绳子、弹簧和杆产生的弹力特点(答案)
八年级物理——弹力经典例题与常见题归纳(含答案)
弹力要点弹性:物体受力发生形变不受力自动恢复原来形状的特性;(1) 塑性:物体受力发生形变不受力不能自动恢复原来形状的特性。
(2) 弹力的定义:物体由于发生弹性形变而产生的力。
(如压力,支持力,拉力) (3) )产生条件:发生弹性形变(4) 弹簧测力计:测量力的大小的工具叫做弹簧测力计。
(5) 弹簧测力计(弹簧秤)的工作原理:在弹性限度内,弹簧的伸长与受到的拉力成正比。
即弹簧受到的拉力越大,弹簧的伸长就越长。
(6) ;使用弹簧测力计的注意事项:A 、观察弹簧测力计的量程和分度值,不能超过它的测量范围。
(否则会损坏测力计)B 、使用前指针要校零,如果不能调节归零,应该在读数后减去起始未测量时的示数,才得到被测力的大小。
C 、测量前,沿弹簧的轴线方向轻轻来回拉动挂钩几次,放手后观察指针是否能回到原来指针的位置,以检查指针、弹簧和外壳之间是否有过大的摩擦; D 、被测力的方向要与弹簧的轴线的方向一致,以免挂钩杆与外壳之间产生过大的摩擦;E 、指针稳定后再读数,视线要与刻度线垂直【典型例题】类型一、弹力1、关于弹力,下列说法错误的是( ) A .弹力是指弹簧形变时对其他物体的作用 B .压力、支持力、拉力都属于弹力C .在弹性限度内,同一弹簧受到的拉力越大伸长越长D .弹力是指发生弹性形变的物体,由于要恢复原状,对接触它的物体产生的力【思路点拨】发生弹性形变的物体,在恢复原来形状时才会产生弹力;产生弹力的条件是:有弹性形变,相互接触。
【答案】A 【解析】A 、发生弹性形变的物体都会产生弹力,弹力不是仅弹簧具有的。
此选项错误;B 、压力、支持力、拉力都是按照作用效果命名的,都是弹力。
此选项正确;C 、在弹性限度内,同一弹簧的伸长与受到的拉力成正比。
此选项正确;D 、弹力是指物体发生弹性形变时,对跟它接触的物体产生的力。
此选项正确;故选A 。
几种常见的力产生条件大小方向 作用点补充说明弹力① 接触 ② 有挤压① 如桌面上的物体受到的支持力、电灯受到绳的拉力等从力的性质上来说都属于弹力.② 支持力与压力垂直于接触面, 各自指向被支持和被压物体; 支持力与压力互为相互作用力.③ 在弹性限度内, 弹簧的伸长与受到的拉力成正比④ . 1122()F xF k x F x ∆==∆∆类型二、弹簧测力计2、赵明准备自己制作一只弹簧测力计,他找来弹簧、钩码、直尺、指针等器材。
专题03 弹力(解析版)
专题03 弹力目录➢ 1 轻环平衡问题➢ 2 轻杆2.1 活杆问题2.2 死杆问题➢ 3 弹簧形变量的巧解技巧1考点梳理1.弹力的定义发生弹性形变的物体,由于要恢复原状,要对与它接触的物体产生力的作用,这种力称为弹力.如图所示,用手向右拉弹簧,弹簧因形变(伸长)而产生弹力F,它作用在手上,方向向左.因此,弹力的施力者是发生弹性形变的物体,受力者是使它发生弹性形变的物体。
2.弹力的产生条件:①两物体直接接触;②两物体发生弹性形变。
3.判断弹力有无的方法弹力的方向总是跟形变的方向相反,但是在很多情况下,接触处的形变不明显,这就给弹力是否存在的判定带来了困难.通常用以下两种办法可以解决:(1)假设法:即假设接触处有弹力,看物体的运动状态是否与当前情况一致,若一致,则假设正确,接触处有弹力;若不一致,则假设错误,接触处无弹力。
但是“假设法”有一定的局限性,只对较简单的情况适用.我们深入思考弹力产生的原因可知,弹力是被动出现的,它属于被动力。
弹力是否存在,是由主动力和运动状态决定的。
(2)分析物体所受的主动力和运动状态,是判断弹力有或无的金钥匙。
分析主动力,就是分析沿弹力所在的直线上,除弹力以外其他力的合力,看这些力的合力是否满足题目给定的状态,若满足,则不存在弹力;若不满足,则存在弹力。
4.弹力的方向弹力的方向总是与作用在物体上使物体发生形变的外力的方向相反,或者就是物体恢复原状的趋势的方向。
弹力是接触力,不同的物体接触,弹力方向的判断方法不同:例如,绳子只能产生拉力,物体受绳子拉力的方向总是沿绳子指向其收缩的方向。
桌面产生的支持力的方向总是垂直于支持面指向被支持的物体。
杆的弹力比较复杂,不一定沿杆也不一定垂直于杆,需根据受力情况或物体运动状态而定。
5.几种常见弹力类型方向示意图说明接触方式面与面垂直公共接触面支持力、压力一定垂直于接触面指向被支持或被压的物体,关键在于“面”的判断点与面过点垂直于面点与点垂直于切面轻绳沿绳收缩方向轻绳、轻弹簧的弹力一定沿绳或弹簧方向,但注意弹簧可垃可支轻质弹簧沿弹簧形变的反方向轻杆可沿杆轻杆弹力不一定沿杆方向,要依具体情形确定可不沿杆6.弹力大小和胡克定律(1)弹力的大小与物体的形变程度有关,形变量越大,产生弹力越大;形变量越小,产生的弹力越小,形变消失,弹力消失轻绳、轻弹簧内部各处弹力大小相等。
弹簧弹力的特点
弹簧弹力的特点
弹簧弹力是指弹簧在受到外力作用后,产生的恢复力。
弹簧弹力的特点主要有以下几个方面:
1. 线性弹性:弹簧弹力与弹簧的形变量成正比,即弹簧的形变越大,弹力也越大。
这种关系称为线性弹性,是弹簧弹力的基本特点。
2. 可逆性:弹簧弹力是一种可逆的力,即当外力作用消失时,弹簧会恢复原状,弹力也会消失。
这种特点使得弹簧在很多机械装置中得到广泛应用。
3. 稳定性:弹簧弹力的大小和方向只与弹簧的形变量有关,与外力的大小和方向无关。
因此,弹簧弹力具有稳定性,可以在一定范围内保持相对稳定的弹力。
4. 非常规性:弹簧弹力的大小和方向与外力的大小和方向不一定成正比或反比,而是由弹簧的材料、形状、尺寸等因素决定。
因此,弹簧弹力具有非常规性,需要通过实验或计算来确定。
在中心扩展下,弹簧弹力的应用范围非常广泛。
例如,弹簧可以用于减震、缓冲、支撑、传递力量等方面。
在汽车、火车、飞机等交通工具中,弹簧被广泛应用于悬挂系统、减震器、制动器等部位,起到减少震动、保护车身、提高行驶稳定性等作用。
在机械制造中,弹簧也被广泛应用于机械传动、弹簧夹紧、弹簧卡紧等方面,起到
传递力量、固定零件、保护机械等作用。
在生活中,弹簧也被应用于各种家具、玩具、文具等产品中,起到支撑、缓冲、调节等作用。
弹簧弹力是一种非常重要的力学特性,具有线性弹性、可逆性、稳定性和非常规性等特点。
在各个领域中得到广泛应用,为人们的生产和生活带来了很多便利。
初中物理人教八年级下册-第七章第二节弹力
知识讲解
误差分析 ①未调零,在零刻度线上方,读数偏小;在零刻度线下方,读数 偏大。 ②倒挂使用时,读数偏大。
③未沿弹簧轴线方向拉动时,读数偏小。
ห้องสมุดไป่ตู้
例题精讲
【例1】如图,在弹簧测力计的两侧沿水平方向各加4N拉力并使其保持静止,
此时弹簧测力计的示数为( )
A.0N
B.2N
C.4N
D.8N
N 00 11 22 33 44 55
例题精讲
(2)小华继续做实验,得到的数据如下表所示:
拉力F/N
8
9
10
11
12
长度L/cm
5.30 5.70 6.10 6.60 7.30
伸长量ΔL/cm 3.20 3.60 4.00 4.50 5.20
从上表所示的数据可以看出,拉力达到____1_1____N时,拉力和弹簧伸长量的关
系就改变了。因此,弹簧测力计的测量范围只能达到____1_0______N。
A.几个同学都一样大
B.手臂长的同学
C.体重大的同学
D.力气大的同学
例题精讲
【例6】下图中A、B两球相互间一定有弹力作用的是( B )
AB
A
AB
B
AB
C
AB D
例题精讲
【例7】一辆汽车停在水平地面上,有下列几种说法:①地面受到向下的弹力,
是因为地面发生了形变;②地面受到了向下的弹力,是因为汽车发生了形变;③
【解析】形变分为弹性形变和塑性形变,所以B选项错;用力压在
桌子上,桌子是坚硬物体,也会发生形变,只是不容易观 察罢了,所以C选项错;橡皮泥受到挤压后,发生塑性形 变,所以D选项错。
例题精讲
【例2】下列有关物体所受的弹力及形变的说法中,正确的是( D ) A.有弹力作用在物体上,物体一定发生形变,撤去此力后,形变完全消失 B.有弹力作用在物体上,物体不一定发生形变 C.弹力作用在硬物体上,物体不发生形变;弹力作用在软物体上,物体发生形变 D.一切物体受到弹力都要发生形变,撤去弹力后,形变不一定完全消失
2019-2020年高中物理人教版必修一教学案:第三章 第2节 弹 力(含答案)
2019-2020年高中物理人教版必修一教学案:第三章第2节弹力(含答案)1.弹力是物体由于发生弹性形变而产生的力。
2.弹力产生的条件:(1)两物体相互接触;(2)接触面之间发生弹性形变。
3.压力和支持力的方向总垂直于物体的接触面指向被压或被支持的物体;绳的拉力沿着绳而指向绳收缩的方向。
4.弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
5.弹簧的劲度系数由弹簧本身的因素决定,与所受外力大小无关。
一、弹性形变和弹力1.形变物体在力的作用下形状或体积发生改变,这种变化叫做形变。
2.弹性形变物体在形变后撤去作用力时能够恢复原状,这种形变叫做弹性形变。
3.弹力发生形变的物体,由于要恢复原状,对与它接触的物体会产生力的作用,这种力叫做弹力。
4.弹性限度如果物体的形变过大,超过一定限度,撤去作用力后物体不能完全恢复原状,这个限度叫做弹性限度。
5.弹力产生的两个条件(1)物体间相互接触;(2)在接触面上发生弹性形变。
二、几种弹力1.常见弹力平时所说的压力、支持力和拉力等都是弹力。
2.弹力的方向(1)压力和支持力的方向垂直于物体的接触面,指向受力物体。
(2)绳的拉力沿着绳而指向绳收缩的方向。
三、胡克定律1.内容弹簧发生弹性形变时,弹力的大小F跟弹簧伸长(或缩短)的长度x成正比。
2.公式F=kx,其中k为弹簧的劲度系数,单位:牛顿每米,符号:N/m。
x为弹簧的伸长量或缩短量。
1.自主思考——判一判(1)发生形变的物体才能有弹力,且一定有弹力。
(×)(2)物体的形变越大,弹力也越大。
(×)(3)弹力的方向一定与物体发生形变的方向相反。
(√)(4)弹力的大小与物体大小有关,体积越大的物体产生的弹力也越大。
(×)(5)弹簧的劲度系数k与弹力F有关。
(×)2.合作探究——议一议(1)相互接触的物体间一定有弹力作用吗?提示:不一定,物体如果只是接触而没发生弹性形变,则无弹力作用。
绳子、弹簧和杆产生的弹力特点
案例1 绳子、弹簧和杆产生的弹力特点模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m的物体系于长度分别为L1、L2的两根细绳OA、OB上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA水平拉直,物体处于平衡状态,现在将OA剪断,求剪断瞬间物体的加速度,若将绳OB换为长度为L2的弹簧,结果又如何?分析与解答: 为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
