(浙教版)初中数学教学大纲教学提纲
浙教版八年级数学上册复习提纲
2.等腰三角形的轴对称性
3.等边三角形的概念
注意:等腰三角形中的边若没有指出是腰还是底边, 应分情况讨论, 但一定要利用“三边之间的关系”进行检验。
“等边对等角”是证明两个角相等的重要途径之一, 在考试中以边角计算和说明两个角相等为主, 主要以填空题、选择题的形式出现。“三线合一”是等腰三角形的重要性质, 在说明线段相等、角相等、线线垂直等方面都有重要作用。
在直角三角形中, 30°角所对的边等于斜边的一半。
在直角三角形中,30°角所对的边等于斜边的一半。
勾股定理是考试中的热点内容, 所占比例较大, 一般以填空题、选择题的形式出现, 并以其他知识点结合, 以解答题的形式出现。
1.勾股定理
2.勾股定理的探索
3.勾股定理的逆定理
直角三角形斜边上的高=两直角边的乘积除以斜边
本章旨在学会认识直角坐标系,以与在直角坐标系内确定点的位置;并掌握建立直角坐标系的方法。更重要的是要学会使用平面直角坐标系来解题与解决实际应用型问题。
1、探索确定位置的方法
2、平面直角坐标系
3、坐标平面内图形的轴对称和平移
1.用有序数对确定物体的位置.
2.用方向和距离来确定物体的位置.
3.在平面内, 两条互相垂直且有公共原点的数轴组成平面直角坐标系, 水平的数轴叫做X轴或横轴, 垂直的数轴叫做Y轴或纵轴, 两条数轴的交点称为直角坐标系的原点.
方法归纳: 判断一个图形是不是轴对称图形,关键是抓住轴对称图形的本质特征: 能够沿着某条直线对折,对折后的两部分图形能够完全重合。
方法归纳:判断一个图形是不是轴对称图形,关键是抓住轴对称图形的本质特征:能够沿着某条直线对折,对折后的两部分图形能够完全重合。
浙教版初中数学复习提纲教案
浙教版初中数学复习提纲教案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】初中数学总复习提纲第一章 实数★重点:数的有关概念及性质,实数的运算 ☆内容提要☆一、 重要概念1.数的分类及概念正数实数 0负数说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:质:若干个非负数的和为0,则每个非负担数均为性0。
3.倒数: ①定义:如果两个数的乘积为1.那么这两个数互为倒数.②性质:≠1/a (a ≠±1);a 中,a ≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义:如果两个数的和为0.那么这两个数互为相反数. ②求相反数的公式: a 的相反数为-a.③性质:≠0时,a ≠-a;与-a 在数轴上的位置关于原点对称;C.两个相反数的和为0,商为-1。
5.数轴:①定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴.实无理数(无限不循环小数) 有理数 正分数 负分数正整数0 负整数 (有限或无限循环小整数分正无理数负无理数│a │ a (a ≥0)(a 为一切实数)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
义:数a 的绝对值顶的几何意义是实数a 在数轴上所几何定对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
初中数学教学大纲
初中数学教学大纲一、教学内容和教学要求(代数)(一)有理数1.有理数的概念有理数。
数轴。
相反数。
数的绝对值.有理数大小的比较。
具体要求:(1)了解有理数的意义,会用正数与负数表示相反意义的量,以及按要求把给出的有理数归类.(2)了解数轴、相反数、绝对值等概念和数轴的画法,会用数轴上的点表示整数或分数(以刻度尺为工具),会求有理数的相反数与绝对值(绝对值符号内不含字母).(3)掌握有理数大小比较的法则,会用不等号连接两个或两个以上不同的有理数。
2.有理数的运算有理数的加法与减法。
代数和。
加法运算律。
有理数的乘法与除法。
倒数。
乘法运算律。
有理数的乘方。
有理数的混的运算.科学记数法。
近似数与有效数字。
具体要求:(1)理解有理数的加、减、乘、除、乘方的意义,熟练掌握有理数的运算法则、运算律、运算顺序以及有理数的混合运算(不超过6个数),灵活运用运算律简化运算.(2)了解倒数概念,会求有理数的倒数。
(3)掌握大于10的有理数的科学记数法。
(4)了解近似数与有效数字的概念,会根据指定的精确度或有效数字的个数,用四舍五入法求有理数的近似数;会用计算器求一个数的平方与立方(尚无条件的学校可使用算表)。
(5)了解有理数的加法与减法、乘法与除法可以相互转化。
?(二)整式的加减代数式。
代数式的值.整式.单项式。
多项式。
合并同类项。
去括号与添括号。
数与整式相乘.整式的加减法。
具体要求:(1)掌握用字母表示有理数,了解用字母表示数是数学的一大进步。
(2)了解代数式、代数式的值的概念,会列出代数式表示简单的数量关系,会求代数式的值.(3)了解整式、单项式及其系数与次数、多项式次数、项与项数的概念,会把一个多项式按某个字母降幂排列或升幂排列。
