核磁共振基本知识
MR检查的科普小知识
MR检查的科普小知识MR检查的全称核磁共振检查,临床中又称为核磁共振成像技术。
检查过程是将人体放置于一个特定的强大磁场仪器中,通过射频脉冲激发人体内氢质子发生核磁共振现象,然后获得核磁共振信号,再经过专业计算软件的运算,从而得到包含人体信息的图像。
核磁共振虽然有个“核”字,指的是人体内的原子核,不是核辐射的“核”,因此磁共振是没有辐射的,完全不存在核辐射现象及放射性物质,检查过程非常安全,患者和家属无需担心和恐惧。
一、磁共振的优点和主要检查范围1.磁共振的检查过程不会对患者产生任何创伤和辐射,由于采用的是空间三维梯度磁场,可以在不移动患者和扫描床的情况下实现任何角度扫描和图像重建,对一些行动不便或身体有创伤的患者特别友好。
2.磁共振检查在不使用对比剂的情况下,能直接显示人体心脏和血管结构;对人体软组织有高分辨率,后期成像更清晰、准确,帮助医生掌握一些不易察觉的早期病变。
在进行骨骼检查时,不会产生伪影干扰,对颅脑后部的病变有着清晰的辨认。
在检查患者身体的同时,还能提供机体功能、组织化学和生物化学方面的研究。
3.磁共振的主要检查范围包括:颅脑、脊髓和椎管内疾病的诊断,脊椎及椎间盘的诊断,腹部及盆腔脏器的诊断,骨关节韧带半月板的诊断,心脏、大血管疾病的诊断,孕妇、胎儿疾病的诊断。
二、磁共振检查的禁忌对象1.磁共振检查的受检者不能装有心脏起搏器,由于检查中会产生强大的磁场,心脏起搏器、ICD等包含金属的物质有可能出现装置移位、起搏信号异常、电极升温等异常现象,会引起受检者心律失常甚至死亡等严重后果。
2.受检者身体内有骨科植入物要告知医生,根据植入物材质属性判断可不可以进行MRI检查。
目前临床使用的骨科植入物大多由纯钛或钛合金制成,不会与磁场产生磁性,但是有可能会造成图像伪影,影响周围组织的观察,因此也需提前告知影像医生。
如内固定物是由不锈钢等材质制成,是绝对禁止进行磁共振检查。
3.受检者佩戴输液泵和留置导管是可以进行MRI检查的,输液泵材料没有金属,不会呈现非铁磁性和弱磁性,而使用胰岛素泵的患者应在检查前移除胰岛素泵,避免强磁场破坏胰岛素功能。
磁共振成像基础知识
IR序列M的变化过程
IR序列特点
IR序列具有强T1对比特性; • 可设定TI,饱和特定组织产生具有特征
性对 比图像(STIR、FLAIR); • 短 TI 对比常用于新生儿脑部成像; • 采集时间长,层面相对较少。
STIR序列(Short TI Inversion Recovery)
在IR恢复过程中,组织的MZ都要过0点,但时间不 同。利用这一特点,对某一组织进行抑制。
超导型
优点:1.场强高(0.5-3.0T) ;2.磁场稳 定均匀;3.成像速度快,图象质量好。
缺点:1.造价高;2.需要补充液氦和 液氮;日常维护费用高。
梯度线圈
梯度线圈性能的提高 磁共振成像速度加 快
梯度线圈性能指标 梯度场强 20mT/m 切换率 50mT/m.s
脉冲线圈
作用:激发人体产 生共振;采集MR信 号
质子密度加权像
长TR、短TE——质子密度加权像,图像特点:
组织的 H 越大,信号就越强; H 越小,信号 就越弱。
脑白质:65 % 脑灰质:75 % CSF: 97 %
常规SE序列的特点
最基本、最常用的脉冲序列。 得到标准T1 WI 、 T2 WI图像。 T1 WI观察解剖好。 T2 WI有利于观察病变,对出血较敏感。 伪影相对少(但由于成像时间长,病人易
180- 90-{180-Echo}n
180°脉冲反转脉冲结束后,无MXY的存在,MZ开 始恢复,等MZ过了0点后,在时刻 t=TI (Time of In version反转时间),再施加一个 90°脉冲(此后的脉 冲方式同SE),再施加180°脉冲,就可以得到回波信 号。IR序列的TR一般为1800~2500ms,而TI=400~60 0ms。
磁共振的基础知识
