元后,甲、乙两个同学剩下的钱的`数量比是3∶4,乙同学原来有积蓄多少元?14.小红和小芳都积攒了一些零用钱。
她们所攒钱的比是5∶3,在“支援灾区”捐款活动中小红捐26元,小芳捐10元,这时她们剩下的钱数相等。
七年级数学配套应用题专项训练
![七年级数学配套应用题专项训练](https://img.taocdn.com/s3/m/2bcc7c7c182e453610661ed9ad51f01dc3815718.png)
七年级数学配套应用题专项训练一、行程问题1. 题目甲、乙两人从相距36千米的两地相向而行。
如果甲比乙先走2小时,那么他们在乙出发后2.5小时相遇;如果乙比甲先走2小时,那么他们在甲出发后3小时相遇。
甲、乙两人每小时各走多少千米?解析设甲每小时走公式千米,乙每小时走公式千米。
当甲比乙先走2小时,甲先走的路程为公式千米,两人共同走的时间是公式小时,共同走的路程为公式千米,可得到方程公式。
当乙比甲先走2小时,乙先走的路程为公式千米,两人共同走的时间是3小时,共同走的路程为公式千米,可得到方程公式。
对第一个方程进行化简:公式,即公式,两边同时乘以2得到公式。
对第二个方程进行化简:公式,即公式。
用公式减去公式:公式公式公式,解得公式。
把公式代入公式,得到公式,公式,公式,解得公式。
2. 题目一艘船在两个码头之间航行,水流速度是3千米/小时,顺水航行需要2小时,逆水航行需要3小时,求两码头之间的距离。
解析设船在静水中的速度为公式千米/小时。
顺水速度公式船在静水中的速度+水流速度,即公式千米/小时;逆水速度公式船在静水中的速度-水流速度,即公式千米/小时。
根据路程 = 速度×时间,且两个码头之间的距离不变。
顺水航行的路程为公式千米,逆水航行的路程为公式千米,则公式。
展开方程得公式。
移项可得公式,解得公式。
两码头之间的距离为公式千米。
二、工程问题1. 题目一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作4天后,剩下的部分由乙单独做,还需要几天完成?解析把这项工程的工作量看作单位“1”。
甲单独做需要10天完成,则甲每天的工作效率为公式;乙单独做需要15天完成,则乙每天的工作效率为公式。
两人合作4天完成的工作量为公式。
先计算括号内的值:公式。
那么两人合作4天完成的工作量为公式。
剩下的工作量为公式。
乙单独完成剩下的工作量需要的时间为公式天。
2. 题目某工程,甲工程队单独做40天完成,若乙工程队单独做30天后,甲、乙两工程队再合作20天完成。
初一数学应用题分类汇总(分类全)
![初一数学应用题分类汇总(分类全)](https://img.taocdn.com/s3/m/e6d1d8b7fd0a79563c1e721b.png)
行程问题① 路程=时间×速度 时间= 速度路程 速度=时间路程② 相遇路程=时间(相同)×(V 甲+ V 乙)(速度之和) 相遇时间(相同)=相遇路程÷(V 甲+ V 乙) 相遇速度(V 甲+ V 乙)=相遇路程÷相遇时间③ 追及路程(速度快比速度慢多走的路程)=追及时间(相同)×(V 甲- V 乙)(速度之差) 追及时间=追及路程÷(V 甲- V 乙)(追击速度) 追击速度(V 甲- V 乙)=追及路程÷追及时间④ 行船问题: V 顺= V 静+ V 水 V 逆= V静- V 水V静=(V 顺+ V 逆)÷2V 水=(V 顺- V 逆)÷21.甲、乙两辆火车相向而行,甲车的速度是乙车速度的5倍还快20km/h ,两地相距298km ,两车同时出发,半小时后相遇。
两车的速度各是多少?2.从甲地到乙地,公共汽车原来需行驶7小时,开通高速公路后,车速平均提高30km/h ,只需4小时即可到达。
求甲、乙两地间的距离。
3.一辆汽车已行驶12000km ,计划每月再行驶800km ,几个月后这辆汽车将行驶20800km ?4.京沪高速公路全长1262km ,一辆汽车从北京出发,匀速行驶5小时后,提速20km/h ;又匀速行驶5小时后,减速10km/h ,又匀速行驶5小时后到达上海,求各段时间的车速。
(精确到1km/h )5.甲、乙两地相距300km ,一列慢车从甲站开往乙站,每小时行40km ,一列快车从乙站开往甲站,每小时行80km ,已知慢车先行1.5h ,快车再开出,问快车开出多长时间与慢车相遇?6.A 、B 两地相距64千米,甲从A 地出发,每小时行14千米,乙从B 地出发,每小时行18千米,(1)若两人同时出发相向而行,则需经过几小时两人相遇?(2)若两人同时出发相向而行,则需几小时两人相距16千米?(3)若甲在前,乙在后,两人同时同向而行,则几小时后乙超过甲10千米?7.一队学生去校外进行训练,他们以5千米/时的速度行进,走了18分的时候,学校要将一个紧急通知传给队长,通讯员从学校出发,骑自行车以14千米/时的速度按原路追上去,通讯员需多少时间可以追上学生队伍?8.五一”长假日,弟弟和妈妈从家里出发一同去外婆家,他们走了1小时后,哥哥发现带给外婆的礼品忘在家里,便立刻带上礼品以每小时6千米的速度去追,如果弟弟和妈妈每小时行2千米,他们从家里到外婆家需要1小时45分钟,问哥哥能在弟弟和妈妈到外婆家之前追上他们吗?9.甲乙两个人在400米的环形跑道上同时同点出发,甲的速度是6米/秒,乙的速度是4米/秒,乙跑几圈后,甲可超过乙一圈?10.小王在400米的环形跑道上跑了一圈,从起点出发,最初跑了45秒,后来加速1.5米/秒,再花了20秒跑到终点,问小王最初跑的速度是多少?11.甲乙两人在400米环形跑道上练习长跑,两人速度分别是200米/分和160米/分. (1)若两人从同一地点同时反向跑,多少分钟后两人第3次相遇? (2)若两人从同一地点同时同向跑,多少分钟后两人第2次相遇?12.某校运动会在400米环形跑道上进行10000米比赛,甲、乙两运动员同时起跑后,乙速超过甲速,在第15分钟时甲加快速度,在第18分钟时甲追上乙并且开始超过乙,在第23分钟时,甲再次追上乙,而在第23分50秒时,甲到达终点,那么乙跑完全程所用的时间是多少分钟?13. 一艘船在两个码头之间航行,水流速度是3千米每小时,顺水航行需要2小时,逆水航行需要3小时,求两码头的之间的距离?14.一架飞机飞行在两个城市之间,风速为每小时24千米,顺风飞行需要2小时50分钟,逆风飞行需要3小时,求两城市间距离。
七年级数学应用题带答案
![七年级数学应用题带答案](https://img.taocdn.com/s3/m/9f7f475fa517866fb84ae45c3b3567ec102ddc2d.png)
七年级数学应用题带答案应用题是我们学习数学的时候会学到的,下面是店铺帮大家整理的七年级数学应用题带答案,希望对大家有所帮助。
七年级数学应用题带答案篇1【题目1】B处的兔子和A处的狗相距56米。
兔子从B处逃跑,狗同时从A处跳出追兔子,狗一跳2米,狗跳3次的时间和兔子跳4次的时间相同。