轻绳、轻杆、轻弹簧三种模型之比较
轻绳、轻杆、轻弹簧三种模型之比较一. 三种模型的主要特点1. 轻绳(1)轻绳模型的建立轻绳或称为细线,它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的特点①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的建立轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的特点①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的建立轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的特点①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
二. 三种模型的主要区别1.静止或匀速直线运动时例1.如图1所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
图1解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力为F mg=,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
例2.如图2所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
图2解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如图3所示。
则可知杆对小球的弹力为F mg=,方向与重力的方向相反即竖直向上。
图3注意:在这里杆对小球的作用力方向不是沿着杆的方向。
高考二轮物理复习专题:弹簧问题(附答案)
专题弹簧类问题(附参考答案)高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、能量守恒问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
弹簧弹力的特点:弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量(与原长相比的伸长量或缩短量,不是弹簧的实际长度)。
高中研究的弹簧都是轻弹簧(不计弹簧自身的质量,也不会有动能和加速度)。
不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。
弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。
如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。
在弹簧两端都保持与其它物体接触的条件下,弹簧弹力的大小F=kx与形变量x成正比。
由于形变量的改变需要一定时间,因此这种情况下,弹力的大小不会突然改变,即弹簧弹力大小的改变需要一定的时间。
(这一点与绳不同,高中物理研究中,是不考虑绳的形变的,因此绳两端所受弹力的改变可以是瞬时的。
)一、与物体平衡相关的弹簧例.如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 -m2g/k2=m l g/k2.参考答案:C此题若求m l移动的距离又当如何求解?二、与分离问题相关的弹簧两个相互接触的物体被弹簧弹出,这两个物体在什么位置恰好分开?这属于临界问题。
高中物理弹簧弹力问题(含答案)
弹簧问题归类一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加弹簧上水平方向的力1F 和称外壳上的力2F ,且12F F >,则弹簧秤沿水平方向的加速度为,弹簧秤的读数为.【解析】以整个弹簧秤为研究对象,利用牛顿运动定律得:12F F ma -=,即12F F a m-=,仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的.【答案】12F F a m-=1F二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况.【解析】弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度F a M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:,x x F x T ma M F L M L===【答案】x x T F L=三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变.即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a =与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g .【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为() A.0B.大小为233g ,方向竖直向下 C.大小为233g ,方向垂直于木板向下D.大小为233g ,方向水平向右【解析】末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=.撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的图图图3-7-2图3-7-1图3-7-3N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos 3N F g a g m θ===【答案】C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有:11()F k x -=-,22F kx =.则:2121()()F F kx kx --=--,即F k x ∆=∆ 说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了,物块1的重力势能增加了.【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g,弹力的改变量也为12()mm g +.所以1k 、2k 弹簧的伸长量分别为:1211()m m g k +和1221()m m g k +故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin A B m m g d kθ+=【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物图图3-7-6 图3-7-8体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大?(2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少? 【解析】由题意可知,弹簧开始的压缩量0mg x k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=. (1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和.即:201222F x mg x mv ⋅=⋅+得:022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度.在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则:002(2)k x mg F ma +-=而0kx mg =,简谐运动在上、下振幅处12a a =,解得:032mgF =[也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002xmg k F +=,解得:032mgF =.]【答案】022gx 32mg说明:区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关. 七.与弹簧相关的临界问题通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论。
轻绳、轻杆、轻弹簧的力学特征
轻杆、轻绳、轻弹簧的力学特征模型特点:1. 轻绳(1)轻绳模型的特点“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆(l)轻杆模型的特点轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧(1)轻弹簧模型的特点轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;③弹簧的弹力不会发生突变。
案例探究:【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?分析与解答:为研究方便,我们两种情况对比分析。
(1) 剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)(2)剪断后瞬间,绳OA 产生的拉力F 1消失,对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,所以a=gsin θ。
共点力平衡条件的应用“轻绳”、“轻杆”与“轻弹簧” “活结”与“死结” “活动杆”与“固定杆
模型3:轻弹簧 轻弹簧的质量可忽略不计,可以被压缩或拉伸。 其弹力的主要特征是: ①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力; ②轻弹簧各处受力大小相等,且与弹簧形变的方向相反; ③轻弹簧产生的弹力是连续变化的,不能发生突变,只能 渐变(除弹簧被剪断外); ④在弹性限度内,弹力的大小与弹簧的形变量成正比,即 F=kΔx,其中k为弹簧的劲度系数,Δx为弹簧的伸长量或缩 短量。
由于杆AB不可转动(即是“固 定杆”),所以杆所受弹力的方向 不一定沿杆AB方向.由于B点处是 滑轮,它只是改变绳中力的方向, 并未改变力的大小,滑轮两侧绳 上的拉力大小均是100 N,夹角为 120°,故滑轮受绳子作用力即是 两拉力的合力。
总结: 1.什么是活结,什么是死结? 2.什么是活动杆,什么是固定杆? 2.它们各有什么特点?
