弹力及弹簧问题解题方法
弹簧类型题
弹簧类型题弹簧类问题是高中物理中非常典型的变力作用模型,因这类问题过程复杂,涉及的力学规律多,综合性强,能全面考查学生的科学思维、实验探究等物理核心素养,是历年高考命题的热点,但大部分学生解决弹簧类问题感觉比较困难,思路不清,甚至无从下手.本文通过典型实例分析牛顿运动定律中的弹簧类问题、功能关系中的弹簧类问题、动量守恒定律中的弹簧类问题和实验中的弹簧问题,旨在帮助学生深刻剖析力学中弹簧类问题,抓住解题要点,提高备考效率.一、弹簧类问题命题突破要点1.弹簧的弹力是一种由弹性形变决定大小和方向的力,在弹性限度内,根据胡克定律可知F弹=kx,当题目中出现弹簧时,要注意弹力的大小和方向时刻要当时的形变相对应.一般从分析弹簧的形变入手,先确定弹簧原长位置、形变后位置、形变量x 与物体空间位置变化的关系后,分析形变所对应的弹力大小和方向,进而分析物体运动状态及变化情况.2.弹簧的形变发生改变需要时间,瞬间可认为无形变量,弹力不变,弹性势能不变.F弹=kx 中x 表示形变量,弹力和弹性势能为某特定值时,可能对应两种状态(即弹簧伸长或压缩),高考经常在此设置题目.3.求弹簧的弹力做功时,因F弹随位移呈线性变化,可先求平均力,再用功的定义式W=Fx 进行计算,也可根据功能关系ΔEp=-W (弹性势能的变化等于物体克服弹力做的功)计算,弹性势能表达式Ep=1/2kx2在目前高考中不做定量计算要求.4.弹簧连接物体组成的系统,因弹力为系统的内力,当系统外力合力为零时,系统动量守恒,应用动量守恒定律可快速求解物体的速度,此类问题涉及物体多,过程复杂,常以选择题或计算题的形式出现,注意抓住临界状态及条件,结合能量守恒定律便可求解.二、四种弹簧类问题题型一牛顿运动定律中的弹簧类问题1.弹簧弹力的特点:(1)瞬时性.弹力随形变的变化而变化,弹簧可伸长可压缩,两端同时受力,大小相等方向相反;(2)连续性.弹簧形变量不能突变,约束弹簧的弹力不能突变;(3)对称性.弹力以原长为对称,大小相等的弹力对应压缩和伸长两种状态.2.此类问题经常伴随临界问题.当题目中出现“刚好”“恰好”“正好”,表明过程中存在临界点;若出现取值范围、多大距离等词时表示过程存在“起止点”,这往往对应临界状态;若题目要求“最终加速度”“稳定速度”,即求收尾加速度和收尾速度.【例1】如图1所示,光滑水平地面上,可视为质点的两滑块A、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x0,以两滑块此时的位置为坐标原点建立如图1所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F、两滑块间弹力FN 与滑块B 的位移x 变化的关系图像可能正确的是( )【小结】准确理解胡克定律F=kx中各物理量的含义,注意x 为形变量(伸长量或缩短量),分析弹力一般从形变量入手,抓住弹力与物体位置或位置变化的对应关系,对物体进行受力分析,结合牛顿运动定律确定物体的运动状态或各物理量随位置坐标的变化情况.题型二功能关系中的弹簧类问题1.题型特点:由轻弹簧连接的物体系统,一般有重力和弹簧弹力做功,这时系统的动能、重力势能和弹簧的弹性势能相互转化机械能守恒,注意应用功能关系或机械能守恒定律进行求解.2.注意三点:(1)对同一弹簧,弹性势能的大小由弹簧的形变量决定,与弹簧伸长或压缩无关;(2)物体运动的位移与弹簧的形变量或形变量的变化量有关;(3)如果系统中两个物体除弹簧弹力外所受合外力为零,则弹簧形变量最大时两物体速度相同.【例2】如图3所示,B、C 两小球由绕过光滑定滑轮的细线相连,C 球放在固定的光滑斜面上,A、B 两小球在竖直方向上通过劲度系数为k 的轻质弹簧相连,A 球放在水平地面上.现用手控制住C 球,并使细线刚刚拉直但无拉力作用,并保证滑轮左侧细线竖直、右侧细线与斜面平行.已知C 球的质量为4m,A、B 两小球的质量均为m ,重力加速度为g,细线与滑轮之间的摩擦不计.开始时整个系统处于静止状态;释放C 球后,B 球的速度最大时,A 球恰好离开地面,求:来计算),或者采用功能关系法(利用动能定理、机械能守恒定律或能量守恒定律求解).特别注意弹簧有相同形变量时,弹性势能相同.题型三动量守恒定律中的弹簧类问题1.题型特点:两个(或两个以上)物体与弹簧组成的系统在相互作用过程中,若系统不受外力或所受合外力为零,则系统的动量守恒;同时,除弹簧弹力以外的力不做功,则系统的机械能守恒.2.注意三点:(1)此类问题一般涉及多个过程,注意把相互作用过程划分为多个依次进行的子过程,分析确定哪些子过程动量或机械能守恒,哪些子过程动量或机械能不守恒;(2)对某个子过程列动量守恒和能量守恒方程时,初末状态的动量和能量表达式要对应;(3)一个常见的临界状态,即当弹簧最长或最短时,弹性势能最大,弹簧两端物体速度相等.题型四实验中的弹簧类问题实验中的弹簧类问题涉及的实验是“探究弹簧弹力与弹簧伸长量的关系”,即胡克定律F=kx.力F的测量要注意弹簧竖直且处于平衡状态,x的测量要注意不能超过弹性限度,用测量总长减去弹簧原长,不能直接测量形变量,否则会增大误差.胡克定律还可表述ΔF=kΔx,根据此式即使不测量弹簧的原长也可求劲度系数,通常以弹力F 为纵坐标,弹簧长度或伸长量x 为横坐标,通过图像斜率求劲度系数.【小结】本题用固定在弹簧上的7个指针探究弹簧的劲度系数与弹簧长度的关系,将探究劲度系数k与弹簧圈数n的关系转化为探究1/k与n之间的关系,体现了化曲为直的思想,通过实验探究让学生感受弹力与形量之间的对应关系.三、结语弹簧因它的弹力、弹性势能与形变量之间有独特的关系,牛顿运动定律、机械能守恒定律及动量守恒定律等力学核心内容均可以以弹簧为载体进行考查,试题综合性强,难度大,能全面考查学生逻辑思维能力和运用数学知识解决物理问题的能力,备受命题专家的青睐,所以,备考当中应引起足够的重视.。
五点法解决含弹簧问题改
五点法解决含弹簧问题孟津二高任红星五点法解决含弹簧问题孟津二高任红星对含有弹簧类的物理问题在高中物理中占有相当重要的地位,且涉及到的物理问题多是一些综合性较强、物理过程又比较复杂的问题,从受力的角度看,弹簧的弹力是变力;从能量的角度看,涉及到动能、弹性势能、重力势能的相互转化;针对不同的问题处理的方法也不同。
下面针对弹簧一端固定处于竖直状态时,其运动过程分析可结合弹簧振子的运动规律去认识,利用过程的周期性、对称性及特殊点的特点进行处理。
例:如图小球从距弹簧上端高度h处自由落下,试分析从开始到弹簧压缩最大过程中速度、加速度的变化及能量转化情况。
一、首先利用小球受力的特点把从开始到弹簧压缩最大过程中的五个特殊位置找出来:①刚开始下落位置------初位置点,②与弹簧刚接触点③平衡位置点④与刚接触弹簧点的对称点⑤最低点如图二、明确特殊位置的特点:①初位置点,小球只受重力,加速度a=g10②刚与弹簧接触的位置点,弹簧弹力F弹=0,小球只受重力,加速度a=g,方向向下,速度20v≠③平衡位置点,F合=0 ,a=0, F弹=mg 即kx=mg ,mgxk=,v3达最大Vmax④与位置②对称的点,依据对称性F合=mg ,方向向上, 加速度 a=g 方向向上 , 由牛顿第二定律得:F合=F弹-mg=ma 所以 F弹=2mg, 弹簧的形变量2=mgxk,速度4v≠⑤最低的点,形变量达最大,弹力达最大,50v=三、从力和运动角度分析这五个点分成的四个过程过程一:如图小球从①位置到②位置,只受重力做自由落体运动 h=212gt ,2v ,这样从下落高度可以知道刚接触弹簧时的速度,这个速度会影响弹簧压缩的最大量。
过程二:从②位置到③位置, 弹簧的形变量x 变大,由F 弹 =kx ,可知F 弹逐渐变大,由mg-F 弹=ma 知 ,加速度a 减小,a 的方向向下 ,物体做方向竖直向下加速度逐渐减小的加速运动。
当达平衡位置时kx=mg ,加速度a=0 ,速度v 3达最大Vmax 。
拉簧及扭簧弹力、刚度计算公式
拉簧及扭簧弹力、刚度计算公式一、拉伸弹簧弹力、刚度计算公式1.拉伸弹簧一已知自由长度,弹簧刚度和初始拉力时,某一工作长度负荷的计算公式如下:P=(Rx F)+I.T.P是指负荷(磅);R是指弹簧刚度(磅/英寸);F是指距自由长度的变形量;I.T.是指初拉力。
例如:已知自由长度为1英寸、刚度为6.9磅/英寸和初始张力为0.7磅,工作长度为1.500英寸时,负荷计算公式如下:P= [6.9 x(1.500-1.000)l+0.7= (6.9x 0.500) +0.7= 3.45+0.7= 4.15磅2.如何计算刚度一弹簧刚度是指使弹簧产生单位变形的负荷,可通过以下步骤测试:1>弹簧变形约为最大变形的20%(自由长度藏去压并高度)时,测量弹簧负荷(P1)及弹簧长度(L1)。