兔子跳出112米后被狗追上,问兔子一跳多少米?【解答】狗和兔子的速度比是(112+56):112=3:2,狗跳3次跳了2×3=6米,兔子就跳6×2/3=4米,所以兔子每跳一次4÷4=1米【题目2】甲乙两车分别从A、B两地同时开出,相对而行,4小时后甲车行了全程的1/4,乙车行的路程比全程的12.5%少60千米,甲乙两车继续行驶735千米相遇。
求AB两地相距多少千米?【解答】735-60=675千米占全程的1-1/4-12.5%=5/8,所以两地之间的距离是675÷5/8=1080千米。
【题目3】火车每分钟行1050米,从车头与一个路标并列到车尾离开这个路标3分钟后一辆摩托车以每分钟1200米的速度从这个路标出发,摩托车出发25分钟后,与火车的车头正好并列,求这列火车的长。
【解答】摩托车行了1200×25=30000米,车尾行了1050×(25+3)=29400米。
所以火车长30000-29400=600米。
【题目4】在同一路线上有ABCD四个人,每人的速度固定不变。
已知A在12时追上C,14时时与D迎面相遇,16时时与B迎面相遇。
而B在17时时与C迎面相遇,18时追上D,那么D在几时迎面遇到C。
【解答】把12时AB的距离看作单位1,四人速度分别用ABCD 来表示。
A+B=1/4,B+C=1/5。
2(A+D)+6(B-D)=4(A+B),得出B-D=1/2(A+B)=1/2×1/4=1/8,12时C和D相距2×(1/4-1/8)=1/4,C+D=1/5-1/8=3/40,所以需要的时间是1/4÷3/40=10/3小时,即在15时20分的时候C和D相遇。
初一数学应用题试题及答案
![初一数学应用题试题及答案](https://img.taocdn.com/s3/m/901c244e974bcf84b9d528ea81c758f5f61f29f9.png)
初一数学应用题试题及答案试题:1. 某中学为了丰富学生的课余生活,计划购买一批篮球和排球。
已知篮球每个的价格为80元,排球每个的价格为50元。
学校计划花费不超过2000元,并且购买的篮球和排球总数不超过40个。
如果学校购买了x个篮球和y个排球,求x和y的可能值。
2. 某工厂生产一批零件,每个零件的成本为5元,销售价格为10元。
工厂计划在一个月内生产并销售这批零件,预计总收入为20000元。
如果工厂每天生产零件的数量相同,求工厂每天需要生产多少个零件。
3. 一个长方形的长是宽的两倍,如果长增加2米,宽增加1米,面积就增加了12平方米。
求原长方形的长和宽。
答案:1. 解:设学校购买了x个篮球和y个排球,根据题意可列出以下方程组:\[ 80x + 50y \leq 2000 \]\[ x + y \leq 40 \]由第二个方程可得 \( y \leq 40 - x \),代入第一个方程得:\[ 80x + 50(40 - x) \leq 2000 \]简化得:\[ 30x \leq 2000 \]\[ x \leq \frac{2000}{30} \]\[ x \leq 66.67 \]因为x和y都是整数,所以x的可能值为0到66,但是还要满足x+y≤40,所以x的可能值范围是0到39。
对于每一个x的值,y的可能值可以通过 \( y = 40 - x \) 计算得出。
2. 解:设工厂每天需要生产n个零件,根据题意可得:\[ 10n \times 30 = 20000 \]简化得:\[ n = \frac{20000}{10 \times 30} \]\[ n = \frac{2000}{30} \]\[ n = 66.67 \]由于零件的数量必须是整数,工厂每天需要生产67个零件。
3. 解:设原长方形的宽为a米,那么长为2a米。
根据题意可得:\[ (2a + 2)(a + 1) - 2a \cdot a = 12 \]简化得:\[ 2a^2 + 3a + 2 - 2a^2 = 12 \]\[ 3a + 2 = 12 \]\[ 3a = 10 \]\[ a = \frac{10}{3} \]\[ a = 3.33 \]因此,原长方形的宽为3.33米,长为 \( 2 \times 3.33 = 6.67 \) 米。
七年级数学应用题大全及答案
![七年级数学应用题大全及答案](https://img.taocdn.com/s3/m/de945e9927fff705cc1755270722192e453658af.png)
七年级数学应用题大全及答案1. 张三和李四的年龄比较张三今年25岁,比他年长的李四比他小2岁。
请问李四今年多少岁?解答:李四今年25 - 2 = 23岁。
2. 餐厅打折活动某餐厅举办了一次打折活动,原价10元的饭菜现在只要打8折,那么现在售价是多少?解答:原价10元的饭菜打8折,售价为10 * 0.8 = 8元。
3. 运动员比赛成绩对比小明和小红是两名小学生,他们参加了一次跳远比赛。
小明跳远3.5米,小红跳远比小明还远0.2米。
请问小红跳远了多少米?解答:小红跳远了3.5 + 0.2 = 3.7米。
4. 袋子里的水果一个袋子里有10个苹果和5个橘子,如果小明随机从袋子里取出一个水果,取到苹果的概率是多少?解答:袋子里总共有10 + 5 = 15个水果,其中苹果有10个,所以小明取到苹果的概率是10 / 15 = 2 / 3。
5. 零食分配班级里有30名学生,老师要将20包零食分给这些学生,每人分到几包零食?解答:每人分到的零食包数是20 / 30 = 2 / 3包。
6. 兔子的繁殖问题一对兔子,每个月可以生一对小兔子,并且小兔子出生后的第三个月才能繁殖。
如果开始时只有一对兔子,请问经过6个月后有多少对兔子?解答:第一个月只有一对兔子,第二个月还是一对兔子,第三个月有两对兔子,第四个月有三对兔子,第五个月有五对兔子,第六个月有八对兔子。
所以经过6个月后有8对兔子。
7. 造纸问题某工厂每天生产60吨纸张。
如果每吨纸张需耗费2棵树,那么每天需要砍伐多少棵树?解答:每天需要砍伐60 * 2 = 120棵树。
8. 车速问题小明骑自行车从A地出发,以每小时15公里的速度向B地骑行,骑行1小时后,他发现还剩6公里就到B地了。
请问他离B地还有多远?解答:小明每小时骑行15公里,骑行1小时后已经骑行了15 * 1 = 15公里。
剩下的路程是6公里,所以他离B地还有15 - 6 = 9公里。
9. 比例问题小明家的花园长40米,宽是长度的一半。
数学初一应用题及答案
![数学初一应用题及答案](https://img.taocdn.com/s3/m/9bc18f50f02d2af90242a8956bec0975f465a4cf.png)
数学初一应用题及答案1. 问题:小明的爸爸给他买了一辆自行车,原价为500元,现在商店打8折出售,小明的爸爸实际支付了多少钱?答案:首先,我们需要计算打折后的价格。
原价为500元,打8折,即支付原价的80%。
计算方法如下:500元× 80% = 500元× 0.8 = 400元所以,小明的爸爸实际支付了400元。
2. 问题:一个长方形的长是15米,宽是10米,求这个长方形的面积。
答案:长方形的面积可以通过长乘以宽来计算。
计算方法如下:面积 = 长× 宽 = 15米× 10米 = 150平方米所以,这个长方形的面积是150平方米。
