全等三角形和等腰三角形

合集下载

全等三角形和等腰直角三角形综合复习

全等三角形和等腰直角三角形综合复习

武汉市南湖中学八年级数学导学案专题:等腰直角三角形桂学刚一、自主探究1、如图,△ABC中,∠BAC=90゜,AB=AC,过直角顶点A作直线AP(AP与AB、AC不重合,且不垂直BC),分别过B、C作BE⊥A P于点E,CF⊥A P于点F.画出图形后思考:图中是否都含有全等的三角形?请指出来,并找出他们全等的条件?二、合作交流2、如图(1), 已知△ABC中, ∠BAC=900, AB=AC, AE是过A的一条直线, 且B、C在A、E的异侧, BD⊥AE于D, CE⊥AE于E(1)试说明: BD=DE+CE.(2)若直线AE绕A点旋转到图(2)位置时(BD<CE), 其余条件不变, 问BD与DE、CE的关系如何? 为什么?在平面直角坐标系中看基本图形3、如图1,A(-2,0),B(0,4),以B点为直角顶点在第二象限作等腰直角△ABC.(1)求C点的坐标;(2)如图2,点E为y轴正半轴上一动点,以E为直角顶点作等腰直角△AEM,过M作MN⊥x 轴于N,求OE-MN的值.三、课堂反馈4、如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC,(1)求C点的坐标;(2)如图2,P为y轴负半轴上一个动点,当P点向y轴负半轴向下运动时,以P为顶点,PA为腰作等腰Rt△APD,过D作DE⊥x轴于E点,求OP-DE的值;(3)如图3,已知点F坐标为(-2,-2),当G在y轴的负半轴上沿负方向运动时,作Rt△FGH,始终保持∠GFH=90°,FG与y轴负半轴交于点G(0,m),FH与x轴正半轴交于点H(n,0),当G点在y轴的负半轴上沿负方向运动时,以下两个结论:①m-n为定值;②m+n为定值,其中只有一个结论是正确的,请找出正确的结论,并求出其值.四、小结归纳,谈谈你的收获。

五、课后巩固5、如图,在四边形ABCD中,AB=BC,∠ABC=∠C DA=90°,BE⊥AD于点E.求证:BE-CD=AE.6、等腰Rt△ABC中,AC=AB,∠BAC=90°,BE平分∠ABC交AC于E,过C作CD⊥BE于D,连接AD,求证:∠ADB=45°。

八年级数学三角形与全等三角形知识点大全

八年级数学三角形与全等三角形知识点大全

八年级数学三角形知识点归纳一、与三角形有关的线段1、不在同一条直线上的三条线段首尾顺次相接组成的图形叫做三角形2、等边三角形:三边都相等的三角形3、等腰三角形:有两条边相等的三角形4、不等边三角形:三边都不相等的三角形5、在等腰三角形中,相等的两边都叫腰,另一边叫底,两腰的夹角叫做顶角,腰与底边的夹角叫做底角6、三角形分类:不等边三角形等腰三角形:底边与腰不等的等腰三角形等边三角形7、三角形两边之与大于第三边,两边之差小于第三边注:1)在实际运用中,只需检验最短的两边之与大于第三边,则可说明能组成三角形2)在实际运用中,已经两边,则第三边的取值范围为:两边之差<第三边<两边之与3)所有通过周长相加减求三角形的边,求出两个答案的,注意检查每个答案能否组成三角形8、三角形的高:从△ABC的顶点A向它所对的边BC所在的直线画垂线,垂足为D,所得线段AD叫做△ABC的边BC上的高9、三角形的中线:连接△ABC的顶点A与它所对的边BC的中点D,所得线段AD叫做△ABC的边BC上的中线注:两个三角形周长之差为x,则存在两种可能:即可能是第一个△周长大,也有可能是第一个△周长小10、三角形的角平分线:画∠A的平分线AD,交∠A所对的边BC于D,所得线段AD叫做△ABC的角平分线11、三角形的稳定性,四边形没有稳定性二、与三角形有关的角1、三角形内角与定理:三角形三个内角的与等于180度。

证明方法:利用平行线性质2、三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角3、三角形的一个外角等于与它不相邻的两个内角的与4、三角形的一个外角大于与它不相邻的任何一个内角5、三角形的外角与为360度6、等腰三角形两个底角相等三、多边形及其内角与1、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形2、N边形:如果一个多边形由N条线段组成,那么这个多边形就叫做N边形。

3、内角:多边形相邻两边组成的角叫做它的内角4、外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角5、对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线6、正多边形:各个角都相等,各条边都相等的多边形叫做正多边形7、多边形的内角与:n边形内角与等于(n-2)*1808、多边形的外角与:360度注:有些题,利用外角与,能提升解题速度9、从n边形的一个顶点出发,可以引n-3条对角线,它们将n 边形分成n-2个△注:探索题型中,一定要注意是否是从N边形顶点出发,不要盲目背诵答案10、从n边形的一个顶点出发,可以引n-3条对角线,n边形共有对角线23)-n(n条。

中考数学专题复习教案:共顶点的等腰三角形与全等

中考数学专题复习教案:共顶点的等腰三角形与全等

共顶点的等腰三角形与全等(专题复习)一、内容和内容解析1.内容基于全等三角形和轴对称两部分内容基础上的共顶点等腰三角形与全等的综合理解与运用.2.内容解析本节课是在学生已经学习了第十一章三角形、第十二章全等三角形和第十三章轴对称这三章内容知识的基础上,进一步综合探究具有某种特殊位置关系的等腰三角形的相关内容——共顶点的等腰三角形与全等.全等三角形的几种判定方法及全等三角形对应边、对应角的相关性质是解决本节知识的一个关键突破点,预证两条线段和两条边相等,就需要将其置于两个全等的三角形中;复杂图形中的基本图形也为求角的度数提供了简洁的思路方法;特殊的等腰三角形即等边三角形的相关概念、性质和判定方法也为本节内容的解决提供了有利条件,借助于特殊角60度构造等边三角形,将不在同一直线上的线段转化到同一线段中,这也提供了多种添加辅助线的方法;同时,根据旋转前后的两个三角形是全等三角形,为本节知识的变式提供了思路,可以从多种不同形式中让学生去探究其中变与不变的因素;将等边三角形置于平面直角坐标系的背景下,借助于直角三角形中,含30度角所对的直角边等于斜边的一半解决相关变式问题.从等边三角形到等腰三角形的相关探索与运用体现了由特殊到一般的思想.二、目标和目标解析1.目标(1)能根据共顶点的等腰三角形找出全等三角形.(2)能利用等边三角形的性质和判定进行综合运用.(3)结合全等和等腰三角形的相关知识,在具体几何题目中,总结基本图形,归纳几何结题策略.2.目标解析达成目标(1)的标志是:学生能从共顶点的两个等腰三角的复杂图形中发现三角形全等的条件.达成目标(2)的标志是:学生能借助于全等三角形的对应边、对应角和两个三角形面积求线段的等量关系、角的度数和证明两个三角形面积相等,推出对应的高也相等,利用角的内部到角的两边距离相等的点在这个角的角平分线上,证得一条线段为一个角的角平分线,同时,学生还能熟练掌握预证两条线段相等,则需将两条线段置于两个全等的三角形中解决问题.达成目标(3)的标志是:学生能在求证一条线段为一个角的角平分线时,通过向角的两边作双垂线,利用双垂线所在的两个三角形全等使问题得到解决;学生还能在求线段和差关系时,借助于60度角,构造等边三角形,将不在同一直线上的线段转化到同一线段中解决相关问题,让学生学会添加不同的辅助线,真正体会了截长补短的意义.三、教学问题诊断分析学生由于添加辅助线的经验不足,对于任何需要添加的辅助线,如何添加,添加的理由是什么,如何描述辅助线仍然没有规律性了解.例如:在“求线段和差关系”的证明中,由于题中60度角比较多,学生如果以不同的角为出发点构造等边三角形,所得到的辅助线也不尽相同,这样,有学生就会很茫然,为什么我的辅助线会和其他同学不同这样的疑问,包括作完辅助线后,我到底将哪条线段进行了平移,接下来该证明哪两条线段相等这些问题.事实上,添加辅助线、描述辅助线本身就是一项探究性活动,是获得证明所采取的一种尝试,有可能成功,有可能失败;对于变式训练,旋转前后哪些量变了,哪些量保持不变,这些都是学生存在困惑的地方.基于以上分析,确定本节课的教学难点为:线段和差关系中辅助线的添加描述和对于旋转问题,能够明确变与不变的元素.四、教学过程设计引言我们前面系统学习了三角形的全等和轴对称的相关知识,相信大家对其都有所理解和掌握.今天,让我们继续探究这两部分内容的综合应用.1. 复习巩固问题1 判定两个三角形全等的方法有哪些?等边三角形有哪些性质?等边三角形有哪些判定? 师生活动:学生回顾旧知,充分掌握判定三角形全等的五种方法、等边三角形的性质和判定.设计意图:复习三角形全等的五种方法、等边三角形的性质和判定,为本节课的学习打下基础.问题2 你能分别找出以下列图形中的全等三角形吗?(1)若△ABD 和△AEC 均为等边三角形,请找出下列各图形中的全等三角形.(2)若△ABD 和△AEC 均为等腰三角形,其中AB=AD ,AC=AE ,∠BAD=∠CAE ,请找出下列各图形中的全等三角形.师生活动:学生尝试找出以上图形当中的全等三角形,教师给与适当评价设计意图:让学生直观了解共顶点的等边或等腰三角形几种常见的摆放位置,通过寻找这些图形中的全等三角形,为下面设置的探究学习提供了有利条件.2. 探究学习问题3 如图,已知A 是线段BC 上一点,分别以AB 、AC 为边在同侧作等边△ABD 和△AEC.(1)填空:BE= ,∠ABE= ,∠DFB= °.(2)求证: AF 平分∠BFC.(3)求证: AF +DF=BF.师生活动:学生独立思考,发现问题,相互交流,小组间相互补充,派学生代表讲解思路,同学间相互补充,教师再此过程中关注学生能否从不同角度解决问题.设计意图:从特例出发,让学生经历发现结论,说明论证过程,体会相关知识的运用.追问1:还有不同方法解决(2)吗?你的理由是什么?师生活动:教师提出问题,学生独立思考,小组讨论交流,学生代表汇报交流结果,教师点拨,师生共同总结(2)的不同解法.追问2:你们解决(3)的方法一致吗?还有不同见解吗?师生活动:教师提出问题,学生思考,交流讨论,学生代表发表意见,教师点拨.追问3:想要解决(3),你思考问题的出发点在哪?师生活动: 学生独立思考,对教师提出的问题发表自己的见解,教师给与充分的肯定与鼓励.追问4:若BE 、AD 交于点M ,CD 、AE 交于点N ,链接MN ,你还能在图形中找出其他的全等三角形吗?△AMN 是什么三角形?MN 与BC 有怎样的位置关系?师生活动:教师增加新条件,并提出问题,学生独立思考并一一作答,学生间相互评价补充,教师最后点评并适当总结,给与恰当评价.问题4 如图,若将上题中的等边△AEC 绕点A 都还成立?请说明理由.师生活动:教师提出问题,学生独立思考并相互补充,给出结论,说明原因,教师给与评价与鼓励.设计意图:通过旋转变换,让学生体会几何图形的多变,在其过程中体会变与不变元素,抓住本质特征,从而形成解决问题的能力. 问题5 如图,若将上题中的等边△ABD 和△AEC 改为等腰△ABD 和△AEC ,其中AD=AB ,AE=AC , ∠BAD=∠EAC=a. 上述结论是否都还成立?请说明理由.师生活动:教师提出问题,学生思考并作答,说明其原因.设计意图:拓展问题的研究范围,将问题一般化,让学生经历3. 微课展示4. 巩固应用1. 已知△ABC 和△AEF ,AB=AC ,AE=AF ,∠BAC=∠EAF ,BE 、CF 交于M ,连接MA.(1)如图1,若∠BAC=60°,则△BAE ≌ ;∠CMB= .图1B图2图3BC (2)如图2,若∠BAC=90°,则∠CMB= .(3)如图3,若∠BAC=a, 直接写出∠AME 的度数(用含a 的式子表示).师生活动:学生独立完成,教师巡视,指导,师生共同评价.设计意图:巩固加深对探究学习中(1)-(3)问题的认识,再次体会由特殊到一般的探讨问题的过程.2. 如图,△AOB 是等边三角形,以直线OA 为x 轴建立平面直角坐标系,若B(a,b)且a 、b 满足(20b +-=,D 为y 轴上一动点,以AD 为边作等边△ADC ,CB 交y 轴于E.(1)如图1,求点A 的坐标.(2)如图2,D 为y 轴正半轴上一点,C 在第二象限,CE 的延长线交x 轴于M ,当D 点在y 轴正半轴上运动时,M 点坐标是否变化,若不变,求M 点的坐标,若变化,说明理(3)如图3,D 在y 轴负半轴上,以DA 为边向右构造等边△DAC ,CB 交y 轴于E 点,如果D 点在y 轴负半轴上运动时,仍保持△DAC 为等边三角形,连BE ,试求CE ,OD ,AE 三者的数量关系,并证明你的结论.师生活动:用平面直角坐标系中直角的特征,用 30设计意图:直角解决问题,(3)通过有梯度的练习,有利于提高学生综合运用条件推理的能力.5.小结教师与学生一起回顾本节课所学的内容,并请学生回答以下问题:(1)本节课解决共顶点的等腰三角形与全等问题关键是什么?(2)本节课解决一条线段为一个角的角平分线的方法有几种?(3)本节课解决线段之间的和差关系的方法是什么?(4)本节课的探究学习用到了什么思想方法?设计意图:让学生自由发表自己的看法,教师从知识内容、学习过程和思想方法三个方面进行引导. 归纳知识,小结方法,使学生建构自己的知识体系.培养学生合作交流的习惯。