磁共振的基础知识1、核磁共振核,不是核辐射,而是原子核,用得最多的是氢(人体最多)。
磁,磁场也。
共振,一定频率的射频脉冲激发原子核,使之共振,从而产生信号,转换成图像。
2、磁共振成像简单过程如果给人体施加一个外来的静磁场,再给予一个短暂的、与质子共振相同频率的旋转磁场(即射频脉冲),之后采集电磁波信号,就可以获得人体的磁共振信号。
对磁共振信号的采集过程给予一个形象的比喻,可以把质子比喻成卫星,我们从发射电台发送信号,卫星获得信号,再重新发射出来,地面的收音机就可以收听到节目了。
通过对接受到的磁共振信号进行空间编码和图像重建等处理,即产生MR图像。
3.磁共振检查的特点1)磁共振没有X线、CT检查的辐射,对身体不产生辐射危害。
2)磁共振采用空间三维梯度场,在不移动患者和扫描床的情况下实现任何角度扫描和图像重建。
3)无骨质伪影。
4)软组织对比度良好。
5)对病变显示更加敏感,可使病灶显示更早更清楚。
6)磁共振的DWI(扩散加权成像)序列,是唯一能够无创检测活体组织内水分子扩散运动的成像方法。
7)磁共振的PWI(灌注加权成像)序列,能够显示脑组织血流动力学信息。
8)磁共振的MRS(波谱分析)序列,是唯一能够无创检测活体组织内化学物质、反应组织代谢的方法。
4、图像分析过程中,有个非常重要的概念必须了解——部分容积效应。
在CT扫描,凡小于层厚或该层仅包含部分的病灶,其CT值受层厚内其它组织的影响,所测出的CT值不能代表该病变的真正的CT值。
MRI也一样,凡小于层厚或该层仅包含部分的病灶,图像表现出来的,不仅仅是病灶的影像,而是重叠了层厚内部分病变外结构的影像。
5、部分容积效应会让你看到的影像变得“不真实”,从而可能会使你做出错误的判断。
6、宽窗位技术,更是数字影像时代,每一名影像医生必须掌握的、最基本的技能!窗宽窗位技术源于CT,磁共振可能用对比度更合适。
不同器官、不同部位,有着不同的合适的窗宽窗位。
同一区域,由于观察的内容不同,合适的窗宽窗位也不同。
核磁共振专题知识
➢ 陀螺存在自旋 ➢ 陀螺处于重力场中 ➢ 重力力矩垂直于自转轴
(角动量)方向
结果
陀螺旋进 力矩越大旋进角速度越大
核磁共振专题知识
图 14-2 陀螺旋进
T L
第17页
旋进也称进动,描述是含 有角动量物体或体系在外力矩 作用下,其角动量方向发生连 续改变现象。
核磁共振专题知识
第18页
原子核在磁场中旋进
核磁共振专题知识
图 磁共振成像原理图
第36页
1.层面选择
利用梯度磁场 依据拉莫尔方程理 论,实现选层定片
核磁共振专题知识
图 选层定片
第37页
核磁共振专题知识
层面选择
第38页
层面选择
核磁共振专题知识
第39页
2.编码 (1)相位编码 如图1
图1 磁矩旋进相位差异
图2 磁矩旋进频率差异
(2)频率编码 核磁共振专题知识 如图2
核磁共振专题知识
第42页
核磁共振专题知识
Proton
质子
氢原子核1H
Electron
电子
第43页
2. 人体各种组织含水百分比不一样
3.人体不一样正常组织和病变组织 、
核磁共振专题知识
第44页
三、怎样产生氢核密度 和 、 加权成像
1.自旋回波序列
核磁共振专题知识
图14-21 自旋回波序列
第45页
第12页
而且,Damadian前瞻性地预言了核磁共 振作为临床诊疗工具可能性。
Damadian工作直接启发了 Lauterbur 对 成像技术研究,Lauterbur在认识到这一发 觉医学价值同时,也敏锐地意识到假如不能 进行空间上定位,核磁共振在临床应用可能
[核磁共振讲义]第一章—核磁共振基础知识
第一章核磁共振基础知识核磁共振(NMR)是指核磁矩不为零的核,在外磁场的作用下,核自旋能级发生塞曼分裂,共振吸收某一定频率的射频辐射的物理过程。
核磁共振是波谱学的一个分支,研究核磁共振现象与原子所处环境如分子结构,构象,分子运动的关系及其应用。