3. 问题:一个班级有40名学生,其中男生人数是女生人数的1.5倍,求这个班级男生和女生各有多少人?答案:首先,我们设女生人数为x,那么男生人数就是1.5x。
根据题意,男生和女生的总人数为40人。
我们可以列出方程:x + 1.5x = 402.5x = 40x = 40 ÷ 2.5 = 16所以,女生有16人,男生有1.5x = 1.5 × 16 = 24人。
4. 问题:小华家离学校的距离是2公里,小华每天骑自行车上学,他的速度是每小时5公里。
求小华每天骑自行车上学需要多少时间?答案:首先,我们需要计算小华骑自行车上学的总时间。
已知距离是2公里,速度是每小时5公里。
计算方法如下:时间 = 距离÷ 速度 = 2公里÷ 5公里/小时 = 0.4小时所以,小华每天骑自行车上学需要0.4小时。
5. 问题:一个数的3倍加上4等于20,求这个数。
答案:设这个数为x,根据题意,我们可以得到方程:3x + 4 = 203x = 20 - 43x = 16x = 16 ÷ 3x = 5.33(保留两位小数)所以,这个数是5.33。
七年级有理数应用题50道
![七年级有理数应用题50道](https://img.taocdn.com/s3/m/34dcff41fd4ffe4733687e21af45b307e971f944.png)
七年级有理数应用题50道一、温度相关(5道)1. 某天,哈尔滨的最高气温是 -12℃,最低气温是 -22℃,这天哈尔滨的温差是多少?解析:温差就是最高气温减去最低气温,即公式。
2. 已知某地区早晨的气温为 -5℃,中午上升了8℃,傍晚又下降了6℃,求傍晚的气温。
解析:早晨气温是 -5℃,中午上升8℃后,气温变为公式,傍晚又下降6℃,则傍晚气温为公式。
3. 若甲地温度为20℃,乙地温度比甲地低15℃,丙地温度比乙地低10℃,求丙地温度。
解析:乙地温度为公式,丙地温度比乙地低10℃,所以丙地温度为公式。
4. 某冷库的温度是零下10℃,下降 -3℃后又下降5℃,此时冷库的温度是多少?解析:零下10℃即 -10℃,下降 -3℃,实际是上升3℃,此时温度为公式,又下降5℃后,温度为公式。
5. 一天中,最高气温是6℃,最低气温是 -10℃,若以0℃为基准,最高气温比最低气温高多少度?解析:以0℃为基准,最高气温6℃比0℃高6℃,最低气温 -10℃比0℃低10℃,所以最高气温比最低气温高公式。
二、海拔高度相关(5道)1. 某山峰的海拔高度为1500米,山脚的海拔高度为 -200米,山峰与山脚的相对高度是多少?解析:相对高度是山峰海拔高度减去山脚海拔高度,即公式米。
2. 甲地海拔高度为 -30米,乙地海拔高度比甲地高20米,丙地海拔高度比乙地低15米,求丙地海拔高度。
解析:乙地海拔高度为公式米,丙地海拔高度为公式米。
3. 飞机在海拔8000米的高空飞行,潜艇在海拔 -500米的海底航行,飞机与潜艇的高度差是多少?解析:高度差为飞机的海拔高度减去潜艇的海拔高度,即公式米。
4. 一座山的山顶海拔为2000米,山腰处的海拔为1200米,山底的海拔为 -300米,山腰与山底的相对高度是多少?解析:相对高度为山腰海拔减去山底海拔,即公式米。
5. 某高原的平均海拔为3000米,某盆地的平均海拔为 -200米,高原比盆地高多少米?解析:高原比盆地高的高度为高原平均海拔减去盆地平均海拔,即公式米。
初一数学应用题带答案
![初一数学应用题带答案](https://img.taocdn.com/s3/m/12d63436001ca300a6c30c22590102020640f213.png)
初一数学应用题带答案1. 问题:小明骑自行车去上学,他的速度是每小时15公里。
如果他骑了40分钟,那么他骑了多远?答案:首先,我们需要将40分钟转换为小时,因为速度的单位是公里/小时。
40分钟等于2/3小时。
然后,我们使用公式:距离 = 速度× 时间。
所以,小明骑的距离是 15公里/小时× 2/3小时 = 10公里。
2. 问题:一个长方形的长是宽的两倍,如果宽是5米,那么长方形的周长是多少?答案:首先,我们知道长方形的长是宽的两倍,所以长是5米× 2 = 10米。
长方形的周长公式是:周长= 2 × (长 + 宽)。
将已知的长和宽代入公式,我们得到周长= 2 × (10米 + 5米) = 2 × 15米 = 30米。
3. 问题:一个班级有40名学生,如果每名学生需要2本练习册,那么总共需要多少本练习册?答案:根据题目,每名学生需要2本练习册。
所以,总共需要的练习册数量是 40名学生× 2本/学生 = 80本。
4. 问题:一个游泳池的长是25米,宽是10米,如果游泳池的水深是2米,那么游泳池的容积是多少立方米?答案:游泳池的容积可以通过体积公式计算,即体积 = 长× 宽× 高。
将游泳池的尺寸代入公式,我们得到体积 = 25米× 10米× 2米 = 500立方米。
5. 问题:一个苹果的重量是150克,如果一箱苹果有20个,那么一箱苹果的总重量是多少克?答案:一箱苹果的总重量可以通过将单个苹果的重量乘以苹果的数量来计算。
所以,总重量 = 150克/个× 20个 = 3000克。
6. 问题:一个工厂每天生产500个零件,如果一周工作5天,那么一周内工厂生产了多少个零件?答案:一周内工厂生产的零件数量可以通过将每天生产的零件数量乘以一周的工作天数来计算。
所以,一周内生产的零件数量 = 500个/天× 5天 = 2500个。
初一数学应用题10道及答案简单
![初一数学应用题10道及答案简单](https://img.taocdn.com/s3/m/bb1dc31202d8ce2f0066f5335a8102d276a261f5.png)
初一数学应用题10道及答案简单1.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
解:l+300=30v300-l=10vv=15m/sl=150m答:车长150m,速度15m/s。
2、某班同学去18千米的北山郊游。
只有一辆汽车,需分两组,甲组先乘车,乙组步行。
车行至A处,甲组下车步行,车返回接乙组,最后两组同时到达北山。
已知汽车速度是60km/h,步行速度是4km/h.求A点距北山的距离。
设甲的速度为x,乙的速度为y80x+80y=40080y-80x=400所以x=0 y=5(这道题时间为80秒与实际不符)3、设A点距北山的距离为x,车返回到乙组时,乙距出发点距离为y那么[x-4*(18-x-y)/60]/4=(18-y)/60y/4=(18-x)/60+(18-x-y)/60所以x=2 y=2A点距离北山为2km3. 牡丹杯足球赛11轮(即每个队均需比赛11场),胜一场得3分,平一场得一分,负一场得0分.国兴三高俱乐部队所胜场数是所负场数的4倍,结果共得25分,此次杯赛该球队胜\负\平各几场?设胜x场,负y场,则平11-x-y场x=4y3x+11-x-y=25x=8y=2胜8场,负2场,平1场4.课外活动中一些同学分组参加活动,原来每组8人,后来重新编组,每组12人,这样比原来减少了2组,问这些同学共有多少人?设原来有x组。
