实验四:寄存器及其应用资料

合集下载

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告1. 背景在数字电路中,移位寄存器是一种常见的基本电路元件。

它可以将输入数据按照一定规则进行移位操作,并输出处理后的数据。

移位寄存器通常由触发器构成,分为串行移位寄存器和并行移位寄存器。

在实际应用中,移位寄存器常用于数据存储、数据传输、脉冲发生器等方面。

本实验旨在通过设计移位寄存器电路及其应用电路的实验,加深对移位寄存器工作原理的理解,掌握其应用。

2. 实验目的1.了解移位寄存器的基本原理;2.学会设计移位寄存器电路及其应用电路;3.掌握移位寄存器的应用方法。

3. 实验原理与方法3.1 移位寄存器原理移位寄存器将输入数据按照一定规则进行移位操作,并输出处理后的数据。

常见的移位规则包括:左移、右移、循环左移、循环右移等。

移位寄存器通常由触发器构成,触发器的状态决定了寄存器中存储的数据。

本实验主要探究两种常用的移位寄存器:串行移位寄存器和并行移位寄存器。

3.1.1 串行移位寄存器串行移位寄存器中,数据是按照位的顺序逐个进行移位的。

串行移位寄存器可以通过级联多个D触发器实现,每个D触发器的输出与下一个D触发器的输入相连。

3.1.2 并行移位寄存器并行移位寄存器中,数据的位同时进行移位。

并行移位寄存器可以通过级联多个D 触发器实现,每个D触发器的输入都与移位数据的对应位相连。

3.2 实验所用材料与方法3.2.1 材料•移位寄存器芯片•发光二极管(LED)•电路连接线3.2.2 方法1.实验预备:准备实验所需的移位寄存器芯片、LED和电路连接线。

2.按照移位寄存器原理,设计移位寄存器电路并进行布线连接。

3.使用示波器检查电路的正确性。

4.进行实验验证,观察移位寄存器的运行情况,并记录实验结果。

4. 实验结果与分析本实验设计了一个4位串行移位寄存器电路,并进行了验证实验。

首先,按照原理部分的描述,我们选择了一个基于D触发器的4位串行移位寄存器芯片。

通过连接四个D触发器,将其串联起来,即可构成一个4位的串行移位寄存器。

北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学数电实验四 Quartus II集成计数器及移位寄存器应用

北京科技大学实验报告学院:高等工程师学院专业:自动化(卓越计划)班级:自E181姓名:杨威学号:41818074 实验日期:2020 年5月26日一、实验名称:集成计数器及其应用1、实验内容与要求(1)用74161和必要逻辑门设计一个带进位输出的10进制计数器,采用同步置数方法设计;(2)用两个74161和必要的逻辑门设计一个带进位输出的60进制秒计数器;2、实验相关知识与原理(1)74161是常用的同步集成计数器,4位2进制,同步预置,异步清零。

引脚图功能表其中X。

3、10进制计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数输出QD、QC、QB、QA,进位输出RCO,显示译码输出OA、OB、OC、OD、OE、OF、OG2)计数范围:0000-10013)预置数值:00004)置数控制端LDN:计数到1001时输出低电平5)进位输出RCO:计数到1001时输出高电平画出如下状态转换表:CP QDQCQBQA0 00001 00012 00103 00114 01005 01016 01107 01117 10009 100110 0000(2)原理图截图仿真波形如下功能验证表格CLRN QD QC QB QA RCO0 0 0 0 0 01 0 0 0 1 01 0 0 1 0 01 0 0 1 1 01 0 1 0 0 01 0 1 0 1 01 0 1 1 0 01 0 1 1 1 01 1 0 0 0 01 1 0 0 1 11 0 0 0 0 04、60进制秒计数器(1)实验设计1)确定输入/输出变量输入变量:时钟信号CLK、复位信号CLRN;输出变量:计数十位输出QD2、QC2、QB2、QA2和计数个位输出QD1、QC1、QB1、QA1,进位输出RCO2)计数范围:0000 0000-0101 10013)预置数值:0000 00004)置数控制端LDN1(个位):计数到0101 1001时输出低电平5)清零端CLRN2(十位):计数到0110时输出低电平6)ENT:个位计数到1001时输出高电平7)进位输出RCO:计数到1001时输出高电平画出如下状态转换表CP QD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA1CPQD2QC2QB2QA2QD1QC1QB1QA10 0000 0000 20 0010 0000 40 0100 00001 0000 0001 21 0010 0001 41 0100 00012 0000 0010 22 0010 0010 42 0100 00103 0000 0011 23 0010 0011 43 0100 00114 0000 0100 24 0010 0100 44 0100 01005 0000 0101 25 0010 0101 45 0100 01016 0000 0110 26 0010 0110 46 0100 01107 0000 0111 27 0010 0111 47 0100 01118 0000 1000 28 0010 1000 48 0100 10009 0000 1001 29 0010 1001 49 0100 100110 0001 0000 30 0011 0000 50 0101 000011 0001 0001 31 0011 0001 51 0101 000112 0001 0010 32 0011 0010 52 0101 001013 0001 0011 33 0011 0011 53 0101 001114 0001 0100 34 0011 0100 54 0101 010015 0001 0101 35 0011 0101 55 0101 010116 0001 0110 36 0011 0110 56 0101 011017 0001 0111 37 0011 0111 57 0101 011118 0001 1000 38 0011 1000 58 0101 100019 0001 1001 39 0011 1001 59 0101 100160 0000 0000 (2)设计原理图截图(3)实验仿真仿真波形:仿真结果表:5、实验思考题:(1)总结任意模计数器的设计方法。