(4)掌握合并同类项的方法,去括号、添括号的法则,熟练掌握数与整式相乘的运算以及整式的加减运算。
(5)通过用字母表示数、列代数式和求代数式的值、整式的加减,了解抽象概括的思维方法和特殊与一般的辩证关系。
初中数学教学大纲
初中数学教学大纲一、引言初中数学教学是培养学生数学思维和解决实际问题的重要阶段。
本教学大纲旨在规范初中数学课程设置与教学活动,确保学生在数学学科中获得全面的知识、技能和素养的培养。
以下是初中数学教学大纲的详细内容。
二、教学目标1.知识与技能目标(1)掌握数与代数、几何、函数等数学基本概念和方法;(2)熟练运用运算符号、计算方法以及证明方法;(3)理解并能够解答各类数学问题。
2.数学思维目标(1)培养学生逻辑思维、抽象思维和创新思维的能力;(2)培养学生数学推理和证明的能力;(3)培养学生解决实际问题的数学建模和运用数学工具的能力。
三、教学内容1.数与代数(1)整数与有理数运算;(2)方程与不等式;(3)函数与图像。
2.几何(1)平面几何与立体几何;(2)图形的性质与判定;(3)相似与全等。
3.统计与概率(1)统计与统计图;(2)概率与预测。
四、教学方法1.启发式教学法通过引导学生自主探索、发现数学问题的方法、规律和解题技巧,激发学生的学习兴趣和主动性。
2.讨论教学法通过小组或全班讨论,培养学生思考问题、表达观点和分析解决方法的能力。
3.实验探究法通过实际操作、观察和实验,让学生深入理解数学概念,培养学生的实践能力。
五、教学评价与考核1.形成性评价通过平时作业、课堂表现以及小组合作等,对学生的数学能力进行全面评估。
2.总结性评价通过考试、小作文等形式对学生掌握的数学知识与技能进行总结和评估。
六、教学资源1.教材教师应根据教学大纲选用适宜的教材,结合学生的实际情况进行灵活运用。
2.多媒体教具教师可以使用多媒体教具,如幻灯片、计算机软件等,提升教学效果。
七、教学规范1.尊重学生差异教师应重视学生的个体差异,因材施教,采用灵活多样的教学方法。
2.激发学生兴趣教师应通过生动、具体的实例,引导学生积极参与课堂活动,激发学习兴趣。
3.培养学生能力教师既注重学生的传统数学计算能力,也要培养学生的数学思维能力和实际应用能力。
浙教版七年级上册数学复习提纲
浙教版七年级上册数学复习提纲初中数学本身不是很难,但是每次考试时很多学生没有考到高分,归根结底是没有做好复习提纲,下面小编给大家分享一些浙教版七年级上册数学复习提纲,希望能够帮助大家,欢迎阅读!浙教版七年级上册数学复习提纲第一章有理数--------------1.1正数与负数①大于0的数叫正数。
②在正数前面加上“-”号的数,叫做负数。
③0既不是正数也不是负数。
0是正数和负数的分界,是的中性数。
④搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等。
⑤正整数、0、负整数统称整数(结合数轴和一元一次方程出题),正分数和负分数统称分数。
整数和分数统称有理数。
⑥非负数就是正数和零;非负整数就是正整数和0。
⑦“基准”题:有固定的基准数,和的求法:基准数×个数+与基准数相比较的数的代数和;平均数的求法:基准数+与基准数相比较的数的代数和÷个数(写出原数,也可用小学知识解答);“非基准”题:无固定的基准数,如明天和今天比,后天和明天比。
-------------1.2数轴①通常用一条直线上的点表示数,这条直线叫数轴。
②数轴三要素:原点、正方向、单位长度。
③数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上的点,不都是表示有理数。
④只有符号不同的两个数叫做互为相反数(和为零)。
(例:2的相反数是-2,如:2+(-2)=0;0的相反数是0)⑤数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。
从几何意义上讲,数的绝对值是两点间的距离(无方向性,有两个点)。
⑥数轴上两点间的距离=|M—N|⑥正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0。
⑦两个负数,绝对值大的反而小。
⑧|a|≥0(即非负性);绝对值等于一个正数的值有两个(两个互为相反数)如:|a|=5,a=5或a=-5-------------1.3有理数的大小①数轴上不同的两个点表示的数,右边点表示的数总比左边点表示的数大。
初中数学 教学大纲
初中数学教学大纲一、教学目标初中数学教学大纲的目标旨在培养学生的数学思维能力,提高他们的逻辑推理和问题解决能力,并帮助他们建立扎实的数学基础。
具体目标如下:1. 培养学生的数学兴趣和学习动力,激发他们探索数学的欲望;2. 培养学生的数学思维能力,包括观察问题、分析问题、解决问题和创新思维等;3. 培养学生的逻辑推理能力,使他们能够准确理解和运用数学概念、定理和公式;4. 培养学生的问题解决能力,使他们能够在实际生活中应用所学数学知识解决问题;5. 帮助学生建立扎实的数学基础,为进一步学习和应用数学打下良好基础。