所以人数是8x(x-2)12=8xx=6共有48人。
5.在地表上方10千米高空有一条高速风带.假设有两架速度相同的飞机在这个风带飞行,其中一架飞机从A地飞往B地,距离是4000米,需要6.5时;同时另一架飞机从B地飞到A地,只花5.2时.问飞机和风的平均速度各是多少?设飞机的平均速度为xkm/h,风速为ykm/h。
由题意可知,从A地到B地逆风,从B地到A地顺风。
可列方程:x+y=4/5.2x-y=4/6.5解得:x=9/13,y=1/136.一支队伍以5千米/小时的速度行进,20分钟后,一通讯员打的以15千米/小时的速度追赶队伍,那他多少小时后追上队伍?5*(1/3)+5*X=15*Xx=1/66. 一收割机每天收割小麦12公顷,割完麦地的2/3后,效率提高到原来的5/4倍,因此比预定时间提早1天完成,问麦地共有多少公顷?设麦地有x公顷,因为已割完了2/3,所以还剩1/3,得方程:(1/3)x/12=(1/3)x/[12*(5/4)]+1化简得:(5/3)x=(4/3)x+60(1/3)x=60x=180所以麦地有180公顷.7.甲、乙两人按2:5的比例投资开办了一家公司,约定出去各项支出外,所得利润按投资比例分成,若第一年赢利14000元,那么甲、乙两人分别应分得多少元?列【方程组】解答解:设每分为X2X+5X=140007X=14000X=20002X=40005X=10000所以甲分到4000元,乙分到10000元8.民航规定:乘坐飞机普通舱旅客一人最多可免费携带20千克行李,超过部分每千克按飞机票价的15%购买行李票.一名旅客带了35千克行李乘机,机票连同行李票共付1323元,求该旅客的机票票价.请列方程解应用题设票价为x元x+(35-20)*1.5%x=1323 x=1080(应该是每千克按1.5%收费,不是15%) 不可能收费这样高,如果这样高,计算结果不是整数,不符合机票现实中的收费,如果按15%,答案就是他们说的407,如果按1.5%,那答案就是我说的1080,是个整数,也符合现实情况.9.商店在销售二种售价一样的商品时,其中一件盈利25%,另一件亏损25%,卖这两件商品总的是盈利还是亏损?解:设这两件商品售价都为x元因为进价为,x/(1+25%)+x/(1-25%)=4/5x+4/3x=32/15x售价为,x+x=2x32/15x>2x 即进价>售价所以亏损10.一列火车通过一座长300米的铁桥,完全通过所用的时间为30秒,完全在桥上的时间为10秒,邱火车的车长以及它的速度。
初一数学应用题60题
![初一数学应用题60题](https://img.taocdn.com/s3/m/87b42a581fd9ad51f01dc281e53a580216fc5091.png)
初一数学应用题60题1. 某车厂生产了600辆汽车,其中三分之一是轿车,四分之一是SUV,其余是面包车。
请问生产了多少辆面包车?解析:轿车的数量为600辆×三分之一=200辆;SUV的数量为600辆×四分之一=150辆。
那么面包车的数量为600辆-200辆-150辆=250辆。
2. 小明买了某商品,原价为160元,打了八折,最后花了多少钱?解析:八折即打折8折,也就是原价×80%。
所以小明最终花的钱为160元×80%=128元。
3. 某班级共有40名同学,其中女生占总人数的四分之三,男生占总人数的几分之几?解析:女生人数为40名同学×四分之三=30人。
男生人数为40名同学-30人=10人。
所以男生占总人数的十分之一。
4. 甲乙两个工程队共修建了120米的路段,甲队修建了其中的三分之一,乙队修建了其中的五分之二。
请问甲队修建了多少米的路段?解析:甲队修建的路段长度为120米×三分之一=40米。
5. 某电商平台进行促销活动,某商品原价为160元,打了三折又减去20元,最后售价为多少?解析:先打三折即为原价×30%。
然后再减去20元。
所以最后的售价为160元×30%-20元=28元。
6. 小明去超市买了一袋米,重5千克,他拿出一半的重量煮饭吃了,还剩下多少克?解析:小明煮饭吃掉了一半的重量,即5千克的一半。
所以还剩下的重量为5千克的一半=2.5千克(或2500克)。
7. 甲乙两个人一起行走,甲每走30步,乙走5步。
假设甲走了180步,乙走了多少步?解析:由甲每走30步,乙走5步,可得出他们的步数比为30:5。
所以乙走的步数为180步÷30步×5步=30步。
8. 小明参加了一次考试,满分为100分,他得了85分,占了多少百分比?解析:小明得分占满分的百分比即为85分÷100分×100%=85%。
(word完整版)初一数学经典应用题汇总,考试最常见,文档
![(word完整版)初一数学经典应用题汇总,考试最常见,文档](https://img.taocdn.com/s3/m/9250bf9cf242336c1fb95e6d.png)
初一经典应用题汇总1、绿谷商场“家电下乡〞指定型号冰箱、彩电的进价和售价以下表所示:种类冰箱彩电进价〔元 / 台〕 2 320 1 900售价〔元 / 台〕 2 420 1 980(1)按国家政策,农民购置“家电下乡〞产品可享受售价 13% 的政府补贴 .农民田大伯到该商场购置了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求 ,商场决定用不高出 85 000 元采买冰箱、彩电共 40 台 , 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪一种进货方案商场获得利润最大〔利润= 售价进价〕,最大利润是多少?解:(1)(2420+1980) ×13%=572答 : 可以享受政府 572 元的补贴 .(2)①设冰箱采买 x 台,那么彩电采买〔 40-x 〕台,依照题意,得2320x+1 900(40-x)≤85000,x≥(40-x).解不等式组,得≤x≤∵x 为正整数.∴x= 19,20 , 21 .∴该商场共有 3 种进货方案:方案一:冰箱购置19 台,彩电购置21 台方案二:冰箱购置20 台,彩电购置20 台;方案三:冰箱购置21 台,彩电购置19 台.②设商场获得总利润y 元,依照题意,得y=(2 420 - 2 320)x+(1 980 -1 900)(40-x)=20x+3 200∵20>0, ∴y 随 x 的增大而增大∴当 x=21 时, y 最大 =20 ×21+3 200=3 620答:方案三商场获得利润最大,最大利润是3620 元2 、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板 162 张,长方形纸板 340 张.假设要做两种纸盒共 l00 个,设做竖式纸盒2个.①依照题意,完成以下表格:竖式纸盒横式纸盒(个)(个)x正方形纸板2(100-x)(张 )长方形纸板4x(张 )②按两种纸盒的生产个数来分,有哪几种生产方案?(2)假设有正方形纸板 162 张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.290<a<306 .