生物化学,分子生物学的发展对生物大分子空间结构的测定提出越来越高的要求,而逐渐形成一门新兴的交叉学科即结构生物学。
结构生物学已成为生命科学研究的前沿领域和热点。
核磁共振波谱学是结构生物学的一种重要的研究手段,核磁共振波谱学各种最新技术的出现和发展往往与结构生物学密切相关。
如3D,4DNMR。
简史:1924 Pauli从光谱的超精细结构推测某些原子核有核磁距,能级裂分,共振吸收1936 Gorter试图观察LiF中7Li的吸收,未能成功,因样品弛豫时间太长1945-1946 F.Bloch(Stanford), H2O 感应法E.M.Purcell(Harvard), 石蜡吸收法1946-1948 奠定了理论基础1952年共得诺贝尔物理奖1951 Arnold et al 乙醇1H化学位移精细结构1957 Saunders et al 核糖核酸酶40 MHz的1H谱(1965 Cooley, Tukey FTT)1966 R.R. Ernst 脉冲NMR理论1971 Jeener 2DNMR原理1984 K. Wuethrich用NMR解蛋白质溶液结构1945-1951 奠定理论和实验基础1951-1965 CW-NMR发展,双共振技术1965-1970~PFT-NMR发展1970~--- 2D-NMR,MQT-NMR,SOLID-NMR,自旋成象技术核磁共振可以用于研究有机分子的化学结构,代谢途径,酶反应的立体化学信息,生物大分子的溶液构象,分子间相互作用的细节,化学反应速率,平衡常数,还可用来研究分子动力学,包括分子内的基团运动,以及生物膜的流动性。
细胞和活组织中化学成分的分布及交换过程,等等。
MRI检查知识小科普
MRI检查知识小科普医学影像技术在现代医疗中起着至关重要的作用,其中磁共振成像(Magnetic Resonance Imaging,MRI)是一种非常常见且广泛应用的影像技术。
MRI利用核磁共振现象,通过对人体内部的信号进行扫描和分析,生成高分辨率的影像,可以提供有关人体内部结构和功能的详细信息。
一、MRI查的原理核磁共振(Magnetic Resonance Imaging,MRI)是一种常用的医学影像技术,通过利用核磁共振现象,可以获取人体内部的详细结构和功能信息。
MRI检查的原理主要包括核磁共振现象的解释、MRI扫描的基本步骤以及MRI扫描的主要参数和影像构成。
1.核磁共振现象的简要解释核磁共振现象是指在强磁场中,原子核的自旋会在一定条件下发生共振。
人体组织中的水分子中含有氢原子核,而氢原子核又是唯一具有自旋的核素。
当人体置于强磁场中时,水分子中的氢原子核的自旋会与磁场方向产生相互作用,形成两种能量状态,即低能级和高能级。
这两种能级之间的转变,会释放出一定的能量,这种能量就是核磁共振信号。
2.MRI扫描的基本步骤MRI扫描的基本步骤包括磁场建立、激发和信号检测三个主要过程。
首先,通过产生强大的静态磁场,使得人体内的氢原子核自旋在磁场中定向。
然后,通过向患者体内注入一定频率和方向的无线电波,激发患者体内氢原子核的自旋状态发生共振。
最后,通过接收和处理患者体内产生的核磁共振信号,生成图像。
3.MRI扫描的主要参数和影像构成MRI扫描的主要参数包括磁场强度、脉冲序列和图像对比等。
磁场强度是指MRI设备所产生的静态磁场的强度,通常以特斯拉(Tesla,T)为单位。
不同磁场强度的MRI设备对图像分辨率和信噪比有不同的影响。
脉冲序列是指用于激发和检测核磁共振信号的无线电波脉冲的时间序列。
常见的脉冲序列包括快速自旋回波(Fast Spin Echo,FSE)和梯度回波(Gradient Echo,GRE)等。
核磁共振基本知识
7. 自旋偶合与偶合常数
自旋裂分规律:(n+1)规律 当一个氢核有n个邻近的全同氢核存在时,其
NMR吸收峰分裂为(n+1)个,相邻峰间距离为J