初中数学 等腰三角形有哪些全等性质

初中数学 等腰三角形有哪些全等性质

初中数学等腰三角形有哪些全等性质等腰三角形是指具有两条边长度相等的三角形。

在等腰三角形中,两条边被称为腰,而第三条边被称为底边。

等腰三角形的顶角和底角也是相等的。

等腰三角形的全等性质是指两个等腰三角形在边长和角度上完全相等,即它们的对应边长和对应角度都相等。

下面我们将详细解释等腰三角形的全等性质:1. 全等边性质:如果两个等腰三角形的两条腰的边长相等,那么这两个等腰三角形是全等的。

即如果在两个等腰三角形中,AB = A'B' 且AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。

2. 全等角性质:如果两个等腰三角形的顶角和底角相等,那么这两个等腰三角形是全等的。

即如果在两个等腰三角形中,∠B = ∠B' 且∠C = ∠C',那么三角形ABC和三角形A'B'C'是全等的。

3. 全等边角边性质:如果两个等腰三角形的一对腰的边长和对应的顶角相等,且底边长度也相等,那么这两个等腰三角形是全等的。

即如果在两个等腰三角形中,AB = A'B',∠B = ∠B',AC = A'C',那么三角形ABC和三角形A'B'C'是全等的。

4. 全等边边边性质:如果两个等腰三角形的三条边的边长都相等,那么这两个等腰三角形是全等的。

即如果在两个等腰三角形中,AB = A'B',BC = B'C',AC = A'C',那么三角形ABC 和三角形A'B'C'是全等的。

通过这些全等性质,我们可以判断两个等腰三角形是否全等,以及在已知一些边长和角度的情况下,计算出其他未知的边长和角度。

这些全等性质也为解决与等腰三角形相关的几何问题提供了依据。

在应用中,我们可以利用等腰三角形的全等性质来证明几何定理、解决几何问题,或者进行构造等腰三角形的操作。

全等三角形和等腰三角形的性质及判定

全等三角形和等腰三角形的性质及判定

三角形的性质和判定及等腰(边)三角形的性质和判定概念填空:全等三角形的性质:____________________________________全等三角形的判定:____________________________________1.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO ≌△NMO ,则只需测出其长度的线段是( )A .POB .PQC .MOD .MQ(第1题图) (第2题图) (第3题图)2.如图,已知点A ,D ,C ,F 在同一条直线上,AB =DE ,BC =EF ,要使△ABC ≌△DEF ,还需要添加一个条件是( )A.∠BCA =∠F B . ∠B =∠EB.C .BC ∥EF D . ∠A =∠EDF3.如图,已知∠1=∠2,则不一定能使△ABD ≌△ACD 的条件是( )A 、AB=ACB 、BD=CDB 、C 、∠B=∠CD 、∠BDA=∠CDA 4.如图,在下列条件中,不能证明△ABD ≌△ACD 的是( )A.BD =DC ,AB =ACB.∠ADB =∠ADC ,BD =DCC.∠B =∠C ,∠BAD =∠CADD.∠B =∠C ,BD =DC5.工人师傅常用角尺平分一个任意角。

做法如下:如图,∠AOB 是一个任意角,在边OA ,OB 上分别取OM=ON ,移动角尺,使角尺两边相同的刻度分别与M ,N 重合。

过角尺顶点C 作射线OC 。

由做法得△MOC ≌△NOC 的依据是( )A .AAS B.SAS C.ASA D.SSSB6.如图,已知AB=AC,D是BC的中点,图中全等三角形有_____对全等三角形。

(第6题图)(第7题图)7、已知,在四边形ABCD中,AB=CD,AD=CB,求证:AB‖CD8、△ABC≌△ADE,∠EAC=60°,求∠BAD的度数。

9、如图,点A.B.D.E在同一直线上,AD=EB,BC∥DF,∠C=∠F.求证:AC=EF.10、已知:如图,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D 为AB边上一点.求证:BD=AE.11、如图,在四边形ABCD 中,AB=BC ,BF 平分∠ABC ,AF ∥DC ,连接AC ,CF.求证:(1)AF=CF ;(2)CA 平分∠DCF.(二)等腰(边)三角形的性质和判定1、若等腰三角形中的一个角等于50°,则另外两个角的度数分别是 。

1.1.1全等三角形和等腰三角形教案

1.1.1全等三角形和等腰三角形教案
五、教学反思
在本次全等三角形和等腰三角形的课堂教学中,我注意到以下几点值得反思和改进的地方:
1.学生对全等三角形判定方法的掌握程度:在授课过程中,我发现部分学生对全等三角形的判定方法理解不够深刻,尤其是ASA和AAS判定方法容易混淆。针对这一问题,我计划在下一节课中增加一些具体实例,通过对比分析,帮助学生更好地理解和区分这些判定方法。
2.实践活动中学生的参与度:Байду номын сангаас分组讨论和实验操作环节,部分学生参与度不高,可能是由于他们对题目理解不够透彻。为了提高学生的参与度,我将在下一次实践活动中,提前为学生提供更详细的指导,确保他们能更好地投入其中。
3.课堂提问和引导:在课堂提问环节,我发现部分学生的回答不够准确,可能是由于问题设置不够明确。为了提高课堂提问的效果,我将在以后的教学中注意问题的设置,尽量让问题更具针对性和引导性,帮助学生更好地思考。
-例如,在一个等腰三角形中,若已知底边长和顶角,求腰长或底角。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《全等三角形和等腰三角形》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要判断两个三角形是否完全相同的情况?”(如拼图游戏中的三角形板块)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等三角形和等腰三角形的奥秘。
- AAS(角角边):两角及其中一角的对边对应相等的两个三角形全等。
(2)等腰三角形的性质及其判定方法:教师需引导学生探究等腰三角形的性质,如两腰相等、底角相等,并学会运用这些性质解决相关问题。
2.教学难点
(1)全等三角形判定方法的灵活运用:学生在理解判定方法的基础上,需要学会根据不同图形的特点选择合适的判定方法,这是本节课的一大难点。