2>弹簧变形不超过最大变形的80%时,测量弹簧负荷(P2)及弹簧长度(L2)。
务必确保弹簧长度为L2时任意两个簧圈(闭合收口除外)都没有发生接触。
3>计算刚度(R)(磅/英寸)R=(P2-P1)/(L1-L2)二、扭簧设计需要的技术参数扭簧的工作状态和拉伸弹簧及压缩弹簧有所不同,其更为复杂和多变,其中包括了很多参数指标,下面一一讲解:d (弹簧线径) :该参数描述了弹簧线的直径,也就是我们说的弹簧钢丝的粗细,默认单位mm。
Dd (心轴最大直径):该参数描述的是工业应用中弹簧轴的最大直径,公差±2%。
D1 (内径): 弹簧的内径等于外径减去两倍的线径。
扭簧在工作过程中,内径可以减小到心轴直径,内径公差±2%。
D (中径): 弹簧的中径等于外径减去一个线径。
D2 (外径) : 等于内径加上两倍的线径。
扭簧在工作过程中,外径将变小,公差(±2%±0.1)mm。
L0 (自然长度):注意:在工作过程中自然长度会减小,公差±2%。
Tum (扭转圈数):弹簧绕制的圈数,圈数的不同直接影响扭簧的性能。
弹簧弹力受力分析高中
弹簧弹力受力分析(高中)弹簧与其相连接的物体构成的系统的运动状态具有隐蔽性,弹簧与其相连接的物体相互作用时涉及到的物理概念和物理规律也较多,分析时该如何切入呢?一、从几个长度关系切入弹簧和物体相互作用时,致使弹簧伸长或缩短时产生的弹力的大小遵循胡克定律,即或。
在弹簧的长度发生变化的时候,要搞清弹簧的原长、弹簧的长度、弹簧的形变、弹簧的形变变化、物体的位移等几个量的关系。
例1、劲度系数为k的弹簧悬挂在天花板的O点,下端挂一质量为m的物体,用托盘托着,使弹簧位于原长位置,然后使其以加速度a由静止开始匀加速下降,求物体匀加速下降的时间。
解析:物体下降的位移就是弹簧的形变长度,弹力越来越大,因而托盘施加的向上的压力越来越小,且匀加速运动到压力为零。
由匀变速直线运动公式及牛顿定律得:①②③解以上三式得:。
显然,能否分析出弹力依据胡克定律随着物体的下降变得越来越大,同时托盘的压力越来越小直至为零成了解题的关键。
二、从弹簧的伸缩性质切入弹簧能承受拉伸的力,也能承受压缩的力。
在分析有关弹簧问题时,分析弹簧承受的是拉力还是压力成了弹簧问题分析的起点。
例2、如图1所示,小圆环重固定的大环半径为R,轻弹簧原长为L(L<2R),其劲度系数为k,接触光滑,求小环静止时。
弹簧与竖直方向的夹角。
解析:以小圆环为研究对象,小圆环受竖直向下的重力G、大环施加的弹力N和弹簧的弹力F。
若弹簧处于压缩状态,小球受到斜向下的弹力,则N的方向无论是指向大环的圆心还是背向大环的圆心,小环都不能平衡。
因此,弹簧对小环的弹力F一定斜向上,大环施加的弹力刀必须背向圆心,受力情况如图2所示。
根据几何知识,“同弧所对的圆心角是圆周角的二倍”,即弹簧拉力N的作用线在重力mg和大环弹力N的角分线上。
所以另外,根据胡可定律:解以上式得:即只有正确分析出弹簧处于伸长状态,因而判断出弹力的方向成了解决问题的起点。
三、从弹簧隐藏的隐含条件切入很多由弹簧设计的物理问题,在其运动的过程中隐含着已知条件,只有充分利用这一隐含的条件才能有效的解决问题。
弹簧的弹力计算
弹簧的弹力计算
F=k*δL
其中,F表示弹力,k表示弹簧的弹性系数,δL表示弹簧的
形变量(弹簧的伸长或压缩量)。
弹力的单位是牛顿(N),弹性系数的单位是牛顿每米
(N/m),形变量的单位是米(m)。
具体计算弹力的步骤如下:
1.确定弹簧的弹性系数(弹簧常数k)。
弹性系数是弹簧的
材料属性,可以通过实验或者查阅资料获得。
不同材料的弹簧
常数有所不同。
2.测量弹簧的形变量(弹簧伸长或压缩量)。
形变量可以通
过测量弹簧的两个端点之间的距离差来得到,需要使用测量工
具(如尺子或测量仪器)进行测量。
3.将弹性系数和形变量代入公式。
根据胡克定律的公式
F=k*δL,将已知数值代入公式进行计算。
注意单位要保持一致。
4.计算得到的结果即为弹簧的弹力。
根据公式计算得到的结
果即为弹簧所受的弹力大小。
需要注意的是,弹簧的弹力只是在理想情况下的近似估计,
实际情况下可能会受到其他因素的影响(如弹簧材料的疲劳性、弯曲等),因此实际的弹簧弹力可能会有所偏差。
另外,胡克定律适用于弹簧处于弹性变形范围内的情况,如果超出了弹性变形范围,弹簧的弹力和形变关系可能会发生改变。
高中物理弹性力问题详解
高中物理弹性力问题详解弹性力是高中物理中一个重要的概念,涉及到弹簧、弹力系数等内容。
在解决弹性力问题时,我们需要理解弹性力的定义、计算方法以及应用,以便能够熟练地解决各种相关题目。
一、弹性力的定义和计算方法弹性力是指物体在受到形变时产生的恢复力。
根据胡克定律,弹性力与形变之间成正比。
胡克定律的数学表达式为F = -kx,其中F表示弹性力,k表示弹簧的弹力系数,x表示形变量。
举个例子来说明弹性力的计算方法。
假设有一根弹簧,其弹力系数为k = 10N/m,当受到一个形变量为x = 0.2 m的力时,求弹簧的弹性力。
根据胡克定律,弹性力可以通过F = -kx计算得出,代入k和x的值,可得F = -10 × 0.2 = -2 N。
由于弹性力是恢复力,所以其方向与形变方向相反,即弹性力的方向为向上。
二、应用举例:弹簧振子弹簧振子是弹性力的一个常见应用。
假设有一个质量为m的物体,通过一根弹簧与一个支架相连。
当物体受到外力作用而发生形变时,弹簧会产生弹性力,使物体回复到平衡位置。
我们可以通过弹性力的计算来解决弹簧振子的问题。
例如,给定一个弹簧振子,弹簧的弹力系数为k = 20 N/m,物体的质量为m = 0.5 kg。
当物体受到外力作用形变量为x = 0.1 m时,求物体在振动过程中的频率。
根据胡克定律,弹性力可以通过F = -kx计算得出,代入k和x的值,可得F = -20 × 0.1 = -2 N。
根据牛顿第二定律F = ma,可得-2 = 0.5a,解得a = -4 m/s²。
由于振动是一个周期性的过程,所以可以利用振动的基本公式f = 1/T来计算频率。
而周期T可以通过T = 2π√(m/k)计算得出,代入m和k的值,可得T = 2π√(0.5/20) ≈ 0.628 s。
将周期代入振动的基本公式,可得f = 1/0.628 ≈ 1.59 Hz。
因此,物体在振动过程中的频率为1.59 Hz。
动量之弹簧类问题
动量之弹簧类问题第一部分弹簧类典型问题1.弹簧类模型的最值问题在高考复习中,常常遇到有关“弹簧类”问题,由于弹簧总是与其他物体直接或间接地联系在一起,弹簧与其“关联物”之间总存在着力、运动状态、动量、能量方面的联系,因此学生普遍感到困难,本文就此类问题作一归类分析。
1、最大、最小拉力例1. 一个劲度系数为k=600N/m的轻弹簧,两端分别连接着质量均为m=15kg的物体A、B,将它们竖直静止地放在水平地面上,如图1所示,现加一竖直向上的外力F在物体A上,使物体A开始向上做匀加速运动,经0.5s,B物体刚离开地面(设整个加速过程弹簧都处于弹性限度内,且g=10m/s2)。
求此过程中所加外力的最大和最小值。
图12、最大高度例2. 如图2所示,质量为m的钢板与直立弹簧的上端连接,弹簧下端。
一物体从钢板正上方距离为固定在地面上,平衡时弹簧的压缩量为x3x的A处自由下落打在钢板上,并立即与钢板一起向下运动,但不粘连,0它们到达最低点后又向上运动,已知物块质量也为m时,它们恰能回到O 点,若物体质量为2m仍从A处自由下落,则物块与钢板回到O点时还有向上的速度,求物块向上运动到达的最高点与O点的距离。
图23、最大速度、最小速度例3. 如图3所示,一个劲度系数为k 的轻弹簧竖直立于水平地面上,下端固定于地面,上端与一质量为m 的平板B 相连而处于静止状态。
今有另一质量为m 的物块A 从B 的正上方h 高处自由下落,与B 发生碰撞而粘在一起,已知它们共同向下运动到速度最大时,系统增加的弹性势能与动能相等,求系统的这一最大速度v 。
图3例4. 在光滑水平面内,有A 、B 两个质量相等的木块,mm k g A B==2,中间用轻质弹簧相连。
现对B 施一水平恒力F ,如图4所示,经过一段时间,A 、B 的速度等于5m/s 时恰好一起做匀加速直线运动,此过程恒力做功为100J ,当A 、B 恰好一起做匀加速运动时撤除恒力,在以后的运动过程中求木块A 的最小速度。
物理弹簧类问题解题技巧
物理弹簧类问题解题技巧(一)弹簧类命题的突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应。