那么 n 的值是.(写出一个即可)3 、为实现地域教育均衡睁开,我市方案对某县、两类单薄学校全部进行改造.依照预算,共需资本1575万元.改造一所类学校和两所类学校共需资本230 万元;改造两所类学校和一所类学校共需资本205 万元.〔 1〕改造一所类学校和一所类学校所需的资安分别是多少万元?〔 2〕假设该县的类学校不高出 5 所,那么类学校最少有多少所?〔3 〕我市方案今年对该县、两类学校共 6 所进行改造,改造资本由国家财政和地方财政共同担当.假设今年国家财政拨付的改造资本不高出400 万元;地方财政投入的改造资金很多于70 万元,其中地方财政投入到、两类学校的改造资安分别为每所10 万元和15万元.请你经过计算求出有几种改造方案?解:〔 1 〕设改造一所类学校和一所类学校所需的改造资安分别为万元和万元.依题意得:解之得答:改造一所类学校和一所类学校所需的改造资安分别为60 万元和 85 万元.(2〕设该县有、两类学校分别为所和所.那么∵类学校不高出5所∴∴即:类学校最少有15 所.〔 3〕设今年改造类学校所,那么改类学校为所,依题意得:造解之得∵ 取整数∴即:共有 4 种方案.说明:此题第〔 2〕问假设考生由方程获得正确结果记 2分.4 、某公司方案生产甲、乙两种产品共 20 件,其总产值〔万元〕满足:1150 << 1200 ,相关数据以下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值〔万元〕甲45乙75解:设方案生产甲产品件,那么生产乙产品件,依照题意,得解得.为整数,∴此时,〔件〕.答:公司应安排生产甲产品11 件,乙产品 9 件.5 、在保护地球保护家园活动中,校团委把一批树苗分给初三〔 1 〕班同学去栽种.若是每人分 2 棵,还剩 42 棵;若是前面每人分 3 棵,那么最后一人获得的树苗少于 5 棵〔但至少分得一棵〕.〔 1〕设初三〔 1〕班有名同学,那么这批树苗有多少棵?〔用含的代数式表示〕.〔 2〕初三〔 1〕班最少有多少名同学?最多有多少名解:〔 1〕这批树苗有〔〕棵(2 〕依照题意,得解这个不等式组,得 40< ≤44答:初三〔 1〕班最少有 41 名同学,最多有44 名同学.6、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉 410 克,核桃粉 520 克.方案利用这两种主要原料,研制加工上述两种口味的巧克力共 50 块.加工一块原味核桃巧克力需可可粉 13 克,需核桃粉 4 克;加工一块益智核桃巧克力需可可粉 5 克,需核桃粉 14 克.加工一块原味核桃巧克力的本钱是 1.2 元,加工一块益智核桃巧克力的本钱是 2 元.设此次研制加工的原味核桃巧克力块.(1〕求该工厂加工这两种口味的巧克力有哪几种方案?(2〕设加工两种巧克力的总本钱为元,求与的函数关系式,并说明哪一种加工方案使总本钱最低?总本钱最低是多少元?解:〔 1〕依照题意,得解得为整数当时,当时,当时,∴一共有三种方案:加工原味核桃巧克力18 块,加工益智巧克力32 块;加工原味核桃巧克力 19 块,加工益智巧克力31 块,加工原味核桃巧克力20 块,加工益智巧克力30 块.6分(2〕=随的增大而减小当时,有最小值,的最小值为84.当加工原味核桃巧克力20 块、加工益智巧克力30 块时,总本钱最低.总本钱最低是84元.120 元钱,为“光明〞幼儿园购置价格分别为8 元、7 、“教师节〞快要到了,张爷爷欲用6 元和 5 元的图书 20 册.〔 1〕假设设 8 元的图书购置册,6元的图书购置册,求与之间的函数关系式.〔 2〕假设每册图书最少购置2 册,求张爷爷有几种购置方案?并写出取最大值和取最小值时的购置方案.解:〔 1〕依题意:解得:.〔 2〕依题意:解得:.是整数,的取值为 2 ,3,4, 5, 6.〕即张爷爷有 5种购置方案.一次函数随的增大而减小,当取最大值时,,.此时的购置方案为:8元的买 2册,6 元的买 14 册,5 元的买 4 册.当取最小值时,.此时的购置方案为:8元的买 6册,6 元的买 2册, 5 元的买 12 册.8 、某旅游商品经销店欲购进 A 、 B 两种纪念品,假设用 380 元购进 A 种纪念品 7 件, B 种纪念品 8 件;也可以用380 元购进 A 种纪念品10 件, B 种纪念品 6 件。
初一数学经典应用题大汇总
![初一数学经典应用题大汇总](https://img.taocdn.com/s3/m/2f1530b065ce050876321376.png)
初一数学经典应用题大全1、运送29.5吨煤,先用一辆载重4吨的汽车运3次,剩下的用一辆载重为2.5吨的货车运。
还要运几次才能完?还要运x次才能完29.5-3*4=2.5x17.5=2.5xx=7还要运7次才能完2、一块梯形田的面积是90平方米,上底是7米,下底是11米,它的高是几米?它的高是x米x(7+11)=90*218x=180x=10它的高是10米3、某车间计划四月份生产零件5480个。
已生产了9天,再生产908个就能完成生产计划,这9天中平均每天生产多少个?这9天中平均每天生产x个9x+908=54089x=4500x=500这9天中平均每天生产500个4、甲乙两车从相距272千米的两地同时相向而行,3小时后两车还相隔17千米。
甲每小时行45千米,乙每小时行多少千米?乙每小时行x千米3(45+x)+17=2723(45+x)=25545+x=85x=40乙每小时行40千米5、某校六年级有两个班,上学期级数学平均成绩是85分。
已知六(1)班40人,平均成绩为87.1分;六(2)班有42人,平均成绩是多少分?平均成绩是x分40*87.1+42x=85*823484+42x=697042x=3486x=83平均成绩是83分6、学校买来10箱粉笔,用去250盒后,还剩下550盒,平均每箱多少盒?平均每箱x盒10x=250+55010x=800x=80平均每箱80盒7、四年级共有学生200人,课外活动时,80名女生都去跳绳。
男生分成5组去踢足球,平均每组多少人?平均每组x人5x+80=2005x=160x=32平均每组32人8、食堂运来150千克大米,比运来的面粉的3倍少30千克。
食堂运来面粉多少千克?食堂运来面粉x千克3x-30=1503x=180x=60食堂运来面粉60千克9、果园里有52棵桃树,有6行梨树,梨树比桃树多20棵。
平均每行梨树有多少棵?平均每行梨树有x棵6x-52=206x=72x=12平均每行梨树有12棵10、一块三角形地的面积是840平方米,底是140米,高是多少米?高是x米140x=840*2140x=1680x=12高是12米11、李师傅买来72米布,正好做20件大人衣服和16件儿童衣服。
七年级经典应用题十六类
![七年级经典应用题十六类](https://img.taocdn.com/s3/m/534651c38662caaedd3383c4bb4cf7ec4bfeb645.png)
七年级经典应用题可以分为以下十六类:
1.和差倍分问题:利用和差、和倍、差倍或分数关系,求解未知量的问题。