等腰三角形和全等三角形

等腰三角形和全等三角形

等腰三角形和全等三角形在几何学中,三角形是最基本的图形之一。

它由三条边和三个内角组成。

在三角形的各种类型中,等腰三角形和全等三角形是比较常见的。

一、等腰三角形等腰三角形是指具有两条边相等的三角形。

它的定义可以表示为:若三角形的两条边相等,那么这个三角形就是等腰三角形。

在等腰三角形中,还有一些特殊的性质和定理。

1. 等腰三角形的底角相等定理:在一个等腰三角形中,两个底角一定相等。

这是等腰三角形的基本性质之一。

2. 等腰三角形的高线定理:等腰三角形的高线也就是通过顶角所在定点,垂直于底边的直线。

根据等腰三角形的性质,高线还被平分为两段相等的线段。

3. 等腰三角形的内切圆和外切圆:等腰三角形的底边上的高线和底边的中点连线,会相交于等腰三角形的内切圆的圆心。

同时,等腰三角形的底边上的中线也是内切圆的切线。

此外,内切圆的半径等于等腰三角形的高线和底边中点连线的长度。

二、全等三角形全等三角形是指具有完全相等的三个角和三个边的三角形。

两个三角形完全相等时,它们的对应边、对应角都相等。

全等三角形有以下的特点和定理:1. 角对应定理:两个三角形中,如果三个角两两相等,那么这两个三角形就是全等的。

2. 边对应定理:两个三角形中,如果其中两条边和夹角完全相等,那么这两个三角形就是全等的。

3. 全等三角形的性质:(1) 两个全等三角形的各边对应相等。

(2) 两个全等三角形的面积相等。

(3) 两个全等三角形的高线、中线相等。

结论:等腰三角形是指有两条边相等的三角形,全等三角形是指具有完全相等的三个角和三个边的三角形。

等腰三角形和全等三角形具有各自的特点和性质,通过理解和应用这些性质,我们可以更好地解题和推导其他几何图形的性质。

在实际应用中,等腰三角形和全等三角形常常在建筑、工程测量、设计和解决实际问题时发挥作用。

对于学习者而言,了解这些基本概念和原理能够帮助加深对几何学的理解和应用。

总之,等腰三角形和全等三角形是几何学中重要的概念和形状,它们的特点和性质在数学学科中具有广泛的应用。

尺规作图等腰三角形全等三角形及直角坐标

尺规作图等腰三角形全等三角形及直角坐标

尺规作图、等腰三角形、全等三角形及直角坐标教学课题尺规作图、等腰三角形、全等三角形及直角坐标教学目标1、 掌握尺规作图的方法,学会用几何语言描述作图过程2、 巩固全等三角形和等腰(等边)三角形的判定证明,加强用几何语言描述的能力3、 掌握平面直角坐标系及相关概念,类比(由数轴到平面直角坐标系)的方法、数形结合的思想. 教学重、难点灵活运用四种全等三角形判定定理;构建平面直角坐标系,掌握平面内点与坐标的对应.◆ 诊查检测:1、 选择题(1)一个正方形在平面直角坐标系中三个点的坐标为(-2,-3),(-2,-1),(2,1),则第四个顶点的坐标为( )A .(2,2) B.(3,2) C.(2,-3) D.(2,3)(2)右图中是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可以表示为( )A.(0,3)B.(2,3)C.(3,2)D.(3,0)(3)已知点A (a ,b )在第四象限,那么点B (b ,a )在( )A .第一象限B .第二象限C .第三象限 D. 第四象限(4) 过两点A (3,4),B (-2,4)作直线AB ,则直线AB( )A.经过原点B.平行于y 轴C.平行于x 轴D.以上说法都不对(5)在平面直角坐标系中,以点P(-1,2)为圆心,1为半径的圆与x 轴有( )个公共点A .0B .1C .2D .3(6) 如图,把图①中△ABC 经过一定的变换得到图②中的△A 'B 'C ',如果图①的△ABC 上点P 的坐标是),(b a ,那么这个点在图②中的对应点P '的坐标是A .)3,2(--b aB .)3,2(--b aC .)2,3(++b aD .)3,2(++b a2、填空题(1) 在平面直角坐标系中,点P)1,1(2+-m 一定在第 象限. (2)一个长方形在平面直角坐标系中三个顶点的坐标为(-1,-1)、(-1,2)、(3,-1),则第四个顶点的坐标为 . (3)点A (2,0),B (-3,0),C (0,2),则△ABC 的面积为 .(4)将点P(-3,y)向下平移3个单位,并向左平移2个单位后得到点Q(x,-1),则xy=_________.A B C3、在所给的图中按所给的语句画图:①连结线段BD; A②过A、C画直线AC;③延长线段AB;④反向延长线段AD. C DE4、如图,使用圆规和直尺分别画出∠AOB和∠BOC的角平分线OM和ON,并说明作图过程.如果∠MON=68º,那么∠AOC应为多少度?5、如图为风筝的图案.(1)若原点用字母O表示,写出图中点A,B,C的坐标.(2)试求(1)中风筝所覆盖的平面的面积.6、如图,在△ABC中三个顶点的坐标分别为A(-5,0),B(4,0),C(2,5),将△ABC沿x轴正方向平移2个单位长度,再沿y轴沿负方向平移1个单位长度得到△EFG。

16全等三角形中等腰、等边三角形问题

16全等三角形中等腰、等边三角形问题

全等三角形中等腰、等边三角形问题【经典例题】例1.已知:如图1-1、图1-2、图1-3中,△ABC ,△BDE 为等边三角形。

求证:AD=CE 。

图1-1 图1-2 图1-3练习1.已知:△BDE 为等边三角形,∠1=∠2,AD=CE 。

求证:△ABC 为等边三角形。

例2.已知:△ABC ,△BDE 为等边三角形,C 、B 、D 三点共线。

求证:(1)AD=EC ;(2)BP=BQ ;(3)△BPQABCDDED练习2.已知:△ABC ,△BDE 为等边三角形,A 、B 、E 三点共线。

MN 为AD 、CE 的中点。

求证:△BMN 为等边三角形。

例3.已知:△ABC ,△BDE 为等边三角形,A 、D 、E 共线。

求证:AE =BE +EC 。

例4.△ABC 中,AC=BC ,∠ACB=90°CD=BD ,CM ⊥AD 。

求证:∠1=∠2。

练习4.△ABC 中,AC=BC ,∠ACB=90°,CD=BD ,∠1=∠2,求证:CM ⊥AD 。

CDAMD B GC21 AMDBG C 2 1例5.已知:△ABC 为等边三角形,AE=BD 。

求证:EC=DE 。

例6.已知:∠ABD=∠ACD=60°,∠ADB=90°-12∠BDC 。

求证:△ABC 是等腰三角形。

例7.已知:四边形ABCD 中,AB=AD ,∠BAD=60°,∠BCD=120°。

求证:AC=BC +CD.例8.已知△ABC 中,AB=AC ,∠BAC=100°,延长AB 至D ,使AD=BC ,求∠BCD 的度数。

AB CDADADCC本课作业1.若三角形的三个内角A,B,C的关系满足A>3B,C<2B,那么这个三角形是()。

(A)钝角三角形(B)直角三角形(C)等边三角形(D)不等边的锐角三角形2.若△ABC的三边长是22444,,,cbcbacba-+=且满足,22444caacb-+=,22444babac-+=,则△ABC是()。

初二数学等腰三角形 altitude性质

初二数学等腰三角形 altitude性质

初二数学等腰三角形 altitude性质初二数学等腰三角形的altitude性质等腰三角形是初中数学中一个基础的几何形状,其中最重要的性质之一是等腰三角形的altitude性质。