(Hz),各峰相对强度比为二项式(a + b)n展开
式的各项系数之比
信号裂分的数目和相对强度
氢核间的耦合类型
H H H (a) (b) H
H (c)
峰的分裂数与直接相连的氢有关一般也遵守n+1规律
③ INEPT谱
碳的类型 C-I C-Br
Cl
OCH2 CH3
5、H核磁共振谱图的信息
信号的数目: 分子中有多少种不同类型的质子 信号的位置: 每种质子的电子环境,化学位移
信号的强度: 每种质子的比数或个数
裂 分 情 况: 邻近有多少个不同的质子
化学位移的定义和表示
信号的位置
δ=
ν样品- ν标准 (Hz)
ν标准 (M Hz ) ×106
难以用电负性来解释,如
H H3C CH2 H δ 0.96 H2C H 5.84 2.8 7.26 HC H H R H 7.8-10.5 O
苯环(及其它大Π键体系)形成环流
芳烃的各向异性图示
(a) 苯环的 H 处于诱导磁场的去屏蔽区域,因此在低场 δ 7.3 ; (b)[18]-轮烯的环外H去屏蔽,在低场δ.8.9,环内H屏蔽,在高 场,δ -1.8
4.屏蔽效应-化学位移
氢原子核的外面有电子,它们对磁场的磁力
线有排斥作用。对原子核来讲,周围的电子起了
屏蔽( Shielding )效应。核周围的电子云密度越 大,屏蔽效应就越大,要相应增加磁场强度才能 使之发生共振。核周围的电子云密度是受所连基 团的影响,故不同化学环境的核,它们所受的屏
MRI
磁共振成像(MRI)知识讲座引言我们将磁共振成像(MRI)的基本知识向大家略做介绍,希望能有所帮助。
第一章磁共振成像(MRI)基础知识一、磁共振成像(MRI)基本原理1、人体组织的化学特性人体内最多的分子是水,约占人体重量的65%,其次为脂肪成份。
此外,还有大量有机分子,如蛋白质、酶、磷酯等。
这些物质中都含有大量的氢原子。
因此,氢原子是人体中含量最多的原子。
2、磁共振成像(MRI)原理目前的磁共振成像是氢原子的成像,实际上是脂肪和水为主的软组组成像,或者说磁共振成像(MRI)是利用身体细胞中的氢原子在磁场内共振产生信号,通过精密的电脑系统重建而获得高清晰的影像,以达到诊断目的的一种技术。
二、磁共振成像(MRI)技术的发展概况1、1977年:初期MRI全身图像产生;2、1980年:首台商品磁共振成像系统问世;3、1981年:首台超导全身磁共振成像系统建立;4、1983年:获准进入市场;5、1989年:我国0.15T永磁型磁共振成像系统(ASM-015P)问世;6、1992年:我国0.60T超导型磁共振成像系统(ASM-060S)问世;7、1999年:我国0.35T永磁型磁共振成像系统(NOVUS系列)开发成功;8、2000年:我国1.5T超导型磁共振成像系统(NOVUS系列)开发成功;9、目前: 3.0T超导磁共振应用于临床;10、目前:7.0T、10.0T磁共振进入临床前研究;三、磁共振成像(MRI)的一些基本概念1. 什么是Tesla?Tesla(T)是一个磁场强度单位,中文译为特斯拉,一单位T等于10000Gause,Gause中文译为高斯,地球的自然磁场强度为0.3~0.7Gs,南北极有所不同。
2. 什么是共振?共振是一种自然界普遍存在的物理现象,物质是永恒运动着的,物体的运动在重力作用下将会有自身的运动频率。
当某一外力作用在某一物体上时,而且有固定的频率,如果这个频率恰好与物体自身运动频率相同,物体将不断吸收外力,转变为自身运动的能量,随时间的积累,能量不断被吸收,最终导致物体的颠覆而失去共振状态。
核磁共振基础知识
μ=rp
式中 r—磁旋比,是核的特征常数; 核磁矩μ以核磁子p为单位,p=5.05×10-27 J/T,是个常数。
自旋量子数(spin quantum number, I) -原子核自旋状态的量子化
NMR中电磁辐射的频率为兆赫数量级,属于射频 区,但是射频辐射只有置于强磁场F的原子核才 会发生能级间的跃迁,即发生能级裂分。当吸收 的辐射能量与核能级差相等时,就发生能级跃迁, 从而产生核磁共振信号。