2.行程问题:涉及速度、时间和距离的关系,如相遇、追及等问题。
3.工程问题:通过工作效率、工作时间和工作总量之间的关系,求解工程完成的时间
或效率等问题。
4.利润和折扣问题:涉及商品的进价、售价、利润率和折扣等概念,求解相关的问题。
5.浓度问题:通过溶质、溶剂和溶液之间的关系,求解浓度或质量分数等问题。
6.配套问题:涉及按比例分配或组合的问题,如零件配套、服装配套等。
7.分配问题:通过比例关系或平均分配原则,求解分配量或分配比例等问题。
8.增长率问题:涉及增长率、增长量、原量和现量等概念,求解相关的问题。
9.方程问题:通过列方程或方程组,求解未知量的问题。
10.不等式问题:通过列不等式或不等式组,求解未知量的取值范围或最值等问题。
11.函数问题:通过函数的性质、图像和解析式等,求解与函数相关的问题。
12.三角形问题:涉及三角形的边、角、面积和相似性等概念,求解相关的问题。
13.平行四边形和梯形问题:通过平行四边形的性质、判定和面积公式等,求解相关的
问题;通过梯形的性质、判定和面积公式等,求解相关的问题。
14.圆的问题:涉及圆的性质、判定和面积公式等,求解相关的问题。
15.统计与概率问题:通过数据的收集与整理、概率初步知识与事件的概率等,求解相
关的问题。
16.综合应用问题:将多个知识点融合在一起,求解复杂的应用题。
以上十六类应用题是七年级数学中常见的经典题型,需要学生掌握相应的解题方法和技巧。
初一数学应用题
![初一数学应用题](https://img.taocdn.com/s3/m/a695bdfc85254b35eefdc8d376eeaeaad1f31698.png)
初一数学应用题1.比例应用题:(1)小明去超市买牛奶,买了2瓶牛奶,共花费16元。
如果他再买4瓶牛奶,需要花费多少元?(2)某工厂生产1.2万个产品,需要使用10吨原材料。
如果要生产3.6万个产品,需要使用多少吨原材料?(3)某学校有400名学生,其中男生和女生的比例为2:3。
女生有多少人?2.空间几何应用题:(1)有一条长为20cm的直线段,在该直线段上取3个点,要求它们两两之间的距离都相等,这个距离是多少?(2)某地市政府要在一片草坪上建造一个圆形花坛,该草坪长40m,宽20m。
如果要建造一个直径为6m的圆形花坛,需要从草坪上割去多少面积?(3)一个圆形沙坑的直径为10m,深度为3m,每立方米的沙子的重量为1.5吨,这个沙坑里有多少吨沙?3.函数应用题:(1)一枚铜币直径是2.5cm,它的表面积是多少?(2)一张矩形桌子长2.4m,宽1.2m,它的表面积是多少?(3)一辆汽车行驶了200km,每小时的平均速度是80km/h,这辆汽车行驶了多长时间?4.相关问题应用题:(1)甲、乙两人从A地出发,相向而行,甲每小时走10km,乙每小时走15km。
如果A地离他们的相遇点有60km,他们相遇需要多长时间?(2)从A到B有60km,从B到C有40km,从C到D有80km,从D到E有100km。
如果一辆汽车从A出发,依次到达B、C、D、E,沿途行驶速度为每小时40km、60km、30km、50km,到达E需要多长时间?(3)一条小溪宽20m,A、B两点在河岸上相距40m。
一只鸟从A 点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。
如果这(3)一条小溪宽20m,A、B两点在河岸上相距40m。
一只鸟从A点出发,先向河心飞行30m,然后沿河流方向飞行,最后在B点上岸。
如果这只鸟飞行的速度是每秒10m,那么这只鸟从A点出发到B 点上岸所需要的时间是多少?5.概率应用题:(1)一枚骰子被投掷4次,每次所得点数相加。
2024年七年级上册数学应用题
![2024年七年级上册数学应用题](https://img.taocdn.com/s3/m/993b7641640e52ea551810a6f524ccbff121ca8a.png)
2024年七年级上册数学应用题一、行程问题。
1. 甲、乙两人从相距20千米的两地同时出发,相向而行,甲每小时走6千米,乙每小时走4千米,几小时后两人相遇?- 解析:设x小时后两人相遇。
根据路程 = 速度和×时间,可列方程(6 + 4)x=20,即10x = 20,解得x = 2。
所以2小时后两人相遇。
2. 一辆汽车以每小时60千米的速度从A地开往B地,3小时后到达。
返回时速度为每小时45千米,求汽车往返的平均速度。
- 解析:A地到B地的距离为60×3 = 180千米。
返回时所用时间为180÷45=4小时。
往返总路程为180×2 = 360千米,总时间为3 + 4=7小时。
则平均速度为360÷7=(360)/(7)≈51.43千米/小时。
3. 甲、乙两人在环形跑道上跑步,甲每分钟跑200米,乙每分钟跑160米,两人同时同地同向出发,经过40分钟甲第一次追上乙。
求环形跑道的周长。
- 解析:甲每分钟比乙多跑200 - 160 = 40米,40分钟甲比乙多跑了一圈,即环形跑道的周长。
所以周长为40×40 = 1600米。
二、工程问题。
4. 一项工程,甲单独做需要10天完成,乙单独做需要15天完成,两人合作需要多少天完成?- 解析:设两人合作需要x天完成。
把这项工程的工作量看作单位“1”,甲的工作效率是(1)/(10),乙的工作效率是(1)/(15)。
根据工作量=工作效率和×工作时间,可列方程((1)/(10)+(1)/(15))x = 1,通分得到((3)/(30)+(2)/(30))x=1,即(1)/(6)x = 1,解得x = 6。
所以两人合作需要6天完成。
5. 某工程队修一条路,原计划每天修400米,25天完成,实际每天修500米,实际多少天可以完成?- 解析:这条路的总长度为400×25 = 10000米。
实际每天修500米,那么实际完成天数为10000÷500 = 20天。
初一数学上册复习专用:15个常考应用题
![初一数学上册复习专用:15个常考应用题](https://img.taocdn.com/s3/m/7cf711e8d4bbfd0a79563c1ec5da50e2524dd10c.png)
初一数学上册复习专用:15个常考应用题
利息税=利息×税率(20%)
(3)利润=×100%
注意利率有日利率、月利率和年利率:
年利率=月利率×12=日利率×365.
9.溶液配制问题
溶液质量=溶质质量+溶剂质量
溶质质量=溶液中所含溶质的质量分数.
常根据配制前后的溶质质量或溶剂质量找等量关系,分析时可采用列表的方法来帮助理解题意.
10.年龄问题
大小两个年龄差不会变;主要等量关系:抓住年龄增长,一年一岁,人人平等.
11.时钟问题
⑴将时钟的时针、分针、秒针的尖端看作一个点来研究
⑵通常将时钟问题看作以整时整分为起点的同向追击问题来分析。
常用数据:①时针的速度是0.5°/分;②分针的速度是6°/分;
③秒针的速度是6°/秒。
12.配套问题
这类问题的关键是找对配套的两类物体的数量关系
13.比例分配问题
各部分之和=总量
比例分配问题的一般思路为:设其中一份为x ,利用已知的比,写出相应的代数式.