利用等腰三角形的altitude性质,我们可以解决许多与等腰三角形相关的问题。

本文将就初二数学等腰三角形的altitude性质进行探究。

一、等腰三角形的定义和性质回顾首先,我们来回顾一下等腰三角形的定义和性质。

等腰三角形是指具有两边长度相等的三角形。

根据等腰三角形的定义,我们可以得出如下结论:1. 等腰三角形的底边(即两边长度不相等的边)上的两个底角是相等的。

2. 等腰三角形的底边的中线和高线重合。

现在我们来详细讨论等腰三角形的altitude性质。

二、等腰三角形的altitude性质等腰三角形的altitude是指从顶点到底边上某一点的垂线。

根据等腰三角形的altitude性质,我们可以得出以下重要结论:1. 等腰三角形的两条altitude相等。

证明:设等腰三角形的顶点为A,底边上的某一点为P,垂线交底边于点Q和R。

由于三角形APQ和APR的两个直角边相等(AQ = AR),所以根据直角三角形的唯一性可知,这两个三角形必定是全等三角形。

由全等三角形的性质可知,相应的部分也必定相等。

因此,AQ = AR,即等腰三角形的两条altitude相等。

2. 等腰三角形的altitude与底边的垂线重合。

证明:设等腰三角形的顶点为A,底边上的某一点为P,垂线交底边于点Q。

根据等腰三角形的定义和性质可知,三角形APQ和APR是全等三角形。

由于在全等三角形中,对应的边和角相等,所以∠AQP = ∠ARP = 90度。

这说明altitude和底边的垂线是重合的。

三、利用等腰三角形的altitude性质解题利用等腰三角形的altitude性质,我们可以解决许多与等腰三角形相关的问题。

下面通过一个例题来展示如何应用这一性质:例题:在等腰三角形ABC中,AB = AC,垂线AM交BC于点M。

第九讲 全等,等腰三角形综合

第九讲  全等,等腰三角形综合

第九讲全等三角形,等腰三角形综合【例题讲解】1.如图,△ABC中,BC的垂直平分线与∠BAC的外角平分线相交于点D,DE⊥AC于E,DF⊥AB交BA的延长线于F,则下列结论:①△CDE≌△BDF ②CE=AB+AE ③∠BDC=∠BAC ④∠DAF+∠CBD=90°其中正确的是()A.①②③ B.①②④ C.②③④ D.①③④2.如图,△ABC中,AC=2AB,AD平分∠BAC交BC于D,E是AD上一点,且EA=EC,求证:EB⊥AB.3.如图,点D是△ABC的边BC延长线上一点,BE平分∠ABC,CE平分∠ACD.求证:(1)∠BAC=2∠BEC;(2)∠CAE+∠BEC=90°.4.如图,在△ABC中,∠BAC=80°,AB=AC,点P是ABC内一点,且∠PBC=10°,∠PCB=30°,求∠PAB的度数.5.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN 绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E、F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想AE,CF,EF之间存在怎样的数量关系?请将三条线段分别填入后面横线中:.(不需证明)(2)当∠MBN绕B点旋转到AE≠CF(如图2)时,上述(1)中结论是否成立?请说明理由.(3)当∠MBN绕B点旋转到AE≠CF(如图3)时,上述(1)中结论是否成立?若不成立,线段AE,CF,EF又有怎样的数量关系?请直接写出你的猜想,不需证明.6.如图所示,四边形ABCD为正方形,△BEF为等腰直角三角形(∠BFE=90°,点B、E、F 按逆时针顺序),P为DE的中点,连接PC、PF.(1)如图(1),E点在边BC上,则线段PC、PF的数量关系为相等,位置关系为垂直(不需要证明).(2)如图(2),将△BEF绕B点顺时针旋转α°(0<α<45),则线段PC、PF有何数量关系和位置关系?请写出你的结论并证明.(3)如图(3),E点旋转到图中的位置,其它条件不变,完成图(3),则线段PC、PF有何数量关系和位置关系?直接写出你的结论,不需要证明.7.平面直角坐标系内,直线AB过一,二,三象限,分别交x,y轴于A,B两点,直线CD ⊥AB于D,分别交x,y轴于C,E.已知AB=AC=10,S△ACD=24,且B(0,6),(1)①求证:△AOB≌△ADC;②求A点的坐标;(2)连接OD,AE,求证:OD⊥AE;(3)点M为线段OA上的动点,作∠NME=∠OME,且MN交AD于点N,当点M运动时,求的值.8.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD 为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:①BD=CE,②AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由.9.如图,平面直角坐标系中,已知A(﹣2,0),B(2,0),C(6,0),D为y轴正半轴上一点,且∠ODB=30°,延长DB至E,使BE=BD.P为x轴正半轴上一动点(P在C点右边),M在EP上,且∠EMA=60°,AM交BE于N.(1)求证:BE=BC;(2)求证:∠ANB=∠EPC;(3)当P点运动时,求BP﹣BN的值.10.已知:在平面直角坐标系中.放入一块等腰直角三角板ABC,∠BAC=90°,AB=AC,A 点的坐标为(0,2),B点的坐标为(4.0).(1)求C点的坐标;(2)D为△ABC内﹣点(AD>2),连AD.并以AD为边作等腰直角三角形ADE,∠DAE=90°,AD=AE.连CD、BE,试判断线段CD、BE的位置及数量关系,并给出你的证明;(3)旋转△ADE,使D点刚好落在x轴的负半轴,连CE交y轴于M.求证:①EM=CM;②BD=2AM.11.已知,在平面直角坐标系中,点A(﹣3,0),点B(0,3).点Q为x轴正半轴上一动点,过点A作AC⊥BQ交y轴于点D.(1)若点Q在x轴正半轴上运动,且OQ<3,其他条件不变,连OC,求证:∠OCQ的度数不变.(2)有一等腰直角三角形AMN绕A旋转,且AM=MN,∠AMN=90°,连BN,点P为BN 的中点,猜想OP与MP的数量和位置关系并证明.【作业】1.已知一个等腰三角形腰上的高与底边的夹角为37°,则这个等腰三角形的顶角等于.2.如图,△BEF的内角∠EBF平分线BD与外角∠AEF的平分线交于点D,过D作DH∥BC分别交EF、EB于G、H两点.下列结论:①S△EBD:S△FBD=BE:BF;②∠EFD=∠CFD;③HD=HF;④BH﹣GF=HG,其中正确结论的个数有()3.如图,在△ABC中,AC=BC,∠ACB=90°,点D为△ABC内一点,∠CAD=∠CBD=15°,E为AD延长线上的一点,且CE=CA.(1)求证:DE平分∠BDC;(2)若点M在DE上,且DC=DM,请判断ME、BD的数量关系,并给出证明.4.如图1所示,在△ABC中,∠BAC=90°,AB=AC,AE是过A的一条直线,且B、C在AE的异侧,BD⊥AE于D,CE⊥AE于E.求证:(1)BD=DE+CE.(2)若直线AE绕A点旋转到如图2位置时(BD<CE),其他条件不变,判断BD与DE,CE的关系并说明理由.(3)若直线AE绕A点旋转到如图3位置时(BD>CE),其他条件不变,则BD与DE,CE的关系又怎样?请写出结果,不必证明.5.已知B(﹣2,0),C(2,0),点A是y轴正半轴上一点,CD⊥AC交y轴于D,M为AC上一动点.N为AB延长线一动点,且满足AM+AN=2AC,MN交BC于E,连DE.(1)求证:CM=BN;(2)过M作MK⊥BC于K,求证:①ME=NE,②DE⊥MN;(3)在(2)的条件下问的值是否发生变化?若不变,求其值.6.如图,直线BE交x轴正半轴于点B(a,0),交y轴正半轴于点E(0,b),且a、b满足,点A为BE的中点,(1)写出A点坐标为;(2)如图,若C为线段OB上一点,以AC为直角边作等腰直角△ACD,∠ACD=90°,连BD,求证:OA∥BD;(3)如图,P为x轴上B点右侧任意一点,以EP为边作等腰Rt△EPM,其中PE=PM,直线MB交y轴点Q,当点P在x轴上运动时,线段OQ的长是否发生变化?若不变;求其值;若变化,求线段OQ的取值范围.7.如图,在平面直角坐标系中,B(0,1),C(0,﹣1),D为x轴正半轴上一点,A为第一象限内一动点,且∠BAC=2∠BDO,DM⊥AC于M.(1)求证:∠ABD=∠ACD;(2)若点E在BA延长线上,求证:AD平分∠CAE;(3)当A点运动时,的值是否发生变化?若不变,求其值;若变化,请说明理由.第九讲全等三角形,等腰三角形综合参考答案1.解:过点D作DG⊥BC∵DG垂直平分BC,∴BD=CD角平分线到角两边的距离相等,∴DE=DF,∴Rt△CDE≌Rt△BDF,∴∠BDF=∠CDE,CE=BF,∠FBD=∠DCE,∵DE=DF,且DE⊥AC,DF⊥AB∵AD=AD,∴Rt△AFD≌Rt△AED,∴AE=AF,∴CE=BF=AB+AF=AB+AE∴∠BDC=∠180°﹣(∠DBC+∠DCB)=180°﹣(∠DBC+∠ACB+∠DCA)=180°﹣(∠FBD+∠DBC+∠ACB)=180°﹣(∠ABC+∠ACB)=∠BAC∴①②③正确,故选A.2.证明:作EF⊥AC于F,∵EA=EC,∴AF=FC=AC,∵AC=2AB,∴AF=AB,∵AD平分∠BAC交BC于D,∴∠BAD=∠CAD,∴△ABE≌△AFE(SAS),∴∠ABE=∠AFE=90°.∴EB⊥AB.3.解:(1)∵∠ACD=∠BAC+∠ABC,CE平分∠ACD∴∠ECD=∠ACD=(∠BAC+∠ABC),∵BE平分∠ABC,∴∠EBC=∠ABC,∴∠ECD=∠BEC+∠EBC=∠BEC+∠ABC,∴∠BEC+∠ABC=(∠BAC+∠ABC)∴∠BEC=∠BAC,即∠BAC=2∠BEC;(2)过点E作EM⊥BD于M,EN⊥BA的延长线于N,EG⊥AC于G,∵CE平分∠ACD,EM⊥BD,EG⊥AC,∴EG=EM∵BE平分∠ABC,EM⊥BD,EN⊥BA∴EN=EM∴EG=EN∴AE平分∠CAN∴∠CAE=∠CAN=(180°﹣∠BAC),∴∠CAE+∠BEC=(180°﹣∠BAC)+∠BAC=90°.4.解:在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC∴AD=AB=AC,∠DAC=∠BAC﹣∠BAD=20°,∴∠ACD=∠ADC=80°,∵AB=AC,∠BAC=80°,∴∠ABC=∠ACB=50°,∴∠CDB=140°=∠BPC,又∵∠DCB=30°=∠PCB,BC=CB,∴△BDC≌△BPC,∴PC=DC,又∵∠PCD=60°,∴△DPC是等边三角形,∴△APD≌△APC,∴∠DAP=∠CAP=10°,∴∠PAB=∠DAP+∠DAB=10°+60°=70°.故答案为:70°.5.解:(1)如图1,∴△ABE≌△CBF(SAS),∴∠CBF=∠EBA,BE=BF,∵∠ABC=120°,∠EBF=60°,∴△BEF是等边三角形,CF=,AE=,∴EF=BE=BF=AE+CF;(2)如图2,延长FC至G,使AE=CG,连接BG,∴△BAE≌△BCG(SAS),∴∠ABE=∠CBG,BE=BG,∵∠ABC=120°,∠EBF=60°,∴∠ABE+∠CBF=60°,∴∠CBG+∠CBF=60°,∴∠GBF=∠EBF,∴△GBF≌△EBF(SAS),∴EF=GF=CF+CG=CF+AE;(3)不成立,但满足新的数量关系.