二、教学内容和要求1. 数与代数1.1 数的四则运算:加法、减法、乘法和除法;1.2 数的整除性质和倍数概念;1.3 有理数的概念和运算规则;1.4 代数式的概念和基本运算法则;1.5 一元一次方程和一元一次不等式的解法;1.6 数据统计和概率的基本概念和方法。
2. 几何与空间2.1 图形的构造和性质:点、线、面、角、线段等基本概念;2.2 三角形、四边形、多边形和圆的性质;2.3 平移、旋转和翻转的基本概念和性质;2.4 空间几何图形的投影和展开。
3. 函数与图像3.1 函数的概念和性质;3.2 一次函数和二次函数的图像和性质;3.3 反比例函数和平方根函数的图像和性质;3.4 函数的复合和反函数的概念。
4. 数据与概率4.1 数据的收集、整理和展示方法;4.2 数据的中心趋势和离散程度的计算;4.3 概率的基本概念和计算方法;4.4 实际问题中的数据处理和概率分析。
三、教学方法和手段为了达到上述教学目标,我们将采用以下教学方法和手段:1. 激发学生的兴趣:通过引入有趣的数学问题和实际应用案例,激发学生对数学的兴趣,提高他们的学习动力;2. 探究式学习:鼓励学生自主探索、思考和解决问题,培养他们的数学思维能力和创新意识;3. 合作学习:通过小组合作学习和互助互学的方式,培养学生的合作精神和团队合作能力;4. 多媒体教学:利用多媒体教学手段,丰富教学内容,提高学生的理解和应用能力;5. 实践应用:引导学生将所学数学知识应用于实际生活中的问题解决,培养他们的问题解决能力和创新精神。
2024年浙教版八年级数学上册全册教案
2024年浙教版八年级数学上册全册教案一、教学内容1. 第一章有理数及其运算1.1 有理数的概念及分类1.2 有理数的加法与减法1.3 有理数的乘法与除法1.4 有理数的乘方与开方2. 第二章整式的乘法与因式分解2.1 整式的乘法法则2.2 乘法公式2.3 整式的因式分解3. 第三章分式及其运算3.1 分式的概念及性质3.2 分式的乘法与除法3.3 分式的加法与减法4. 第四章轴对称与中心对称4.1 轴对称图形4.2 中心对称图形5. 第五章数据分析5.1 平均数、中位数、众数5.2 方差与标准差5.3 频数分布表与频数分布直方图二、教学目标1. 理解有理数、整式、分式的概念及性质,掌握相应的运算方法,并能熟练运用。
2. 掌握轴对称与中心对称的概念、性质及其在实际问题中的应用。
3. 学会数据分析的基本方法,能对数据进行整理、描述和推断。
三、教学难点与重点1. 教学难点:有理数的运算、整式的因式分解、分式的运算、数据分析的方法。
2. 教学重点:理解概念、掌握运算方法、解决实际问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、练习本、计算器。
五、教学过程1. 引入实践情景,提出问题,激发学生学习兴趣。
2. 讲解理论知识,结合例题进行解析。
3. 随堂练习,巩固所学知识。
4. 学生互相讨论,解决问题,教师进行指导。
六、板书设计1. 根据教学内容,设计简洁、直观的板书,突出重点和难点。
2. 采用图表、示例等形式,使板书更具条理性和系统性。
七、作业设计1. 作业题目:第一章:有理数运算练习题;第二章:整式乘法与因式分解练习题;第三章:分式运算练习题;第四章:轴对称与中心对称练习题;第五章:数据分析练习题。
2. 答案:根据练习题,给出详细的解答过程和答案。
八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性练习题,提高学生的思维能力和解决问题的能力。
重点和难点解析一、教学内容的选择与安排重点关注章节和内容的逻辑顺序,确保学生在学习新知识时能够循序渐进,避免知识点的跳跃。
初中数学教学大纲
初中数学教学大纲1. 引言本教学大纲旨在为初中数学教学提供明确的教学目标和内容,帮助学生掌握数学基础知识,培养学生的逻辑思维能力和解决问题的能力。
本大纲适用于我国初中阶段的学生。
2. 教学目标2.1 知识与技能1. 掌握初中阶段所必需的数学基础知识。
2. 学会使用数学语言描述现实世界中的数学问题。
3. 掌握基本的数学运算技能和几何作图技能。
4. 学会运用数学知识解决实际问题。
2.2 过程与方法1. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。
2. 培养学生运用数学知识进行创新和探究的能力。
3. 培养学生合作研究和自主研究的能力。
2.3 情感态度与价值观1. 培养学生对数学学科的兴趣和好奇心。
2. 培养学生勇于挑战、克服困难的自信心。
3. 培养学生尊重事实、严谨求实的科学态度。
3. 教学内容3.1 数与代数1. 有理数2. 整式与分式3. 方程与不等式4. 函数概念与性质3.2 几何1. 平面几何2. 立体几何3. 几何度量4. 几何作图3.3 统计与概率1. 统计方法2. 概率初步3.4 综合与应用1. 数学阅读与写作2. 数学建模3. 数学竞赛4. 教学方法与手段1. 采用启发式教学法,引导学生主动探究、积极思考。
2. 运用现代教育技术手段,如多媒体课件、网络资源等,提高教学质量。
3. 实施分组讨论、合作研究,培养学生的团队协作能力。