14.比赛积分问题
注意比赛的积分规则,胜、负、平各场得分之和=总分
15.方案选择问题
根据具体问题,选取不同的解决方案。
初一数学应用题
![初一数学应用题](https://img.taocdn.com/s3/m/2c83869909a1284ac850ad02de80d4d8d15a01e3.png)
初一数学10 道应用题一、行程问题1. 甲、乙两人分别从相距60 千米的A、B 两地同时出发,相向而行,甲每小时行8 千米,乙每小时行7 千米,问经过几小时两人相遇?-解析:设经过x 小时两人相遇。
根据路程=速度×时间,可列方程8x + 7x = 60,15x = 60,解得x = 4。
所以经过4 小时两人相遇。
二、工程问题2. 一项工程,甲单独做需要10 天完成,乙单独做需要15 天完成,两人合作需要几天完成?-解析:设两人合作需要x 天完成。
把这项工程的工作量看成单位“1”,甲每天的工作效率是1/10,乙每天的工作效率是1/15,可列方程(1/10 + 1/15)x = 1,通分后得(3/30 + 2/30)x = 1,5/30x = 1,1/6x = 1,解得x = 6。
所以两人合作需要6 天完成。
三、利润问题3. 某商品进价为80 元,按标价的八折出售,仍可获利20%,求该商品的标价是多少元?-解析:设该商品的标价为x 元。
售价为标价的八折即0.8x,利润=售价-进价,根据获利20%可列方程0.8x - 80 = 80×20%,0.8x - 80 = 16,0.8x = 96,解得x = 120。
所以该商品的标价是120 元。
四、年龄问题4. 今年父亲的年龄是儿子年龄的3 倍,5 年前父亲的年龄比儿子年龄的4 倍还大1 岁,求今年父子俩的年龄各是多少岁?-解析:设今年儿子的年龄为x 岁,则父亲的年龄为3x 岁。
5 年前儿子的年龄是x - 5 岁,父亲的年龄是3x - 5 岁,可列方程3x - 5 = 4(x - 5) + 1,3x - 5 = 4x - 20 + 1,3x - 5 = 4x - 19,4x - 3x = 19 - 5,解得x = 14。
则父亲的年龄为3×14 = 42 岁。
所以今年儿子14 岁,父亲42 岁。
五、数字问题5. 一个两位数,十位上的数字比个位上的数字小2,若这个两位数在40 至60 之间,求这个两位数。
七年级上数学应用题70道
![七年级上数学应用题70道](https://img.taocdn.com/s3/m/e63ef704ff4733687e21af45b307e87101f6f83d.png)
七年级上数学应用题(1)小王、小李同住一楼中,两人从家去上班,小王先走20分钟后小李才出发。
已知小李的速度是小王速度的3倍,则小李出发后多少时间能追上小王?(2)甲每分钟行80米,乙每分钟行50米,在下午1:30时,两人在同地背向而行了6分钟,甲又调转方向追乙,则甲在什么时间追上乙?(3)某商店开张为吸引顾客,所有商品一律按八折优惠出售,已知某种旅游鞋每双进价为60元,八折出售后,商家所获利润率为40%。
问这种鞋的标价是多少元?优惠价是多少?(4)小刚的爸爸前年买了某公司的二年期债券4500元,今年到期,扣除利息税后,共得本利和约4700元,问这种债券的年利率是多少(精确到0.01%)?(5)一项工程,甲单独做要10天完成,乙单独做要15天完成,两人合做4天后,剩下的部分由乙单独做,还需要几天完成?(6)某工作,甲单独干需用15小时完成,乙单独干需用12小时完成,若甲先干1小时、乙又单独干4小时,剩下的工作两人合作,问:再用几小时可全部完成任务?(7)一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相遇到两车车尾完全离开经过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?(8)甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?(9)某粮库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个中的。
问每个仓库各有多少粮食?(10)一个三位数,三个数位上的数字之和是17,百位上的数比十位上的数大7,个位上的数是十位上的数的3倍,求这个三位数。
(11)如果某一年的5月份中,有5个星期五,且它们的日期之和为80,那么这个月的4号是星期几?(12)已知一张桌子的价钱是一把椅子的10倍,又知一张桌子比一把椅子多288元,一张桌子和一把椅子各多少元?(13)甲乙两人从两地同时相对而行,经过4小时,在距离中点4千米处相遇。
七年级上册数学经典常考应用题
![七年级上册数学经典常考应用题](https://img.taocdn.com/s3/m/b31249503d1ec5da50e2524de518964bcf84d24f.png)
天,因甲另有任务,剩下的工程有乙队完成,问乙队还需几天才能完成?解:设乙还需x天完成(19+124)×3+124x=1X=13答:乙队还需13天才能完成。
张欣和李明相约到图书城去买书.请你根据他们的对话内容,求出李明上次所买书籍的原价张欣:听说花20元买一张会员卡,买书可享受八折优惠.李明:我上次买了几本书,加上办卡的费用,还省了12元.解:设李明上次所买书籍的原价为x元x-(0.8x+20)=12x=160答;李明上次所买书籍的原价为160元。
一队学生到校外进行军事野营训练,他们以5km/h的速度行走,经过18分钟后,学校发现了他们忘拿了一些物品,一位老师骑自行车将这些物品给队伍送去.这位老师的骑车速度为14km/h,那么他要用多少时间才能追上学生队伍?某校三年购买计算机140台,去年购买数量是前年的2倍,今年购买数量又是去年的2倍,前年这个学校购买了多少台计算机?解:设前年这个学校购买了x台计算机2x+x+2×2x=140X=20答:前年这个学校购买了20台计算机.某商店将商品提价40%,然后再打出“九折酬宾”的广告,结果每个商品的销售仍可获利195元,求商品的进价。
解:设商品的进价为x元X(1+40%)×90%-x=195X=750答:商品的进价为750元。
某车间共有28名工人生产螺栓和螺母,每人每天平均生产螺栓12个或螺母18个。
如果每天生产的螺栓和螺母要按1:2配套,应分别安排多少工人生产螺栓?多少人生产螺母?解:设安排x 人生产螺栓,则有(28-x )人生产螺母18(28-x )=12x ×2x=1228-12=16(人)答:应安排12人生产螺栓,16人生产螺母才配套。
某人从家到汽车站,第一小时走了3千米,他看了一下表,估计按这个速度要迟到40分钟,因此他以每小时4千米的速度走完剩下的路程,结果提前45分钟到达,求此人家到汽车站的距离。
X=17 17+3=20(km) 答:此人家到汽车站的距离为20千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一经典应用题汇总1、绿谷商场“家电下乡”指定型号冰箱、彩电的进价和售价如下表所示:类别冰箱彩电进价(元/台) 2 320 1 900售价(元/台) 2 420 1 980(1) 按国家政策,农民购买“家电下乡”产品可享受售价13%的政府补贴.农民田大伯到该商场购买了冰箱、彩电各一台,可以享受多少元的政府补贴?(2)为满足农民需求,商场决定用不超过85 000元采购冰箱、彩电共40台, 且冰箱的数量不少于彩电数量的.①请你帮助该商场设计相应的进货方案;②哪种进货方案商场获得利润最大(利润=售价进价),最大利润是多少?解:(1) (2420+1980)×13%=572答: 可以享受政府572元的补贴.(2) ①设冰箱采购x台,则彩电采购(40-x)台,根据题意,得2320x+1 900(40-x)≤85000,x≥(40-x).解不等式组,得≤x≤∵x为正整数.∴x= 19,20,21.∴该商场共有3种进货方案:方案一:冰箱购买19台,彩电购买21台方案二:冰箱购买20台,彩电购买20台;方案三:冰箱购买21台,彩电购买19台.②设商场获得总利润y元,根据题意,得y=(2 420 - 2 320)x+(1 980 -1 900)(40-x)=20x+3 200∵20>0, ∴y随x的增大而增大∴当x=21时,y最大=20×21+3 200=3 620答:方案三商场获得利润最大,最大利润是3 620元2、某工厂用如图甲所示的长方形和正方形纸板,做成如图乙所彖的竖式与横式两种长方体形状的无盖纸盒.