如图3,在AE上截取AH=CF,连接BH,∴△BAH≌△BCF(SAS),∴BH=BF,∠ABH=∠CBF,∵∠EBF=60°=∠FBC+∠CBE∴∠ABH+∠CBE=60°,∵∠ABC=120°,∴∠HBE=60°=∠EBF,∴△EBF≌△EBH(SAS),∴EF=EH,∴AE=EH+AE=EF+CF.6.解:(1)∵∠BFE=90°,点P为DE的中点∴PF=PD=PE,同理可得PC=PD=PE,∴PC=PF,又∵∠FPE=2∠FDP,∠CPE=2∠PDC,∴∠FPC=2∠FDC=90°,所以PC=PF,PC⊥PF.故答案为:相等、垂直;(2)PC⊥PF,PF=PC.理由如下:延长FP至G使PG=PF,连DG,GC,FC,延长EF交BD于N,如图,∵点P为DE的中点,∴△PDG≌△PEF,∴DG=EF=BF.∴∠PEF=∠PDG,∴EN∥DG,∴∠BNE=∠BDG=45°+∠CDG=90°﹣∠NBF=90°﹣(45°﹣∠FBC)∴∠FBC=∠GDC,∴△BFC≌△DGC,∴FC=CG,∠BCF=∠DCG.∴∠FCG=∠BCD=90°.∴△FCG为等腰Rt△,∴PC⊥PF,PF=PC;(3)画图:线段PC、PF有何数量关系:相等,位置关系:垂直.7.解:(1)①证明:∵CD⊥AB,∴∠ADC=∠AOB=90°,∴△AOB≌△ADC(AAS);②∵△AOB≌△ADC,B(0,6),∴S△AOB=S△ACD=24=OA×6÷2=3OA,解得:OA=8,即A点坐标为(﹣8,0);(2)∵△AOB≌△ADC,∴AD=AO,又∵AD⊥EC,AO⊥EO,∴点A在∠OED的角平分线上,∴OD⊥AE;(3)过点E作EF⊥MN于点F,连接NE,∵∠NME=∠OME,EF⊥MN,EO⊥MO,∴EF=EO,MF=MO,由(2)知,点E在∠OAD平分线上,ED⊥AD,EO⊥AO,∴EO=ED,∴EF=ED,∴RT△EDN≌RT△EFN(HL),∴ND=NF,∴===1.8.解:(1)①∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,∴∠BAD=∠EAC.∴△ABD≌△ACE (SAS).②∵△ABD≌△ACE,∴BD=CE.∵BC=BD+CD,∴BC=CE+CD.(2)BC+CD=CE.∵△ABC和△ADE是等边三角形,∴∠BAC=∠DAE=60°,AB=BC=AC,AD=DE=AE.∴∠BAC+∠DAC=∠DAE+∠DAC,∴∠BAD=∠EAC.∴△ABD≌△ACE (SAS).∴BD=CE.∵BD=BC+CD,∴CE=BC+CD.9.(1)证明:∵A(﹣2,0),B(2,0),∴AD=BD,AB=4,∵∠ODB=30°,∴∠ABD=90°﹣30°=60°,∴△ABD是等边三角形,∴BD=AB=4,∵B(2,0),C(6,0),∴BC=6﹣2=4,∴BC=BD,又∵BE=BD,∴BE=BC;(2)证明:由三角形的外角性质得,∠BAN+∠ANB=∠ABD=60°,∠BAN+∠EPC=∠EMA=60°,所以,∠ANB=∠EPC;(3)解:∵BE=BD=BC,∠CBE=∠ABD=60°,∴△BCE是等边三角形,∴BC=CE,∵AB=BC=4,∴AB=CE,∵∠ABD=∠BCE=60°,∴∠ABN=∠ECP=120°,∴△ABN≌△ECP(AAS),∴BN=CP,∵BP﹣CP=BC,∴BP﹣BN=BC=4,故BP﹣BN的值为4,与点P的位置无关.10.解:(1)如图1,过C作CD⊥y轴于D,∴∠CDA=∠AOB=90°,∵∠BAC=90°,∴∠DAC+∠ACD=∠DAC+∠OAB=90°,∴∠ACD=∠OAB,∴△ACD≌△ABO,∴CD=AO,AD=OB,∵A点的坐标为(0,2),B点的坐标为(4.0),∴OA=2,OB=4,∴CD=2,OD=6,∴C(2,6);(2)CD⊥BE,CD=BE,如图2,延长CD交AB于F,交BE于G,∵∠BAC=∠DAE=90°,∴∠CAD=∠BAE,∴△ABE≌△CAD,∴∠ACD=∠ABE,CD=BE,∵∠ACD+∠AFC=90°,∴∠ABE+∠AFC=90°,∵∠AFC=∠BFG,∴∠ABE=∠BFG=90°,∴∠BGF=90°,∴CD⊥BE;(3)①如图3,过C作CP⊥y轴于P,过E作EQ⊥y轴于Q,∴∠APC=∠AQE=90°,∵∠BAC=90°,∴∠CAP+∠ACP=∠CAP+∠BAO=90°,∴∠BAO=∠ACP,∴△ABO≌△ACP,∴AO=CP,同理△ADO≌△AEQ,∴AO=EQ,∴CP=EQ,∴△EQM ≌△CPM,∴CM=EM,②如图4,在y轴上截取MK=AM,连接CK,∴△AME≌△CMK,∴CK=AE,∠MKC=∠MAE,∵AE=AD,∠ACK=180°﹣∠CKM﹣∠CAK,∠BAD=180﹣∠EAM﹣∠CAK,∴CK=AD,∠ACK=∠BAD,∴△ABD≌△ACK,∴BD=AK,∵AK=2AM,∴BD=2AM.11.(1)证明:∵A(﹣3,0),点B(0,3),∴△AOB是等腰直角三角形,∴∠BAO=45°,∵AC⊥BQ,∴∠ACB=90°,又∵∠AOB=90°,∴点O、C、B、A四点共圆,∴∠OCQ=∠BAO=45°,故:∠OCQ的度数不变,是45°;(2)解:如图,分别以AN、AB为直角边构造出等腰直角△AND和△ABC,连接BD、CN,∵∠BAD+∠BAN=∠CAN+∠BAN=90°,∴∠BAD=∠CAN,∴△ABD≌△ACN(SAS),∴BD=CN,∠ABD=∠ACN,∴∠DBO+∠NCO=∠ABO+∠ACO=90°,∴BD⊥CN,∵点P为BN的中点,∴MP、OP分别是△BDN和△BCN的中位线,∴MP∥BD且MP=BD,OP∥CN且OP=CN,∴MP=OP且MP⊥OP.【作业】1. 74.2.解:①正确.因为S△EBD=BD•BE•sin∠EBD,S△FBD=BD•BF•sin∠DBF,所以S△EBD:S△FBD=BD•BE•sin∠EBD:BD•BF•sin∠DBF,因为BD是∠EBC的平分线,所以sin∠EBD=sin∠DBF,所以S△EBD:S△FBD=BE:BF;②正确.过D作DM⊥AB,DN⊥CB,DO⊥EF,∵DE是∠AEF的平分线,∴AD﹣DO,∵DB是∠ABC的平分线,∴DA=DN,∴DO=DN,∴DF是∠EFC的平分线,∴∠EFD=∠CFD;③错误.因为HD∥BF,所以∠HDB=∠FBD,又因为BD平分∠ABC,所以∠HBD=∠CBD,于是∠HBD=∠HDB,故HB=HD.但没有条件说明HF与HB必然相等;④正确.由于点D为△BEF的内角∠EBF平分线BD与外角∠AEF的平分线的交点,故D为△BEF的旁心,于是FD为∠EFC的平分线,故∠CFD=∠EFD,又因为DH∥BC,所以∠HDF=∠CFD,故∠GDF=∠DFE,于是GF=GD,又因为HB=HD,所以HD﹣GD=HG,即BH﹣GF=HG.故①②④正确.故选B.3.证明:(1)∵AC=BC,∴∠CBA=∠CAB,又∵∠ACB=90°,∴∠CBA=∠CAB=45°,又∵∠CAD=∠CBD=15°,∴∠DBA=∠DAB=30°,∴∠BDE=30°+30°=60°,∵AC=BC,∠CAD=∠CBD=15°,∴BD=AD,∴△ADC≌△BDC(SAS),∴∠ACD=∠BCD=45°,∴∠CDE=60°,∵∠CDE=∠BDE=60°,∴DE平分∠BDC;(2)ME=BD,连接MC,∵DC=DM,∠CDE=60°,∴△MCD为等边三角形,∴CM=CD,∵EC=CA,∠EMC=120°,∴∠ECM=∠BCD=45°∴△BDC≌△EMC(SAS),∴ME=BD.4.解:证明如下:(1)∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE,∴∠ADB=∠CEA=90°,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵AE=DE+AD,∴BD=DE+CE;(2)DE=BD+CE.∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵CE⊥AE,∴∠ACE+∠CAE=90°,∴∠ACE=∠BAD;又∵BD⊥AE,CE⊥AE∴∠ADB=∠CEA=90°,∴△ABD≌△CAE(AAS),∴BD=AE,AD=CE;∵DE=AE+AD,∴DE=BD+CE;(3)结论是:当B、C在AE两侧时,BD=DE+CE;当B、C在AE同侧时,BD=DE﹣CEDE=BD+CE.5.(1)证明:过N作NF⊥x轴于F,如图1所示:∵NF⊥x轴,MK⊥BC,∴∠NFC=∠MKF=90°,∵B(﹣2,0),C(2,0),点A是y轴正半轴上一点,∴AB=AC,∴∠ABC=∠MCK,∵∠NBF=∠ABC,∴∠NBF=∠MCK,∵AM+AN=2AC,∴CM=BN;(2)证明:①∴△BFN≌△MCK(AAS),∴NF=MK,∴△EFN≌△MEK(AAS),∴ME=NE;②连接BD、MD、DN,如图2所示:∵CD⊥AC,∴∠DCA=90°,∵BD⊥AN,∴∠DBN=90°,∵B(﹣2,0),C(2,0),点D在y轴上,∴BD=CD,∴△BND≌△MCD(SAS),∴DN=DM,∵NE=ME,∴DE⊥MN;(3)解:的值不变,理由如下:∵△ENF≌△MEK,∴EF=EK,∵△BFN≌△MKC,∴BF=CK,∴EK=EF=FK=(BF+OB+OC﹣CK)=(OB+OC)=BC,∴=.6.解:(1)∵∴a=4,b=4,∴△EOB为等腰直角三角形.∴点A的坐标为(2,2),故答案为(2,2);(2)∵以AC为直角边作等腰直角△ACD,∠ACD=90°,∴∠CAB+∠BAD=45°,又∵∠CDB+∠BAD+∠ADC=90°,∴∠CAB=∠CDB,∴∠ABD=90°=∠OAB,∴OA∥BD;(3)过M作MD⊥x轴,垂足为D.∵∠EPM=90°,∴∠EPO+MPD=90°.∵∠QOB=∠MDP=90°,∴∠EPO=∠PMD,∠PEO=∠MPD.∴△PEO≌△MPD,MD=OP,PD=BO,OP=OB+BP=PD+BP=BD,∴MD=BD,∠MBD=45°.∵∠QBO=45°,∴△BOQ是等腰直角三角形.∴OB=OQ=4.∴无论P点怎么动OQ的长不变.7.证明:(1)在△ABC中,∵∠ABD+∠CBD+∠ACB=180°﹣∠BAC,∵∠BAC=2∠BDO,∴∠ABD+∠CBD+∠ACB=180﹣2∠BDO,①在△BCD中,∠ACD+∠ACB+∠CBD=180°﹣∠ADC,∵BO=CO=1,∴∠BDC=2∠BDO,∴∠ACD+∠ACB+∠CBD=180°﹣2∠BDO,②①﹣②得,∠ABD﹣∠ACD=0,∴∠ABD=∠ACD;(2)过D作DN⊥BE于N,由于BD=CD,∠ABD=∠ACD;∴△BDN≌△CDM,∴DM=DN,∴AD是∠CAE的角平分线;(3)的值不发生变化,理由:∵△BDN≌△CDM,∴BN=CM,∵AD是∠CAE的角平分线,∴AN=AM,∵BN=AN+AB=AM+AB,CM=AC﹣AM,∴AM+AB=AC﹣AM,∴AC﹣AB=2AM,∴=2是定值.第11页。

