浙教版初中数学教学大纲
2024年浙教版数学八年级上册全册教案

2024年浙教版数学八年级上册全册教案一、教学内容1. 第一单元:实数第1节:平方根与立方根第2节:实数及其运算2. 第二单元:一元二次方程第1节:一元二次方程的概念与解法第2节:一元二次方程的配方法第3节:一元二次方程的公式法第4节:一元二次方程的判别式3. 第三单元:不等式与不等式组第1节:不等式的性质与解法第2节:不等式组的概念与解法4. 第四单元:函数及其性质第1节:函数的概念与表示方法第2节:函数的性质第3节:一次函数与反比例函数二、教学目标1. 让学生掌握实数的概念、性质与运算,提高数学运算能力。
2. 使学生掌握一元二次方程的解法,并能运用解决实际问题。
3. 培养学生熟练运用不等式与不等式组解决实际问题的能力。
4. 让学生理解函数的概念,掌握函数的性质,并学会一次函数与反比例函数的应用。
三、教学难点与重点1. 教学难点:实数的运算与性质一元二次方程的解法与判别式不等式与不等式组的解法函数的性质及其应用2. 教学重点:实数的概念与运算一元二次方程的解法与应用不等式的性质与解法函数的概念及其性质四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教学课件2. 学具:教材、练习本、草稿纸、计算器五、教学过程1. 实数引入:通过生活实例,让学生感受实数的概念。
例题讲解:讲解平方根、立方根的性质与运算方法。
随堂练习:完成教材第1节与第2节练习题。
2. 一元二次方程引入:通过实际问题,引导学生理解一元二次方程的概念。
例题讲解:分别讲解一元二次方程的配方法、公式法与判别式。
随堂练习:完成教材第1节至第4节练习题。
3. 不等式与不等式组引入:通过实际情景,让学生理解不等式的意义。
例题讲解:讲解不等式的性质与解法,以及不等式组的解法。
随堂练习:完成教材第1节与第2节练习题。
4. 函数及其性质引入:让学生了解函数在实际生活中的应用。
例题讲解:讲解函数的概念、表示方法及其性质。
随堂练习:完成教材第1节至第3节练习题。
浙教版初中数学复习提纲教案

浙教版初中数学复习提纲教案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】初中数学总复习提纲第一章 实数★重点:数的有关概念及性质,实数的运算 ☆内容提要☆一、 重要概念1.数的分类及概念正数实数 0负数说明:“分类”的原则:1)相称(不重、不漏)2)有标准2.非负数:正实数与零的统称。
(表为:x ≥0) 常见的非负数有:质:若干个非负数的和为0,则每个非负担数均为性0。
3.倒数: ①定义:如果两个数的乘积为1.那么这两个数互为倒数.②性质:≠1/a (a ≠±1);a 中,a ≠0;<a <1时1/a >1;a >1时,1/a <1;D.积为1。
4.相反数: ①定义:如果两个数的和为0.那么这两个数互为相反数. ②求相反数的公式: a 的相反数为-a.③性质:≠0时,a ≠-a;与-a 在数轴上的位置关于原点对称;C.两个相反数的和为0,商为-1。
5.数轴:①定义(“三要素”):具有原点、正方向、单位长度的直线叫数轴.实无理数(无限不循环小数) 有理数 正分数 负分数正整数0 负整数 (有限或无限循环小整数分正无理数负无理数│a │ a (a ≥0)(a 为一切实数)②作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.所有的有理数可以在数都可以在数轴上表示出来,故数轴上的点有的表示有理数,有的表示无理数,数轴上的点与实数是一一对应关系。
6.奇数、偶数、质数、合数(正整数—自然数)定义及表示:奇数:2n-1偶数:2n (n 为自然数)7.绝对值:①代数定义:正数的绝对值是它的本身,0的绝对值是它的本身,负数的绝对值是它的相反数。
义:数a 的绝对值顶的几何意义是实数a 在数轴上所几何定对应的点到原点的距离。