4. 创设生动、活泼的课堂氛围,激发学生的研究兴趣。
5. 教学评价1. 定期进行课堂测试,检查学生对知识的掌握程度。
2. 组织期中和期末考试,评估学生的学业成绩。
3. 注重过程性评价,关注学生在课堂上的表现和进步。
4. 鼓励学生参加数学竞赛和实践活动,提高学生的综合素质。
6. 教学资源1. 教材:选用符合国家课程标准的教材。
2. 教辅资料:提供适量的练题和参考书。
3. 教学设备:多媒体课件、投影仪、计算机等。
4. 网络资源:利用互联网为学生提供丰富的研究素材。
(浙教版)初中数学教学大纲
初中数学教学大纲一、中考数学命题特点分析认真分析近几年浙江省中考数学试题,不能发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
强调理论联系实际,引导学生关注社会生活。
试题突出如下特点:一是典型性,即选题典型,难易程度做到逐步递进;二是针对性,即选题精炼,帮助学生提高复习效率;三是新颖性,体现探究性、开放性、活动性,从多方面培养学生的能力与数学素养。
学生可以从以下几个方面来备考:1、重教材,抓基础,夯实基本知识点,熟练各种基本技能大多数的中考的试题是教材中题目的引申、变形或组合,特别是教材的内容编排有“螺旋上升”的特点,有些知识点比较分散,因此,要深入钻研教材,不能脱离课本,进入初三的学生,在学好新知识的同时,教师要把初一、初二相关的内容进行归纳整理,使之形成结构,要有经常性的复习,反复练习达到知识的巩固熟练,把基本知识与基本技能落实好。
2、重过程,抓理解,提高解题能力中考试题中有突出“动态”、“探究”、“过程”等观念,如图表中信息的收集与处理,结论的猜想与证明,利用学具操作、图形的旋转、翻折运动及文学语言、符号语言、图形语言的转换等,这些问题都是切切实实地关注学生的体验过程,要知识的发生过程,避免死记硬背。
平时训练要求高标准,定时定量,做到等题规范,表述准确,推断合理,提高学生的审题能力,分析能力,计算能力。
3、重通法、抓变通,培养思维的广阔性、灵活性和敏捷性中考数学试题形式和知识背景千变万化,但其中运用是数学思想方法都是相通的。
要处理好“通法”和技巧的关系,抓知识的主干部分与通性通法,在此基础上通过寻求不同解题途径与思维方式,注重变式和拓展训练,精做精练,培养思维的广阔性、灵活性和敏捷性。
4、重反思、抓纠错中考考试的分数高低,往往取决于细心,成绩再好的同学也难免粗心,但粗心的背后是有原因的,知识的负迁移,知识点不熟练,平时解题不规范,数学概念不清晰等。
所以经常引导学生反思自己的错误,要求他们准备一个记录本,对一些易错、易忘记的问题随时记录,根据个人的具体情况,查漏补缺,做好知识归类,在形成知识结构的基础上加深记忆,对经常错的点要进行归类分析。
数学教学大纲内容(完整版)
数学教学大纲内容(完整版)数学教学大纲内容《初中数学教学大纲》内容如下:1.理解有理数的意义,掌握有理数的加法、减法、乘法、除法、乘方运算。
2.理解代数式求值。
3.理解不等式的意义,掌握不等式的性质,掌握一元一次不等式的解法。
4.掌握整式的乘除运算。
5.掌握分式的乘除运算和分式的加减运算。
6.理解轴对称和轴对称图形的概念,掌握轴对称的性质。
7.理解中心对称和中心对称图形的概念,掌握中心对称的性质。
8.理解一次函数的定义,掌握一次函数的性质。
9.理解二次函数的定义,掌握二次函数的性质。
10.理解正比例函数和反比例函数的定义,掌握它们的性质。
以上就是《初中数学教学大纲》的内容,希望对您有所帮助。
考研教学大纲数学考研数学的教学大纲如下:一、考查目标1.理解考研数学的基本概念,掌握基本原理、方法和公式。
2.具备运算能力、逻辑推理能力、空间想象能力、自学能力。
3.了解考研数学的考试形式、题型和评分标准,掌握答题技巧。
二、考查内容1.函数、极限、连续__函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性。
__数列极限的概念和性质,极限的计算方法,无穷小量与无穷大量。
__连续函数的概念及表示法,函数的间断点与间断点的类型。
2.一元函数微分学__导数的概念及表示法,导数的几何意义,导数的计算及应用。
__微分的概念及表示法,微分的计算及应用。
__导数与微分在几何、物理和经济中的应用。
3.一元函数积分学__不定积分和定积分的概念及表示法,原函数与不定积分的关系,不定积分的计算方法。
__定积分的概念和性质,定积分的计算方法,定积分的应用。
4.代数__代数方程求解方法。
__方程根的问题。
__不等式的性质,证明及解的个数问题。
5.三角函数__三角函数的概念及表示法,三角函数的恒等变变换。
__同角三角函数的基本关系,三角函数的计算,三角函数的图象,解三角形。
6.平面解析几何__点的直角坐标和极坐标的转换,两点间的距离公式,点到直线的距离公式。
新浙教版八年级上册数学知识点汇编教学提纲
新浙教版八年级上册数学知识点汇编八年级第一学期数学知识点汇编第一章三角形的初步认识一、三角形的基本概念三角形:不在同一条直线上的三条线段首尾相接所组成的图形。
二、三角形的分类:1.按角分:锐角三角形、直角三角形、钝角三角形(定义,区别)。