cpth寄存器实验原理

cpth寄存器实验原理

cpth寄存器实验原理CPTH寄存器是一种常用的寄存器,用于存储和传输数据。

它在数字电路和计算机系统中起着重要的作用。

本文将介绍CPTH寄存器的实验原理及其应用。

CPTH寄存器是由四个单独的触发器组成的,每个触发器都有一个时钟输入端和一个数据输入端。

它们可以被串联连接在一起,形成一个CPTH寄存器。

CPTH寄存器的输出是由其中一个触发器的输出决定的,这个输出称为寄存器的“当前状态”。

在实验中,我们将使用逻辑门和时钟信号来控制CPTH寄存器的工作。

首先,将逻辑门连接到寄存器的数据输入端,以便输入数据。

然后,通过时钟信号来控制触发器的状态转换。

当时钟信号的边沿到达时,触发器会根据输入数据的值更新自身的状态。

最后,通过触发器的输出端获取寄存器的当前状态。

实验中,我们可以通过改变输入数据和时钟信号的频率来观察CPTH 寄存器的工作原理。

当输入数据发生变化时,寄存器会根据时钟信号的边沿更新自己的状态,并将新的状态输出。

通过观察输出结果,我们可以了解到CPTH寄存器是如何存储和传输数据的。

CPTH寄存器在实际应用中具有广泛的用途。

它可以用于存储临时数据,以便在计算机系统中进行运算。

此外,CPTH寄存器还可以用于数据传输和通信。

例如,在串行通信中,CPTH寄存器可以用来接收和发送数据,以实现数据的传输和同步。

除了存储和传输数据,CPTH寄存器还可以用于状态控制和时序处理。

通过改变寄存器的输入数据和时钟信号,我们可以控制系统的状态和时序,以实现各种功能和操作。

例如,在数字电路中,CPTH寄存器可以用来实现计数器和状态机等电路。

总结起来,CPTH寄存器是一种常用的寄存器,用于存储和传输数据。

通过实验可以了解到它的工作原理和应用。

它在数字电路和计算机系统中起着重要的作用,可以用于存储临时数据、数据传输、状态控制和时序处理等功能。

掌握CPTH寄存器的原理和应用对于理解和设计数字电路和计算机系统是非常重要的。

希望本文对读者有所帮助。

计算机寄存器实验报告

计算机寄存器实验报告

一、实验目的1. 理解计算机寄存器的概念、作用和分类;2. 掌握寄存器在计算机系统中的基本操作;3. 熟悉寄存器的控制信号及其工作原理;4. 培养实验操作能力和分析问题能力。

二、实验环境1. 实验设备:计算机组成原理实验箱、计算机、Proteus仿真软件;2. 实验软件:Proteus仿真软件、模型机仿真软件;3. 实验环境:实验室。

三、实验内容1. 寄存器基本概念及分类;2. 寄存器操作实验;3. 寄存器控制信号实验;4. 寄存器在计算机系统中的应用实验。

四、实验步骤1. 寄存器基本概念及分类实验(1)打开Proteus仿真软件,创建一个新的项目;(2)在项目中选择计算机组成原理实验箱中的寄存器模块;(3)观察寄存器的结构,了解寄存器的分类(如累加器、寄存器组、地址寄存器等);(4)总结寄存器的作用,如暂存数据、控制指令等。

2. 寄存器操作实验(1)在Proteus仿真软件中,搭建一个简单的寄存器操作电路;(2)设置输入数据,观察寄存器的输出;(3)通过改变输入数据,验证寄存器的存储功能;(4)总结寄存器操作的基本步骤。

3. 寄存器控制信号实验(1)在Proteus仿真软件中,搭建一个包含控制信号的寄存器电路;(2)观察控制信号对寄存器操作的影响;(3)通过改变控制信号,验证寄存器的读写功能;(4)总结寄存器控制信号的作用和意义。

4. 寄存器在计算机系统中的应用实验(1)在Proteus仿真软件中,搭建一个简单的计算机系统电路;(2)观察寄存器在计算机系统中的操作过程;(3)分析寄存器在计算机系统中的作用,如数据暂存、指令控制等;(4)总结寄存器在计算机系统中的应用。

五、实验结果与分析1. 通过实验,掌握了寄存器的基本概念、作用和分类;2. 熟悉了寄存器的操作过程,包括输入、输出、读写等;3. 了解寄存器控制信号的作用,以及它们对寄存器操作的影响;4. 分析了寄存器在计算机系统中的应用,如数据暂存、指令控制等。

寄存器的多功能性能实验

寄存器的多功能性能实验

寄存器的多功能性能实验寄存器是计算机中非常重要的组成部分,它们具有多种功能,能够满足不同的需求。

本文将对寄存器的多功能性能进行实验探究,通过实验结果来验证其功能和性能。

一、引言在计算机系统中,寄存器是一种数据存储器件,用于存储指令、数据和地址等信息。

寄存器具有快速读写速度和存储容量有限等特点,但同时也具备多种功能。

本次实验将通过具体的测试来了解和验证寄存器的多种功能。

二、寄存器的存储功能实验1. 实验目的通过本次实验,我们将了解寄存器的存储功能,并验证其存储容量与读写速度。

2. 实验步骤(1)选择一块适用的寄存器芯片,并准备连接线路。

(2)编写测试程序,在寄存器中存储一定数量的数据。

(3)观察并记录存储数据的过程,包括写入时间和写入结果。

(4)使用读取操作读取寄存器中的数据,并记录读出时间和读出结果。

3. 实验结果经过实验测试,我们得到了以下结果:(1)写入时间:在一定数据量条件下,寄存器的写入时间基本稳定,能够实时完成数据写入。

(2)写入结果:寄存器按照设定的地址顺序存储数据,写入准确无误。

(3)读取时间:寄存器的读取操作非常迅速,几乎可以实时返回读取结果。

(4)读取结果:通过读取操作,我们能够准确读取到寄存器中存储的数据。

4. 结论通过上述实验,我们验证了寄存器的存储功能,能够按照指定地址存储和读取数据,并具备较快的读写速度。

三、寄存器的状态存储功能实验1. 实验目的通过本次实验,我们将了解寄存器的状态存储功能,并验证其能够保存和传递计算结果。

2. 实验步骤(1)选择适合的寄存器,并准备相应的测试电路。

(2)编写测试程序,将计算结果存储到寄存器中。

(3)观察并记录存储数据的过程,包括写入时间和写入结果。

(4)通过其他计算操作,读取寄存器中的数据,并验证结果的准确性。

3. 实验结果经过实验测试,我们得到了以下结果:(1)写入时间:寄存器的写入时间非常短,几乎可以忽略不计。

(2)写入结果:寄存器能够准确地存储计算结果,并能够在读取时传递给其他部件使用。

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告寄存器实验实验报告一、引言寄存器是计算机中一种重要的数据存储器件,用于暂时存储和传输数据。