②│a │≥0,符号“││”是“非负数”的标志; ③数a 的绝对值只有一个;④处理任何类型的题目,只要其中有“││”出现,其关键一步是去掉“││”符号。
2024精品数学浙教版八上整册教案全套下载(1)

2024精品数学浙教版八上整册教案全套一、教学内容1. 第一章:实数第一节:无理数的概念与性质第二节:实数的分类与运算2. 第二章:一元二次方程第一节:一元二次方程的解法第二节:一元二次方程的根与系数的关系3. 第三章:不等式与不等式组第一节:不等式的性质与解法第二节:不等式组的解法及应用4. 第四章:函数及其性质第一节:函数的概念与表示方法第二节:函数的性质及其图像二、教学目标1. 理解实数、一元二次方程、不等式与不等式组、函数的基本概念,掌握相关性质与解法。
2. 能够运用所学知识解决实际问题,提高数学思维能力。
3. 培养学生的合作交流意识,提高自主学习能力。
三、教学难点与重点1. 教学难点:实数中无理数的理解与应用一元二次方程的根与系数的关系不等式组的解法函数的性质及其图像2. 教学重点:各章节的基本概念与性质各类题型的解法与应用四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、教鞭等。
2. 学具:教材、练习本、文具等。
五、教学过程1. 实数:引入:通过实际情景,让学生感受无理数的存在,激发学习兴趣。
新课:讲解无理数的概念、性质,以及实数的分类与运算。
例题:讲解典型例题,分析解题思路。
随堂练习:布置相关练习,巩固所学知识。
2. 一元二次方程:引入:通过实际情景,引出一元二次方程。
新课:讲解一元二次方程的解法、根与系数的关系。
例题:讲解典型例题,分析解题思路。
随堂练习:布置相关练习,巩固所学知识。
3. 不等式与不等式组:引入:通过实际情景,引出不等式与不等式组。
新课:讲解不等式的性质、解法,以及不等式组的解法及应用。
例题:讲解典型例题,分析解题思路。
随堂练习:布置相关练习,巩固所学知识。
4. 函数及其性质:引入:通过实际情景,引出函数的概念。
新课:讲解函数的表示方法、性质及其图像。
例题:讲解典型例题,分析解题思路。
随堂练习:布置相关练习,巩固所学知识。
六、板书设计1. 各章节的基本概念、性质、解法等以提纲形式展示。
初中数学大纲及教案

初中数学教学大纲及教案示例如下:一、教学大纲1. 教学目标初中数学教学旨在让学生掌握必要的数学知识,培养学生的逻辑思维、创新意识和解决问题的能力。
通过教学,使学生能够熟练运用数学知识解决实际问题,为高中阶段的学习打下坚实基础。
2. 教学内容初中数学教学内容包括:数与代数、几何、统计与概率、综合与应用四个方面。
(1) 数与代数:有理数、整式、分式、方程、不等式、函数等。
(2) 几何:平面几何、立体几何、几何变换、几何证明等。
(3) 统计与概率:数据收集、数据分析、概率计算等。
(4) 综合与应用:数学阅读、数学建模、数学探究等。
3. 教学方法采用启发式教学、情境教学、分组合作学习等方法,激发学生的学习兴趣,培养学生的动手操作能力和团队合作精神。
4. 教学评价采用课堂表现、作业完成情况、考试成绩等多种方式进行评价,关注学生的全面发展。
二、教案示例课题:勾股定理教学目标:1. 理解勾股定理的表述;2. 学会运用勾股定理解决实际问题;3. 培养学生的逻辑思维和解决问题的能力。
教学内容:1. 介绍勾股定理的发现历程;2. 讲解勾股定理的表述及证明;3. 运用勾股定理解决直角三角形的相关问题。
教学过程:1. 导入:通过讲解古代数学家毕达哥拉斯的故事,引导学生思考勾股定理的发现过程。
2. 新课:介绍勾股定理的表述,讲解勾股定理的证明方法。
3. 练习:让学生运用勾股定理解决一些直角三角形的问题,如求边长、面积等。
4. 拓展:引导学生思考勾股定理在现实生活中的应用,如测量、建筑设计等。
5. 小结:对本节课的主要内容进行总结,强调勾股定理的重要性。
6. 作业:布置一些有关勾股定理的练习题,巩固所学知识。