核磁共振谱常按测定的核分类
◆ 测定氢核的称为氢谱(1H-NMR) ◆ 测定碳-13的称为碳谱(13C-NMR)
变。
(2)不同原子核,磁旋比 不同,产生共振的条件不同,需 要的磁场强度H0和射频频率不同。
1H—核磁共振波谱(氢谱)
1H—核磁共振(1H—NMR)也称为质子核磁共 振,是研究化合物中1H原子核(即质子的核磁共 振。可提供化合物分子中氢原子所处的不同化 学环境和它们之间相互关联的信息。依据这些 信息可确定分子的组成、连接方式及其空间结 构。
Chapter2 基本原理
原子核的磁矩和自旋角动量
两种进动取向不同的氢核之间的能级
差:E= H0 (磁矩)
共振条件
(1) 核有自旋(磁性核) (2)外磁场,能级裂分;
(3)照射频率与外磁场的比值0 / H0 = / (2 )
讨论:
共振条件: 0 = H0 / (2 ) (1)对于同一种核 ,磁旋比 为定值, H0变,射频频率
◆核磁共振谱不仅给出基团的种类,而且能提供基团 在分子中的位置
磁共振基础知识
何为加权???
所 “重 谓的加权就是 点突出”
的意思
T1加权成像(T1WI)----突出组织T1弛豫( 纵向弛豫)差别
T2加权成像(T2WI)----突出组织T2弛豫( 横向弛豫)差别
质子密度加权成像(PD)-突出组织氢质子含 量差别
T1WI T2WI
T1WI T2WI
人体不同组织的
磁共振检查技术
平扫(T1WI,T2WI,PDWI) 增强(TIWI) 动态增强(Dynamic MR) 磁共振血管造影(MRA) 脂肪抑制成像(STIR) 水抑制成像(FLAIR) 水成像(MRCP、MRU) 灌注成像(Perfusion) 弥散成像(Diffusion) 功能成像(Function MR)
进入静磁场后,H核磁矩发生规律性排列(正负方向),正负方向的磁矢量相互 抵消后,少数正向排列(低能态)的H核合成总磁化矢量M,即为MR信号基础
z M
x
按照单一核子 进动原理,质子 群在静磁场中 y 形成的宏观磁 化矢量M
Z
B0
Z
MZ
X A
Y
X
在这一过程中,产生能量
Y MXY
B
A:施加90度RF脉冲前的磁化矢量Mz B:施加90度RF脉冲后的磁化矢量 Mxy.并以Larmor频率横向施进 C:90度脉冲对磁化矢量的作用。即M 以螺旋运动的形式倾倒到横向平面
X
X
体各类组织均有特定T1 、
(4)停止后一定时间 (5)恢复到平衡状态 T2值,这些值之间的差
异形成信号对比
弛豫:Relaxation;
自然界的一种固有属性;即任何系统都有在外
MR 信 号 特 点
MRI检查知识小科普
MRI检查知识小科普随着现代医学的蓬勃发展,临床疾病的诊断和治疗方法也日益丰富,对人类健康发挥着不可替代的积极作用。
MRI是一种新兴的现代医学影像检查方法,由于具有较高的准确率和安全可靠性,被广泛地应用在临床实践中;但因现代社会节奏快和人群阅读兴趣的不同等,有一些人并不完全了解MRI,在检查过程中也不能密切配合医生,妨碍检查的顺利进行。
作为“大家都很忙”的现代人,花费一点时间聊一聊MRI检查的科普小知识,显得尤其重要!一、MRI检查特点简述MRI是核磁共振成像的简称。
此处所说的“核”,是指日常生活中最常见,同时也是人体中含量最多的水分子中的氢原子核,与我们平常所说的“核武器”“核反应堆”等所涉及到的“核”没有半点关系,所以严格意义上来讲应该叫磁共振,同时也避免了部分人群谈“核”色变!MRI检查属于无创性检查。
其基本原理是:人体中不同组织、器官的含水量不一样,其氢质子运动的频率和强度也不一样。
利用MRI设备所形成的磁场,对人体中某一病变组织或器官中本身就存在的氢质子施加一定频率的脉冲,使其产生共振,从而显示出与组织或器官中正常状态下氢质子运动不一样的运行轨迹,得到不同组织或器官的图像,对疾病的诊断具有较高的价值。