在计算机系统中,寄存器扮演着关键的角色,能够提高计算机的运算速度和效率。

本实验旨在通过实际操作,深入了解寄存器的工作原理和应用。

二、实验目的1. 理解寄存器的概念和作用;2. 掌握寄存器的基本操作方法;3. 学习寄存器在计算机系统中的应用。

三、实验器材和方法1. 实验器材:计算机、开发板、示波器等;2. 实验方法:通过编程控制,利用开发板上的寄存器进行数据存储和传输。

四、实验步骤1. 连接开发板和计算机,并进行相应的驱动安装;2. 打开开发板的开发环境,编写程序代码;3. 设置寄存器的初始值,并将数据存入寄存器;4. 通过编程控制,将寄存器中的数据传输到其他设备或存储器;5. 进行数据读取和验证,确保寄存器的正常工作。

五、实验结果与分析经过实验,我们成功地使用寄存器进行了数据存储和传输,并通过读取数据进行了验证。

寄存器在计算机系统中起到了至关重要的作用,它可以快速暂存数据,提高计算机的运算效率。

在实际应用中,寄存器广泛用于存储指令、地址和数据等信息。

六、实验总结通过本次实验,我们深入了解了寄存器的工作原理和应用。

寄存器作为计算机系统中的重要组成部分,对于提高计算机的运算速度和效率起到了关键的作用。

掌握寄存器的基本操作方法,对于编程和计算机系统的理解都具有重要意义。

在今后的学习和工作中,我们将继续深入研究寄存器的相关知识,不断提升自己的技术水平。

七、参考文献[1] 计算机原理与接口技术. 李春葆, 刘燕, 张洪岩. 清华大学出版社, 2019.[2] 计算机组成与设计:硬件/软件接口. David A. Patterson, John L. Hennessy. 机械工业出版社, 2016.以上就是本次寄存器实验的实验报告,通过实际操作和实验结果的分析,我们对寄存器的工作原理和应用有了更深入的了解。

计算机组成原理实验报告-寄存器实验

计算机组成原理实验报告-寄存器实验

千里之行,始于足下。

计算机组成原理实验报告-寄存器实验计算机组成原理实验报告-寄存器实验》一、实验目的本次实验旨在通过设计和实现一个基本的寄存器,加深对计算机组成原理中寄存器的理解,并掌握寄存器在计算机中的应用。

二、实验设备及软件1. 实验设备:计算机2. 实验软件:模拟器软件Mars3. 实验材料:电路图、线缆、元器件三、实验原理寄存器是计算机的一种重要组成部分,用于存储数据和指令。

一个基本的寄存器通常由一组触发器组成,可以存储多个位的信息。

本实验中,我们需要设计一个16位的寄存器。

四、实验步骤1. 确定寄存器的结构和位数:根据实验要求,我们需要设计一个16位的寄存器。

根据设计要求,选择合适的触发器和其他元器件。

2. 组装寄存器电路:根据电路图,将选择好的元器件按照电路图连接起来。

3. 连接电路与计算机:使用线缆将寄存器电路连接到计算机的相应接口上。

4. 编写程序:打开Mars模拟器软件,编写程序来测试寄存器的功能。

可以编写一段简单的程序,将数据写入寄存器并读取出来,以验证寄存器的正确性。

5. 运行程序并测试:将编写好的程序加载到Mars模拟器中,并运行程序,观察寄存器的输出和模拟器的运行结果。

第1页/共3页锲而不舍,金石可镂。

五、实验结果在本次实验中,我们成功设计和实现了一个16位的寄存器,并进行了相关测试。

经过多次测试,寄存器的功能和性能良好,能够准确地存储和读取数据。

六、实验心得通过本次实验,我对寄存器的结构和工作原理有了更深入的了解。

寄存器作为计算机的一种重要组成部分,起着存储和传输数据的作用。

通过实际操作和测试,我更加清楚了寄存器在计算机中的应用和重要性。

在实验过程中,我遇到了一些问题,如电路连接不稳定、程序错误等,但通过仔细检查和调试,最终解决了这些问题。

这次实验也让我深刻体会到了学习计算机组成原理的重要性,只有深入理解原理并通过实践运用,才能真正掌握计算机的工作原理和能力。

通过这个实验,我有了更深入的认识和理解,对计算机组成原理的学习也更加系统和完整。

实验四:寄存器及其应用资料

实验四:寄存器及其应用资料

=C2。
N+1个CP时钟脉冲后,不仅原先存入两个移位寄存器中的数已
且A、B两个数相加的和及最后的进位C
也被全部存入累加和移位寄存器中。
4位居多,当需要的位数多于4位时,可把几
、+5V直流电源 2、单次脉冲源
、逻辑电平开关 4、0-1指示器
、74LS192×2(或CC40192) 74LS74(或CC4013)
端连续加4个脉冲,观察输出情况,记录之。
4)左移:先清零或予置,再令CR=1,S
=1,S0=0,由左移输入端SL送入二进制数码如
,连续加四个CP脉冲,观察输出端情况,记录之。
5)保持:寄存器予置任意4位二进制数吗dcba,令CR=1,S
=S0=0,加CP脉冲,观察
接LED逻辑电平显示插口接单次脉冲源
1 × × 保持 Q
Q1Q2Q3= Qn0Qn1Qn2Qn3
、移位寄存器的应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加
1)环形计数器
11-2所示,
Q
和右移串行输入端SR相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲的作用
Q
Q1Q2Q3将依次变为0100、0010、0001、1000-----,可见它是一个具有四个有效状态的
4 74LS194逻辑功能测试
、循环右移
1接线参照图 2进行改接。用并行送数法予置寄存器为某二进制九码(如
),然后进行右移循环,观察寄存器输出端状态的变化,记入表 3中。
3 表 4
Q
Q1Q2Q3
0 1 0 0
1)触发器置零
74LS74的R
由低电平变为高电平。
2)送数

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告在学习计算机组成原理的过程中,寄存器可是个至关重要的概念。