教学评价:通过课堂讲解、练习题完成情况、学生提问等方式,评价学生对勾股定理的理解和运用能力。
关注学生在解决问题时的思维过程,培养学生的逻辑思维和创新能力。
以上仅为初中数学教学大纲和教案的简要示例,实际教学中需根据学生的实际情况进行调整。
2024年浙教版八年级数学上册全册教案

2024年浙教版八年级数学上册全册教案一、教学内容1. 第一章有理数及其运算1.1 有理数的概念及分类1.2 有理数的加法与减法1.3 有理数的乘法与除法1.4 有理数的乘方与开方2. 第二章整式的乘法与因式分解2.1 整式的乘法法则2.2 乘法公式2.3 整式的因式分解3. 第三章分式及其运算3.1 分式的概念及性质3.2 分式的乘法与除法3.3 分式的加法与减法4. 第四章轴对称与中心对称4.1 轴对称图形4.2 中心对称图形5. 第五章数据分析5.1 平均数、中位数、众数5.2 方差与标准差5.3 频数分布表与频数分布直方图二、教学目标1. 理解有理数、整式、分式的概念及性质,掌握相应的运算方法,并能熟练运用。
2. 掌握轴对称与中心对称的概念、性质及其在实际问题中的应用。
3. 学会数据分析的基本方法,能对数据进行整理、描述和推断。
三、教学难点与重点1. 教学难点:有理数的运算、整式的因式分解、分式的运算、数据分析的方法。
2. 教学重点:理解概念、掌握运算方法、解决实际问题。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔。
2. 学具:教材、练习本、计算器。
五、教学过程1. 引入实践情景,提出问题,激发学生学习兴趣。
2. 讲解理论知识,结合例题进行解析。
3. 随堂练习,巩固所学知识。
4. 学生互相讨论,解决问题,教师进行指导。
六、板书设计1. 根据教学内容,设计简洁、直观的板书,突出重点和难点。
2. 采用图表、示例等形式,使板书更具条理性和系统性。
七、作业设计1. 作业题目:第一章:有理数运算练习题;第二章:整式乘法与因式分解练习题;第三章:分式运算练习题;第四章:轴对称与中心对称练习题;第五章:数据分析练习题。
2. 答案:根据练习题,给出详细的解答过程和答案。
八、课后反思及拓展延伸2. 拓展延伸:布置一些拓展性练习题,提高学生的思维能力和解决问题的能力。
重点和难点解析一、教学内容的选择与安排重点关注章节和内容的逻辑顺序,确保学生在学习新知识时能够循序渐进,避免知识点的跳跃。
(完整版)2023浙教版最新初中数学目录

(完整版)2023浙教版最新初中数学目录浙教初中数学总目录七年级上册第1章有理数第2章有理数的运算第3章实数第4章代数式1.1从自然数到分数2.1有理数的加法3.1平方根4.1用字母表示数1.2数轴2.2有理数的减法3.2实数4.2代数式1.3绝对值2.3有理数的乘法3.3立方根4.3代数式的值1.4有理数的大小比较2.4有理数的除法3.4实数的运算4.4整式2.5有理数的乘方4.5合并同类项2.6有理数的混合运算4.6整式的加减2.7近似数第5章一元一次方程第6章图形的初步知识5.1一元一次方程6.1几何图形6.5角与角的度量6.9直线的相交5.2等式的基本性质6.2线段、射线和直线6.6角的大小比较5.3一元一次方程的解法6.3线段的长短比较6.7角的和差5.4一元一次方程的应用6.4线段的和差6.8余角和补角七年级下册第1章平行线第2章二元一次方程组第3章整式的乘除1.1平行线2.1二元一次方程3.1同底数幂的乘法1.2同位角、内错角、同旁内角2.2二元一次方程组3.2单项式的乘法1.3平行线的判定2.3解二元一次方程组3.3多项式的乘法1.4平行线的性质2.4二元一次方程组的应用3.4乘法公式1.5图形的平移2.5三元一次方程组及其解法3.5整式的化简3.6同底数幂的除法3.7整式的除法第4章因式分解第5章分式第6章数据与统计图表4.1因式分解5.1分式6.1数据的首级与整理4.2提取公因式法5.2分式的基本性质6.2条形统计图和折线统计图4.3用乘法公式分解因式5.3分式的乘除6.3扇形统计图5.4分式的加减