因MRI对人体安全无辐射,属于无创性检查,是一种值得推广使用的检查方法。
MRI检查的另一个特点是成像角度灵活多变,可以获得任何方向的断层图像、三维立体图像。
与CT检查等断层成像技术相比,MRI检查能进一步获得空间-波普分布的四维图像,再加上MRI检查独特的成像原理和成像方式的多样化,最终获得的用于疾病诊断的信息也更加丰富,能早期发现病变并显示病变确切的大小和范围,从而具有较高的诊断准确率。
随着现代医学技术和MRI检查设备功能的不断发展,MRI逐渐应用于全身各系统的成像诊断,比如颅脑、脊髓、心脏、大血管、腹部脏器、关节软骨、软组织等相关疾病的检查。
但MRI也存在不足之处。
一是与CT检查相比,MRI的空间分辨率有限;二是对于带有心脏起搏器或某些金属异物的患者不能采用MRI检查;三是由于检查价格相对昂贵,不容易被患者接受。
核磁共振检查科普知识
核磁共振检查科普知识虽然大多数人都听说过核磁共振,但是对于核磁共振能检查的内容及注意事项可能还不够了解,也有可能会存在一些认识误区。
接下来,我将简单介绍核磁共振检查的相关科普知识,希望能在阅读完这一文章后,能使大家对这一检查项目有更多的了解。
1核磁共振是什么?核磁共振是现阶段最为先进的一种影像学检查手段,临床上核磁共振检查是比较常见的,且属于无创检查。
核磁共振检查是指将人体放在强大的磁场中,通过射频脉冲激发人体内氢质子发生核磁共振现象,之后再借助计算机来运算处理获取的核磁共振信号,这时医生就可以得到包含患者人体信息的图像资料了。
核磁共振设备的基本要素主要有磁体、梯度磁场、射频线圈、采集系统以及计算机。
2核磁检查的优势有哪些?核磁共振可以多参数成像,所以其能提供的诊断信息是非常丰富的;核磁共振可从三维空间对人体组织器官进行观察,针对软组织也能对比成像,并得出解剖图谱;核磁共振检查过程中并不会使用到对比剂,也能观察到心脏以及血管的结构,且此种检查方式并不存在电离辐射,所以也不会对人体造成伤害。
CT检查时在骨边缘可能会有条纹状伪影,进而对病情判断造成严重影响,但是核磁共振检查却并没有骨伪影,所以在脑干小脑病变诊断时首选核磁共振。
此外,相对于CT检查来讲,核磁对比度较高,其能清晰地分辨软组织,比如说肌肉、筋膜和肌腱。
同时核磁共振检查还能将神经纤维、胆囊及输尿管血管等结构显示出来,所以在软组织病变、颅脑、脊柱病变检查中首选核磁共振。
3核磁共振检查适应症①神经系统病变。
神经系统病变为核磁共振应用最早的人体系统,且截至目前,核磁共振在神经系统病变检查方面积累了非常丰富的经验,所以能准确地定位、诊断病变,且能及时发现早期病变。
先天畸形、外伤、脑梗死、脑肿瘤、炎症变性病等神经系统病变均可通过核磁共振检查。
②胸部病变。
核磁共振可以用以检查淋巴结、胸膜病变、纵隔内的肿物,也能将肺内团块及较大气管和血管关系显现出来。
③盆腔脏器。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天然有机化合物波谱解析苏艳芳yfsuphd@1�第一章核磁共振谱�第一节:核磁共振基本知识�第二节:氢谱�第三节:碳谱和DEPT谱�第四节:二维谱(HMQC、COSY、HMBC等)�第五节:综合练习2第一节核磁共振基本知识31924年:Pauli预言了NMR的基本理论,即,有些核同时具有自旋和磁量子数,这些核在磁场中会发生分裂;1946年:Harvard 大学的Purcel和Stanford大学的Bloch各自首次发现并证实NMR现象,并于1952年分享了Nobel奖;1953年:Varian开始商用仪器开发,并于同年制作了第一台高分辨NMR仪;1956年:Knight发现元素所处的化学环境对NMR信号有影响,而这一影响与物质分子结构有关。
1970年:Fourier(pilsed)-NMR 开始市场化(早期多使用的是连续波NMR 仪器)。