在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小不变,即弹的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解。
同时要注意弹力做功的特点:Wk=-(kx22 -kx12),弹力的功等于弹性势能增量的负值。
弹性势能的公式Ep=kx2,高考不作定量要求,可作定性讨论。
因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解。
(二)弹簧类问题的分类1.弹簧的瞬时问题弹簧的两端都有其他物体或力的约束时,使其发生形变时,弹力不能由某一值突变为零或由零突变为某一值。
2.弹簧的平衡问题这类题常以单一的问题出现,涉及到的知识是胡克定律,一般用f=kx或^f=kx来求解3.弹簧的非平衡问题这类题主要指弹簧在相对位置发生变化时,所引起的力、加速度、速度、功能和合外力等其它物理量发生变化的情况。
4.弹力做功与动量、能量的综合问题在弹力做功的过程中弹力是个变力,并与动量、能量联系,一般以综合题出现。
有机地将动量守恒、机械能守恒、功能关系和能量转化结合在一起。
分析解决这类问题时,要细致分析弹簧的动态过程,利用动能定理和功能关系等知识解题。
用胡克定律速解高考中弹簧问题
用胡克定律速解高考中弹簧问题
用胡克定律速解高考中弹簧问题的方法如下:
1. 找出弹簧的伸长量x和所受的外力F。
2. 根据胡克定律,弹力F等于弹簧的形变量x与弹簧的劲度系数k的乘积,即F=kx。
3. 利用匀加速直线运动的基本公式,求出物体所受的加速度a。
4. 根据牛顿第二定律,物体所受的合力等于质量乘以加速度,即F=ma。
5. 根据胡克定律,物体所受的弹力F'等于弹簧的形变量x与弹簧的劲度系数k的乘积,即F'=kx'。
6. 利用匀加速直线运动的基本公式,求出物体所受的摩擦力f。
7. 利用牛顿第一定律,物体在摩擦力和弹力的共同作用下,运动状态不变,即F=f+F'。
8. 求出物体在运动过程中所走的距离s。
9. 利用s和t,求出物体从开始运动到停止运动所用的时间t'。
通过以上步骤,即可解决高考中弹簧问题。
需要注意的是,胡克定律适用于小变形量的情况,对于大变形量的情况,需要采用其他方法进行计算。
此外,还需要注意摩擦力和弹力的计算,以及加速度和时间的关系。
实验:探究弹力与弹簧伸长量的关系 Word版含解析
第5节实验:探究弹力与弹簧伸长量的关系验证力的平行四边形定则一、探究弹力和弹簧伸长量的关系1.实验目的知道弹力与弹簧伸长量的定量关系,学会利用列表法、图象法、函数法处理实验数据.2.实验原理弹簧受力会发生形变,形变的大小与受到的外力有关,沿弹簧轴线的方向拉弹簧,当形变稳定时,弹簧产生的弹力与使它发生形变的拉力在数值上是__相等的__,用悬挂法测量弹簧的弹力,运用的正是弹簧的弹力与挂在弹簧下面的砝码的重力__相等__.弹簧的长度可用刻度尺直接测出,伸长量可以由__拉长后的长度减去弹簧原来的长度__进行计算.这样就可以研究弹簧的弹力和弹簧伸长量之间的定量关系.3.实验器材弹簧、毫米刻度尺、铁架台、钩码若干、__坐标纸__.4.实验步骤(1)将弹簧的一端挂在铁架台上,让其自然下垂,用刻度尺测出弹簧__自然伸长状态时的长度L0__,即原长.(2)如图所示,将已知质量的钩码挂在弹簧的下端,在平衡时测量__弹簧的总长__并计算__钩码的重力__,填写在记录表格里.(3)(4)以弹力F(大小等于__所挂钩码的重力__)为纵坐标,以__弹簧的伸长量x__为横坐标,用描点法作图.根据点的分布情况和走向,作出一条直线,让尽可能多的点在这条直线上,其他点均匀分布在直线两旁,得出弹力F随弹簧伸长量x变化的图线.(5)以__弹簧的伸长量__为自变量,写出曲线所代表的函数.首先尝试一次函数,如果不行则考虑二次函数.(6)得出弹力和弹簧伸长量之间的定量关系,解释函数表达式中常数的物理意义.二、验证力的平行四边形定则1.实验目的验证互成角度的两个力合成时的平行四边形定则.2.实验原理等效法:使一个力F′的作用效果和两个力F1、F2的作用效果相同,就是__让同一条一端固定的橡皮条伸长到同一点__,所以这一个力F′就是两个力F1和F2的合力,作出F′的图示,再根据__平行四边形定则__作出力F1和F2的合力F的图示,比较F和F′的大小和方向是否都相同.3.实验器材方木板,白纸,弹簧测力计(两只),__橡皮条(一条)__,细绳套(两个),三角板,刻度尺,图钉(几个).4.实验步骤(1)用图钉把白纸钉在水平桌面的方木板上.(2)用图钉把橡皮条的一端固定在A点,橡皮条的另一端拴上两个细绳套.(3)用两只弹簧测力计分别钩住细绳套,互成角度地拉橡皮条,使橡皮条伸长到某一位置O,如图所示,记录__两弹簧测力计的读数__,用铅笔描下__O点的位置__及此时两__细绳的方向__.(4)用铅笔和刻度尺从结点O沿两条细绳方向画直线,按选定的标度作出这两只弹簧测力计的读数F1和F2的图示,并以__F1和F2为邻边__用刻度尺作平行四边形,过__O点__画平行四边形的对角线,此对角线即为合力F的图示.(5)只用一只弹簧测力计通过细绳套把橡皮条的结点拉到同样的位置O,记下__弹簧测力计的读数__和__细绳的方向__,用刻度尺从O点按同样的标度沿记录的方向作出这只弹簧测力计的拉力F′的图示.(6)比较一下,力F′与用平行四边形定则求出的合力F在大小和方向上是否相同.(7)改变两个力F1与F2的大小和夹角,再重复实验两次.“验证力的平行四边形定则”实验注意事项:1.同一实验中的两只弹簧测力计的选取方法是:将两只弹簧测力计调零后互钩对拉,若两只弹簧测力计在对拉过程中读数相同,则可选;若读数不同应调整或另换,直至相同为止.2.在同一次实验中,使橡皮条拉长时的结点O位置一定要相同.3.用两只弹簧测力计钩住绳套互成角度地拉橡皮条时,夹角不宜太大也不宜太小,在60°~100°之间为宜.4.读数时应注意使弹簧测力计与木板平行,并使细绳套与弹簧测力计的轴线在同一条直线上,避免弹簧测力计的外壳与弹簧测力计的限位卡之间有摩擦.读数时眼睛要正视弹簧测力计的刻度,在合力不超过量程及橡皮条弹性限度的前提下,拉力的数值尽量大些.5.细绳套应适当长一些,便于确定力的方向.不要直接沿细绳套的方向画直线,应在细绳套末端用铅笔画一个点,去掉细绳套后,再将所标点与O点连接,即可确定力的方向.6.在同一次实验中,画力的图示所选定的标度要相同,并且要恰当选取标度,使所作力的图示稍大一些.)【变式1】在“探究弹力和弹簧伸长量的关系”实验中,以下说法正确的是() A.弹簧被拉伸时,能超出它的弹性限度B.用悬挂钩码的方法给弹簧施加拉力,应保证弹簧位于竖直位置且处于平衡状态C.用直尺测得弹簧的长度即为弹簧的伸长量D.用几个不同的弹簧,分别测出几组拉力与伸长量,得出拉力与伸长量之比相等[解析] 弹簧被拉伸时,不能超出它的弹性限度,否则弹簧会损坏,故A错误.用悬挂钩码的方法给弹簧施加拉力,要保证弹簧位于竖直位置,使钩码的重力等于弹簧的弹力,要待钩码平衡时再读数,故B正确.弹簧的长度不等于弹簧的伸长量,故C错误.拉力与伸长量之比是劲度系数,由弹簧决定,同一弹簧的劲度系数是不变的,不同的弹簧的劲度系数不一定相同,故D错误.故选B.[答案] B【变式2】验证“力的平行四边形定则”,如图所示,实验步骤如下:①用两个相同的弹簧测力计互成角度拉细绳套,使橡皮条伸长,结点到达纸面上某一位置,记为O1;②记录两个弹簧测力计的拉力F1和F2的大小和方向;③只用一个弹簧测力计,将结点仍拉到位置O1,记录弹簧测力计的拉力F3的大小和方向;④按照力的图示要求,作出拉力F1、F2、F3;⑤根据力的平行四边形定则作出F1和F2的合力F;⑥比较F3和F的一致程度.(1)下列说法中正确的是________.A.应使橡皮条与两绳夹角的平分线在同一直线上B.为了便于计算合力大小,两绳间夹角应取30°、45°、90°等特殊角度C.系在橡皮条末端的两绳要一样长D.同时改变两个弹簧测力计拉力的大小和方向,结点可能保持在位置O1(2)改变F1、F2,重复步骤①至⑥进行第二次实验,记下结点位置O2,位置O2________(选填“必须”或“不必”)与位置O1相同.[解析] (1)F1、F2方向间夹角大小适当即可,不一定要橡皮条和两绳套夹角的角平分线在一条直线上,故A错误;两细线拉橡皮条时,只要确保拉到同一点即可,两绳间夹角不一定要取30°、45°、90°等特殊角度,故B错误;细线的作用是能显示出力的方向,所以不必等长,故C错误;同时改变两个弹簧测力计的拉力,结点可能保持在位置O1,故D正确.(2)重复实验时,O2不必与O1位置相同.