2.按边分:不等边三角形、等腰三角形、等边三角形。
三、三角形的基本性质1.三角形的内角和是180°。
2.三角形的任何两边的和大于第三边(由两点之间线段最短得到)。
三角形的任何两边的差小于第三边三角形的任何两边之和大于第三边大于两边之差。
应用:知两条确定第三条范围;知三条判断能否组成三角形;知四条及以上 3.三角形的外角:由三角形一条边的延长线和另一条相邻的边组成的角。
三角形的一个外角等于和他不相邻的两个内角的和(教材P7做一做)。
四、几条重要的线1.三角形的角平分线:一个角的平分线与这个角的对边相交,这个角的顶点和对边中点;三条角平分线都在三角形内且相交于一点;等量关系式∠1=∠2=二分之一∠α ;2.三角形的中线:连接一个顶点和它对边的中点的线段;三条中线都在三角形内且相交于一点;等量关系式AP=BP=二分之一AB 。
等积三角形;周长差三角形3.三角形的高;从三角形的一个顶点向它对边所在的直线作垂线段。
锐角三角形的三条高在三角形的内部相交于一点。
直角三角形的直角边上的高分别与另一条直角边重合,三条高在三角形的直角顶点处相交于一点。
钝角三角形中,夹钝角两边上的高都在三角形的外部,三条高在三角形的外部相交于一点。
会带来面积问题、直角、直角三角形4. 线段的垂直平分线(中垂线):垂直并平分一条线段的直线。
中垂线性质:线段的中垂线上的点到线段两端点的距离相等。
逆定理:到线段两端的距离相等的点在这条线段的垂直平分线上。
5. 角平分线的性质定理:角平分线上的点到角两边的距离相等。
逆定理:角的内部,到角两边距离相等的点在这个角的平分线上。
五、全等三角形1.全等图形:能够完全重合的两个图形。
初中数学教学大纲归纳(精选)
初中数学教学大纲归纳(精选)初中数学教学大纲归纳初中数学大纲主要包含数与代数、空间与图形、统计与概率和课题学习四个方面。
1.数与代数:这个部分主要涉及数的概念、数的运算和数量关系等。
例如,在学习有理数时,学生将学习到负数、零和分数等概念,理解有理数运算的规则和方法。
此外,代数式是代数运算的基本单元,学生将学习到表达式的概念和基本性质。
2.空间与图形:这个部分主要涉及几何图形、位置关系和度量等。
例如,在学习几何图形时,学生将学习到平面图形、立体图形、图形的基本性质和度量等概念。
他们还将学习到图形的平移、旋转和轴对称等基本变换。
3.统计与概率:这个部分主要涉及数据的收集、分析和预测等。
学生将学习到数据的收集和整理方法,理解平均数、中位数和众数等统计量的概念。
他们还将学习到概率的概念和方法,例如求概率公式、条件概率和贝叶斯公式等。
4.课题学习:这个部分主要是为了拓宽学生的知识面,进行跨学科的学习。
学生将进行自主研究活动,探究生活中的数学问题,并进行社会实践和个人体验。
以上是初中数学教学的核心内容,涵盖了数学基础知识和基本技能的各个方面。
大纲的目标是让学生掌握数学基础知识,形成基本的数学思想和方法,培养学生的数学应用能力和创新精神,为高中乃至未来的学习和生活奠定基础。
浙教版初中数学教学大纲浙教版初中数学的教学大纲主要分为五个部分:1.代数初步知识:这部分内容主要包含有理数、整式的加减、一元一次方程等内容。
目标是通过教学,使学生会用代数式表示数量关系,了解等式的性质,会解简单的一元一次方程,会列代数式,会求代数式的值。
2.空间与图形:这部分内容主要包含图形的认识、图形的变换、图形的全等、图形与坐标等内容。
目标是通过教学,使学生能够辨认基本的几何图形,了解平面图形之间的关系;了解轴对称和轴对称图形的性质,会画轴对称图形的对称轴,能够运用轴对称进行图案设计;了解中心对称的意义,会画一个图形围绕某一点旋转180°后的图形;理解旋转对称变换的性质;理解图形的平移变换,掌握平移变换的性质;理解图形的旋转变换,掌握旋转变换的性质。
浙教版七年级下册数学知识点提纲
浙教版七年级下册数学知识点提纲浙教版七班级下册数学学问点提纲【相像变换】※1、假如选用同一个长度单位量得两条线段AB,CD的长度分别是m、n,那么就说这两条线段的比AB:CD=m:n,或写成.※2、四条线段a、b、c、d中,假如a与b的比等于c与d的比,即,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段.※3、留意点:①a:b=k,说明a是b的k倍;②由于线段a、b的长度都是正数,所以k是正数;③比与所选线段的长度单位无关,求出时两条线段的长度单位要全都;④除了a=b之外,a:b≠b:a,与互为倒数;【平移变换】(1)图形平移前后的样子和大小没有改变,只是位置发生改变;(2)图形平移后,对应点连成的线段平行且相等(或在同始终线上)(3)多次平移相当于一次平移。
(4)多次对称后的图形等于平移后的图形。
(5)平移是由方向,距离确定的。
(6)经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等。