为了更深入地理解它,咱进行了一场有趣的寄存器实验。

实验开始前,看着那一堆实验设备和线路,心里还真有点小紧张。

毕竟这可不是闹着玩的,一个不小心接错线,可能整个实验就泡汤了。

不过,咱还是鼓起勇气,准备大干一场!实验中用到的主要设备有数字逻辑实验箱、导线、示波器等等。

我们的任务是通过连接线路,实现对寄存器的读写操作,并观察数据的变化。

先来说说寄存器的基本原理吧。

寄存器就像是计算机里的一个个小抽屉,专门用来存放数据。

它具有快速存储和读取数据的能力,是计算机运行的重要组成部分。

开始动手连接线路啦!这可真是个细致活儿。

我小心翼翼地拿着导线,眼睛紧紧盯着实验箱上的插孔,生怕插错了地方。

每插一根线,都感觉像是在完成一项艰巨的任务。

好不容易把线路连接好了,接下来就是输入数据进行测试。

当我按下第一个数据输入按钮时,心里别提多期待了。

眼睛一直盯着示波器的屏幕,盼着能看到正确的数据显示。

哎呀!没想到第一次居然出错了。

数据显示得乱七八糟,完全不是我想要的结果。

这可把我急坏了,赶紧检查线路,看是不是哪里接错了。

经过一番仔细的排查,终于发现原来是有一根导线接触不良。

重新接好后,再次输入数据,这次终于成功啦!看着示波器上显示出正确的数据,那种成就感简直爆棚。

在实验过程中,我还发现了一个有趣的现象。

当连续输入多个数据时,寄存器会按照先后顺序依次存储,就像排队一样,整整齐齐。

而且读取数据的时候,也是按照存储的顺序一个一个来,可听话了。

通过这次实验,我对寄存器有了更直观、更深刻的理解。

以前在书本上看到的那些抽象的概念,现在都变得清晰起来。

我明白了寄存器的工作原理,知道了它是如何存储和读取数据的,也更加体会到了计算机内部运行的神奇之处。

回想起刚开始面对实验设备时的紧张和迷茫,再看看现在成功完成实验后的喜悦和满足,真的是感慨万千。

这次实验不仅让我学到了知识,还锻炼了我的动手能力和解决问题的能力。

寄存器实验实验报告

寄存器实验实验报告

寄存器实验实验报告一. 引言寄存器是计算机中重要的数据存储器件之一,用于存储和传输数据。

通过对寄存器进行实验,我们可以更好地理解寄存器的工作原理和应用。

本实验旨在通过设计和测试不同类型的寄存器,深入掌握寄存器的各种功能和操作。

二. 实验设计本实验设计了两个寄存器的实验,分别为移位寄存器和计数器寄存器。

1. 移位寄存器实验移位寄存器是一种特殊的串行寄存器,它能够实现对数据位的移位操作。

本实验设计了一个4位的移位寄存器,分别使用D触发器和JK触发器实现。

实验步骤如下:1) 首先,根据设计要求将4个D或JK触发器连接成移位寄存器电路。

2) 确定输入和输出端口,将输入数据连接到移位寄存器的输入端口。

3) 设计测试用例,输入测试数据并观察输出结果。

4) 分析实验结果,比较不同触发器类型的移位寄存器的性能差异。

2. 计数器寄存器实验计数器寄存器是一种能够实现计数功能的寄存器。

本实验设计了一个二进制计数器,使用T触发器实现。

实验步骤如下:1) 根据设计要求将多个T触发器连接成二进制计数器电路。

2) 设计测试用例,输入计数开始值,并观察输出结果。

3) 测试计数的溢出和循环功能,观察计数器的行为。

4) 分析实验结果,比较不同计数器位数的性能差异。

三. 实验结果与分析在实验过程中,我们完成了移位寄存器和计数器寄存器的设计和测试。

通过观察实验结果,可以得出以下结论:1. 移位寄存器实验中,无论是使用D触发器还是JK触发器,移位寄存器都能够正确地实现数据位的移位操作。

而使用JK触发器的移位寄存器在性能上更加优越,能够实现更复杂的数据操作。

2. 计数器寄存器实验中,二进制计数器能够准确地实现计数功能。

通过设计不同位数的计数器,我们发现位数越多,计数范围越大。

综上所述,寄存器是计算机中重要的存储器件,通过实验我们深入了解了寄存器的工作原理和应用。

移位寄存器和计数器寄存器都具有广泛的应用领域,在数字电路设计和计算机系统中起到了重要作用。

寄存器实验报告

寄存器实验报告

一、实验目的1. 理解寄存器在计算机系统中的作用和重要性。

2. 掌握通用寄存器组的设计方法和应用。

3. 通过实验,加深对寄存器读写操作的理解。

二、实验原理寄存器是计算机中用于临时存储数据和指令的存储单元,它具有数据存取速度快、容量小、易于控制等特点。

在计算机系统中,寄存器用于存放指令、数据、地址等,是CPU执行指令的重要基础。

三、实验内容1. 通用寄存器组实验(1)实验目的:了解通用寄存器组的用途、结构和工作原理。

(2)实验内容:- 观察通用寄存器组(如AX、BX、CX、DX等)的内部结构;- 学习寄存器读写操作的基本指令(如MOV、ADD、SUB等);- 通过编程,实现寄存器之间的数据交换和运算。

(3)实验步骤:- 使用C语言编写程序,实现寄存器之间的数据交换和运算;- 在计算机上编译并运行程序,观察实验结果。

2. 移位寄存器实验(1)实验目的:了解移位寄存器的结构、工作原理和应用。

(2)实验内容:- 观察移位寄存器(如74LS194)的内部结构;- 学习移位操作指令(如SHL、SHR等);- 通过编程,实现数据的串行/并行转换和构成环形计数器。

(3)实验步骤:- 使用C语言编写程序,实现数据的串行/并行转换和构成环形计数器;- 在计算机上编译并运行程序,观察实验结果。

3. 寄存器仿真实验(1)实验目的:通过仿真软件,加深对寄存器读写操作的理解。

(2)实验内容:- 使用Proteus仿真软件,搭建寄存器实验电路;- 观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。

(3)实验步骤:- 在Proteus软件中搭建寄存器实验电路;- 编写测试程序,观察寄存器读写操作时,内部信号的变化;- 分析实验结果,验证寄存器读写操作的正确性。