[答案] (1)D(2)不必数据处理、误差分析3某学习小组探究弹簧的伸长与形变的关系,在操作的同时记录数据,其步骤如下:(1)测出钩码的质量为m0.把弹簧平放在水平桌面上,测出弹簧的原长l0.(2)将该弹簧悬吊在铁架台上,让弹簧自然下垂,如图甲所示.挂上一个钩码,测出此时弹簧的长度为l1.(3)之后逐渐增加钩码的个数,并测出弹簧对应的长度分别为l2、l3…….(4)撤去实验装置,将以上过程中记录的数据汇总,并作出钩码质量m与伸长量x的关系图如图乙所示.已知m =im 0,x =l i -l 0,其中i 是钩码个数,重力加速度为g.请根据以上操作、记录和图象回答以下问题:①m -x 图象的横截距为1.00 cm ,你认为产生的原因是________(填字母代号).A .数据计算错误B .水平放置弹簧测量原长C .选择的弹簧是损坏的D .选择的弹簧是轻弹簧②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了________(填字母代号).A .此弹簧已被损坏B .悬挂钩码过多C .钩码下端触地D .添加钩码后,钩码在竖直方向振动,且选择钩码到最高点读数l i③从图乙上看,该弹簧水平放置使用时的弹性限度________(填“大于”“等于”或“小于”)5m 0g.④已知钩码的质量m 0=0.2 kg ,重力加速度g =9.8 m /s 2,利用图乙求弹簧的劲度系数k =________ N /m .[解析] ①m -x 图象的横截距为1.00 cm ,产生的原因是测量弹簧原长时是水平放置的,应该让弹簧竖直放置测量原长,故选B .②m -x 图线在伸长量x >5.00 cm 之后变弯曲,说明了弹簧已被损坏,或者是悬挂钩码过多,弹簧超出了弹性限度,故选AB .③从图乙上看,该弹簧水平放置使用时,当弹力大于5m 0g 时图象发生了弯曲,可知弹簧的弹性限度等于5m 0g.④利用图乙求得弹簧的劲度系数k =5m 0g Δl =5×0.2×9.8(5-1)×10-2N /m =245 N /m . [答案] ①B ②AB ③等于 ④245“探究弹力与弹簧伸长量的关系”实验注意事项:1.所挂钩码不要过重,以免弹簧被过分拉伸而超出它的弹性限度,要注意观察,适可而止.2.每次所挂钩码的质量差尽量大一些,从而使坐标上描的点的间距尽可能大,这样作出的图线更精确.3.测弹簧长度时,一定要在弹簧竖直悬挂且处于平衡状态时测量,以免增大误差.4.描点画线时,所描的点不一定都落在一条直线上,但应注意一定要使各点均匀分布在直线的两侧.5.记录数据时要注意弹力及弹簧伸长量的对应关系及单位.)4小明通过实验“验证力的平行四边形定则”.(1)实验记录纸如图甲所示,O点为橡皮筋被拉伸后伸长到的位置,两弹簧测力计共同作用时,拉力F1和F2的方向分别过P1和P2点;一个弹簧测力计拉橡皮筋时,拉力F3的方向过P3点.三个力的大小分别为:F1=3.30 N、F2=3.85 N和F3=4.25 N.请根据图中给出的标度作图求出F1和F2的合力.(2)仔细分析实验,小明怀疑实验中的橡皮筋被多次拉伸后弹性发生了变化,影响实验结果.他用弹簧测力计先后两次将橡皮筋拉伸到相同长度,发现读数不相同,于是进一步探究了拉伸过程对橡皮筋弹性的影响.实验装置如图乙所示,将一张白纸固定在竖直放置的木板上,橡皮筋的上端固定于O 点,下端N挂一重物.用与白纸平行的水平力缓慢地移动N,在白纸上记录下N的轨迹.重复上述过程,再次记录下N的轨迹.乙丙两次实验记录的轨迹如图丙所示.过O点作一条直线与轨迹交于a、b两点,则实验中橡皮筋分别被拉伸到a和b时所受水平力F a、F b的大小关系为________.(3)根据(2)中的实验,可以得出的实验结果有________.(填写选项前的字母)A.橡皮筋的长度与受到的拉力成正比B.两次受到的拉力相同时,橡皮筋第2次的长度较长C.两次被拉伸到相同长度时,橡皮筋第2次受到的拉力较大D.两次受到的拉力相同时,拉力越大,橡皮筋两次的长度之差越大(4)根据小明的上述实验探究,请对验证力的平行四边形定则实验提出两点注意事项.________________________________________________________________________ ________________________________________________________________________[解析] 根据力的合成法则及平衡条件解题.(1)作出的图示如图所示.(2)重物受力情况如图所示,由于重力不变,两次实验时,橡皮筋弹力T的方向相同,故水平拉力F大小相等,即F a=F b.(3)根据题图丙可知,选项B 、D 正确,选项A 、C 错误.(4)橡皮筋拉伸不宜过长,选用新橡皮筋等可减小误差.[答案] (1)如图所示(F 合=4.60~4.90 N 都算对)(2)F a =F b (3)BD(4)橡皮筋拉伸不宜过长;选用新橡皮筋(或:拉力不宜过大;选用弹性好的橡皮筋;换用弹性好的弹簧)【变式3】 在做“探究弹簧弹力与弹簧形变的关系”实验时:(1)甲同学将弹簧水平放置测出其自然长度,然后竖直悬挂让其自然下垂,在其下端施加竖直向下的外力F ,通过实验得出弹簧弹力与弹簧形变量的关系,此操作对实验结果产生影响的原因是__________________.(2)乙同学按正确操作步骤进行实验,但未测量弹簧原长和形变量,而是每次测出弹簧的总长度L ,并作出外力F 与弹簧总长度L 的关系图线如图a 所示,由图可知,该弹簧的原长为________cm ;该弹簧的劲度系数为________N /m .(3)丙同学通过实验得出弹簧弹力与弹簧形变量的关系图线如图b 所示,造成图线后来弯曲的原因是____________________________________.[解析] (1)由于弹簧自身重力的影响,弹簧竖直悬挂时,弹簧在没有外力的情况下已经伸长了一段距离,故作出的F -x 图象不过坐标原点;(2)由图线和坐标轴交点的横坐标表示弹簧的原长可知弹簧的原长为10 cm ;当拉力为10 N 时,弹簧的形变量为x =(30-10) cm =20 cm =0.2 m ,由胡克定律F =kx 得:k =F x =100.2=50 N /m ;(3)丙图,当弹力达到一定范围时,出现拉力与形变量不成正比,说明弹力超出最大限度.[答案] (1)弹簧自身有重量(2)1050(3)外力已超过弹性限度【变式4】用等效代替法验证力的平行四边形定则的实验情况如下图甲所示,其中A 为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是白纸上根据实验结果画出的图.(1)本实验中“等效代替”的含义是________.A.橡皮筋可以用细绳替代B.左侧弹簧测力计的作用效果可以替代右侧弹簧测力计的作用效果C.右侧弹簧测力计的作用效果可以替代左侧弹簧测力计的作用效果D.两弹簧测力计共同作用的效果可以用一个弹簧测力计的作用效果替代(2)图乙中的F与F′两力中,方向一定沿着AO方向的是________,图中________是F1、F2合力的理论值,______是合力的实验值.(3)(多选)完成该实验的下列措施中,能够减小实验误差的是________.A.拉橡皮筋的绳细一些且长一些B.拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行C.拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些D.使拉力F1和F2的夹角很小[解析] (1)该实验采用了“等效法”,即用两个弹簧秤拉橡皮筋的效果和用一个弹簧秤拉橡皮筋的效果是相同的,即要求橡皮筋的形变量相同,故ABC错误,D正确.(2)F是通过作图的方法得到的合力的理论值,在平行四边形的对角线上,而F′是通过一个弹簧称沿AO方向拉橡皮条,使橡皮条伸长到O点,使得一个弹簧称的拉力与两个弹簧称的拉力效果相同,测量出的合力,因此其方向沿着AO方向.(3)为减小实验误差,拉橡皮筋的绳细一些且长一些,故A正确;为减小实验误差,拉橡皮筋时,弹簧秤、橡皮筋、细绳应贴近木板且与木板面平行,故B正确;拉橡皮筋的细绳要长些,标记同一细绳方向的两点要远些,故C正确;使拉力F1和F2的夹角适当大些,故D 错误.[答案] (1)D (2)F′ F F′ (3)ABC实验的改进与创新5 如图所示为某物理兴趣小组测定弹簧劲度系数的实验装置.弹簧下端固定在水平桌面上,上端连接一托盘P ,在托盘P 下方和桌面上方同一竖直线上安装有光电测距仪A 和B ,通过数据线可以将二者间的距离信息输入到电脑,距离测量精度可达到0.1 mm .