这种将图形上的全部点都根据某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移【相像三角形】※1、在相像多边形中,最为简简洁的就是相像三角形.※2.对应角相等、对应边成比例的三角形叫做相像三角形.相像三角形对应边的比叫做相像比.※3、全等三角形是相像三角的特例,这时相像比等于1.留意:证两个相像三角形,与证两个全等三角形一样,应把表示对应顶点的字母写在对应的位置上.※4、相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比.※5、相像三角形周长的比等于相像比.※6、相像三角形面积的比等于相像比的平方.【统计】科学记数法:一个大于10的数可以表示成Ax0N的形式,其中1小于等于A小于10,N是正整数。
扇形统计图:①用圆表示总体,圆中的各个扇形分别代表总体中的不同部分,扇形的大小反映部分占总体的百分比的大小,这样的统计图叫做扇形统计图。
②扇形统计图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360度的比。
初中数学教案大纲
初中数学教案大纲一、教学目标:1. 让学生掌握三角形的定义、性质和分类。
2. 培养学生解决实际问题能力,提高学生的逻辑思维和空间想象力。
3. 引导学生运用三角形知识进行几何证明。
二、教学内容:1. 三角形的定义与性质(1)三角形的概念:由三条边和三个角组成的图形。
(2)三角形的性质:三角形内角和为180°,两边之和大于第三边,两边之差小于第三边。
2. 三角形的分类(1)锐角三角形:三个内角都小于90°的三角形。
(2)直角三角形:一个内角为90°的三角形。
(3)钝角三角形:一个内角大于90°的三角形。
3. 三角形的应用(1)解决实际问题:如测量身高、距离等。
(2)几何证明:运用三角形性质进行证明。
三、教学过程:1. 导入:通过生活中的实例,引导学生了解三角形在日常生活中的应用,激发学生学习兴趣。
2. 新课讲解:(1)讲解三角形的定义与性质,让学生通过实物演示、分组讨论等方式加深理解。
(2)讲解三角形的分类,让学生通过观察图形、分析特点等方式掌握。
3. 例题解析:挑选具有代表性的例题,讲解解题思路和方法,引导学生运用三角形知识解决问题。
4. 课堂练习:布置练习题,让学生巩固所学知识,提高解题能力。
5. 拓展延伸:介绍三角形在现实生活中的应用,如建筑设计、工程测量等,激发学生学习兴趣。
6. 总结:对本节课的知识点进行总结,强调重点和难点,为学生课后复习提供指导。
四、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习作业:检查学生作业完成情况,评估学生对知识点的掌握程度。
3. 课后反馈:收集学生对课堂内容的反馈意见,针对存在的问题进行改进。
五、教学策略:1. 采用直观教学法,通过图形演示、实物展示等方式,让学生直观地了解三角形的性质和特点。
2. 运用启发式教学法,引导学生主动思考、探究问题,提高学生的逻辑思维能力。
七年级下册数学提纲浙教版
七年级下册数学提纲浙教版推荐文章2022地理八年级复习提纲热度:沪科版八年级下册物理复习提纲热度:生物七年级上册复习提纲五四制热度:八年级数学上册期末复习提纲热度:八年级下册生物提纲总结热度:数学是很多同学的薄弱科目,随着中考越来越近,很多同学想要提升数学成绩,你是不是也是这样呢?下面小编给大家分享七年级下册数学提纲浙教版,希望能够帮助大家,欢迎阅读!七年级下册数学提纲浙教版【概率】一、事件:1、事件分为必然事件、不可能事件、不确定事件。
2、必然事件:事先就能肯定一定会发生的事件。
也就是指该事件每次一定发生,不可能不发生,即发生的可能是100%(或1)。
3、不可能事件:事先就能肯定一定不会发生的事件。
也就是指该事件每次都完全没有机会发生,即发生的可能性为零。
4、不确定事件:事先无法肯定会不会发生的事件,也就是说该事件可能发生,也可能不发生,即发生的可能性在0和1之间。
二、等可能性:是指几种事件发生的可能性相等。
1、概率:是反映事件发生的可能性的大小的量,它是一个比例数,一般用P来表示,P(A)=事件A可能出现的结果数/所有可能出现的结果数。
2、必然事件发生的概率为1,记作P(必然事件)=1;3、不可能事件发生的概率为0,记作P(不可能事件)=0;4、不确定事件发生的概率在0—1之间,记作0三、几何概率1、事件A发生的概率等于此事件A发生的可能结果所组成的面积(用SA表示)除以所有可能结果组成图形的面积(用S全表示),所以几何概率公式可表示为P(A)=SA/S全,这是因为事件发生在每个单位面积上的概率是相同的。
2、求几何概率:(1)首先分析事件所占的面积与总面积的关系;(2)然后计算出各部分的面积;(3)最后代入公式求出几何概率。
【三角形】1、三角形→由不在同一直线上的三条线段首尾顺次相接所组成的图形。
2、判断三条线段能否组成三角形。
①a+b>c(ab为最短的两条线段)②a-b3、第三边取值范围:a-b4、对应周长取值范围若两边分别为a,b则周长的取值范围是2a如两边分别为5和7则周长的取值范围是145、三角形中三角的关系(1)、三角形内角和定理:三角形的三个内角的和等于1800。
浙教版数学大纲