等腰三角形的相关要点总结

等腰三角形的相关要点总结

等腰三角形的相关要点总结1.等腰三角形的判定定理(等角对等边)如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).例如:如图14-3-11,△ABC中,若∠B=∠C,则AB=AC证明:过点A作AD平分∠BAC,交BC于点D,则∠BAD=∠CAD.在△ABD和△ACD中,∴△ABD≌△ACD(AAS).∴AB=AC因此,这一结论可直接利用.【说明】(1)在使用“等边对等角”或“等角对等边”时,一定要注意是在同一个三角形中才有这一对应关系,不在同一三角形中的边、角没有这一对应关系.(2)有了这一结论,为今后证明线段相等又添了一种重要的解题途径.例如:如图14-3-12,△ABC中,AB=AC,BD、CE相交于O点.且BE=CD求证:OB=OC.证明:∵AB=AC,∴∠ABC=∠ACB(等边对等角).在△BCE和△CBD中⎪⎩⎪⎨⎧∠∠,=,=,=CBBCDCBEBCCDBE∴△BCE≌△CBD(SAS).∴∠BCE=∠CBD,即∠OBC=∠BCO∴OB=OC(等角对等边).【说明】证两条线段相等,若这两条线段在同一个三角形中,可利用等腰三角形的判定定理来证明.2.等边三角形(equilateral triangle)(1)定义:三条边都相等的三角形,叫等边三角形.如图14-3-14,△ABC 中,AB=BC=CA,则△ABC为等边三角形.(2)性质:①等边三角形的三个内角都相等,并且每一个角都等于60°.如图14-3-14中,若△ABC为等边三角形,则∠A=∠B=∠C=60°.②除此之外,还具有等腰三角形的一切性质,如三线合一,轴对称等.(3)判定:①三个角都相等的三角形是等边三角形.②有一个角是60°的等腰三角形是等边三角形.下面证明以上两条判定.判定①:如图14-3-15,已知△ABC中,∠A=∠B=∠C求证:△ABC是等边三角形.证明:∵ ∠B =∠C ,∴ AB =AC又∵ ∠A =∠B ∴ AC =BC∴ AB =AC =BC ,∴ △ABC 是等边三角形.判定②:如图14-3-15,已知△ABC 中,AB =AC ,∠B =60°.求证:△ABC 是等边三角形.证明:∵ AB =AC ,∴ ∠B =∠C .又∵ ∠B =60°,∴ ∠B =∠C =60°.又∵ ∠A +∠B +∠C =180°,∴ ∠A =180°-(∠B +∠C )=60°.∴ ∠A =∠B =∠C ,∴ AB =BC =AC .∴ △ABC 为等边三角形.(4)应用:例如:如图14-3-16,△ABC 为等边三角形,D 、E 为直线BC 上的两点,且BD =BC =CE ,求∠DAE 的度数.分析:要求∠DAE 的度数,需分开求,先求∠BAC ,再求∠DAB 和∠CAE ,由△ABC 为等边三角形知∠BAC =60°,又∵ BD =BC ,而BC =BA ,则BD =BA ,∴ △ABD 为等腰三角形,∴ ∠D =∠DAB =21∠ABC =30°.同理可知,∠CAE =30°.解:∵ △ABC 为等边三角形,∴ AB =BC =AC ,∠BAC =∠ABC =∠ACB =60°.又∵BD=BC,∴BD=BC=AB.∴∠DAB=∠D,又∵∠ABC=∠D+∠DAB,∴∠ABC=2∠DAB=60°,∴∠DAB=30°.同理,∠CAE=30°.∴∠DAE=∠DAB+∠BAC+∠CAE=30°+60°+30°=120°.【说明】本题中用到了等边三角形的性质.再如:如图14-3-17,已知△ABC为等边三角形,D、E、F分别为△ABC三边上的点,且BD=CE=AF,直线AD、BE、CF两两相交于点R、Q、P.求证:△PQR是等边三角形.分析:本题既用到了等边三角形的性质,又用到了其判定.要证△PQR为等边三角形,证三边相等难度较大,可考虑证其三角相等.也可先证∠PQR=60°,而∠PQR=∠ACQ+∠QAC,又因为∠ACQ+∠BCF=60°,只需证∠BCF=∠DAC,由此可联想证△BCF与△CAD全等.证明:∵△ABC为等边三角形,∴∠BAC=∠ABC=∠BCA=60°,AB=BC=CA.又∵BD=CE=AF,∴BF=DC=AE在△ABE和△BCF和△CAD中,⎪⎩⎪⎨⎧∠∠∠,==,==,==CDBFAEDCAFBCBAECABCAB∴△ABE≌△BCF≌△CAD(SAS).∴∠ABE=∠BCF=∠CAD.∵∠ACQ+∠BCF=60°,∴∠ACQ+∠CAQ=60°.∴∠AQF=∠ACQ+∠CAQ=60°,即∠PQR=60°.同理,∠RPQ=∠PRQ=60°.∴△PQR为等边三角形.【说明】(1)此题证明思路比较清晰,只是步骤书写较繁,书写应认真;(2)在证明过程中用到了三个三角形全等的连等形式,可仿照两个三角形全等的方式使用.3.证明线段相等的方法到目前为止,学过的证明线段相等的方法,有以下几种:(1)全等三角形的对应边相等(在两个三角形中).(2)等角对等边(在一个三角形中).(3)轴对称的性质(在某条直线的两侧).(4)角平分线的性质(在角的平分线上的两条线段).(5)中点的概念(在一条直线上).(6)利用第三条等量线段.(7)作辅助线、创造条件.例如:如图14-3-20,点D、E在BC上,AB=AC,AD=AE.求证:BD=CE.分析:因BD与CE在一条直线上,且又在两个三角形中,可考虑证两个三角形全等或用中点的概念进行证明,也可用轴对称的性质进行证明.证法一:用全等三角形∵AB=AC,∴∠B=∠C又∵AD=AE,∴∠ADF=∠AEF.又∵∠ADF=∠B+∠BAD,∠AEF=∠C+∠CAE,∴∠BAD=∠CAE在△ABD和△ACE中,AB=AC,∠BAD=∠CAE,AD=AE,∴△ABD≌△ACE(SAS).∴BD=CE.证法二:用中线如图14-3-20,过A点作AF⊥BC于F.∵AB=AC,AF⊥BC,∴BF=CF(三线合一).又∵AD=AE,AF⊥DE,∴DF=EF(三线合一).∴BF-DF=CF-EF,∴BD=CE.证法三:用轴对称过A作BC边上的垂线,垂足为F.∵AB=AC,AF⊥BC,∴△ABC关于直线AF对称,∴BF=CF.同理,DF=EF.∴BF-DF=CF-EF.即BD=CE.【说明】从以上的证明可以看出,一个结论有多种证明途径和证明方法.4.证明角相等的方法到目前为止,学过的证明角相等的方法,有以下几种:(1)角平分线的定义及性质.(2)全等三角形的对应角相等(在两个三角形中).(3)等边对等角(在一个三角形中).(4)轴对称的性质.(5)找第三等量角(如∠A=∠C,∠B=∠C,则∠A=∠B).(6)作辅助线,创造条件.例如:如图14-3-21,△ABC中,AB=AC,∠1=∠2.求证:∠BAD=∠CAD.分析:要证∠BAD=∠CAD,因两角在两个三角形中,可考虑选用全等三角形和角平分线,以及轴对称进行证明.证法一:用全等三角形∵∠1=∠2,∴DB=DC在△ABD和△ACD中,AB=AC,DB=DC,AD=AD,∴∠ABD≌△ACD(SSS).∴∠BAD=∠CAD.证法二:用轴对称∵∠1=∠2,∴DB=DC∴点D在BC的垂直平分线上.又∵AB=AC,∴A点也在BC的垂直平分线上.∴△ABD与△ACD关于直线AD对称.∴∠BAD=∠CAD(轴对称的性质).证法三:用角平分线∵∠1=∠2,∴DB=DC.又∵AB=AC,∴点A、D都在BC的垂直平分线上.∴AD也为∠BAC的平分线(三线合一).∴∠BAD=∠CAD.例如:如图14-3-22,△ABC中,AD平分∠BAC,AD的垂直平分线交AD 于E,交BC的延长线于F.求证:∠B=∠CAF.分析:要证∠B=∠CAF,根据全等三角形和等腰三角形已不可能,角平分线也用不上,可考虑用第三等量角.证明:∵EF垂直平分AD,∴F A=FD.∴∠1=∠3+∠4.又∵∠ADC为△ABD的外角,∴∠1=∠B+∠2.∴∠B+∠2=∠3+∠4.又∵∠2=∠3,∴∠B=∠4.即∠B=∠CAF.5.得到等腰三角形的方法(1)如图14-3-27,一直线平行于等腰三角形底边,与两腰(或两腰的延长线)相交所得的三角形是等腰三角形.如图中,△ADE是等腰三角形.(2)把一张对边平行的纸,像图14-3-28那样折叠,重合部分是一个等腰三角形.如图中,△FBD是等腰三角形.(3)等腰三角形两底角的平分线的交点与底边两端点组成等腰三角形.(4)等腰三角形两腰上的高的交点与底边两端点构成等腰三角形.(5)等腰三角形两腰上的中线的交点与底边两端点构成等腰三角形.(6)36°角为顶角的等腰三角形,底角的平分线把原等腰三角形分成两个等腰三角形.(7)90°角为顶角的等腰直角三角形,顶角的平分线把原三角形分成两个等腰直角三角形.。