实验时,小组同学将6个规格为m =50 g 的砝码逐个放在托盘P 上,每加放一个砝码待系统静止后均打开光电测距电路开关进行测距,测距结果直接输入电脑,测距完成关闭测距开关,然后将对应的托盘上放置砝码的数目信息输入电脑,形成一组测量数据.实验过程中弹簧始终保持竖直且在弹性限度内.实验完成后小组同学在电脑上对坐标轴和坐标轴所表示物理量的单位进行了设置,纵轴表示托盘P 上砝码的总重力F 与单个砝码重力mg 的比值;横轴表示A 、B 间的距离h ,单位设置为 cm .设置完成后,电脑系统根据实验数据自动拟合出F mg-h 图象如图所示,已知当地的重力加速度为9.8 m /s 2.(1)根据图象可求出弹簧的劲度系数k =__________ N /m .(结果保留一位小数)(2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量结果__________(选填“有影响”或“无影响”).(3)针对实验小组在电脑上的设置操作,请你提出一条提高测量精度的改进建议:____________________________________________________________.[审题指导] 根据弹簧弹力和形变量的正比例关系,可知,砝码盘的质量遗漏对实验结果无影响,根据图象的函数关系,得到图象的斜率为-k mg,利用图象可计算出劲度系数k.横轴若改为mm ,在数据处理时会提高计算的准确度.[解析] (1)由图象可知,托盘上无砝码时,弹簧的长度为0.28 m ,每次添加砝码后系统静止,由平衡关系可得,托盘上砝码总重力F =k(0.28-h),即n =F mg =k mg(0.28-h),故该图象的斜率为-k mg ,即0-6.50.28=-k mg,解得劲度系数k ≈11.4 N /m ; (2)输入电脑的数据没有托盘和弹簧的重力,这一疏漏对测量无影响,因为弹簧的形变和受力成正比,满足k =ΔFΔx .(3)为了提高实验的精度,可将轴h 的单位设置成mm ,提高h 的显示精度.[答案] (1)11.4 N /m (2)无影响 (3)将横轴h 的单位设置成mm6 某小组为了验证力的平行四边形定则,设计了如图甲所示的实验:在一个半圆形刻度盘上安装两个可以沿盘边缘移动的拉力传感器A 、B ,两传感器的挂钩分别系着轻绳,轻绳的另一端系在一起,形成结点O ,并使结点O 位于半圆形刻度盘的圆心.在O 点挂上重G =2.00 N 的钩码,记录两传感器A 、B 的示数F 1、F 2及轻绳与竖直方向的夹角θ1、θ2,用力的图示法即可验证力的平行四边形定则.(1)当F 1=1.00 N 、F 2=1.50 N ,θ1=45°、θ2=30°时,请在图乙中用力的图示法作图,画出两绳拉力的合力F ,并求出合力F =________N .(结果保留三位有效数字)(2)该组同学在实验中,将传感器A 固定在某位置后,再将传感器B 从竖直位置的P 点缓慢顺时针旋转,得到了一系列B 传感器的示数F 2和对应的角度θ2,作出了如图丙所示的F 2-θ2图象,由图丙可知A 传感器所处位置的角度θ1=________.[解析] (1)先画出力的标度,根据题中所给的数据,利用平行四边形定则画出力的图示并求合力F =2.01 N .(2)由题图丙可知,当θ2=π3和0时,F 2的读数都为2.0 N ,根据平行四边形定则,画出如图所示的三角形,由图中几何关系,可得θ1=π3.[答案] (1)如图所示 2.01(1.97~2.05) (2)π3【变式5】 某实验小组进行测量动摩擦因数大小实验.(1)实验时,小明同学先在竖直方向上对弹簧测力计调零,然后用弹簧测力计拉着物体沿水平方向做匀速直线运动,那么弹簧测力计的示数与物体所受摩擦力相比________(选填“偏大”或“偏小”).(2)弹簧测力计正确调零后,小明同学设计了如图所示两种实验方案,来测量物体A 与长木板B 之间的滑动摩擦力大小.方案1:如图甲所示,把长木板B 固定在水平面上,匀速拉动物体A ;方案2:如图乙所示,把长木板B 放在水平面上,拉动长木板B.以上两种实验方案,你认为方案________更为合理;这是因为____________________________________.(3)小王同学利用合理的实验装置进行实验.在物体A 上放橡皮泥,准确测得物体A 和橡皮泥的总重量G ,实验中待弹簧测力计指针稳定后,将其读数记作F.改变物体A 上橡皮泥重量,重复多次,得到实验数据如表格所示:②由图线可以测得物体A 与长木板B 之间的动摩擦因数μ=________.[解析] (1)因为弹簧自身重力的作用,所以当在竖直方向上对弹簧测力计调零后,再在水平方向上测拉力的大小,指针的位置会有一定的回缩,至使所测出的摩擦力小于实际摩擦力的大小.(2)由图示实验可知,方案1中用弹簧测力计拉动A,需要控制A做匀速直线运动,难于控制A做匀速直线运动,另一方面弹簧测力计是运动的,难于准确读数;方案2中拉动物体B,不需要控制物体B做匀速直线运动,且弹簧测力计静止,便于弹簧测力计读数;因此2方案更合理.(3)①根据表格中的数据在坐标纸上作出F-G图线.如图所示:②由题意可知,稳定时,弹簧秤的示数F等于滑块与木板间的滑动摩擦力f,根据图线的斜率等于滑块与木板间的动摩擦因数得:μ=fF N =FG=0.90-03.00-0=0.3.[答案] (1)偏小(2)2摩擦力的测量更加方便、准确(3)①见解析图②0.30【变式6】如图所示的实验装置可以用来验证力的平行四边形定则,带有滑轮的方木板竖直放置,为了便于调节绳子拉力的方向,滑轮可以安放在木板上的多个位置.(1)请把下面的实验步骤补写完整.①三段绳子各自悬挂一定数目的等质量钩码,调整滑轮在木板上的位置,使得系统静止不动.②把一张画有等间距同心圆的厚纸紧贴木板放置在绳子与木板之间,使得圆心位于绳子结点O 处,有足够多等间距同心圆作为画图助手,这样做为的是方便作出力的图示.你认为本实验有必要测量钩码所受的重力大小吗?答________(选填“有”或“没有”,不必说明理由).③记录____________________以及__________________________.④三段绳子上的拉力F A 、F B 、F C 才可用钩码数量来表示,根据记录的数据作出力的图示F A 、F B 、F C .⑤以F A 、F B 为邻边,画出平行四边形,如果平行边形的对角线所表示的力与________(选填“F A ”“F B ”或“F C ”)近似相等,则在实验误差允许的范围内验证了力的平行四边形定则.(2)在图中A 、B 、C 三段绳子上分别悬挂了5、4、5个钩码而静止不动,图中OA 、OB 两段绳子与竖直方向的夹角分别为α、β,如果本实验是成功的,那么sin αsin β应接近于__________.[解析] (1)②实验中钩码都是相同的,一个钩码受到的重力为一个单位力,只要计钩码的个数即可,故没有必要测量钩码的重力;③该实验采用等效法,需要记录三段绳子上挂的钩码数,以及三段绳子的方向;⑤以F A 、F B 为邻边,画出平行四边形,如果F A 、F B 所夹的对角线与F C ,近似共线等长,说明F A 、F B 所夹的对角线表示的力即为F A 、F B 的合力,即验证了力的平行四边形定则.(2)作图几个力的关系如图所示:根据正弦定理有:F B sin α=F A sin β,且F A =5mg ,F B =4mg ,解得:sin αsin β=F B F A =45. [答案] (1)②没有 ③三段绳子悬挂的钩码个数 三段绳子的方向 ⑤F C (2)45。
专题受力分析之弹簧问题
弹簧类问题的几种模型及其处理方法学生对弹簧类问题感到头疼的主要原因有以下几个方面:首先,由于弹簧不断发生形变,导致物体的受力随之不断变化,加速度不断变化,从而使物体的运动状态和运动过程较复杂.其次,这些复杂的运动过程中间所包含的隐含条件很难挖掘。
还有,学生们很难找到这些复杂的物理过程所对应的物理模型以及处理方法。
根据近几年高考的命题特点和知识的考查,就弹簧类问题分为以下几种类型进行分析。
一、弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力。
当题目中出现弹簧时,首先要注意弹力的大小与方向时刻要与当时的形变相对应,在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置、平衡位置等,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,结合物体受其他力的情况来分析物体运动状态.2.因软质弹簧的形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变,因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变。