②绳上任何一个横截面两边相互作用的拉力叫做“张 力”,因此轻绳只有两端受力时,任何一个横截面上的张力 大小都等于绳的任意一端所受拉力的大小,即同一轻绳张力 处处相等,且与运动状态无关.
③轻绳的弹力大小可发生突变.
模型2:轻杆 轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数 非常大,可认为在受外力作用时形变极微小,看作不可伸 长或压缩. 其弹力的主要特征是: ①轻杆既可产生压力、也可产生拉力,且能产生侧向 力(力的方向不一定沿着杆的方向); ②轻杆各处受力大小相等,且与运动状态无关; ③轻杆的弹力可发生突变.
分析:
TC mg 50N
TB cos mg
TA A
mg 50
TB cos
62.5N 0.8
TA TB sin 62.5 0.6 37.5N
B TB θ θ O
mg
例2.轻绳AB一段固定于A点,另一端自由。在绳中某处O点 打结系另一轻绳OC,下挂一质量为m的物体。现保持O点的 位置不变,在OB段由水平方向缓慢转到竖直方向的过程中, 拉力F和绳OA的张力变化?
高中物理中“轻绳”、“轻杆”和“轻弹簧”问题的分析
高中物理中“轻绳” 、“轻杆”和“轻弹簧”的问题分析中学阶段常涉及到“轻绳” 、“轻杆”和“轻弹簧”模型,这三种模型都是由各种实际情况中的绳、杆和弹簧抽象出来的理想化物理模型。
但它们的成因和特性并不完全相同,由此导致这类模型在实际应用中有很多同学混淆出错,下面对这三种模型的特点及区别应用作一些简单的讨论和分析。
一、三个模型的正确理解1.轻绳模型轻绳也称细线,它的质量可忽略不计;轻绳是软的;同时它的劲度系数非常大,可认为在受外力作用时它的形变极微小,看作不可伸长;其弹力的主要特征是:①不能承受压力,不能产生侧向力,只能产生沿绳收缩方向的拉力。
②内部张力大小处处相等,且与运动状态无关。
③轻绳的弹力大小可发生突变。
2.轻杆模型轻杆的质量可忽略不计,轻杆是硬的,它的劲度系数非常大,可认为在受外力作用时形变极微小,看作不可伸长或压缩;其弹力的主要特征是:①轻杆既可产生压力、也可产生拉力,且能产生侧向力(力的方向不一定沿着杆的方向);②轻杆各处受力大小相等,且与运动状态无关;③轻杆的弹力可发生突变。
3.轻弹簧模型轻弹簧的质量可忽略不计,可以被压缩或拉伸。
其弹力的主要特征是:①轻弹簧能产生沿弹簧轴线伸缩方向的压力或拉力;②轻弹簧各处受力大小相等,且与弹簧形变的方向相反;③轻弹簧产生的弹力是连续变化的,不能发生突变,只能渐变(除弹簧被剪断外);④在弹性限度内,弹力的大小与弹簧的形变量成正比,即F=kx,其中 k 为弹簧的劲度系数, x 为弹簧的伸长量或缩短量。
二、三种模型的主要区别及应用下面结合例题分析它们的区别及应用:1.轻绳对物体只能产生沿绳收缩方向的拉力,而轻杆对物体的弹力不一定沿杆的方向。
【例1】如图1 所示,轻绳一端系着质量为m 的小球,另一端系在固定于小车上一直杆 AB 的上端;试求当小车以 a 的加速度水平向左匀加速度直线运动,轻绳对小球作用力的大小和方向?解析:如图 2 所示,小球受两个力作用:重力mg 和绳对小球弹力T。
2020年高考物理新课标第一轮总复习讲义:实验二 探究弹力和弹簧伸长量的关系 含答案
实验探究课实验二探究弹力和弹簧伸长量的关系[实验目的]1.探究弹力与弹簧伸长量的定量关系.2.学会用列表法、图象法、函数法处理实验数据.[实验原理]1.如图所示,在弹簧下端悬挂钩码时弹簧会伸长,平衡时弹簧产生的弹力与所挂钩码的重力大小相等.2.弹簧的长度可用刻度尺直接测出,伸长量可以由拉长后的长度减去弹簧原来的长度进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系了.[实验器材]铁架台、弹簧、毫米刻度尺、钩码若干、三角板、坐标纸、重垂线、铅笔.[实验步骤]1.将弹簧挂在支架上,测量弹簧的原长l0.2.在弹簧下端挂上钩码,待钩码静止时测出弹簧的长度l.3.求出弹簧的伸长量x和所受的外力F(等于所挂钩码的重力).4.改变所挂钩码的数量,重复上述实验,要尽量多测几组数据,将所测数据填写在下列表格中.记录表:弹簧原长l0=cm.次数12345 6 内容拉力F/N弹簧总长/cm弹簧伸长量/cm1.以弹力F(大小等于所挂钩码的重力)为纵坐标,以弹簧的伸长量x为横坐标,用描点法作图.连接各点,得出弹力F随弹簧伸长量x变化的图线.2.以弹簧的伸长量x为自变量,写出曲线所代表的函数.首先尝试写成一次函数,如果不行则考虑二次函数.3.得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义.[误差分析]1.弹簧拉力大小的不稳定易造成误差,使弹簧的悬挂端固定,另一端通过悬挂钩码来充当对弹簧的拉力,可以提高实验的准确度.2.弹簧长度的测量是本实验的主要误差来源,测量时尽量精确地测量弹簧的长度.3.在F-x图象上描点、作图不准确带来误差.[注意事项]1.所挂钩码不要过重,以免弹簧被过分拉伸,超出它的弹性限度.2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点尽可能稀,这样作出的图线更精确.3.测量弹簧的原长时要让它自然下垂.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以减小误差.4.测量有关长度时,应区别弹簧原长l0、实际总长l及伸长量x三者之间的不同,明确三者之间的关系.5.建立平面直角坐标系时,两轴上单位长度所代表的量值要适当,不可过大,也不可过小.6.描点画线时,所描的点不一定都落在一条曲线上,但应注意一定要使各点均匀分布在曲线的两侧.描出的线不应是折线,而应是平滑的曲线.7.记录数据时要注意弹力与弹簧伸长量的对应关系及单位.[实验改进]本实验的系统误差来自弹簧的重力,所以改进实验的思路应该是尽可能减小弹簧自身重力的影响.1.一个方案是将弹簧穿过一根水平光滑的杆,在水平方向做实验;另一个方案是选择劲度系数较小的轻弹簧,通过减小读数的相对误差来提高实验的精确度.2.