6.4频数与频率5.5分式方程6.5频数直方图八年级上册第1章三角形的初步知识第2章特殊三角形第3章一元一次不等式1.1认识三角形2.1图形的轴对称3.1认识不等式1.2定义与命题2.2等腰三角形3.2不等式的基本性质1.3证明2.3等腰三角形的性质定理3.3一元一次不等式1.4全等三角形2.4等腰三角形的判定定理3.4一元一次不等式组1.5三角形全等的判定2.5逆命题和逆定理1.6尺规作图2.6直角三角形2.7探索勾股定理2.8直角三角形全等的判定第4章图形与坐标第5章一次函数4.1探索确定位置的方法5.1常量与变量4.2平面直角坐标系5.2函数4.3坐标平面内图形的轴对称和平移5.3一次函数5.4一次函数的图像5.5一次函数的简单应用八年级下册第1章二次根式第2章一元二次方程第3章数据分析初步1.1二次根式2.1一元二次方程3.1平均数1.2二次根式的性质2.2一元二次方程的解法3.2中位数和众数1.3二次根式的运算2.3一元二次方程的应用3.3方差和标准差2.4一元二次方程根与系数的关系第4章平行四边形第5章特殊平行四边形与梯形第6章反比例函数4.1多边形5.1矩形6.1反比例函数4.2平行四边形及性质5.2菱形6.2反比例函数的图像和性质4.3中心对称5.3正方形6.3反比例函数的应用4.4平行四边形的判定定理4.5三角形的中位线4.6反证法九年级上册第1章二次函数第2章简单事件的概率第3章圆的基本性质1.1二次函数2.1事件的可能性3.1圆1.2二次函数的图象2.2简单事件的概率3.2图形的旋转1.3二次函数的性质2.3用频率估计概率3.3垂径定理1.4二次函数的应用2.4概率的简单应用3.4圆心角3.5圆周角3.6圆内接四边形第4章相似三角形4.1比例线段4.2由平行线截得的比例线段4.3相似三角形4.4两个三角形相似的判定4.5相似三角形的性质及其应用4.6相似多边形4.7图形的位似第1章解直角三角形1.1锐角三角函数1.2锐角三角函数的计算1.3解直角三角形●课题学习会徽中的数学第4章投影与三视图3.1投影3.2简单几何体的三视图3.3由三视图描述几何体3.4简单几何体的表面展开图3.7正多边形3.8弧长及扇形的面积九年级下册第2章直线与圆的位置关系2.1直线与圆的位置关系2.2切线长定理2.3三角形的内切线。
(浙教版)初中数学教学大纲

初中数学教学大纲一、中考数学命题特点分析认真分析近几年浙江省中考数学试题,不能发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
强调理论联系实际,引导学生关注社会生活。
试题突出如下特点:一是典型性,即选题典型,难易程度做到逐步递进;二是针对性,即选题精炼,帮助学生提高复习效率;三是新颖性,体现探究性、开放性、活动性,从多方面培养学生的能力与数学素养。
学生可以从以下几个方面来备考:1、重教材,抓基础,夯实基本知识点,熟练各种基本技能大多数的中考的试题是教材中题目的引申、变形或组合,特别是教材的内容编排有“螺旋上升”的特点,有些知识点比较分散,因此,要深入钻研教材,不能脱离课本,进入初三的学生,在学好新知识的同时,教师要把初一、初二相关的内容进行归纳整理,使之形成结构,要有经常性的复习,反复练习达到知识的巩固熟练,把基本知识与基本技能落实好。
2、重过程,抓理解,提高解题能力中考试题中有突出“动态”、“探究”、“过程”等观念,如图表中信息的收集与处理,结论的猜想与证明,利用学具操作、图形的旋转、翻折运动及文学语言、符号语言、图形语言的转换等,这些问题都是切切实实地关注学生的体验过程,要知识的发生过程,避免死记硬背。
平时训练要求高标准,定时定量,做到等题规范,表述准确,推断合理,提高学生的审题能力,分析能力,计算能力。
3、重通法、抓变通,培养思维的广阔性、灵活性和敏捷性中考数学试题形式和知识背景千变万化,但其中运用是数学思想方法都是相通的。
要处理好“通法”和技巧的关系,抓知识的主干部分与通性通法,在此基础上通过寻求不同解题途径与思维方式,注重变式和拓展训练,精做精练,培养思维的广阔性、灵活性和敏捷性。