3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:弹力做功等于弹性势能增量的负值.弹性势能的公式,高考不作定量要求,可作定性讨论,因此在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.二、弹簧类问题的几种模型1.平衡类问题例1.如图1所示,劲度系数为k1的轻质弹簧两端分别与质量为m1、m2的物块拴接,劲度系数为k2的轻质弹簧上端与物块m2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。
现施力将m1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面。
在此过程中,m2的重力势能增加了______,m1的重力势能增加了________。
例2.如上图2所示,A物体重2N,B物体重4N,中间用弹簧连接,弹力大小为2N,此时吊A物体的绳的拉力为T,B对地的压力为F,则T、F的数值可能是A.7N,0 B.4N,2N C.1N,6N D.0,6N平衡类问题总结:这类问题一般把受力分析、胡克定律、弹簧形变的特点综合起来,考查学生对弹簧模型基本知识的掌握情况.只要学生静力学基础知识扎实,学习习惯较好,这类问题一般都会迎刃而解,此类问题相对较简单。
弹簧弹力计算公式详解
弹簧弹力计算公式详解压力弹簧、拉力弹簧、扭力弹簧是三种最为常见的弹簧,压力弹簧、拉力弹簧、扭力弹簧的弹力怎么计算,东莞市大朗广原弹簧制品厂为您详解,压力弹簧、拉力弹簧、扭力弹簧的弹力计算公式。
一、压力弹簧·压力弹簧的设计数据,除弹簧尺寸外,更需要计算出最大负荷及变位尺寸的负荷;·弹簧常数:以k表示,当弹簧被压缩时,每增加1mm距离的负荷(kgf/mm);·弹簧常数公式(单位:kgf/mm):G=线材的钢性模数:琴钢丝G=8000 ;不锈钢丝G=7300 ,磷青铜线G=4500 ,黄铜线G=3500d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数Nc=有效圈数=N-2弹簧常数计算范例:线径=2.0mm , 外径=22mm , 总圈数=5.5圈,钢丝材质=琴钢丝二、拉力弹簧拉力弹簧的k值与压力弹簧的计算公式相同·拉力弹簧的初张力:初张力等于适足拉开互相紧贴的弹簧并圈所需的力,初张力在弹簧卷制成形后发生。
拉力弹簧在制作时,因钢丝材质、线径、弹簧指数、静电、润滑油脂、热处理、电镀等不同,使得每个拉力弹簧初始拉力产生不平均的现象。
所以安装各规格的拉力弹簧时,应预拉至各并圈之间稍为分开一些间距所需的力称为初张力。
·初张力=P-(k×F1)=最大负荷-(弹簧常数×拉伸长度)三、扭力弹簧·弹簧常数:以k 表示,当弹簧被扭转时,每增加1°扭转角的负荷(kgf/mm).·弹簧常数公式(单位:kgf/mm):E=线材之钢性模数:琴钢丝E=21000 ,不锈钢丝E=19400 ,磷青铜线E=11200 ,黄铜线E=11200d=线径Do=OD=外径Di=ID=内径Dm=MD=中径=Do-dN=总圈数R=负荷作用的力臂p=3.1416。
弹簧弹力问题概述
弹簧弹力问题概述弹簧类问题专题练习轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见.应引起足够重视.一、弹簧弹力及做功与弹性势能等特点:(1)弹力的大小与形变量大小成正比(胡克定律)(2)方向具有双向性(3)是一种渐变弹力(当外界条件发生变化的瞬间,弹力保持不变)(4)弹力做功在数值上等于弹性势能的变化,可以用弹力平均力求功。
(5)弹性势能的大小与形变量大小有关。
二、处理弹簧问题的一般方法(1)弹簧的弹力是一种由形变而决定大小和方向的力,当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题解题时,一般应从弹簧的形变分析入手,先确定弹簧原长位置,再确定其初状态位置,末态位置,找出各个位置对应的形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动的位移及运动状态的变化.尤其是坚直弹簧问题涉及重力势能的变化,可以通过弹簧形变量的变化确物体高度的变化。
(2)因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.(3)在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理、功能关系、能量转化和守恒定律求解。
一、弹簧读数问题1.如图所示,弹簧秤、绳和滑轮的重力及摩擦力均可不计,物体重量都为G。
在甲、乙、丙三种情况下,弹簧的读数分别是F1、F2、F3,则A.F3>F1=F2B.F1=F2=F3C.F3=F1>F2D.F1>F2=F32.实验室常用的弹簧秤如图1甲所示,连接有挂钩的拉杆与弹簧相连,并固定在外壳一端O上,外壳上固定一个圆环,可以认为弹簧秤的总质量主要集中在外壳(重力为G)上,弹簧和拉杆的质量忽略不计,现将该弹簧秤以两种方式固定于地面上,如图乙、丙所示,分别用恒力F0竖直向上拉弹簧秤, 静止时弹簧秤的读数为A.乙图读数F0-G,丙图读数F0+GB.乙图读数F0-G,丙图读数F0C.乙图读数F0,丙图读数F0-GD.乙图读数F0+G,丙图读数F0-G3、如图所示,轻杆AB=14.10 cm,AC=10 cm,当B端挂1 N重物时,BC水平;当B 端挂2 N重物时,AB水平.求:(1)这两种情况下弹簧的拉力分别为多少? (2)弹簧的原长是多少?(3)弹簧的劲度系数k 为多少? 答案 (1)1 N 3.46 N (2)7.03 cm(3)33 N/m (4.如图1所示,L 1、L 2是径度系数均为k 的轻质弹簧,A 、B 两只钩码均重G ,则静止时两弹簧伸长量之和为 ( )A .3G/kB .2G/kC .G/kD .G/2k9.(2002广东物理7)图中a 、b 、c 为三个物块,M 、N 为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图并处于平衡状态。
高中物理摩擦力和弹力问题解题技巧
高中物理摩擦力和弹力问题解题技巧摩擦力和弹力是高中物理中常见的两个概念,对于学生来说,解题时往往容易出现困惑。
本文将介绍一些解决这类问题的技巧,帮助学生更好地理解和应用摩擦力和弹力。
一、摩擦力问题解题技巧1. 确定受力情况:在解决摩擦力问题时,首先需要明确受力情况。
例如,当一个物体沿水平面运动时,摩擦力的方向与运动方向相反;而当物体沿斜面运动时,摩擦力的方向与斜面倾角有关。
通过明确受力情况,可以更好地理解问题并解决。
2. 利用摩擦系数:摩擦力的大小与摩擦系数有关。
在解题时,需要根据具体情况确定摩擦系数的数值。
例如,当两个物体之间没有相对滑动时,摩擦力可以通过静摩擦系数计算;而当物体相对滑动时,摩擦力则由动摩擦系数决定。
理解和应用摩擦系数是解决摩擦力问题的关键。
3. 判断平衡条件:在一些问题中,需要判断物体是否处于平衡状态。
当物体受到多个力的作用时,摩擦力往往是平衡条件的关键。
通过分析受力情况,可以确定摩擦力是否满足平衡条件,从而解决问题。
举例说明:假设有一个物体在水平面上受到一个水平方向的力F,求物体受到的摩擦力。
解析:首先,根据受力情况可知,摩擦力的方向与力F相反。
其次,根据摩擦系数可以计算出摩擦力的大小。
假设静摩擦系数为μs,动摩擦系数为μk,当物体没有相对滑动时,摩擦力的大小为μs乘以物体受到的垂直力;当物体相对滑动时,摩擦力的大小为μk乘以物体受到的垂直力。
通过这些步骤,可以得出物体受到的摩擦力。
二、弹力问题解题技巧1. 理解弹力的本质:弹力是物体在被压缩或拉伸后恢复原状时产生的力。
在解决弹力问题时,需要理解弹簧的弹性特性以及弹力的产生原理。
弹力的大小与物体的形变量有关,可以通过胡克定律进行计算。
2. 利用胡克定律:胡克定律描述了弹簧的形变与弹力之间的关系。
根据胡克定律,弹力的大小与形变量成正比。
在解题时,可以利用胡克定律计算弹力的大小。
需要注意的是,胡克定律适用于线性弹簧,对于非线性弹簧需要采用其他方法。
高考弹簧问题专题详解