利用计算机及传感器技术,将弹簧水平放置,且一端固定在传感器上,传感器与计算机相连,对弹簧施加变化的作用力(拉力或推力)时,计算机上得到弹簧弹力和弹簧形变量的关系图象(如图甲、乙所示),分析图象得出结论.热点一实验原理与操作[典例1]如图甲所示,用铁架台、弹簧和多个已知质量且质量相等的钩码探究在弹性限度内弹簧弹力与弹簧伸长量的关系.(1)为完成实验,还需要的实验器材有:.(2)实验中需要测量的物理量有:.(3)图乙是弹簧弹力F与弹簧伸长量x的F-x图线,由此可求出弹簧的劲度系数为N/m.图线不过原点的原因是由于.(4)为完成该实验,设计的实验步骤如下:A.以弹簧伸长量为横坐标,以弹力为纵坐标,描出各组(x,F)对应的点,并用平滑的曲线连接起来.B.记下弹簧不挂钩码时其下端在刻度尺上的刻度l0.C.将铁架台固定于桌子上,并将弹簧的一端系于横梁上,在弹簧附近竖直固定一把刻度尺.D.依次在弹簧下端挂上1个、2个、3个、4个……钩码,并分别记下钩码静止时弹簧下端所对应的刻度,并记录在表格内,然后取下钩码.E.以弹簧伸长量为自变量,写出弹力与伸长量的关系式.首先尝试写成一次函数,如果不行,则考虑二次函数.F.解释函数表达式中常数的物理意义.G.整理仪器.请将以上步骤按操作的先后顺序排列出来:.解析:(1)根据实验原理可知还需要刻度尺来测量弹簧原长和形变量.(2)根据实验原理,实验中需要测量的物理量有弹簧的原长、弹簧挂不同个数的钩码时所对应的伸长量(或对应的弹簧长度).(3)取图象中(0.5,0)和(3.5,6)两个点,代入F=kx可得k=200 N/m,由于弹簧自身存在重力,使得弹簧不加外力时就有形变量.(4)根据完成实验的合理性可知先后顺序为CBDAEFG.答案:(1)刻度尺(2)弹簧原长、弹簧挂不同个数的钩码时所对应的伸长量(或对应的弹簧长度)(3)200弹簧自身存在重力(4)CBDAEFG1.(1)在“探究弹力和弹簧伸长量的关系”的实验中,以下说法正确的是() A.弹簧被拉伸时,不能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等(2)某同学做“探究弹力和弹簧伸长量的关系”的实验,他先把弹簧平放在桌面上使其自然伸长,用直尺测出弹簧的原长L0,再把弹簧竖直悬挂起来,挂上钩码后测出弹簧伸长后的长度L,把L-L0作为弹簧的伸长量x,这样操作,由于弹簧自身重力的影响,最后画出的图线可能是下列选项中的()解析:(1)实验中应以所研究的一根弹簧为实验对象,在弹性限度内通过增减钩码的数目来改变对弹簧的拉力,以探究弹力和弹簧伸长量的关系,并且拉力与重力平衡,所以选A、B.(2)由于考虑到弹簧自身重力的影响,当不挂钩码时,弹簧的伸长量x>0所以选C.答案:(1)AB(2)C热点二实验数据的处理[典例2](2014·全国卷Ⅱ)某实验小组探究弹簧的劲度系数k与其长度(圈数)的关系.实验装置如图甲所示:一均匀长弹簧竖直悬挂,7个指针P0、P1、P2、P3、P4、P5、P6分别固定在弹簧上距悬点0、10、20、30、40、50、60圈处;通过旁边竖直放置的刻度尺,可以读出指针的位置,P0指向0刻度.设弹簧下端未挂重物时,各指针的位置记为x0;挂有质量为0.100 kg的砝码时,各指针的位置记为x.测量结果及部分计算结果如下表所示(n为弹簧的圈数,取重力加速度为9.80 m/s2).已知实验所用弹簧总圈数为60,整个弹簧的自由长度为11.88 cm.将表中数据补充完整:①;②.(2)以n为横坐标,1k为纵坐标,在图给出的坐标纸上画出1k-n图象.(3)图乙中画出的直线可近似认为通过原点.若从实验中所用的弹簧截取圈数为n的一段弹簧,该弹簧的劲度系数k与其圈数n的关系的表达式为k=N/m;该弹簧的劲度系数k与其自由长度l0(单位为m)的关系的表达式为k=N/m.解析:(1)①k=mgΔx=0.100×9.80(5.26-4.06)×10-2N/m=81.7 N/m;②1k=181.7m/N=0.012 2 m/N.(2)1k-n图象如图所示.(3)由作出的图象可知直线的斜率为5.72×10-4m/N,故直线方程满足1k=5.72×10-4nm/N,即k=1.75×103n N/m(在1.67×103n~1.83×103n之间均正确).由于60圈弹簧的原长为11.88 cm,则n圈弹簧的原长满足nl0=6011.88×10-2,代入数值,得k=3.47l0(在3.31l0~3.62l0之间均正确).答案:(1)①81.7②0.012 2(2)图见解析(3)1.75×103n(在1.67×103n~1.83×103n之间均正确)3.47l0(在3.31l0~3.62l0之间均正确)2.(2018·广东惠州博罗中学模拟)某同学探究弹力与弹簧伸长量的关系.①将弹簧悬挂在铁架台上,将刻度尺固定在弹簧一侧,弹簧轴线和刻度尺都应在方向(填“水平”或“竖直”).②弹簧自然悬挂,待弹簧时,长度记为L0,弹簧下端挂上砝码盘时,长度记为L x;在砝码盘中每次增加10 g砝码,弹簧长度依次记为L1至L6,数据如下表:表中有一个数值记录不规范,代表符号为,由表可知所用刻度尺的最小分度为.③图是该同学根据表中数据作的图,纵轴是砝码的质量,横轴是弹簧长度与的差值(填“L0或L x”).④由图可知弹簧的劲度系数为N/m;通过图和表可知砝码盘的质量为g(结果保留两位有效数字,重力加速度取9.8 m/s2).解析:(1)用铁架台,一定是竖直悬挂,所以弹簧轴线和刻度尺都应在竖直方向;(2)由于弹簧自身有重力,悬挂后,当弹簧稳定后,记下弹簧的长度;(3)用毫米刻度尺测量长度是要估读到分度值的下一位,记录数据的最后一位是估读位,故数据L3记录不规范,由表可知所用刻度尺的最小分度为1mm;(4)若纵轴是砝码的质量,没有考虑砝码盘的重力的影响,所以横轴是弹簧长度与悬挂砝码盘时的长度L x的差.(5)根据胡克定律公式ΔF=kΔx,有k=ΔFΔx=60×10-3×9.8(39.30-27.35)×10-2N/kg≈4.9 N/kg;由表格得到,弹簧原长为:L0=25.35 cm;挂砝码盘时:L x=27.35 cm;根据胡克定律,砝码盘质量为:M=k(L x-L0)g=4.9×(27.35-25.35)×10-29.8kg=0.01 kg=10 g.