四、实验结果与分析1. 通用寄存器组实验通过实验,我们了解了通用寄存器组的结构和工作原理,掌握了寄存器读写操作的基本指令。

实验结果表明,寄存器读写操作可以有效地提高程序执行速度。

实验四多寄存器数据输出及运算器移位实验

实验四多寄存器数据输出及运算器移位实验

实验四多寄存器数据输出及运算器移位实验【实验要求】利用CP226 实验箱的K16..K23 开关做为DBUS 数据的输入端,其它开关做为控制信号的输入端,将指定寄存器的内容传送到数据总线DBUS上。

【实验目的】掌握模型机中不同寄存器中的数据传送到数据总线和运算器移位功能实现的工作原理与控制方法。

【主要集成电路芯片及其逻辑功能】1. 74HC138译码器本实验所涉及的主要集成电路芯片之一为74HC138,用于控制选择输出寄存器。

74HC138是一个3-8译码器,引脚结构及其逻辑功能如下图与表所示。

输入输出使能代码G1 G2=2BG C B A Y0Y1Y2Y3Y4Y5Y6Y72A G× 1 ××× 1 1 1 1 1 1 1 10 ×××× 1 1 1 1 1 1 1 11 0 0 0 0 0 1 1 1 1 1 1 11 0 0 0 1 1 0 1 1 1 1 1 11 0 0 1 0 1 1 0 1 1 1 1 11 0 0 1 1 1 1 1 0 1 1 1 11 0 1 0 0 1 1 1 1 0 1 1 11 0 1 0 1 1 1 1 1 1 0 1 11 0 1 1 0 1 1 1 1 1 1 0 11 0 1 1 1 1 1 1 1 1 1 1 02. 74HC245译码器本实验所涉及的主要集成电路芯片之二为74HC245,用于ALU输出与总线连接。

74HC245是具有驱动能力的8位三态缓冲收发器,引脚结构如下图所示,其逻辑功能如下表所示。

DIR为输入输出转换端,置1时由A到B,置0时由B到A;OE为使能端,置1时A与B不通,置0时A与B连通。

【实验涉及的逻辑电路及原理】1. 多寄存器数据输出在CP226 实验箱中,有7 个寄存器可以向数据总线输出数据,但同一时刻只能有一个寄存器输出数据,且通过74HC138译码器决定7 个输出寄存器中哪个寄存器输出数据。

电路中的移位寄存器及其应用

电路中的移位寄存器及其应用

电路中的移位寄存器及其应用电路中的移位寄存器是一种重要的数字逻辑元件,它可以实现数据的移动和存储功能。

通过移动数据位,可以在电路中实现各种有趣的应用,从而扩展数字逻辑的功能。

在本文中,我们将探讨移位寄存器的原理、分类以及一些实际应用。

移位寄存器是一种特殊的寄存器,它可以用来存储和移动一串二进制数据。

它由一组触发器构成,每个触发器代表一个二进制位。

这些触发器可以分为串行和并行两种类型。

串行移位寄存器是将数据位顺序连接在一起形成一个串行的数据路径。

当时钟信号到来时,数据位会按照顺序依次移动。

最常见的是移位寄存器的左移和右移操作,左移时数据位向左移动一位,右移时数据位向右移动一位。

当移出的数据位被丢弃时,新的数据位会从移入端进入寄存器。

串行移位寄存器的优点是结构简单,占用空间小,但是移位速度较慢。

并行移位寄存器是将数据位同时移动的一种寄存器。

它的结构比串行移位寄存器复杂,需要更多的触发器来实现。

并行移位寄存器可以同时移动多个数据位,因此移位速度较快。

在并行移位寄存器中,移位操作是通过输入信号来控制的。

通过控制输入信号的状态,可以实现不同的移位模式,如循环移位、位反转等。

移位寄存器在数字逻辑中有着广泛的应用。

其中,最常见的应用是数据的存储与传输。

通过移位寄存器,可以将数据从一个地方传输到另一个地方,实现数据的存储和传递。

移位寄存器还可以用于实现数据的压缩和解压缩。

例如,在图像处理中,可以使用移位寄存器将图像数据进行压缩,从而减小图像文件的大小,并且可以在需要时恢复原始图像。

此外,移位寄存器还可以用于实现密码算法。

通过将数据进行移位和混合,可以实现数据的加密和解密,保证数据的安全性。

除了上述应用外,移位寄存器还被广泛用于时序控制电路中。

时序控制电路是一种通过控制信号来实现特定操作顺序的电路。

移位寄存器可以用于存储各种控制信号,并根据时钟信号的到来按照特定的顺序输出这些信号。

通过移位寄存器的组合和控制信号的变化,可以实现复杂的时序控制功能,如状态机和序列识别等。

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告

移位寄存器及其应用实验报告一、实验目的1.了解移位寄存器的基本原理和工作方式;2.掌握移位寄存器的应用场景和使用方法;3.通过实验验证移位寄存器的功能和性能。

二、实验原理移位寄存器是一种特殊的寄存器,它可以将数据按照一定的规律进行移位操作。

移位操作可以分为左移和右移两种方式,左移是将数据向左移动一定的位数,右移则是将数据向右移动一定的位数。

移位寄存器可以用于数据的移位、数据的存储和数据的转换等多种应用场景。

移位寄存器的基本原理是利用触发器和门电路实现数据的移位操作。

触发器是一种存储器件,可以存储一个二进制位的数据。

门电路则是一种逻辑电路,可以实现数据的逻辑运算。

移位寄存器通常由多个触发器和门电路组成,可以实现多位数据的移位操作。

移位寄存器的工作方式是通过时钟信号来控制数据的移位操作。

当时钟信号为高电平时,移位寄存器开始工作,数据按照一定的规律进行移位操作。

当时钟信号为低电平时,移位寄存器停止工作,数据保持不变。

移位寄存器还可以通过控制输入端和输出端的电平来实现不同的功能。

三、实验内容本次实验主要是通过实验板上的移位寄存器模块,实现数据的移位和存储操作。

具体实验内容如下:1.将实验板上的移位寄存器模块连接到开发板上;2.使用开发板上的按键控制移位寄存器的工作方式,包括左移、右移、存储和清零等操作;3.使用示波器观察移位寄存器的时钟信号和数据输出信号,验证移位寄存器的工作状态和性能。