高考弹簧问题专题详解高考动向弹簧问题能够较好的培养学生的分析解决问题的能力和开发学生的智力,借助于弹簧问题,还能将整个力学知识和方法有机地结合起来系统起来,因此弹簧问题是高考命题的热点,历年全国以及各地的高考命题中以弹簧为情景的选择题、计算题等经常出现,很好的考察了学生对静力学问题、动力学问题、动量守恒和能量守恒问题、振动问题、功能关系问题等知识点的理解,考察了对于一些重要方法和思想的运用。
知识升华一、弹簧的弹力1、弹簧弹力的大小弹簧弹力的大小由胡克定律给出,胡克定律的内容是:在弹性限度内,弹力的大小与弹簧的形变量成正比。
数学表达形式是:F=kx 其中k是一个比例系数,叫弹簧的劲度系数。
说明:①弹力是一个变力,其大小随着弹性形变的大小而变化,还与弹簧的劲度系数有关;②弹簧具有测量功能,利用在弹性限度内,弹簧的伸长(或压缩)跟外力成正比这一性质可制成弹簧秤。
2、弹簧劲度系数弹簧的力学性质用劲度系数描写,劲度系数的定义因弹簧形式的不同而不同,以下主要讨论螺旋式弹簧的劲度系数。
(1)定义:在弹性限度内,弹簧产生的弹力F(也可认为大小等于弹簧受到的外力)和弹簧的形变量(伸长量或者压缩量)x的比值,也就是胡克定律中的比例系数k。
(2)劲度系数的决定因素:劲度系数的大小由弹簧的尺寸和绕制弹簧的材料决定。
弹簧的直径越大、弹簧越长越密、绕制弹簧的金属丝越软越细时,劲度系数就越小,反之则越大。
如两根完全相同的弹簧串联起来,其劲度系数只是一根弹簧劲度系数的一半,这是因为弹簧的长度变大的缘故;若两根完全相同的弹簧并联起来,其劲度系数是一根弹簧劲度系数的两倍,这是相当于弹簧丝变粗所导致;二、轻质弹簧的一些特性轻质弹簧:所谓轻质弹簧就是不考虑弹簧本身的质量和重力的弹簧,是一个理想化的模型。
由于它不需要考虑自身的质量和重力对于运动的影响,因此运用这个模型能为分析解决问题提供很大的方便。
性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。
弹簧类问题的求解
弹簧类问题的求解由于涉及到的弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的分析,不能建立与之相关的物理模型,导致解题思路不清、效率低下,错误率较高。
下面我们归纳六类问题探求解法。
一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为"轻弹簧",是一种常见的理想化物理模型。
由于“轻弹簧”质量不计,选取任意小段弹簧分析,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大。
故:轻质弹簧中各部分间的张力处处相等,均等于弹簧两端的受力。
弹簧一端受力为F ,另一端受力一定也为F 。
若是弹簧秤,则弹簧秤示数为F 。
例1、如图所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力F 1、F 2,且F 1>F 2则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .分析与解 以整个弹簧秤为研究对象:利用牛顿运动定律12F F ma -= ∴12F F a m-= 仅以轻质弹簧为研究对象:则弹簧两端的受力都是F 1,所以弹簧秤的读数为F 1 说明 F 2作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的。
二、弹簧弹力瞬时问题因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变。
因此,在分析瞬时变化时,可以认为弹力大小和方向不变,即弹簧的弹力瞬间不突变。
例2、如图所示,木块A 与B 用一轻弹簧相连,竖直放在木块C上,三者静置于地面,A 、B 、C 的质量之比是1∶2∶3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是a A =____ ,a B =____分析与解 由题意可设A 、B 、C 的质量分别为m 、2m 、3m以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均没变,故木块A 的瞬时加速度为0以木块AB 为研究对象,由平衡条件可知,木块C 对木块B 的作用力F cB =3mg 以木块B 为研究对象,木块B 受到重力、弹力和F cB 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均没变,F cB 瞬时变为0,故木块C 的瞬时合外力为竖直向下的3mg 。
弹簧弹力计算公式详解
弹簧弹力计算公式详解弹簧是一种弹性元件,具有存储和释放能量的能力。
弹簧的弹力是指在受力的作用下,弹簧所产生的恢复力。
弹簧的弹力计算公式主要由赫克定律和胡克定律来描述。
赫克定律是弹簧弹力计算的基本定律之一,它描述了弹簧的形变与所受力的关系。
赫克定律表达为F=k*x,其中F表示弹簧的弹力,k表示弹簧的弹性系数,x表示弹簧的形变量。
弹性系数k是弹簧的一个特性参数,它描述了弹簧材料的弹性性质,单位为牛顿/米。
在应用胡克定律计算弹簧弹力时,需要知道弹簧的弹性系数和形变量。
弹性系数可以通过试验测量或由材料的物理性质给出。
形变量可以通过测量弹簧的伸长量、缩短量或位移来获得。
在实际应用中,弹簧的形变量可以通过几种常见的方式来测量。
其中,伸长量的测量是最常见的一种方式。
可以通过固定一端的弹簧,在另一端施加外力使其发生伸长,然后用合适的仪器测量弹簧的伸长量。
当弹簧发生形变时,赫克定律描述了其形变与恢复力之间的关系。
根据赫克定律,弹簧的弹力与形变成正比。
也就是说,当形变增加时,弹力也会随之增加。
这个比例关系由弹性系数k来决定,弹性系数越大,弹簧的弹力也越大。
弹簧的形变量取决于施加在其上的力和其自身的弹性特性。
当施加力增加时,弹簧会发生更大的形变,导致弹簧的弹力增加。
根据赫克定律,当形变量为0时,弹力也为0;而当形变量增加时,弹力也会相应地增加。
胡克定律不仅适用于弹力计算,也适用于描述弹簧的形变量与施加的力之间的关系。
胡克定律表达为x=F/k,其中x为弹簧的形变量,F为施加在弹簧上的力,k为弹性系数。
根据胡克定律,形变量与施加的力成正比。
当施加的力增加时,弹簧的形变量也会相应地增加。
总结起来,弹簧弹力的计算公式主要由赫克定律和胡克定律来描述。
赫克定律描述了弹簧的形变与所受力的关系,弹力与形变成正比;胡克定律描述了弹簧的形变量与施加的力的关系,形变量与施加的力成正比。
弹簧的弹力计算公式可以应用于各种工程和物理学问题中。
高中物理 弹簧问题
高中物理弹簧问题弹簧问题是物理学中常见的问题之一。
轻弹簧是指不考虑弹簧本身质量和重力的弹簧,是一个理想模型,可以充分拉伸和压缩。
无论弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零。
弹簧读数始终等于任意一端的弹力大小。
弹簧弹力是由弹簧形变产生的,弹力大小和方向时刻与当时形变对应。
一般应从弹簧的形变分析入手,先确定弹簧原长位置和现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。
轻弹簧的性质有三点:1、在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的,其伸长量等于弹簧任意位置受到的力和劲度系数的比值;2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变,具有缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零;3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。
分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。
弹簧问题的题目类型主要包括弹簧问题受力分析、瞬时性问题和动态过程分析。
在受力分析中,需要找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程,并通过弹簧形变量的变化来确定物体位置的变化。
在瞬时性问题中,需要针对不同类型的物体的弹力特点,对物体做受力分析。
在动态过程分析中,可以采用三点分析法,明确接触点、平衡点和最大形变点,来分析物体的运动情况。
除了以上几种题型,弹簧问题还涉及到动量和能量以及简谐振动的问题。
在解决弹簧问题时,需要注意抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向,合力恒等于零的特点求解,同时要灵活运用整体法隔离法,优先对受力少的物体进行隔离分析。