4、重反思、抓纠错中考考试的分数高低,往往取决于细心,成绩再好的同学也难免粗心,但粗心的背后是有原因的,知识的负迁移,知识点不熟练,平时解题不规范,数学概念不清晰等。
所以经常引导学生反思自己的错误,要求他们准备一个记录本,对一些易错、易忘记的问题随时记录,根据个人的具体情况,查漏补缺,做好知识归类,在形成知识结构的基础上加深记忆,对经常错的点要进行归类分析。
浙教版数学大纲

浙教版数学大纲浙教版初中数学教材总目录七年级上册第1章从自然数到有理数1.1从自然数到分数 1.2有理数 1.3数轴 1.4绝对值 1.5有理数的大小比较第2章有理数的运算2.1有理数的加法 2.2有理数的减法 2.3有理数的乘法 2.4有理数的除法2.5有理数的乘方2.6有理数的混合运算2.7准确数和近似数2.8计算器的使用第3章实数3.1平方根 3.2实数 3.3立方根 3.4用计算器进行数的开方 3.5实数的运算第4章代数式4.1用字母表示数 4.2代数式 4.3代数式的值 4.4整式 4.5合并同类项4.6整式的加减第5章一元一次方程5.1一元一次方程 5.2一元一次方程的解法 5.3一元一次方程的应用5.4问题解决的基本步骤第6章数据与图表6.1数据的收集与整理6.2统计表6.3条形统计图和折线统计图6.4扇形统计图第7章图形的初步知识7.1几何图形7.2线段、射线和直线7.3线段的长短比较7.4角与角的度量7.5角的大小比较7.6余角和补角7.7相交线7.8平行线七年级下册第1章三角形的初步知识1.1 认识三角形 1.2 三角形的角平分线和中线 1.3 三角形的高 1.4全等三角形1.5 三角形全等的条件 1.6 作三角形第2章图形和变换2.1 轴对称图形 2.2 轴对称变换 2.3 平移变换 2.4 旋转变换 2.5 相似变换2.6 图形变换的简单应用第3章事件的可能性3.1 认识事件的可能性 3.2 可能性的大小 3.3 可能性和概率第4章二元一次方程组4.1 二元一次方程 4.2 二元一次方程组 4.3 解二元一次方程组4.4 二元一次方程组的应用第5章整式的乘除5.1 同底数幂的乘法 5.2 单项式的乘法 5.3 多项式的乘法5.4 乘法公式 5.5 整式的化简 5.6 同底数幂的除法 5.7 整式的除法第6章因式分解6.1 因式分解 6.2 提取公因式法 6.3 用乘法公式分解因式 6.4 因式分解的简单应用第7章分式7.1 分式7.2 分式的乘除7.3 分式的加减7.4 分式方程八年级上册第1章平行线1.1同位角、内错角、同旁内角 1.2平行线的判定 1.3平行线的性质1.4平行线之间的距离第2章特殊三角形2.1等腰三角形2.2等腰三角形的性质2.3等腰三角形的判定2.4等边三角形2.5直角三角形 2.6探索勾股定理 2.7直角三角形全等的判定第3章直棱柱3.1认识直棱柱 3.2直棱柱的表面展开图 3.3三视图 3.4由三视图描述几何体第4章样本与数据分析初步4.1抽样 4.2平均数 4.3中位数和众数 4.4方差和标准差 4.5统计量的选择与应用第5章一元一次不等式5.1认识不等式 5.2不等式的基本性质 5.3一元一次不等式 5.4一元一次不等式组第6章图形与坐标6.1探索确定位置的方法 6.2平面直角坐标系 6.3坐标平面内的图形变换第7章一次函数7.1常量与变量7.2认识函数7.3一次函数7.4一次函数的图象7.5一次函数的简单应用八年级下册第1章二次根式1.1 二次根式 1.2 二次根式的性质 1.3 二次根式的运算第2章一元二次方程2.1 一元二次方程 2.2 一元二次方程的解法 2.3 一元二次方程的应用第3章频数及其分布3.1 频数与频率 3.2 频数分布直方图 3.3 频数分布折线图第4章命题与证明4.1 定义与命题 4.2 证明 4.3 反例与证明 4.4 反证法第5章平行四边形5.1 多边形5.2 平行四边形5.3 平行四边形的性质5.4 中心对称5.5 平行四边形的判定 5.6 