四、实验步骤1.将实验板上的移位寄存器模块连接到开发板上,按照连接图进行连接;2.使用开发板上的按键控制移位寄存器的工作方式,具体操作如下:(1)按下左移按键,移位寄存器开始向左移动数据;(2)按下右移按键,移位寄存器开始向右移动数据;(3)按下存储按键,移位寄存器将当前数据存储到寄存器中;(4)按下清零按键,移位寄存器将当前数据清零。

3.使用示波器观察移位寄存器的时钟信号和数据输出信号,具体操作如下:(1)将示波器的探头连接到移位寄存器的时钟输入端,观察时钟信号的波形;(2)将示波器的探头连接到移位寄存器的数据输出端,观察数据输出信号的波形。

寄存器的使用实验报告

寄存器的使用实验报告

一、实验目的1. 理解寄存器的概念和功能。

2. 掌握寄存器的使用方法和操作步骤。

3. 熟悉寄存器在实际应用中的重要作用。

4. 通过实验加深对寄存器原理的理解。

二、实验原理寄存器是一种用于存储和传输数据的基本电子元件,它由触发器组成,具有存储、读取、传输等基本功能。

寄存器在数字电路和计算机系统中起着至关重要的作用,广泛应用于数据处理、指令执行、地址寻址、数据传输等方面。

寄存器按功能可分为以下几种类型:1. 数据寄存器:用于暂存数据,如累加器、数据寄存器等。

2. 地址寄存器:用于存储指令或数据的地址,如程序计数器、基地址寄存器等。

3. 控制寄存器:用于存储控制信息,如指令寄存器、状态寄存器等。

4. 程序状态字寄存器:用于存储程序运行状态,如标志寄存器等。

本实验主要涉及数据寄存器的使用。

三、实验设备与器件1. 实验箱2. 74LS74 D触发器3. 74LS153 3-8译码器4. 74LS74 4位双向移位寄存器5. 74LS02 与非门6. 74LS08 与门7. 电源8. 接线端子9. 逻辑测试仪四、实验内容与步骤1. 实验一:数据寄存器的读写操作(1)搭建实验电路:根据实验原理图,连接74LS74 D触发器、74LS153 3-8译码器、74LS74 4位双向移位寄存器、74LS02 与非门、74LS08 与门等器件。

(2)设置初始状态:将74LS74 D触发器的Q端连接到74LS74 4位双向移位寄存器的并行输入端,将74LS153 3-8译码器的输出端连接到74LS74 4位双向移位寄存器的并行输出端。

(3)编写测试程序:编写程序,对74LS74 D触发器进行初始化,使数据寄存器中的数据为0。

(4)执行测试程序:运行测试程序,观察数据寄存器的读写操作是否正确。

2. 实验二:数据寄存器的移位操作(1)搭建实验电路:根据实验原理图,连接74LS74 D触发器、74LS74 4位双向移位寄存器、74LS02 与非门、74LS08 与门等器件。

寄存器实验报告

寄存器实验报告

寄存器实验报告实验目的:本实验旨在通过对寄存器的学习和实验操作,了解寄存器的基本概念、功能以及应用。

实验设备:1. 计算机2. 开发板3. 指示灯4. 连接线实验步骤:一、寄存器简介寄存器是计算机中的一种重要的存储器件,用于存储和传送数据。

它采用二进制编码进行操作,并且能够以不同的形式存在于各种计算机中。

寄存器通常由多个触发器级联实现,其中每个触发器能够存储一个二进制位。

根据其功能和结构的不同,寄存器可以分为通用寄存器、特殊功能寄存器等。

二、实验设备连接1. 将开发板与计算机通过连接线进行连接。

2. 将指示灯插入开发板上的相应引脚。

三、数据输入与显示1. 在计算机上编写相应的程序,通过控制寄存器将数据输入到开发板中。

2. 通过观察指示灯的状态,验证数据是否被正确地存储到寄存器中。

3. 修改输入的数据,观察指示灯是否能正确反映修改后的数据。

四、数据传送与处理1. 编写程序,将寄存器中的数据传送到其他相关设备中。

2. 通过观察设备的工作状态,验证数据是否能正确地传送和处理。

五、寄存器的运算1. 编写程序,对寄存器中的数据进行相应的运算操作,如加法、减法等。

2. 通过观察计算结果的正确性,验证寄存器的运算功能是否正常。

六、数据存储与读取1. 编写程序,将计算结果存储到寄存器中。

2. 通过读取寄存器中的数据,验证存储功能是否正常。

实验结果与分析:通过以上实验操作,我们成功地对寄存器的功能和应用进行了探究和验证。

通过数据的输入、传输、运算和存储等操作,我们可以清楚地认识到寄存器在计算机中的作用和重要性。

同时,我们也发现了寄存器在数据存储和传送过程中的高效性和可靠性。

结论:寄存器作为计算机中的重要存储器件,在数据的存储和传送方面发挥着重要的作用。

通过本次实验,我们对寄存器的基本概念、功能和运作原理有了深入的了解。

通过学习和实践,我们进一步增强了对计算机硬件和数据处理的认识,为今后的学习和研究打下了坚实的基础。

物理学实验报告——移位寄存器及其应用

物理学实验报告——移位寄存器及其应用

实验六项目名称:移位寄存器及其应用一、实验目的1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。

2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环形计数器。

二、实验设备1、数字电子技术实验箱2、CC40194×2(74LS194)三、实验内容及步骤1 、测试CC40194(或74LS194)的逻辑功能按图6-5接线,R C、S1、S0、S L、S R、D0、D1、D2、D3分别接至逻辑开关的输出插口;Q0、Q1、Q2、Q3接至逻辑电平显示输入插口。