全等三角形+等腰三角形精选习题

全等三角形+等腰三角形精选习题

2017.10.13ED CBA1.小明从镜子里看到镜子对面电子钟的像如图所示,实际时间是().A.21:10 B.10:21 C.10:51 D.12:012.如图,C是的BE边上一点,F在AE上,D是BC的中点,且,下列结论: (1);(2);(3);(4)其中正确的结论有3、如图,沿着DE折叠△ABC,使得点C与点A重合。

AE=3cm,△ABD的周长为13cm,则△ABC的周长为____________cm.4.如图,内一点P,、分别是点P关于OA、OB的对称点,交OA于M,交OB于N,若,则的周长是________5、当m= 时,点P(-4,3m-5)与Q(-4,2m-10)关于x轴对称.6、已知点P(12-m,2+m)关于x轴的对称点在第三象限,则m的取值范围是.7、如图,∠EAF=10°,AB=BC=CD=DE=EF,则∠DEF等于.8、如图,内有一点D,且,若,,则︰FEDCBA3、如图,在△ABC 中,BAC ∠的角平分线与BC 的垂直平分线EF 相交于D 点,过D 点分别作AB DM ⊥于M 点,AC DN ⊥的延长线于N 点,求证:CN BM =.4.如图所示,在△ABC 中,∠C=90°, AD 是∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD=DF.证明:(1)CF=EB;(2)AB=AF+2EB .NME C ABN MF E CB A 1.已知△ABC 中∠ACB=90°,CD ⊥AB 于点D ,∠A=30°,BC=2cm ,则AD= . 2.如果点P (4,-5)和点Q(a ,b)关于y 轴对称,则a =___ __,b=__ __. 3.已知等腰三角形的两边长分别为3,7,则这个等腰三角形的周长为 .4.如图,△ABC 中,角平分线BO 与CO 的相交点O , OE ∥AB ,OF ∥AC ,BC=10,则△OEF 的周长为 .5.在直角坐标系中,已知A (-3,3),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有 个.6.如图,在△ABC 中,AB =AC ,∠A =120°,BC =6,AB 的垂直平分线交BC 于M ,交AB 于E ,AC 的垂直平分线交BC 于N ,交AC 于F ,求证:BM =MN =NC.7.如图:E 在△ABC 的AC 边的延长线上,D 点在AB 边上,DE 交BC 于点F ,DF=EF ,BD=CE 。

(完整版)等腰三角形知识点(最新整理)

(完整版)等腰三角形知识点(最新整理)

等腰三角形知识学习要点:掌握证明的基本步骤和书写格式,掌握等腰三角形的性质和判定定理,并探索等边三角形的性质和判定定理。

结合实例体会反证法的含义。

中考热点:全等三角形和等腰三角形是中考必考的内容之一,在考试中或单独考查基本知识或综合考查逻辑推理,常把全等三角形、特殊三角形的判定和性质及特殊四边形的判定和性质综合起来进行命题,题型多为证明题或解答题。

知识点:1、全等三角形的判定及性质一般三角形直角三角形判定边角边(SAS )、角边角(ASA )角角边(AAS )、边边边(SSS )具备一般三角形的判定方法斜边和一条直角边对应相等(HL )性质对应边相等,对应角相等 对应中线相等,对应高相等,对应角平分线相等注:① 判定两个三角形全等必须有一组边对应相等; ② 全等三角形面积相等.证题思路:2例1、如图,△ABC ≌△AEF ,AB =AE ,∠B =∠E ,则对于结论①AC =AF .②∠FAB =∠EAB ,③EF =BC ,④∠EAB =∠FAC ,其中正确结论的个数是( )A.1个B.2个C.3个D.4个2、如图,FD ⊥AO 于D ,FE ⊥BO 于E ,下列条件:①OF 是∠AOB 的平分线;②DF=EF ;③DO=EO ;④∠OFD=∠OFE 。

其中能够证明△DOF ≌△EOF 的条件的个数有( )A.1个B.2个C.3个D.4个⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧)找任意一边()找两角的夹边(已知两角)找夹已知边的另一角()找已知边的对角()找已知角的另一边(边为角的邻边)任意角(若边为角的对边,则找已知一边一角)找第三边()找直角()找夹角(已知两边AAS ASA ASA AAS SAS AAS SSS HL SAS3、如图,已知AC=DB,要使△ABC≌△DCB,需添加的一个条件是.4、(2016泰安)如图,在△PAB中,PA=PB,M,N,K分别是PA,PB,AB上的点,且AM=BK,BN=AK,若∠MKN=44°,则∠P的度数为( )A.44°B.66°C.88°D.92°之间有怎样的数量关系?并给出证明。

全等三角形八大基本模型

全等三角形八大基本模型

全等三角形八大基本模型摘要:1.全等三角形的定义与性质2.全等三角形的八大基本模型1.手拉手模型2.一线三垂直模型3.一线三等角模型4.等腰三角形中边边角模型5.背对背模型6.半角旋转模型7.角分线模型8.正方形手拉手模型正文:全等三角形是指两个三角形的对应边和对应角分别相等的三角形。