三角形的中位线 5.7 逆命题和逆定理第6章特殊平行四边形与梯形6.1 矩形 6.2 菱形 6.3 正方形 6.4 梯形九年级上册第1章反比例函数1.1 反比例函数1.2 反比例函数的图象和性质1.3 反比例函数的应用●小结●目标与评定第2章二次函数2.1 二次函数2.2 二次函数的图象●阅读材料用计算机画二次函数的图象2.3 二次函数的性质2.4 二次函数的应用●小结●目标与评定第3章圆的基本性质3.1 圆3.2 圆的轴对称性3.3 圆心角3.4 圆周角●阅读材料生活离不开圆3.5 弧长及扇形的面积3.6 圆锥的侧面积和全面积●小结●目标与评定第4章相似三角形4.1 比例线段4.2 相似三角形4.3 两个三角形相似的判定4.4 相似三角形的性质及其应用4.5 相似多边形4.6 图形的位似●课题学习精彩的分形●小结●目标与评定九年级下册第1章解直角三角形1.1 锐角三角函数1.2 有关三角函数的计算1.3 解直角三角形●课题学习会徽中的数学●小结●目标与评定第2章简单事件的概率2.1 简单事件的概念2.2 估计概率2.3 概率的简单应用●小结●目标与评定第3章直线与圆、圆与圆的位置关系3.1 直线与圆的位置关系3.2 三角形的内切圆3.3 圆与圆的位置关系●小结●目标与评定第4章投影与三视图4.1 视角与盲区4.2 投影4.3 简单物体的三视图●小结●目标与评定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初中数学教学大纲一、中考数学命题特点分析认真分析近几年浙江省中考数学试题,不能发现,试题注重对学生的基础知识、基本技能、基本思想方法的“三基”考查。
强调理论联系实际,引导学生关注社会生活。
试题突出如下特点:一是典型性,即选题典型,难易程度做到逐步递进;二是针对性,即选题精炼,帮助学生提高复习效率;三是新颖性,体现探究性、开放性、活动性,从多方面培养学生的能力与数学素养。
学生可以从以下几个方面来备考:1、重教材,抓基础,夯实基本知识点,熟练各种基本技能大多数的中考的试题是教材中题目的引申、变形或组合,特别是教材的内容编排有“螺旋上升”的特点,有些知识点比较分散,因此,要深入钻研教材,不能脱离课本,进入初三的学生,在学好新知识的同时,教师要把初一、初二相关的内容进行归纳整理,使之形成结构,要有经常性的复习,反复练习达到知识的巩固熟练,把基本知识与基本技能落实好。
2、重过程,抓理解,提高解题能力中考试题中有突出“动态”、“探究”、“过程”等观念,如图表中信息的收集与处理,结论的猜想与证明,利用学具操作、图形的旋转、翻折运动及文学语言、符号语言、图形语言的转换等,这些问题都是切切实实地关注学生的体验过程,要知识的发生过程,避免死记硬背。
平时训练要求高标准,定时定量,做到等题规范,表述准确,推断合理,提高学生的审题能力,分析能力,计算能力。
3、重通法、抓变通,培养思维的广阔性、灵活性和敏捷性中考数学试题形式和知识背景千变万化,但其中运用是数学思想方法都是相通的。
要处理好“通法”和技巧的关系,抓知识的主干部分与通性通法,在此基础上通过寻求不同解题途径与思维方式,注重变式和拓展训练,精做精练,培养思维的广阔性、灵活性和敏捷性。
4、重反思、抓纠错中考考试的分数高低,往往取决于细心,成绩再好的同学也难免粗心,但粗心的背后是有原因的,知识的负迁移,知识点不熟练,平时解题不规范,数学概念不清晰等。
所以经常引导学生反思自己的错误,要求他们准备一个记录本,对一些易错、易忘记的问题随时记录,根据个人的具体情况,查漏补缺,做好知识归类,在形成知识结构的基础上加深记忆,对经常错的点要进行归类分析。
具体应注意以下几点:(1)培养学生学会在一个知识板块复习结束后,自我反思:在解题过程中用了哪些基础知识和基本方法,解题时哪些步骤容易出错,该问题的难点何在,我如何突破等,(2)培养学生养成及时发现自己的问题与弱点,及时总结和反思,随时记录,随时整理,随时翻阅。