答案:竖直稳定L3 1 mm L x 4.910热点三实验的改进与创新以本实验为背景,通过改变实验条件、实验仪器设置题目,不脱离教材而又不拘泥于教材,体现开放性、探究性等特点.1.将弹簧水平放置或穿过一根水平光滑的直杆,在水平方向做实验.消除了弹簧自重的影响.2.弹簧的弹力直接由力传感器测得.创新点一实验原理的创新——并联弹簧[典例3] 在探究弹力和弹簧伸长量的关系时,某同学先按图(a)对弹簧甲进行探究,然后把弹簧甲和弹簧乙并联起来按图(b)进行探究.在弹性限度内,将质量为m =50 g 的钩码逐个挂在弹簧下端,分别测得图(a)、图(b)中弹簧的长度L 1、L 2如表所示.钩码个数 1 2 3 4 L 1/cm 30.00 31.04 32.02 33.02 L 2/cm29.3329.6529.9730.30已知重力加速度g = 由表中数据 (填“能”或“不能”)计算出弹簧乙的劲度系数.解析:分析表中L 1的长度变化量与钩码数量的关系.钩码数量和弹簧常量的关系为钩码逐增加一个,弹簧长度伸长约1 cm ,所以弹簧劲度系数k 1=ΔF Δl =mg Δl =0.50 N0.01 m =50 N/m.分析图(b)中可得,每增加一个钩码,弹簧伸长约0.3 cm ,即k 1×0.003+k 2×0.003=mg ,根据弹簧甲的劲度系数可以求出弹簧乙的劲度系数. 答案:50 能创新点二 实验方法的创新[典例4] 在探究弹力和弹簧伸长量的关系并测量弹簧的劲度系数的实验中,所使用的实验装置如图甲所示,所用的每个钩码的重力相当于对弹簧提供了向右恒定的拉力,实验时先测出不挂钩码时弹簧的自然长度,再将5个钩码逐个挂在绳子的下端,每次测量相应的弹簧的总长度.(1)某同学通过以上实验测量后把6组实验数据描点在坐标系图乙中,请作出F -L 图线.(2)由此图线可得出该弹簧的原长L 0= cm ,劲度系数k = N/m.(3)试根据该同学以上的实验情况,帮助他设计一个记录实验数据的表格(不必填写其实验测得的具体数据).(4)该同学实验时,把弹簧水平放置与弹簧悬挂放置相比较优点在于:;缺点在于:.解析:(1)F-L图线如图所示(2)图象的横截距表示弹力为零时的弹簧的长度,此时弹簧的长度为原长,所以弹簧的原长L0=5 cm,图象的斜率表示弹簧的劲度系数,故有k=ΔFΔx=1.60.08N/m=20 N/m.(3)根据该同学以上的实验情况,记录实验数据的表格为:钩码个数01234 5弹力F/N弹簧长度L/(×10-2 m)(4)滑轮间存在的摩擦会造成实验误差.答案:(1)如图所示(2)520(3)见解析(4)可以避免弹簧自身重力对实验的影响弹簧与桌面及绳子与滑轮间存在的摩擦会造成实验误差创新点三实验器材的创新[典例5]用如图甲所示的实验装置研究弹簧的弹力与形变量之间的关系.轻弹簧上端固定一个力传感器,然后固定在铁架台上,当用手向下拉伸弹簧时,弹簧的弹力可从传感器读出.用刻度尺可以测量弹簧原长和伸长后的长度,从而确定伸长量.测量数据如表格所示:伸长量x/(×10-2 m) 2.00 4.00 6.008.0010.00弹力F/N 1.50 2.93 4.55 5.987.50(1)以x为横坐标,F为纵坐标,在图乙的坐标纸上描绘出能够正确反映弹力与伸长量关系的图线.(2)由图线求得该弹簧的劲度系数为(保留两位有效数字).解析:横轴表示伸长量x,纵轴表示弹力F,按照表格数据,描点画图,得到一条直线,图象斜率代表弹簧劲度系数.答案:(1)如图所示(2)75 N/m1.某同学在“探究弹力和弹簧伸长量的关系”时,在弹簧下端挂1个钩码,静止时弹簧长度为l1,在弹簧下端挂2个相同钩码,静止时弹簧长度是l2.已知每个钩码质量是m,当地重力加速度g,挂2个钩码时,弹簧弹力F=;该弹簧的劲度系数是.答案:(1)2mgmg l2-l12.(1)某同学在探究“弹力和弹簧伸长量的关系”时,实验步骤如下:安装好实验装置,让刻度尺零刻度与弹簧上端平齐,在弹簧下端挂1个钩码,静止时弹簧长度为l1,如图甲所示,图乙是此时固定在弹簧挂钩上的指针在刻度尺(最小分度是1毫米)上位置的放大图,示数l1=_ cm.在弹簧下端分别挂2个、3个、4个、5个相同钩码,静止时弹簧长度分别是l2、l3、l4、l5.要得到弹簧伸长量x,还需要测量的是_.作出F-x曲线,得到弹力与弹簧伸长量的关系.(2)该同学更换弹簧,进行重复实验,得到如图丙所示的弹簧弹力F与伸长量x的关系图线,由此可求出该弹簧的劲度系数为N/m.图线不过原点的原因是.解析:(1)由mm刻度尺的读数方法可知图乙中的读数为:25.85 cm;本实验中需要是弹簧的形变量,故还应测量弹簧的原长.(2)有图象可知,斜率表示弹簧的劲度系数,k=70.035=200 N/m;图线不过原点的原因是由于弹簧有自重,使弹簧变长.答案:(1)25.85弹簧原长(2)200弹簧有自重3.(2018·四川高三理科综合)某同学为研究橡皮筋伸长量与所受拉力的关系,做了如下实验:①如图1所示,将白纸固定在制图板上,橡皮筋一端固定在O点,另一端A系一小段轻绳(带绳结);将制图板竖直固定在铁架台上.②将质量为m=100 g的钩码挂在绳结上,静止时描下橡皮筋下端点的位置A0;用水平力拉A点,使A点在新的位置静止,描下此时橡皮筋端点的位置A1;逐步增大水平力,重复5次……③取下制图板,量出A1、A2……各点到O的距离l1、l2……量出各次橡皮筋与OA0之间的夹角α1、α2……④在坐标纸上做出1cos α-l的图象如图所示.完成下列填空:(1)已知重力加速度为g,当橡皮筋与OA0间的夹角为α时,橡皮筋所受的拉力大小为(用g、m、α表示).(2)取g=10 m/s2,由图2可得橡皮筋的劲度系数k=N/m,橡皮筋的原长l0=m .(结果保留2位有效数字)解析:(1)对结点受力分析,根据共点力平衡可知mg=T cos α,解得T=mgcos α;(2)在竖直方向,合力为零,则kl cos α=mg,解得1cos α=klmg,故斜率k′=kmg,由图象可知斜率k′=100,故k=mgk′=100 N/m;由图象可知,直线与横坐标的交点即为弹簧的原长,为0.21 m.