4有多位著名科学家因从事NMR或与NMR 有关的研究而获得诺贝尔奖。
56Edward Mills Purcell, Harvard UniversityCambridge, MA, USAFelix Bloch ,Stanford UniversityStanford, CA, USA The Nobel Prize in Physics 1952:首次观测到宏观物质核磁共振信号。
7 著名的物理学家、教育家、中国核科技教育主要奠基人之一、北京大学教授、中国共产党党员。
核磁共振化学位移和J 耦合的发现者之一。
虞福春(1914---2003),1936年毕业于北京大学物理系;随后在上海的中央研究院物理研究所工作。
1939年9月至1946年4月在西南联大物理系工作。
1946年至美国俄亥俄州立大学物理系攻读博士学位,于1949年6月获博士学位;接着到斯坦福大学物理系做博士后研究工作,在核磁共振研究领域取得了重大科研成就,载入二十世纪科技发展史册。
1949年他在布洛赫教授(F. Bloch ,因发现核磁共振获诺贝尔物理奖)支持和另一位博士后普洛克特(WG .Proctor)合作下发现了核磁共振化学位移效应和自旋耦合分裂效应,为核磁共振谱学奠定了基础。
1996年在美国举行国际核磁共振发现五十周年庆祝大会,特地专函邀请他参加,再次高度评价此项发现。
1950:W.G.Proctor 和当时旅美学者虞福春发现NH 4NO 3中14N 的共振谱线为两条,说明同一核在不同化学环境会表现出不同的核磁共振信号(化学位移δ不同)。
The Nobel Prize in Chemistry 1991瑞士科学家Richard R.Ernst ,发明了傅立叶变换核磁共振分光法和二维及多维的核磁共振技术。
8The Nobel Prize in Chemistry 2002Kurt W Wüthrich�Kurt“for his developmentof nuclear magneticresonancespectroscopy fordetermining the three-dimensional structureof biologicalmacromolecules insolution”9自1953年出现第一台核磁共振商品仪器以来,核磁共振在仪器、实验方法、理论和应用等方面有着飞跃的进步。
谱仪频率已从60 、80、90、100MHz(continuous wave, CW,连续波谱仪)发展到300、400、500、600、900 MHz(pulse-Frourier tansform,脉冲-傅里叶变换)。
随着多种脉冲序列的采用,所得谱图已从一维谱到二维谱甚至更高维谱。
总而言之,核磁共振已成为最重要的仪器分析手段之一。
10Fourier 变换NMR谱仪示意图。
磁体用液氦外包液氮冷却111. 核磁共振的产生核磁共振的研究对象为具有磁矩的原子核。
只有存在自旋运动的原子核才具有磁矩。
原子核的自旋运动与自旋量子数I 相关,I=0的原子核没有自旋运动。
I≠0的原子核有自旋运动。
12 原子核可按I 的数值分为以下三类:(1)中子数、质子数均为偶数,则I=0,如12C,16O,32S。
(2)中子数与质子数其一为偶数,另一为奇数,则I 为半整数,如 I=1/2:1H、13C、15N、19F、31P、37Se。
I=3/2: 7Li、9Be、11B、33S、35Cl、37Cl等; I=5/2: 17O、25Mg、27Al、55Mn等; 以及I=7/2、9/2等。
(3)中子数、质子数均为奇数,则I为整数,如2H(D)、6Li、14N等I=1;58Co,I=2;10B,I=3。
其中,I=1/2的原子核,其电荷均匀分布于原子核表面,这样的原子核不具有四极矩,其核磁共振的谱线窄,最宜于核磁共振检测。