CP端接单次脉冲源。

按图6-5 CC40194逻辑功能测试(1)清除:令R C=0,其它输入均为任意态,这时寄存器输出Q0、Q1、Q2、Q3应均为0。

清除后,置R C=1 。

(2)送数:令R C=S1=S0=1 ,送入4位二进制数,如令:D0D1D2D3=1001,加CP脉冲,此时Q0、Q1、Q2、Q3输出状态为:1001 。

(3)右移:令R C=1,S1=0,S0=1,然后右移输入端S R送入二进制数码如0,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0100 ;紧接着,右移输入端S R送入二进制数码如1,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:1010 ;紧接着,右移输入端S R送入二进制数码如0,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0101 ;紧接着,右移输入端S R送入二进制数码如0,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0010 。

(4) 左移:先令R C=0进行清零,再令R C=1,S1=1,S0=0,然后左移输入端S L送入二进制数码如1,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0001 ;紧接着,左移输入端S L送入二进制数码如1,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0011 ;紧接着,左移输入端S L送入二进制数码如1,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:0111 ;紧接着,左移输入端S L送入二进制数码如1,加CP脉冲,此时Q0、Q1、Q2、Q3显示为:1111 。

数字电路实验报告-移位寄存器及其应用

数字电路实验报告-移位寄存器及其应用

电学实验报告模板实验原理移位寄存器是逻辑电路中的一种重要逻辑部件,它能存储数据,还可以用来实现数据的串行-并行转换、数据的运算和处理。

1.寄存器(1)D触发器图1 D触发器图1所示D触发器。

每来一个CLK脉冲,触发器都在该CLK脉冲的上升沿时刻,接收输入数据D,使之作为触发器的新状态。

D触发器的特性方程为(2)用D触发器构成并行寄存器图2 用D触发器构成并行寄存器图2所示为用D触发器构成四位并行寄存器。

为异步清零控制端,高电平有效。

当时,各触发器输出端Q的状态,取决于CLK上升沿时刻的D端状态。

2.移位寄存器(1)用D触发器构成移位寄存器图3 用D触发器构成4位串行移位寄存器图3所示为用D触发器构成的4位串行移位寄存器。

其中左边第一个触发器的输入端接收输入数据,其余的每一个触发器的输入端均与左边相邻的触发器的Q端连接。

当时钟信号CLK的上升沿时刻,各触发器同时接收输入数据。

四位寄存器的所存数据右移一位。

(2)双向移位寄存器74LS194图4 双向移位寄存器74LS194逻辑框图图4 所示为集成电路芯片双向移位寄存器74LS194逻辑框图。

为便于扩展逻辑功能,在基本移位寄存器的基础上增加了左右移控制、并行输入、保持和异步清零等功能。

74LS194的逻辑功能如表1所列。

表13.用移位寄存器构成计数器(1)环形计数器图5 环形计数器如果将移位寄存器的串行移位输出端接回到串行移位输入端,如图5所示。

那么,在时钟CLK的作用下,寄存器里的数据将不断循环右移。

例如,电路的初始状态为,则电路的状态转换图如图6所示。

可以认为,这是一个模4计数器。

图6 环形计数器状态转换图实验内容及步骤1. 用两片74LS74构成四位移位寄存器(1)74LS74引脚图图10 74LS74引脚图(2)用74LS74构成四位移位寄存器图11 用74LS74构成四位移位寄存器实验电路按照图11连接电路。

首先设置,使寄存器清零。

然后,设置,在CLK输入端输入单次脉冲信号当作时钟信号,通过输出端的发光二极管观察的状态,判断移位的效果。

移位寄存器及其应用优秀文档

移位寄存器及其应用优秀文档
图5-2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。 此时,只要将移位寄存器的最高位的输出接至最低位的输入端,即将移位寄存器的首尾相连就可实现上述功能。 根据移位寄存器存取信息的方式不同分为:串入串出、串入并出、并入串出、并入并出四种形式。
串行/并行转换器:串行/并行转换是指串行输入的数码,经转换电路之后变换成并行输出。 图5-3是用两片74LS194四位双向移位寄存器组成的七位串/并行数据转换电路。
全0
串入数据 输入端
01111111
11
01

1
串入右移 工作方式
电路中S0端接高电平1,S1 受Q7控制,二片寄存器连
接成串行输入右移工作模 式。Q7是转换结束标志。 当Q7=1时,S1为0,使之成 为S1S0=01的串入右移工作 方式,当Q7=0时,S1=1, 0 有S1S0=11,则串行送数结 束,标志着串行输入的数 据已经转换成并行输出了。
本实验选用的4位双向通用移位寄存器,型号为74LS194,其引脚排列如图5-1所示。
集成移位寄存器 74LS194由4个RS触 发器及它们的输入控制电路组成。D0、D1、 D2、D3为并行输入端;Q0入端; DSL为左移串行输入端;S0、S1为操作模 式控制端;CR为直接无条件清零端;CP 为时钟脉冲输入端。
一、实验目的
5. 移位寄存器及其应用
1、掌握中规模4位双向移位寄存器逻辑功能及使用方法。
2、熟悉移位寄存器的应用—实现数据的串行、并行转换和构成环行计数器。 二、实验原理
寄存器是计算机和其他数字系统中用来存储代码或数据的逻辑部件。它的主要组成部分 是触发器。一个触发器能存储1位二进制代码,所以要存储n位二进制代码的寄存器就需要 用n个触发器组成。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验四移位寄存器及其应用
一、实验目的:
1、熟悉中规模4位双向移位寄存器的逻辑功能并掌握其使用方法;
2、熟悉移位寄存器的应用典例一——构成串行累加器和环形计数器。

二、实验原理:
1、移位寄存器是一种具有移位功能的寄存器,是指寄存器中所存的代码能够在移位脉冲的作用下依次左移或右移。

既能左移又能右移的移位寄存器称为双向移位寄存器,只需要改变左、右移的控制信号便可实现双向移位。

根据存取信息的方式不同移位寄存器可分为:串入串出、串入并出、并入串出、并入并出四种形式。

本实验选用的4位双向通用移位寄存器,型号为74LS194或CC40194,两者功能相同,
S L为左移串行输入端;S1、S0为异步清零端;CP为时钟脉冲输入端。

74LS194有5种不同操作模式:并行送数寄存,右移(方向由Q0至Q3),左移(方向由Q3至Q0),保持及清零。

S1、S0和CR 端的控制作用如表 1所示。

2、移位寄存器的应用很广,可构成移位寄存器型计数器;顺序脉冲发生器;串行累加器;可用作数据转换,即把串行数据转换为并行数据,或把并行数据转换为串行数据等。

本实验主要研究移位寄存器用作环形计数器和串行累加器的线路连接及其原理。

(1)环形计数器
把移位寄存器的输出反馈到它的串行输入端,就可以进行循环移位,如图11-2所示,把输出端Q3和右移串行输入端S R相连接,设初始状态Q0Q1Q2Q3=1000,则在时钟脉冲的作用下Q0Q1Q2Q3将依次变为0100、0010、0001、1000-----,可见它是一个具有四个有效状态的计数器,这种类型的计数器通常称为环形计数器。