在解决临界极值问题时,需要考虑弹簧连接物体的分离临界条件和最大最小速度、加速度。
对于分离瞬间的分析,需要采用隔离法,并且需要根据具体条件来判断弹簧是否处于原长状态。
在物体做变加速运动时,加速度等于零时速度达到最大值,速度等于零时加速度达到最大值。
弹簧弹力做功问题的探讨
弹簧弹力做功问题的探讨作者:刘小华来源:《俪人·教师版》2014年第07期轻弹簧是中学物理教学中的一个非常重要的的物理模型,几乎每年的高考都有关于弹簧的考查,主要集中在与其他物体的相互作用及能量转化上,能量的转化涉及到弹簧弹力做功,而功的计算,高中阶段所学的计算公式只能用于恒力做功情况,弹簧弹力做功属于变力做功,不能简单的用来计算功的大小,由此,弹簧弹力做功问题成为了高中物理学习中的难点和热点,笔者根据多年教学实践,总结解决弹簧弹力做功问题的方法如下:一、平均力法力的方向不变,大小对位移按线性规律变化时,,变力F由线性地变化到的过程中所做的功等于该过程的平均力所做的功。
弹簧的弹力,与弹簧变化长度x成线性变化,故可以用平均力法来求弹簧弹力所做的功。
【例题1】有一弹性系数为k的弹簧,原长为l,下端固定,上端静置一质量为m的物块。
现用力将物块缓慢下压,求当弹簧长度变为0.5L时,求弹簧弹力所做的功。
简要解析:物体的位移,弹力由初状态的mg线性变化到末状态的0.5kl,平均弹力为,所以,弹簧弹力所做的功为:二、图像法如果能知道变力F随位移s变化的关系,我们可以先作出F-s关系图象,(横坐标表示力F在位移方向上的分量,纵坐标表示物体的位移)并利用这个图象求变力所做的功,图象与坐标轴围成的面积表示功的数值。
【例题2】如图2所示,有一劲度系数k=500N/m的轻弹簧,左端固定在墙壁上,右端紧靠一质量m=2kg的物块,物块与水平面间的动摩擦因数,弹簧处于自然状态。
现缓慢推动物块使弹簧从B到A处压缩10cm,然后由静止释放物块,求(1)弹簧恢复原长时,物块的动能为多大?(2)在弹簧恢复原长的过程中,物块的最大动能为多大?图2 图3简要解析:(1)从A到B的过程,可利用图像求出,画出弹簧弹力随位移变化图象(如图3所示,弹力做功的值等于△OAB的面积,即(2)放开物体后,当弹簧的弹力等于摩擦力时,物体有最大的动能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由①、②联立方Biblioteka 组可得 G = 20 N例2:如图所示,两木块的质量分别为m1和m2,两 轻质弹簧的劲度系数分别为k1和 k2上面木块压在上 面的弹簧上(但不拴接),整个系统处于平衡状态, 现缓慢向上提上面的木块,直到它刚离开上面弹簧, 在这过程中下面木块移动的距离为( ) C m2 g m1 g A、 B、 k1 k1
或ΔF = kΔx
例1:一个弹簧秤,由于更换弹簧,不能直接在原来的刻度上 准确读数,经测试,不挂重物时,示数为2 N;挂100 N的重物 时,示数为92 N(弹簧仍在弹性限度内);那么当读数为20 N时, 20 所挂物体的实际重力为 N 解析:设该弹簧秤刻度板上相差1 N的两条刻度线的距离为a, 其劲度系数为k,由胡克定律得,当挂100 N重物时有: 100 = k ( 92 – 2 ) a ① 当示数为20 N时有:G = k ( 20 – 2 ) a ②
从P 移到Q,绳中张力 如何变?
滑轮所受力 的方向?
(2)貌似同根绳,实则两根
有摩擦
结点
例:如图,滑轮本身的重力可以忽略不计,滑轮轴 O安在一根轻木杆B上,一根轻绳AC绕过滑轮,A 端固定在墙上,且绳保持水平,C端下面挂一重物, BO与竖直方向夹角θ=450系统保持平衡,若保持滑 轮的位置不变,改变θ的大小,则滑轮受到木杆的 弹力大小变化情况是: D A. 只有θ变小,弹力才变大 B. 只有θ变大,弹力才变大 C. 不论角θ变大或变小,弹力都变大 D. 不论角θ变大或变小,弹力都不变
例1:标出各物体在A、B、C处所受的支持力的方向
例2:图中a、b、c为三个物块,M、N为两个轻质 弹簧,R为跨过定滑轮的轻绳,它们连接如图并处 于平衡状态 A.有可能N处于拉伸状态而M处于压缩状态 B.有可能N处于压缩状态而M处于拉伸状态 C.有可能N处于不伸不缩状态而M处于拉伸状态 D.有可能N处于拉伸状态而M处于不伸不缩状态 AD
规律总结:弹簧本身的特点决定了当弹 簧处于拉伸和压缩时弹簧都能产生弹力, 若无特殊指明,应考虑两种情况.
例4:用手拉K1上端A,使它缓慢上移,当乙中弹 力为原来的2/3时,甲上端移动的距离为多少?
mg 1 1 ( ) 3 k1 k 2
5mg 1 1 ( ) 3 k1 k 2
例5: S1和S2表示劲度系数分别为k1和k2两根轻质 弹簧,k1>k2;A和B表示质量分别为mA和mB的两 个小物块,mA>mB,将弹簧与物块按图示方式悬 挂起来。现要求两根弹簧的总长度最大则应使: A、S1在上,A在上 B、S1在上,B在上 D C、S2在上,A在上 D、S2在上,B在上
m1 g C、 k 2
m2 g D、 k2
例3:A、B两个物块的重力分别是GA=3N,GB=4N,弹簧的重 力不计,整个装置沿竖直方向处于静止状态,这时弹簧的弹力 AD F=2N,则天花板受到的拉力和地板受到的压力,有可能是( ) A、1N,6N B、5N,6N C、1N,2N D、5N,2N 解析:弹簧的弹力为2N,有两种可能情形:弹 簧处于拉伸状态,弹簧处于压缩状态。因此, 应有两组解。
例6:一根大弹簧内套一根小弹簧,小弹簧比大弹 簧长0.2m,它们的一端固定,另一端自由,如图所 示,求这两根弹簧的劲度系数k1(小弹簧)和k2(大弹 簧)分别为多少?
k1=100N/m k2=200N/m
三、解题注意点
1、弹簧秤的读数 轻弹簧钩子上受的力即为弹簧秤的读数
F=5N
5N 平衡状态
5N 读数? 5N
例3:如图所示,有一箱装得很满的土豆,以一定的 初速度在动摩擦因数为μ的水平地面上做匀减速运 动,不计其他外力及空气阻力,则中间一质量为m 的土豆A受到其他土豆对它的作用大小应是 ( A ) A.mg B.μmg C.mg 1 2 D.mg(1+ μ)
(2)胡克定律:用于求弹簧产生的弹力或遵循胡克定律的 橡皮条的弹力。 公式:F = k x k为劲度系数,x为形变量 在弹性限度内弹力的变化 量与形变量的变化量成正比
校本课: 1、弹力和弹簧问题解题方法
乔延芳
2009年11月19日
一、弹力 (1)直接接触的物体间由于发生 弹性形变 而产生的力
(2)产生条件:两物体直接接触 、物体发生弹性形变 。 (3)弹力方向的确定 ①压力、支持力的方向总是 垂直 于接触面,若接触面是曲 则 垂直 于过接触点的切面,指向被压或被 支持 的物体。 ②绳的拉力方向总是沿绳指向绳 收缩 的方向。 ③杆一端受的弹力方向不一定沿杆的方向,可由物体平衡条 件判断方向。 (4)弹力大小的确定 ①弹簧在弹性限度内弹力的大小遵循胡克定律:F= k x . ②一般情况下应根据物体的运动状态,利用牛顿定律或平衡 条件来计算.
L1=L2=L3=L4
2、区别弹簧与刚性绳
弹簧,发生的是宏观形 变,恢复需要时间 刚性绳,发生的是微小 形变,外力消失时,形 变能立即消失
A
B
剪断1绳瞬间A球 所受合力?
剪断1绳瞬间B球 所受合力?
F Gtgθ
F' G sin θ
3、区别一根绳和两根绳
(1)同一根绳中张力处处相等
光滑 挂钩
读数? 5N
加速上升
例:如图所示,四个完全相同的弹簧都处于水平位置, 它们的右端受到大小皆为F的拉力作用,而左端的情 况各不相同:①中弹簧的左端固定在墙上,②中弹簧 的左端受大小也为F的拉力作用,③中弹簧的左端拴 一小物块,物块在光滑的桌面上滑动,④中弹簧的左 端拴一小物块,物块在有摩擦的桌面上滑动。若认为 弹簧的质量都为零,以L1、L2、L3 、L4依次表示四个 弹簧的伸长量,试比较L1 ,L2 ,L3 ,L4
二、题型分析 1、弹力方向判断 (1)根据物体产生形变的方向判断 弹力方向与物体形变的方向相反,作用在迫使物体发生 形变的那个物体上,常见的几种情况: ①弹簧两端的弹力方向 ②轻绳的弹力方向 ③面与面接触的弹力方向 ④点与面接触的弹力方向 ⑤杆受力有拉伸、压缩、弯曲、扭转形变与之对应,杆的弹 力方向具有多向性,不一定沿杆方向 若轻杆两端受到拉伸或挤压时会出现拉力或压力,拉力 或压力的方向沿杆方向。因为此时只有轻杆两端受力,在这 两个力作用下杆处于平衡状态,则这两个力必为平衡力,必 共线,即沿杆的方向。 (2)根据物体运动情况,利用平衡条件或动力学规律判断