13 凡I 值非零的原子核即具有自旋角动量P,也就具有磁矩μ,μ与P之间的关系为: 称为磁旋比,是原子核的重要属性。
1H的磁旋比为13C磁旋比的4倍。
14 在静磁场中,具有磁矩的原子核存在着不同能级。
如果运用某一特定频率的电磁波来照射样品,并使该电磁波满足一定条件,原子核即可进行能级之间的跃迁,这就是核磁共振。
产生核磁共振的条件为:其中ν为该电磁波频率,B0为静磁感强度。
15162、核磁共振参数1)、化学位移δ :对某一选定的磁性核种(如1H 、13C )来说,不同化学环境中的核,由于核外电子对原子核的屏蔽作用,实际作用于原子核的静磁感强度不是B 0而是B 0(1-σ),因此其共振频率会稍有变化。
σ称为屏蔽常数。
它反映核外电子对核的屏蔽作用的大小,也就是反映了核所处的化学环境: 不同化学环境的原子核谱峰位置相对于原点的距离,反映了它们所处的化学环境,称为化学位移δ。
δ的单位是ppm ,是无量纲的。
需强调的是,δ为一相对值,它与仪器所用的磁感强度无关。
1718在测定1H 及13C 的核磁共振谱时,最常采用四甲基硅烷(TMS )作为测量化学位移的基准:a 化学惰性;b 对称,四个甲基对称分布,只有一种氢信号;c 易挥发(沸点27℃);d 溶于大多数有机溶剂。
一般基团的峰均处于其左侧。
在氢谱及碳谱中都规定δTMS =0。
按"左正右负"的规定,一般化合物各基团的δ值均为正值。
S iC H 3H 3C C H 3C H 3TMSt etra m ethyl s ilane2)、耦合常数J:当自旋体系存在自旋-自旋耦合时,核磁共振谱线发生分裂。
有分裂所产生的裂距反映了相互耦合作用的强弱,称为耦合常数(coupling constant)J。
J的单位为Hz。
谱线分裂的裂距反映耦合常数J的大小,确切地说,反映了J的绝对值。
J是有正负号的,但在常见的谱图中往往不能确定它的符号。
耦合常数J 反映的是两个核之间作用的强弱,故其数值与仪器的工作频率无关。
19耦合常数的大小和两个核在分子中相隔化学键的数目密切相关,故在J的左上方标以两核相距的化学键数目。
如13C-1H之间的耦合常数标为1J,而1H-12C-12C-1H中两个1H之间的耦合常数标为3J。
耦合常数随化学键数目的增加而迅速下降,因自旋耦合是通过成键电子传递的。
两个氢核相距四根键以上即难以存在耦合作用,若此时J≠0,则称为远程耦合或长程耦合。
碳谱中2J以上即称为长程耦合。
203)、峰面积:峰面积反映了某种(官能团)原子核的定量信息。
这对推测未知物结构或对混合物体系进行定量分析均是重要的。
213、NMR样品的制备a 理想的溶剂:不含氢、化学惰性、低沸点、价格便宜。
必须使用氘代试剂,其中氘核可作核磁谱仪锁场和匀场之用。
以用氘代试剂作锁场信号的"内锁"方式作图,所得谱图分辨率较好。
特别是在微量样品需作较长时间的累加时,可以边测量边调节仪器分辨率。
b 一般将样品溶于约0.5ml的氘代溶剂中,加入到5mm外径的玻璃核磁管。
(浓度、残余溶剂峰和水峰)22234.964.794.872.130.403.332.841.56水峰7.207.578.724.793.311.947.162.502.057.26残余溶剂峰C 5D 5ND 2O CD 3OD CD 3CN C 6D 6(CD 3)2SO (CD 3)2CO CDCl 3氘 代 溶 剂24123.44135.43149.84-49.001.32118.26128.0639.52206.2629.8477.16C 5D 5N D 2O CD 3OD CD 3CN C 6D 6(CD 3)2SO (CD 3)2CO CDCl 3氘 代 溶 剂(溶剂的选择:1、溶解度;2、不同类型的化合物选用不同溶剂)样品的纯度:1、其它化合物的存在;2、水;3、实验室常用溶剂的影响;4、磁铁杂质(铁锈颗粒):自来水、清洁球、刮勺、仪器配件、溶剂25。