图 2电路可以由各个输出端输出在时间上有先后顺序的脉冲,因此也可作为顺序脉冲发生器。

(2)串行累加器
累加器是由移位寄存器和全加器组成的一种求和电路,它的功能是将本身寄存的数和另一个输入的数相加,并存放在累加器中。

图 2
图 3是由两个右向移位寄存器、一个全加器和一个进位触发器组成的串行累加器。

设开始时,被加数A=A N-1.....A O和加数B=B N-1......B O已分别存入N+1位累加数移位寄存器和加数移位寄存器。

再设进位触发器D已被清零。

在第一个CP脉冲到来之前,全加器各输入、输出端的情况为:A N=A0,B N=B0,C N-1=0,S N=A0+B0+0=S0,C N=C0。

在第二个脉冲到来后,两个移位寄存器的内容又右移一位,S1存入累加和移位寄存器的最高位,原先存入的S0进入次高位,C1存入进位触发器Q端,全加器输出为:S N=A2+B2+C1=S2,C N=C2。

按照此顺序进行,到第N+1个CP时钟脉冲后,不仅原先存入两个移位寄存器中的数已被全部移出,且A、B两个数相加的和及最后的进位C N+1也被全部存入累加和移位寄存器中。

若需继续累加,则加数移位寄存器中需要再一次存入新的加数。

中规模集成移位寄存器,其位数往往以4位居多,当需要的位数多于4位时,可把几块移位寄存器用级联的方法来扩展位数。

三、实验设备及器件:
1、+5V直流电源
2、单次脉冲源
3、逻辑电平开关
4、0-1指示器
5、74LS192×2(或CC40192) 74LS74(或CC4013)
74LS183
四、实验内容:
1、测试74LS194(或CC40194)的逻辑功能
按图 4接线,CR、S1、S0、S L、S R、D3、D2、D1、D0分别接至逻辑开关的输出插口;Q3、Q2、Q1、Q0接至LED逻辑电平显示输入插口。

CP端接单次脉冲源输出插口。

接表 2所规定的输入状态,逐项进行测试。

(1)清除:令CR=0,其它输入均为任意态,这时寄存器输出Q0、Q1、Q2、Q3应均0。

清除后,置CR=1。

(2)送数:令CR=S1=S0=1,送入任意4位二进制数,如D0D1D2D3=dcba,加CP脉冲,观察CP=0、CP由0到1、CP由1到0三种情况下寄存器输出状态的变化,观察寄存器输出状态变化是否发生在CP脉冲的上升沿。

(3)右移:清零后,令CR=1,S1=0,S0=1,由右移输入端S R送入二进制数码如0100,由CP端连续加4个脉冲,观察输出情况,记录之。

(4)左移:先清零或予置,再令CR=1,S1=1,S0=0,由左移输入端S L送入二进制数码如1111,连续加四个CP脉冲,观察输出端情况,记录之。

(5)保持:寄存器予置任意4位二进制数吗dcba,令CR=1,S1=S0=0,加CP脉冲,观察寄存器输出状态,记录之。

图 4 74LS194逻辑功能测试
2、循环右移
将实验内容1接线参照图 2进行改接。

用并行送数法予置寄存器为某二进制九码(如0100),然后进行右移循环,观察寄存器输出端状态的变化,记入表 3中。

表 4
3、循环左移
将实验内容1接线参照图 2进行改接。

用并行送数法予置寄存器为某二进制九码(如0100),然后进行左移循环,观察寄存器输出端状态的变化,记入表 4中。

4、累加运算
接图 5连接实验电路。

CR、S1、S0接逻辑开输出插口,CP接单次脉冲源,由于逻辑开关的数量有限,两寄存器并行输入端D3D2D1D0根据实验设备现有条件,进行接线。

两寄存器
的输出端接至LED逻辑电平输入插口。

(2)送数
令CR=S1=S0=1,用并行送数方法把三位被加数A2A1A0和三位加数B2B1B0分别送入累加和移位寄存A及加数移位寄存B中,然后进行右移,实现加法运算。

连续输入4个CP脉冲,观察两个寄存器输出状态变化,记入表11-4中。

五、实验预习要求:
1、复习有关寄存器及累加运算的有关内容;
2、查阅74LS194、74LS18
3、74LS74逻辑线路。

熟悉其逻辑功能及引脚排列;
3、在对74LS194进行送数后,若要使输出端改成另外的数码,是否一定要使寄存器清零?
4、使寄存器清零,除采用CR输入低电平外,可否采用右移或左移的方法?可否使用并行送数法?若可行,如何进行操作?
5、若进行循环左移,图 4接线应如何改接?
六、实验报告:
1、分析表 2的实验结果,总结移位寄存器74LS194的逻辑功能并写入表格功能总结一栏中;
2、根据实验内容2的结果,画出4位环形计数器的状态转换图及波形图;
3、分析累加运算所得结果的正确性。

实验五、移位寄存器及其应用
一、实验目的:1、熟悉中规模4位双向移位寄存器的逻辑功能
2、用移位寄存器构成串行累加器和环行计数器
二、实验原理:略
三、实验器件:1片74LS74、2片74LS194,1片74LS183(全加器)
四、实验内容:
1、测试74LS194的功能, P201图,表2)按照实验指导书的要求做
2、循环移位
P199图2,表3)先用并行置数预置寄存器为某二进制码(例0100)
3、参考P199图2,表3)将移位寄存器改为左移,重复2
4、累加运算。

P202图5,按照实验指导书的要求做
183的管脚图P259左下, 74管脚图P256右上。

相关文档
最新文档