二、初中数学常用解题方法总结1、配方法所谓配方,就是把一个解析式利用恒等变形的方法,把其中的某些项配成一个或几个多项式正整数次幂的和形式。
通过配方解决数学问题的方法叫配方法。
其中,用的最多的是配成完全平方式。
配方法是数学中一种重要的恒等变形的方法,它的应用十分非常广泛,在因式分解、化简根式、解方程、证明等式和不等式、求函数的极值和解析式等方面都经常用到它。
2、因式分解法因式分解,就是把一个多项式化成几个整式乘积的形式。
因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。
因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。
3、换元法换元法是数学中一个非常重要而且应用十分广泛的解题方法。
我们通常把未知数或变数称为元,所谓换元法,就是在一个比较复杂的数学式子中,用新的变元去代替原式的一个部分或改造原来的式子,使它简化,使问题易于解决。
4、判别式法与韦达定理一元二次方程ax2+bx+c=0(a、b、c属于R,a≠0)根的判别,△=b2-4ac,不仅用来判定根的性质,而且作为一种解题方法,在代数式变形,解方程(组),解不等式,研究函数乃至几何、三角运算中都有非常广泛的应用。
韦达定理除了已知一元二次方程的一个根,求另一根;已知两个数的和与积,求这两个数等简单应用外,还可以求根的对称函数,计论二次方程根的符号,解对称方程组,以及解一些有关二次曲线的问题等5、待定系数法在解数学问题时,若先判断所求的结果具有某种确定的形式,其中含有某些待定的系数,而后根据题设条件列出关于待定系数的等式,最后解出这些待定系数的值或找到这些待定系数间的某种关系,从而解答数学问题,这种解题方法称为待定系数法。
它是中学数学中常用的方法之一。
6、构造法在解题时,我们常常会采用这样的方法,通过对条件和结论的分析,构造辅助元素,它可以是一个图形、一个方程(组)、一个等式、一个函数、一个等价命题等,架起一座连接条件和结论的桥梁,从而使问题得以解决,这种解题的数学方法,我们称为构造法。
运用构造法解题,可以使代数、三角、几何等各种数学知识互相渗透,有利于问题的解决。
7、反证法反证法是一种间接证法,它是先提出一个与命题的结论相反的假设,然后,从这个假设出发,经过正确的推理,导致矛盾,从而否定相反的假设,达到肯定原命题正确的一种方法。
反证法可以分为归谬反证法(结论的反面只有一种)与穷举反证法(结论的反面不只一种)。
用反证法证明一个命题的步骤,大体上分为:(1)反设;(2)归谬;(3)结论。
反设是反证法的基础,为了正确地作出反设,掌握一些常用的互为否定的表述形式是有必要的,例如:是、不是;存在、不存在;平行于、不平行于;垂直于、不垂直于;等于、不等于;大(小)于、不大(小)于;都是、不都是;至少有一个、一个也没有;至少有n个、至多有(n一1)个;至多有一个、至少有两个;唯一、至少有两个。
归谬是反证法的关键,导出矛盾的过程没有固定的模式,但必须从反设出发,否则推导将成为无源之水,无本之木。
推理必须严谨。
导出的矛盾有如下几种类型:与已知条件矛盾;与已知的公理、定义、定理、公式矛盾;与反设矛盾;自相矛盾。
8、面积法平面几何中讲的面积公式以及由面积公式推出的与面积计算有关的性质定理,不仅可用于计算面积,而且用它来证明平面几何题有时会收到事半功倍的效果。
运用面积关系来证明或计算平面几何题的方法,称为面积方法,它是几何中的一种常用方法。
用归纳法或分析法证明平面几何题,其困难在添置辅助线。
面积法的特点是把已知和未知各量用面积公式联系起来,通过运算达到求证的结果。
所以用面积法来解几何题,几何元素之间关系变成数量之间的关系,只需要计算,有时可以不添置补助线,即使需要添置辅助线,也很容易考虑到。
9、几何变换法在数学问题的研究中,常常运用变换法,把复杂性问题转化为简单性的问题而得到解决。
所谓变换是一个集合的任一元素到同一集合的元素的一个一一映射。
中学数学中所涉及的变换主要是初等变换。