答案:(1)mgcos α(2)1.0×1020.214.某同学在“探究弹力和弹簧伸长量的关系”时,将轻质弹簧竖直悬挂,弹簧下端挂一个小盘,在小盘中增添砝码,改变弹簧的弹力,通过旁边竖直放置的刻度尺可以读出弹簧末端指针的位置x,实验得到了弹簧指针位置x与小盘中砝码质量m的图象如图乙所示,取g=10 m/s2.回答下列问题.(1)某次测量如图甲所示,指针指示的刻度值为cm.(刻度尺单位为:cm)(2)从图乙可求得该弹簧的劲度系数为N/m.(结果保留两位有效数字)(3)另一同学在做该实验时有下列做法,其中错误的是.A.刻度尺零刻度未与弹簧上端对齐B.实验中未考虑小盘的重力C.读取指针指示的刻度值时,选择弹簧指针上下运动最快的位置读取D.在利用x-m图线计算弹簧的劲度系数时舍弃图中曲线部分数据.解析:(1)刻度尺的最小分度为0.1 cm,故读数为18.00 cm.(2)结合mg=kx,得x=gk m,由图可知k=0.08×100.42-0.15N/m≈3.0 N/m.(3)读数时开始时的零刻度应与弹簧上端对齐才能准确测量,故A错误;本实验中可采用图象进行处理,故小盘的重力可以不考虑,故B正确;在读指针的位置时,应让弹簧指针静止之后再读取,故C错误;当拉力超过弹性限度时,将变成曲线,不再符合胡克定律,故应舍去,故D正确.答案:(1)18.00(2)3.0(3)AC5. (2019·湘潭凤凰中学月考)某物理实验小组在探究弹簧的劲度系数k与其原长l0的关系实验中,按图所示安装好实验装置,让刻度尺零刻度与轻质弹簧上端平齐,在弹簧上安装可移动的轻质指针P,实验时的主要步骤是:①将指针P移到刻度尺l01=5cm处,在弹簧挂钩上挂上200 g的钩码,静止时读出指针所指刻度并记录下来;②取下钩码,将指针P移到刻度尺l02=10cm处,在弹簧挂钩上挂上250 g的钩码,静止时读出指针所指刻度并记录下来;③取下钩码,将指针P移到刻度尺l03=15cm处,在弹簧挂钩上挂上50 g的钩码,静止时读出指针所指刻度并记录下来;④重复③步骤,在每次重复③时,都将指针P下移5cm,同时保持挂钩上挂的钩码质量不变.将实验所得数据记录、列表如下:次数弹簧原长l0/ cm弹簧长度l/ cm钩码质量m/g1 5.007.23200210.0015.56250315.0016.6750(1)重力加速度g取10 m/s2.在实验步骤③中,弹簧的原长为15cm时,其劲度系数k=N/m.(2)同一根弹簧的原长越长,弹簧的劲度系数(填选项前的字母).A.不变B.越大C.越小解析:(1)挂50 g钩码时,弹簧的弹力为0.5 N,根据胡克定律得:k=FΔx=0.5(16.67-15.00)×10-2N/m≈30 N/m.(2)对第3、4、5次数据分析,弹簧弹力相等,同一根弹簧,原长越长,形变量越大,根据胡克定律F=kx知,弹簧的劲度系数越小,故选C.答案:(1)30(2)C。
经典高中物理模型--绳子、弹簧和杆产生的弹力特点
1.如图所示,有一质量为m的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2.如图所示,小车上有一弯折轻杆,杆下端固定一质量为m的小球。当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3.如图所示,一质量为m的小球用轻绳悬挂在小车顶部,小车向左以加速度a做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。在图所示中,。所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。则可知小球的加速度方向沿水平向右,即与竖直成角,其大小为。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg与F2的合力与F1大小相等,方向相反,可以解得F1=mgtgθ。
(2)剪断后瞬间,绳OA产生的拉力F1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化, 这时F2将发生瞬时变化,mg与F2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F合=mgsinθ,所以a=gsinθ。
绳子、弹簧和杆产生的弹力特点
模型特点:
1.轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。这时F2不发生变化,故mg与F2的合力仍然保持不变,与F1大小相等,方向相反,如图(4)所示,所以F合= F1=mgstgθ,
3.2_弹力
生支持力F2 如图。
压力:方向垂直于支持面指向被压的物体
支持力:方向垂直于支持面指向被支持的物体.
压力和支持力的方向总是垂直于接触面指向受力物体
几种常见的压力或支持力的方向 a.曲面与平面接触
F1
F1
F2
G G
曲面与平面间弹力方向:过接触点垂直接触面指向受力物体
b.曲面与曲面接触
N
半球形的碗 G
压力;
D、汽车越重,对地面的压力越大,所以压力就是重力。
2、下列关于弹力的说法不正确是?
A、只要两个物体接触就一定能产生弹力
B、两个接触并发生弹性形变的物体一定产生弹力
C、压力、支持力、拉力都是弹力
D、压力、支持力的方向总是垂直于支持面
A
3、关于胡克定律F=kx中的x,下列说法正确的是?
A、x是弹簧伸长后或压缩后的长度
F1
F2
G
曲面与曲面间弹力方向:与过接触点的公切面垂直指向受力物体
c.点与平面接触
F1 F3
G
F2 B
F1
A
G
点与平面间的弹力方向:过接触点垂直平面指向受力物体
d. 点与曲面接触
FB
FA
B
A
半球形的碗
G
点与曲面间的弹力方向: 与过接触点的切面垂直指向受力物体
② 绳的拉力
绳子对物体的拉力的方向总是沿着绳而指向绳子收缩的方向。
图1中弹簧的弹力为2G,当两物 体间的线突然断后的瞬间,由于弹 簧的形变量还没来得及变化,所以 弹簧的弹力大小等于线断前的弹力 为2G.