浙教版数学大纲浙教版初中数学教材总目录七年级上册第1章从自然数到有理数1.1从自然数到分数 1.2有理数 1.3数轴 1.4绝对值 1.5有理数的大小比较第2章有理数的运算2.1有理数的加法 2.2有理数的减法 2.3有理数的乘法 2.4有理数的除法2.5有理数的乘方2.6有理数的混合运算2.7准确数和近似数2.8计算器的使用第3章实数3.1平方根 3.2实数 3.3立方根 3.4用计算器进行数的开方 3.5实数的运算第4章代数式4.1用字母表示数 4.2代数式 4.3代数式的值 4.4整式 4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程 5.2一元一次方程的解法 5.3一元一次方程的应用5.4问题解决的基本步骤第6章数据与图表6.1数据的收集与整理6.2统计表6.3条形统计图和折线统计图6.4扇形统计图第7章图形的初步知识7.1几何图形7.2线段、射线和直线7.3线段的长短比较7.4角与角的度量7.5角的大小比较7.6余角和补角7.7相交线7.8平行线七年级下册第1章三角形的初步知识1.1 认识三角形 1.2 三角形的角平分线和中线 1.3 三角形的高 1.4全等三角形1.5 三角形全等的条件 1.6 作三角形第2章图形和变换2.1 轴对称图形 2.2 轴对称变换 2.3 平移变换 2.4 旋转变换 2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性 3.2 可能性的大小 3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程 4.2 二元一次方程组 4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法 5.2 单项式的乘法 5.3 多项式的乘法5.4 乘法公式 5.5 整式的化简 5.6 同底数幂的除法 5.7 整式的除法第6章因式分解6.1 因式分解 6.2 提取公因式法 6.3 用乘法公式分解因式 6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1同位角、内错角、同旁内角 1.2平行线的判定 1.3平行线的性质1.4平行线之间的距离第2章特殊三角形2.1等腰三角形2.2等腰三角形的性质2.3等腰三角形的判定2.4等边三角形2.5直角三角形 2.6探索勾股定理 2.7直角三角形全等的判定第3章直棱柱3.1认识直棱柱 3.2直棱柱的表面展开图 3.3三视图 3.4由三视图描述几何体第4章样本与数据分析初步4.1抽样 4.2平均数 4.3中位数和众数 4.4方差和标准差 4.5统计量的选择与应用第5章一元一次不等式5.1认识不等式 5.2不等式的基本性质 5.3一元一次不等式 5.4一元一次不等式组第6章图形与坐标6.1探索确定位置的方法 6.2平面直角坐标系 6.3坐标平面内的图形变换第7章一次函数7.1常量与变量7.2认识函数7.3一次函数7.4一次函数的图象7.5一次函数的简单应用八年级下册第1章二次根式1.1 二次根式 1.2 二次根式的性质 1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程 2.2 一元二次方程的解法 2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率 3.2 频数分布直方图 3.3 频数分布折线图第4章命题与证明4.1 定义与命题 4.2 证明 4.3 反例与证明 4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定 5.6 三角形的中位线 5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形 6.2 菱形 6.3 正方形 6.4 梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用●小结●目标与评定第2章二次函数2.1 二次函数2.2 二次函数的图象●阅读材料用计算机画二次函数的图象2.3 二次函数的性质2.4 二次函数的应用●小结●目标与评定第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角●阅读材料生活离不开圆3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积●小结●目标与评定第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似●课题学习精彩的分形●小结●目标与评定九年级下册第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形●课题学习会徽中的数学●小结●目标与评定第2章简单事件的概率2.1 简单事件的概念2.2 估计概率2.3 概率的简单应用●小结●目标与评定第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系●小结●目标与评定第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图●小结●目标与评定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学大纲一、中考数学命题特点分析认真分析近几年浙江省中考数学试题,不能发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