有一些看来很难甚至于无法下手的习题,可以借助几何变换法,化繁为简,化难为易。
另一方面,也可将变换的观点渗透到中学数学教学中。
将图形从相等静止条件下的研究和运动中的研究结合起来,有利于对图形本质的认识。
几何变换包括:(1)平移;(2)旋转;(3)对称。
10、客观性题的解题方法选择题是给出条件和结论,要求根据一定的关系找出正确答案的一类题型。
选择题的题型构思精巧,形式灵活,可以比较全面地考察学生的基础知识和基本技能,从而增大了试卷的容量和知识覆盖面。
填空题是标准化考试的重要题型之一,它同选择题一样具有考查目标明确,知识复盖面广,评卷准确迅速,有利于考查学生的分析判断能力和计算能力等优点,不同的是填空题未给出答案,可以防止学生猜估答案的情况。
要想迅速、正确地解选择题、填空题,除了具有准确的计算、严密的推理外,还要有解选择题、填空题的方法与技巧。
下面通过实例介绍常用方法。
(1)直接推演法:直接从命题给出的条件出发,运用概念、公式、定理等进行推理或运算,得出结论,选择正确答案,这就是传统的解题方法,这种解法叫直接推演法。
(2)验证法:由题设找出合适的验证条件,再通过验证,找出正确答案,亦可将供选择的答案代入条件中去验证,找出正确答案,此法称为验证法(也称代入法)。
当遇到定量命题时,常用此法。
(3)特殊元素法:用合适的特殊元素(如数或图形)代入题设条件或结论中去,从而获得解答。
这种方法叫特殊元素法。
(4)排除、筛选法:对于正确答案有且只有一个的选择题,根据数学知识或推理、演算,把不正确的结论排除,余下的结论再经筛选,从而作出正确的结论的解法叫排除、筛选法。
(5)图解法:借助于符合题设条件的图形或图象的性质、特点来判断,作出正确的选择称为图解法。
图解法是解选择题常用方法之一。
(6)分析法:直接通过对选择题的条件和结论,作详尽的分析、归纳和判断,从而选出正确的结果,为分析法。
三、初中数学知识点1、有理数有理数是初中数学的基础内容,中考试题中分值约为3-6分,多以选择题,填空题,计算题的形式出现,难易度属于简单。
近几年主要考察一下几个方面:①相反数,绝对值,倒数等相关概念②负数的乘方,加减及混合运算。
突破方法:①牢固掌握有关有理数的概念:如相反数,倒数,绝对值等,特别是绝对值的意义,真正掌握数形结合的思想,多方面理解概念。
②熟练掌握有理数的各种运算法则,特别是负数参与的运算。
在混合运算中特别注意符号和运算顺序,这个要通过一定量的练习来掌握其中的运算技巧,达到一定的熟练程度。
2、整式整式:中考试题中分值约为4分,题型以选择,填空为主,难易度属于易。
近几年主要考察①整式的概念和简单的运算,主要是同类项的概念和化简求值②完全平方公式,平方差公司的几何意义③利用提公因式发和公式法分解因式。
突破方法:①要准确理解和辨认单项式的次数,系数,同类项。
② 在运用公式或法则进行运算式,首先要判断式子的结构特征,确定解题思路,以便使解题更加方便,快捷。
3、代数式代数式:中考试题中的分值约为5-6分,主要以选择,填空题为主,也常出现探寻规律的题目。
难易度属于中档。
近几年考察的以下两个方面:①结合生产和生活实际列代数式,求代数式的值等。
②根据数表,图表,算式寻找规律建立代数式模型。
突破方法:掌握好列代数式的要求,技巧,学会观察,猜想验证,用熟悉语言正确表达等解题。
考前多做些寻找规律的题目,真正掌握规律探索的要点。
4、分式分式:中考试题中分值约为6-8分,主要以填空,简答计算题型出现,难易度属于中。
近几年主要考察①分式的概念,性质,意义②分式的运算,化简求值。
③列分式方程解决实际问题、突破方法:①掌握并灵活应用分式的基本性质,②在通分和约分时,都要注意分解因式知识的应用。
③化简求值时,注意整体思想和技巧的应用。
④留意生活中是实际问题5、一元一次方程一元一次方程:中考分值约为1-3分,题型主要以选择,填空为主,极少出现简答,难易度为易。
考察内容:①方程及方程解的概念,②根据题意列一元一次方程,③解一元一次方程。
突破方法:①掌握一元一次方程的概念和解法,熟练解方程。