G G
图1
G
G
图2
图2中上段绳的拉力也为2G,当两物体间的线突然断 后的瞬间,上段绳的拉力会由断前的2G突然变为G。
整合 轻绳、轻杆、轻弹簧
轻绳、轻杆、轻弹簧三种模型的特点及其应用在中学物理中,经常会遇到绳、杆、弹簧三种典型的模型,在这里将它们的特点归类,供同学们学习时参考。
一.三种模型的特点1.轻绳(或细绳)中学物理中的绳和线,是理想化的模型,具有以下几个特征:①轻:即绳(或线)的质量或重力可以视为等于零。
由此特点可知,同一根绳(或线)的两端及其中间各点的张力大小相等;②软:即绳(或线)只能受拉力,不能承受压力。
由此特点可知:绳(或线)与其他物体的相互间作用力的方向总是沿着绳子;③不可伸长:即无论绳(或线)所受拉力多大,绳子(或线)的长度不变。
由此特点可知:绳(或线)中的张力可以突变。
2.轻杆具有以下几个特征:①轻:即轻杆的质量和重力可以视为等于零。
由此特点可知,同一轻杆的两端及其中间各点的张力大小相等;②硬:轻杆既能承受拉力也能承受压力,但其力的方向不一定沿着杆的方向;③轻杆不能伸长或压缩。
3.轻弹簧中学物理中的轻弹簧,也是理想化的模型。
具有以下几个特征:①轻:即弹簧的质量和重力可以视为等于零。
由此特点可知,向一轻弹簧的两端及其中间各点的张力大小相等;②弹簧既能承受拉力也能承受压力,其方向与弹簧的形变的方向相反;③由于弹簧受力时,要发生形变需要一段时间,所以弹簧的弹力不能发生突变,但当弹簧被剪断时,它所受的弹力立即消失。
二.三种模型的应用例1.如图1所示,质量相等的两个物体之间用一轻弹簧相连,再用一细线悬挂在天花板上静止,当剪断细线的瞬间两物体的加速度各为多大?解析:分析物体在某一时刻的瞬时加速度,关键是分析瞬时前后的受力情况及运动状态,再由牛顿第二定律求出瞬时加速度。
此类问题应注意两种模型的建立。
先分析剪断细线前两个物体的受力如图2,据平衡条件求出绳或弹簧上的弹力。
可知,F mg 2=,F F mg mg 122=+='。
剪断细线后再分析两个物体的受力示意图,如图2,绳中的弹力F 1立即消失,而弹簧的弹力不变,找出合外力据牛顿第二定律求出瞬时加速度,则图2剪断后m 1的加速度大小为2g ,方向向下,而m 2的加速度为零。
物理经典模型(三:绳,弹簧与杆的不变与突变)最新修正版
物理经典模型(三:绳,弹簧与杆的不变与突变)绳子、弹簧和杆产生的弹力特点..............1. 轻绳:(1) 轻绳模型的特点:“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2) 轻绳模型的规律:①轻绳各处受力相等,且拉力方向沿着绳子;②轻绳不能伸长;③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;④轻绳的弹力会发生突变。
2. 轻杆:(1) 轻杆模型的特点:轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律:①轻杆各处受力相等,其力的方向不一定沿着杆的方向;②轻杆不能伸长或压缩;③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧:(1)轻弹簧模型的特点:轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律:①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;②弹力的大小为F=kx ,其中k 为弹簧的劲度系数,x 为弹簧的伸长量或缩短量; ③弹簧的弹力不会发生突变。
esp1:如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsinθ,所以a=gsin θ。
概析物理刚性绳、弹簧和轻杆的弹力
概析物理刚性绳、弹簧和轻杆的弹力1 刚性绳产生的弹力特点中学物理中刚性绳是以绝对柔软的物体来处理的,它只传递拉力,不能产生支撑力,并且拉力的方向是指向绳的收缩方向。
由于刚性绳是被理想化的模型,处理问题时是不考虑它的弹性形变量,所以刚性绳产生的弹力是可以突变的,即如果使绳子产生弹力的外力消失或变化时,绳的拉力也立即消失或变化。
同样的道理当两根绳子同时作用在物体时,其中一根绳子突然断开,另一根绳子对物体的拉力大小也会发生突变。
所以在分析受绳子作用的物体的受力大小或物体的加速度时,应明确绳子产生的弹力可以突变的特点,先确定外力变化或绳子断开时物体将发生什么运动,再根据运动规律求解相关的物理量。
例如:如图1所示,一个质量为m的小球用两根绳子悬吊处于静止状态,其中AB绳水平,CD绳与竖直方向成θ角,求:(1)剪断AB绳之前CD绳拉力的大小及方向;(2)剪断AB绳的瞬间CD绳拉力的大小和物体的加速度。
分析:(1)剪断AB绳之前小球受力如图2所示,由平衡条件,可得mg与FCD的合力F与FAB的大小相等,方向相反。
所以剪断AB绳之前,CD绳拉力的大小为:,方向沿绳收缩的方向。
(2)剪断AB绳的瞬间,AB绳对小球的拉力FAB突变为零,同时CD绳对小球的拉力FCD大小也立即发生变化,mg与FCD的合力将不再沿水平方向,如图3所示。
小球将作以CD绳为半径的圆弧运动,mg与FCD的合力F合与绳垂直,所以剪断AB绳的瞬间,CD绳拉力的大小为:,加速度大小为:。
2 弹簧产生的弹力特点弹簧可以产生拉伸和压缩的弹力,方向沿弹簧的轴线,指向弹簧要恢复原长的方向,大小。
弹簧产生的弹力是由于显著形变而产生的,形变消失需要一定时间,即当使弹簧产生形变的外力消除或变化的瞬间,弹簧的长度还没有发生变化,这时弹簧产生的弹力可以看成是不变,这是弹簧产生的弹力与刚性绳的一个不同的方面。
例如:上题中,若把CD绳换成如图4所示的弹簧。
求:(1)剪断AB绳之前弹簧弹力的大小;(2)剪断AB绳的瞬间弹簧弹力的大小和小球的加速度。
专题09 弹力(解析版)-2020暑假初高中衔接
专题09 弹力高中知识预习:弹力:发生弹性形变的物体,由于要恢复原状,对跟它接触的物体会产生力的作用,这种力叫做弹力。
(弹性形变是产生弹力的必要条件,如果物体只是接触而没有互相挤压,就不会产生弹力。
反过来,如果已知两个物体之间没有弹力,则可以判断此两个物体之间没有发生挤压。
)[注意]:①弹力的产生条件:弹力产生在直接接触并发生形变的物体之间.(两物体必须接触,与重力不同) ②任何物体都能发生形变,不能发生形变的物体是不存在的.③通常所说的压力、支持力、拉力都是弹力.弹力的方向与受力物体的形变方向相反.(压力的方向垂直于支持面而指向被压的物体;支持力的方向垂直于支持面而指向被支持的物体;绳的拉力的方向总是沿着绳而指向绳收缩的方向)弹力的方向:和物体形变方向相反或者说和使物体发生形变的外力方向相反。
形变有两个方面:1.形状的改变:指受力时物体的外观发生变化,如橡皮条拉紧时,由短变长;跳水 馆中的跳板本来是水平伸直的,当运动员在上面起跳时,平直的板变得弯曲;撑杆跳高 时,运动员手中的撑杆由直变曲.2.体积的改变:指受力时物体的体积发生变化,如排球被压时;海绵被挤压时. 任何物体都能发生形变,不过有的可以直接看见;有的形变极其微小,要用仪器才 能显示出来.注意:平面产生或受到的弹力(压力或支持力)垂直于平面,曲面产生或受到的弹力垂直于曲面该处知识精讲的切面,一个点产生或受到的弹力垂直于跟它接触平面(或曲面的切线),绳子产生的弹力沿绳的收缩方向。
④两物之间一定有弹力,若无弹力,绝无摩擦力.若两物体间有摩擦力,就一定有弹力,但有弹力,不一定有摩擦力.⑤杆对球的弹力方向:杆对物体的弹力不一定沿杆的方向。
如果轻直杆只有两个端点受力而处于平衡状态,则轻杆两端对物体的弹力的方向一定沿杆的方向。
GF方向不沿杆的方向图A方向与杆同方向图B FG方向与杆反方向图CGF弹力的大小:对有明显形变的弹簧,弹力的大小可以由胡克定律计算。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绳子、弹簧和杆产生的弹力特点
模型特点:
1. 轻绳
(1)轻绳模型的特点
“绳”在物理学上是个绝对柔软的物体,它只产生拉力(张力),绳的拉力沿着绳的方向并指向绳的收缩方向。
它不能产生支持作用。
它的质量可忽略不计,轻绳是软的,不能产生侧向力,只能产生沿着绳子方向的力。
它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长。
(2)轻绳模型的规律
①轻绳各处受力相等,且拉力方向沿着绳子;
②轻绳不能伸长;
③用轻绳连接的系统通过轻绳的碰撞、撞击时,系统的机械能有损失;
④轻绳的弹力会发生突变。
2. 轻杆
(l)轻杆模型的特点
轻杆的质量可忽略不计,轻杆是硬的,能产生侧向力,它的劲度系数非常大,以至于认为在受力时形变极微小,看作不可伸长或压缩。
(2)轻杆模型的规律
①轻杆各处受力相等,其力的方向不一定沿着杆的方向;
②轻杆不能伸长或压缩;
③轻杆受到的弹力的方式有拉力或压力。
3. 轻弹簧
(1)轻弹簧模型的特点
轻弹簧可以被压缩或拉伸,其弹力的大小与弹簧的伸长量或缩短量有关。
(2)轻弹簧的规律
①轻弹簧各处受力相等,其方向与弹簧形变的方向相反;
②弹力的大小为F=kx,其中k为弹簧的劲度系数,x为弹簧的伸长量或缩短量;
③弹簧的弹力不会发生突变。
案例探究:
【案例1】如图所示,一质量为m 的物体系于长度分别为L 1、L 2的两根细绳OA 、OB 上,0B 一端悬挂在天花板上,与竖直方向夹角为θ,OA 水平拉直,物体处于平衡状态,现在将OA 剪断,求剪断瞬间物体的加速度,若将绳OB 换为长度为L 2的弹簧,结果又如何?