(1)现有正方形纸板162张,长方形纸板340张.若要做两种纸盒共l00个,设做竖式纸盒2个.①根据题意,完成以下表格:竖式纸盒(个) 横式纸盒(个)x正方形纸板(张) 2(100-x)长方形纸板(张) 4x②按两种纸盒的生产个数来分,有哪几种生产方案?(2)若有正方形纸板162张,长方形纸板口张,做成上述两种纸盒,纸板恰好用完.已知290<a<306.则n的值是.(写出一个即可)3、为实现区域教育均衡发展,我市计划对某县、两类薄弱学校全部进行改造.根据预算,共需资金1575万元.改造一所类学校和两所类学校共需资金230万元;改造两所类学校和一所类学校共需资金205万元.(1)改造一所类学校和一所类学校所需的资金分别是多少万元?(2)若该县的类学校不超过5所,则类学校至少有多少所?(3)我市计划今年对该县、两类学校共6所进行改造,改造资金由国家财政和地方财政共同承担.若今年国家财政拨付的改造资金不超过400万元;地方财政投入的改造资金不少于70万元,其中地方财政投入到、两类学校的改造资金分别为每所10万元和15万元.请你通过计算求出有几种改造方案?解:(1)设改造一所类学校和一所类学校所需的改造资金分别为万元和万元.依题意得:解之得答:改造一所类学校和一所类学校所需的改造资金分别为60万元和85万元.(2)设该县有、两类学校分别为所和所.则∵类学校不超过5所∴∴即:类学校至少有15所.(3)设今年改造类学校所,则改造类学校为所,依题意得:解之得∵取整数∴即:共有4种方案.说明:本题第(2)问若考生由方程得到正确结果记2分.4、某公司计划生产甲、乙两种产品共20件,其总产值(万元)满足:1150<<1200,相关数据如下表.为此,公司应怎样设计这两种产品的生产方案.产品名称每件产品的产值(万元)甲45乙75解:设计划生产甲产品件,则生产乙产品件,根据题意,得解得.为整数,∴此时,(件).答:公司应安排生产甲产品11件,乙产品9件.5、在保护地球爱护家园活动中,校团委把一批树苗分给初三(1)班同学去栽种.如果每人分2棵,还剩42棵;如果前面每人分3棵,那么最后一人得到的树苗少于5棵(但至少分得一棵).(1)设初三(1)班有名同学,则这批树苗有多少棵?(用含的代数式表示).(2)初三(1)班至少有多少名同学?最多有多少名解:(1)这批树苗有()棵(2)根据题意,得解这个不等式组,得40<≤44答:初三(1)班至少有41名同学,最多有44名同学.6、某食品加工厂,准备研制加工两种口味的核桃巧克力,即原味核桃巧克力和益智核桃巧克力.现有主要原料可可粉410克,核桃粉520克.计划利用这两种主要原料,研制加工上述两种口味的巧克力共50块.加工一块原味核桃巧克力需可可粉13克,需核桃粉4克;加工一块益智核桃巧克力需可可粉5克,需核桃粉14克.加工一块原味核桃巧克力的成本是1.2元,加工一块益智核桃巧克力的成本是2元.设这次研制加工的原味核桃巧克力块.(1)求该工厂加工这两种口味的巧克力有哪几种方案?(2)设加工两种巧克力的总成本为元,求与的函数关系式,并说明哪种加工方案使总成本最低?总成本最低是多少元?解:(1)根据题意,得解得为整数当时,当时,当时,∴一共有三种方案:加工原味核桃巧克力18块,加工益智巧克力32块;加工原味核桃巧克力19块,加工益智巧克力31块,加工原味核桃巧克力20块,加工益智巧克力30块.6分(2)=随的增大而减小当时,有最小值,的最小值为84.当加工原味核桃巧克力20块、加工益智巧克力30块时,总成本最低.总成本最低是84元.7、“教师节”快要到了,张爷爷欲用120元钱,为“光明”幼儿园购买价格分别为8元、6元和5元的图书20册.(1)若设8元的图书购买册,6元的图书购买册,求与之间的函数关系式.(2)若每册图书至少购买2册,求张爷爷有几种购买方案?并写出取最大值和取最小值时的购买方案.解:(1)依题意:解得:.(2)依题意:解得:.是整数,的取值为2,3,4,5,6.)即张爷爷有5种购买方案.一次函数随的增大而减小,当取最大值时,,.此时的购买方案为:8元的买2册,6元的买14册,5元的买4册.当取最小值时,.此时的购买方案为:8元的买6册,6元的买2册,5元的买12册.8、某旅游商品经销店欲购进A 、B 两种纪念品,若用380元购进A 种纪念品7件,B 种纪念品8件;也可以用380元购进A 种纪念品10件,B 种纪念品6件。
(1) 求A 、B 两种纪念品的进价分别为多少?(2) 若该商店每销售1件A 种纪念品可获利5元,每销售1件B 种纪念品可获利7元,该商店准备用不超过900元购进A 、B 两种纪念品40件,且这两种纪念品全部售出候总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?解:(1)设A 、B 两种纪念品的进价分别为x 元、y 元。
由题意,得 ⎩⎨⎧=+=+38061038087y x y x 解之,得⎩⎨⎧==3020y x 答:A 、B 两种纪念品的进价分别为20元、30元(2)设上点准备购进A 种纪念品a 件,则购进B 种纪念品(40-x )件,由题意,得 解之,得:… ∵总获利是a 的一次函数,且w 随a 的增大而减小∴当a=30时,w 最大,最大值w=-2×30+280=220.∴40-a=10∴应进A 种纪念品30件,B 种纪念品10件,在能是获得利润最大,最大值是220元。
9、2008年北京奥运会的比赛已经圆满闭幕.当时某球迷打算用8000元预订10张下表中比赛项目的门票.(下表为当时北京奥运会官方票务网站公布的几种球类决赛的门票价格)(1)若全部资金用来预订男篮门票和乒乓球门票,问他可以订男篮门票和乒乓球门票各多少张?(2)若在现有资金8000元允许的范围内和总票数不变的前提下,他想预订下表中三种球类门票,其中男篮门票数与足球门票数相同,且乒乓球门票的费用不超过男篮门票的费用,求他能预订三种球类门票各多少张?比赛项目票价(元/场)男篮1000足球800乒乓球500解:(1)设预订男篮门票张,则乒乓球门票张.由题意,得解得..答:可订男篮门票张,乒乓球门票张(2)设男篮门票与足球门票都订张,则乒乓球门票张。
由题意,得解得:由为正整数可得.答:他能预订男篮门票张,足球门票张,乒乓球门票张10、开学初,小芳和小亮去学校商店购买学习用品,小芳用18元钱买了1支钢笔和3本笔记本;小亮用31元买了同样的钢笔2支和笔记本5本.(1)求每支钢笔和每本笔记本的价格;(2)校运会后,班主任拿出200元学校奖励基金交给班长,购买上述价格的钢笔和笔记本共48件作为奖品,奖给校运会中表现突出的同学,要求笔记本数不少于钢笔数,共有多少种购买方案?请你一一写出.解:(1)设每支钢笔x元,每本笔记本y元依题意得:解得:答:每支钢笔3元,每本笔记本5元(2)设买a支钢笔,则买笔记本(48-a)本依题意得:解得:所以,一共有5种方案.即购买钢笔、笔记本的数量分别为:20,28;21,27;22,26;23,25;24,24.11、某冰箱厂为响应国家“家电下乡”号召,计划生产A、B两种型号的冰箱100台.经预算,两种冰箱全部售出后,可获得利润不低于4.75万元,不高于4.8万元,两种型号的冰箱生产成本和售价如下表:型号A型B型成本(元/台)2200 2600售价(元/台)2800 3000(1)冰箱厂有哪几种生产方案?(2)该冰箱厂按哪种方案生产,才能使投入成本最少?“家电下乡”后农民买家电(冰箱、彩电、洗衣机)可享受13%的政府补贴,那么在这种方案下政府需补贴给农民多少元?(3)若按(2)中的方案生产,冰箱厂计划将获得的全部利润购买三种物品:体育器材、实验设备、办公用品支援某希望小学。
其中体育器材至多买4套,体育器材每套6000元,实验设备每套3000元,办公用品每套1800元,把钱全部用尽且三种物品都购买的情况下,请你直接写出实验设备的买法共有多少种.解:(1)设生产A型冰箱x台,则B型冰箱为(100-x)台,由题意得:47500≤(28002200)x+(30002600)×(100x)≤48000解得:37.5≤x≤40∵x是正整数∴x取38,39或40有以下三种生产方案:方案一方案二方案三A型/台38 39 40B型/台62 61 60(2)设投入成本为y元,由题意有:y=2200x+2600 (100-x)=-400x+260000∵-400<0∴y随x的增大而减小∴当x=40时,y有最小值即生产A型冰箱40台,B型冰箱60台,该厂投入成本最少此时,政府需补贴给农民(2800×40+3000×60)×13%=37960(元)(3)实验设备的买法共有10种。