强调理论联系实际,引导学生关注社会生活。
试题突出如下特点:一是典型性,即选题典型,难易程度做到逐步递进;二是针对性,即选题精炼,帮助学生提高复习效率;三是新颖性,体现探究性、开放性、活动性,从多方面培养学生的能力与数学素养。
学生可以从以下几个方面来备考:1、重教材,抓基础,夯实基本知识点,熟练各种基本技能大多数的中考的试题是教材中题目的引申、变形或组合,特别是教材的内容编排有“螺旋上升”的特点,有些知识点比较分散,因此,要深入钻研教材,不能脱离课本,进入初三的学生,在学好新知识的同时,教师要把初一、初二相关的内容进行归纳整理,使之形成结构,要有经常性的复习,反复练习达到知识的巩固熟练,把基本知识与基本技能落实好。
2、重过程,抓理解,提高解题能力中考试题中有突出“动态”、“探究”、“过程”等观念,如图表中信息的收集与处理,结论的猜想与证明,利用学具操作、图形的旋转、翻折运动及文学语言、符号语言、图形语言的转换等,这些问题都是切切实实地关注学生的体验过程,要知识的发生过程,避免死记硬背。
平时训练要求高标准,定时定量,做到等题规范,表述准确,推断合理,提高学生的审题能力,分析能力,计算能力。
3、重通法、抓变通,培养思维的广阔性、灵活性和敏捷性中考数学试题形式和知识背景千变万化,但其中运用是数学思想方法都是相通的。
要处理好“通法”和技巧的关系,抓知识的主干部分与通性通法,在此基础上通过寻求不同解题途径与思维方式,注重变式和拓展训练,精做精练,培养思维的广阔性、灵活性和敏捷性。
4、重反思、抓纠错中考考试的分数高低,往往取决于细心,成绩再好的同学也难免粗心,但粗心的背后是有原因的,知识的负迁移,知识点不熟练,平时解题不规范,数学概念不清晰等。
所以经常引导学生反思自己的错误,要求他们准备一个记录本,对一些易错、易忘记的问题随时记录,根据个人的具体情况,查漏补缺,做好知识归类,在形成知识结构的基础上加深记忆,对经常错的点要进行归类分析。
具体应注意以下几点:(1)培养学生学会在一个知识板块复习结束后,自我反思:在解题过程中用了哪些基础知识和基本方法,解题时哪些步骤容易出错,该问题的难点何在,我如何突破等,(2)培养学生养成及时发现自己的问题与弱点,及时总结和反思,随时记录,随时整理,随时翻阅。
二、初中数学常用解题方法总结1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
三、初中数学知识点1、有理数有理数是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
近几年主要考察一下几个方面:①相反数,绝对值,倒数等相关概念②负数的乘方,加减及混合运算。
突破方法:①牢固掌握有关有理数的概念:如相反数,倒数,绝对值等,特别是绝对值的意义,真正掌握数形结合的思想,多方面理解概念。
②熟练掌握有理数的各种运算法则,特别是负数参与的运算。
在混合运算中特别注意符号和运算顺序,这个要通过一定量的练习来掌握其中的运算技巧,达到一定的熟练程度。
2、整式整式:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
近几年主要考察①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公司的几何意义③利用提公因式发和公式法分解因式。
突破方法:①要准确理解和辨认单项式的次数,系数,同类项。
②在运用公式或法则进行运算式,首先要判断式子的结构特征,确定解题思路,以便使解题更加方便,快捷。
3、代数式代数式:中考试题中的分值约为5-6分,主要以选择,填空题为主,也常出现探寻规律的题目。
难易度属于中档。
近几年考察的以下两个方面:①结合生产和生活实际列代数式,求代数式的值等。
②根据数表,图表,算式寻找规律建立代数式模型。
突破方法:掌握好列代数式的要求,技巧,学会观察,猜想验证,用熟悉语言正确表达等解题。
考前多做些寻找规律的题目,真正掌握规律探索的要点。
4、分式分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
近几年主要考察①分式的概念,性质,意义②分式的运算,化简求值。
③列分式方程解决实际问题、突破方法:①掌握并灵活应用分式的基本性质,②在通分和约分时,都要注意分解因式知识的应用。
③化简求值时,注意整体思想和技巧的应用。
④留意生活中是实际问题5、一元一次方程一元一次方程:中考分值约为1-3分,题型主要以选择,填空为主,极少出现简答,难易度为易。
考察内容:①方程及方程解的概念,②根据题意列一元一次方程,③解一元一次方程。
突破方法:①掌握一元一次方程的概念和解法,熟练解方程。