在解决全等三角形问题时,我们需要了解全等三角形的定义和性质,同时掌握一些常用的模型。

本文将介绍全等三角形的八大基本模型,希望能帮助大家更好地理解和解决全等三角形问题。

1.手拉手模型:两个三角形通过一个公共边,并且这个公共边的两个相邻角分别相等。

2.一线三垂直模型:两个三角形有一个公共边,并且这个公共边的两个相邻角分别相等,同时还有另一条公共边上的一个角与另一个角的补角相等。

3.一线三等角模型:两个三角形有一个公共边,并且这个公共边上的三个角分别相等。

4.等腰三角形中边边角模型:两个等腰三角形,其中一个等腰三角形的底边与另一个等腰三角形的腰相等,同时这两个等腰三角形的底角分别相等。

5.背对背模型:两个三角形分别有一个角和另一个角的补角相等,且这两个三角形的另一条边分别相等。

6.半角旋转模型:两个三角形有一个公共边,并且这个公共边的两个相邻角中有一个角是另一个角的一半。

7.角分线模型:两个三角形有一个公共边,并且这个公共边上的一个角平分另一个角。

8.正方形手拉手模型:两个正方形,其中一个正方形的边与另一个正方形的对角线相等。

在解决全等三角形问题时,我们可以根据题目所给的条件,结合全等三角形的性质和八大基本模型,通过适当的变换和推理,证明两个三角形全等。

全等三角形与等腰三角形-解题技巧

全等三角形与等腰三角形-解题技巧

第一讲:全等三角形与等腰三角形-解题技巧知识点总结全等三角形:能够完全重合的两个三角形,叫做全等三角形.1. 全等三角形有如下性质:(1)全等三角形的对应边相等;(2)全等三角形的对应角相等;(3)全等三角形的对应中线、对应角平分线、对应高相等;(4)全等三角形的面积相等,周长相等.2. 判定两个三角形全等的依据:(1)边角边公理(SAS):两边及其夹角对应相等的两个三角形全等;(2)角边角公理(ASA):两角及其夹边对应相等的两个三角形全等;(3)角边角公理的推论(AAS):两角和其中一角的对边对应相等的两个三角形全等(4)边边边公理(SSS):三条边对应相等的两个三角形全等.(5)斜边、直角边公理(HL):斜边和一直角边对应相等的两个三角形全等.. 等腰三角形1.两边相等的三角形叫等腰三角形.2.等腰三角形性质:(除一般三角形的边角关系之外的)(1)等边对等角;(2)底边上的高、底边上的中线、顶角平分线互相重合;(3)是轴对称图形,对称轴是顶角平分线;(4)底边小于腰长的两倍并且大于零,腰长大于底边的一半;(5)顶角等于180°减去底角的两倍;(6)顶角可以是锐角、直角、钝角,而底角只能是锐角.3.等腰三角形可分为腰和底边不等的等腰三角形及等边三角形.等边三角形的三边相等,三个角都是60°,它具备等腰三角形的一切性质。

4. 等腰三角形的判定:①利用定义;②等角对等边;③有一个角是60°的等腰三角形是等边三角形.解题技巧1利用角平分线构造全等三角形解题. 2 利用中线构造全等三角形解题在等腰三角形的题目中常添加的辅助线是顶角的平分线,由此可以得到线段相等和垂直关系.另外,在未指明边(角)的名称时,应分类讨论.在解题时常会遇到与中线有关的问题,由中线可以提供的常见思路有:①线段相等构造全等;②在直角三角形中斜边上的中线等于斜边的一半;③中线倍长:即延长中线,使延长的部分等于中线构造全等.用“截长补短”的方法解题截长补短"的方法."截长",在较长线段上截取一段等于较小线段;"补短",延长较短线段,使延长后线段等于较长线段."截长补短"是一种解题方法,在后继学习。

不能判定全等三角形的条件

不能判定全等三角形的条件

不能判定全等三角形的条件要判断两个三角形是否全等,需要满足以下条件:1.三边对应相等(边边边法则):两个三角形的三条边分别对应相等,即边长相等。

若三边对应相等,则可以判断两个三角形全等。

2.两边对应相等且夹角相等(边角边法则):如果两个三角形的两边对应相等且夹角相等,即两边长度和夹角大小相等,则可以判断两个三角形全等。

3.两角对应相等且边对应相等(角边角法则):如果两个三角形的两角对应相等且边对应相等,即两角的大小和两边的长度相等,则可以判断两个三角形全等。

这些条件是判定两个三角形全等的基本条件,但同时需要注意一些特殊情况和限制条件:1. SAS(边角边)法则只适用于非直角三角形,对于直角三角形需要使用其他法则进行判断。

2. SSS(边边边)法则适用于任何三角形,但要注意两个三角形的边对应相等。

3. AAA(角角角)法则不能用于判定全等三角形,因为只知道三个角相等并不能确定三角形的形状和大小。

4.在判定全等三角形时,两个三角形的对应边和对应角要一一对应,并且对应相等。

5.在给定的信息条件下,可能存在不止一个解,需要根据具体题目情况进行判断。

除了以上基本条件外,还有一些特殊情况和实际应用需要注意:1.直角三角形:对于直角三角形,可以通过两边长度相等和一个角为90度来判断全等。

2.等腰三角形:对于等腰三角形,可以通过两边对应相等和一个角对应相等来判断全等。

3.三角形的旋转和镜像:两个三角形的形状可以相同但是位置不同,需要注意在进行判断时要考虑旋转和镜像的可能性。

4.实际应用:全等三角形的判断在建筑设计、地理测量、工程建设等领域中常常会用到,在计算和实际情况中需注意判断条件和实际应用的结合。

总之,判断两个三角形是否全等需要根据不同的条件和限制情况进行综合判断。

在实际问题中,可以根据已知条件和问题的要求来选择合适的法则进行判断,并注意特殊情况和实际应用的考虑。

1.1.1 三角形全等和等腰三角形的性质

1.1.1 三角形全等和等腰三角形的性质

∠DAC,∴5∠B=180°,即∠B=36°,则∠BAC
=180°-36°×2=108°
精品课件
【综合运用】 17.(12分)如图,在△ABC中,AB=AC,点D在BA的延长线上,点E在AC 上,且AD=AE.求证:DE⊥BC.(提示:过点A作AF⊥BC于点F)
证明:过点 A 作 AF⊥BC 于点 F,∵AB = AC , ∴AF 平 分 ∠BAC , ∴∠BAC = 2∠BAF , ∵AD = AE , ∴∠D = ∠AED , ∴∠BAC=∠D+∠AED=2∠D,∴∠BAF =∠D,∴DE∥AF,∴DE⊥BC
证明:∵BF=CE,∴BF+FC=CE+FC,即 BC =EF.∵AB∥DE,∴∠B=∠E.又∵AC∥DF, ∴∠ACB=∠DFE,在△ABC 与△DEF 中,
∠B=∠E, BC=EF, ∠ACB=∠DFE,
∴△ABC≌△DEF(ASA).∴AC=DF
精品课件
等腰三角形的性质定理及推论
5.(4分)(2015·宿迁)若等腰三角形有两边长分别为2和5,则这
8.(8分)(2015·北京)如图,在△ABC中,AB=AC,AD是BC边上 的中线,BE⊥AC于点E.
求证:∠CBE=∠BAD. 证明:∵AB=AC,AD是B边上的中线,BE⊥AC ,∴∠CBE+∠C=∠CAD+∠C=90°,∠CAD =∠BAD,∴∠CBE=∠BAD
精品课件
一、选择题(每小题4分,共12分) 9.如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条
精品课件
3.(4分)如图,BC=EC,∠1=∠2,要使△ABC≌△DEC,则应添加的 条件是______A_C_=__D_C_,__∠__A_=__∠__D_或__∠__B_=__∠__E_.(写出一个即可)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

文档来源为:从网络收集整理.word 版本可编辑.欢迎下载支持.
O E D C B A 全等三角形和等腰三角形
1、如图:设在一个宽度为AB 的小巷内,一个梯子的长为a ,梯子的脚位于P 点,将该梯子的顶端放于一堵墙上Q 点时,Q 离开地面的高度为k ,梯子的倾斜角为45°,将梯子的顶端放于另一堵墙上R 点时,R 离开地面的高度为h ,且此时梯子的倾斜角为75°,则小巷的宽度AB 为多少?
2、求证:面积和周长分别对应相等的两个直角三角形全等。

3有几个?它们的顶角分别为几度?
4、已知如图:在△ABC 中,AB =AC ,DE ∥BC ,CD 与BE 相交于O 求证:OD =OE 。

5、求证:角平分线与对边上中线重合的三角形是等腰三角形。

6、已知如图:在△ABC 中,AB =AC ,∠BAC =36°,BE 是∠ABC 的
平分线,AD =BD ,DE 交BC 延长线于F 。

求证:AB =CF 。

7、在凸四边形ABCD 中,AB =BC =CD ,∠A ∶∠B ∶∠C =1∶1∶2,求各内角的度数。

8、已知如图:在△ABC 中,∠A =100°,AB =AC ,CD 平分∠ACB 。

求证:BC =CD +AD 。

9、已知如图:以△ABC 的AB 、AC 为一边,向△ABC 外作等边
△ABD 和△ACE ,BE 与CD 相交于O 。

求证:AO 平分∠DOE 。

10、已知如图:在△ABC 中,∠A ∶∠B ∶∠C =4∶2∶1,AD 为
∠BAC 的平分线。

求证:AD =AC -AB 。

11、已知如图:在△ABC 中,∠ABC =∠ACB =40°,P 为三角形
内一点,且∠PCA =∠PAC =20°。

求∠PBC 的度数。

12、已知如图:AD ∥BC ,AB =CD ,AF 平分∠BAD ,DE 平分∠ADC ,求证:BE =CF 。

相关文档
最新文档