分析与解答:
为研究方便,我们两种情况对比分析。
(1)剪断前,两种情况小球受力一样,分别如图(1)、(2)所示,利用平衡条件,则mg 与F 2的合力与F 1大小相等,方向相反,可以解得F 1=mgtg θ。
(2)剪断后瞬间,绳OA 产生的拉力F 1消失,
对绳来说,其伸长量很微小,可以忽略不计,不需要形变恢复时间,因此,绳子中的张力也立即发生变化,这时F 2将发生瞬时变化,mg 与F 2的合力将不再沿水平方向,而是由于小球下一时刻做单摆运动沿圆弧的切线方向,与绳垂直,如图(3)所示,F 合=mgsin θ,
所以a=gsin θ。
对弹簧来说,其伸长量大,形变恢复需要较长时间,认为弹簧的长度还没有发生变化。
这时F 2不发生变化,故mg 与F 2的合力仍然保持不变,与F 1大小相等,
方向相反,如图(4)所示,所以F 合= F 1=mgstg θ, a=gstg θ。
【案例2】一根细绳,长度为L ,一端系一个质量为m 的小球,在竖直面内做圆周运动,求小球通过最高点时的速度至少是多少?若将绳换为一根匀质细杆,结果又如何?
分析与解答:
(1)对绳来说,是个柔软的物体,
B
A
θ B
A
甲
乙
O
B
A
θ mg
F 2 F 1 F 1
F 2
F 合
(3)
F 2
F 1
(4)
F v
它只产生拉力,不能产生支持作用, 小球在最高点时,
弹力只可能向下,如图(1)所示。
这种情况下有mg L
mv mg F ≥=+2
即gL v ≥,否则不能通过最高点。
(2)对细杆来说,是坚硬的物体,它的弹力既可能向上又可能向下,速度大小v 可以取任意值。
可以进一步讨论:
①当杆对小球的作用力为向下的拉力时,如图(2)所示:
F+mg=L
mv 2
>mg 所以 v >gL
②当杆对小球的作用力为向上的支持力时,如图(3)所示:
mg -F=L
mv 2
<mg 所以 v <gL
当N=mg 时,v 可以等于零。
③当弹力恰好为零时,如图(4)所示:
mg=L
mv 2
所以 v=gL
【案例3】如图所示,小车上固定一弯折硬杆ABC,C
端固定质量为m 的小球,已知α=30°恒定。
当小车水平向左以v=0.5m/s 的速度匀速运动时,BC 杆对小球的作用力的大小是 ,方向是
;当小车水平向左以a=g 的加速度作匀加速运动时,BC 杆对小球的作用力的大小是 ,方向是。
分析与解答:
对细杆来说,是坚硬的物体,可以产生与杆垂直的横向的力,也可以产生与杆任何夹角的弹力
(2)
(4)
(3)
(1)当小车水平向左以v=0.5m/s 的速度匀速运动时,由平衡条件,细杆对小球的力必定与重力等大反向,如图(1)所示。
(2)当小车水平向左以a=g 的加速度作匀加速运动时,小球所受合力F 合=mg 沿水平方向,则小球受细杆的弹力N=2mg ,与水平方向夹角为450,如图(2)所示。
精品练习:
1.如图所示,有一质量为m 的小球用轻绳悬挂于小车顶部,小车静止或匀速直线运动时,求绳子对小球作用力的大小和方向。
2. 如图所示,小车上有一弯折轻杆,杆下端固定一质量为m 的小球。
当小车处于静止或匀速直线运动状态时,求杆对球的作用力的大小和方向。
3. 如图所示,一质量为m 的小球用轻绳悬挂在小车顶部,小车向左以加速度a 做匀加速直线运动时,求轻绳对小球的作用力的大小和方向。
4. 若将上题中的轻绳换成固定的轻杆,当小车向左以加速度a 做匀加速直线运动时,求杆对球的作用力的大小及方向。
5. 如图6所示,小球在细线OB 和水平细线AB 的作用下而处于静止状态,则在剪断水平细线的瞬间,小球的加速度多大?方向如何?
6. 如图9所示,一轻质弹簧和一根细线共同提住一个质量为m 的小球,平衡时细线是水平
mg
C A
B
N
(1)
N
mg
C
A
F 合=mg (2)
的,弹簧与竖直方向的夹角是,若突然剪断细线,则在剪断的瞬间,弹簧拉力的大小是__________,小球加速度与竖直方向夹角等于_________。
精品练习答案:
1.解析:小车静止或匀速直线运动时,小球也处于静止或匀速直线运动状态。
由平衡条件可知,绳子对小球的弹力
为,方向是沿着绳子向上。
若将轻绳换成轻弹簧,其结果是一样的。
2.解析:以小球为研究对象,可知小球受到杆对它一个的弹力和重力作用,由平衡条件可知小球受力如
图所示。
则可知杆对小球的弹力为,方向与重力的方向相反即竖直向上。
注意:在这里杆对小球的作用力方向不是沿着杆的方向。
3.解析:以小球为研究对象进行受力分析,如图4所示。
根据小球做匀加速直线运动可得在竖直方向
在水平方向
解之得
轻绳对小球的作用力大小随着加速度的增大而增大,它的方向沿着绳子,与竖直方向的夹角为。
4.解析:如图,小球受到重力和杆对它的弹力F作用而随小车一起向左做匀加速直线运动。
在竖直方向
在水平方向
解之得。
由解答可知,轻杆对小球的作用力大小随着加速度的增大而增大,它的方向不一定沿着杆的方向,而是随着加速度大小的变化而变化。
只有时,F才沿着杆的方向。
5.解析:在没有剪断之前对小球进行受力如图所示,由平衡条件可得,。
当剪断水平细线AB时,此时小球由于细线OB的限制,在沿OB方向上,小球不可能运动,故小球只能沿着与OB垂直的方向运动,也就是说小球所受到的重力,此时的作用效果是拉绳和沿垂直绳的方向做加速运动,其受力如图
所示。
由图可知,则可得方向垂直于OB向下。
绳OB的拉力,则可知当剪断水平细线AB时,细线OB的拉力发生了突变。
6.解析:在细线未剪断前,由平衡条件可得
水平细线的拉力
弹簧的拉力
当剪断细线的瞬时,,而弹簧形变不能马上改变,故弹簧弹力F保持原值。
在图所示中,。
所以在剪断细线的瞬时F和mg的合力仍等于原的大小,方向水平向右。
则可知小球的加速度方向沿水平向右,即与竖直成
角,其大小为。