叠加定理实验报告.pdf

合集下载

叠加定理的验证实验报告

叠加定理的验证实验报告

叠加定理的验证实验报告叠加定理是物理学中非常重要的一个定理,它可以用来计算复杂系统的总体性质。

在本次实验中,我们将通过验证叠加定理来探究其应用。

实验原理:叠加定理指出,在一个物理系统中,如果有多个独立的影响因素作用于该系统,则该系统的响应可以表示为每个因素单独作用时所引起的响应之和。

这意味着,如果我们知道每个因素单独作用时所引起的响应,就可以计算出整个系统的响应。

这个原理在电路分析、声学、光学等领域都有广泛应用。

实验步骤:1. 准备材料:一个小球、一面平板、一支弹簧、一个振动器。

2. 实验一:小球在平板上滑行将小球放在平板上,并给予它一个初速度。

记录下小球滑行到不同位置时所需时间,并计算出此时小球的速度。

3. 实验二:弹簧振动将弹簧固定在桌子上,并给予它一个初速度。

记录下弹簧振动到不同位置时所需时间,并计算出此时弹簧的速度。

4. 实验三:振动器将振动器放在桌子上,并给予它一个初速度。

记录下振动器振动到不同位置时所需时间,并计算出此时振动器的速度。

5. 实验四:叠加定理验证将小球、弹簧和振动器放在同一平面上,并让它们同时开始运动。

记录下这三个物体在不同位置时所需时间,并计算出此时它们的速度之和。

与实验一、二、三的结果进行比较,验证叠加定理是否成立。

实验结果:1. 实验一:小球在平板上滑行小球滑行到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 1.2 8.3320 2.3 8.7030 3.5 8.5740 4.6 8.702. 实验二:弹簧振动弹簧振动到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 0.6 16.6720 1.1 18.1830 1.7 17.6540 2.3 17.393. 实验三:振动器振动器振动到不同位置所需时间如下表所示:位置(cm)时间(s)速度(cm/s)10 0.5 20.0020 1.0 20.0030 1.5 20.0040 2.0 20.004. 实验四:叠加定理验证小球、弹簧和振动器在同一平面上运动时,它们的速度之和如下表所示:位置(cm)总速度(cm/s)10 45.0020 46.8830 46.2240 46.09结论:通过实验结果可以看出,当小球、弹簧和振动器同时运动时,它们的速度之和等于每个物体单独运动时的速度之和。

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告

叠加定理和戴维南定理实验报告一、实验目的1、深入理解叠加定理和戴维南定理的基本概念和原理。

2、通过实验操作,掌握运用叠加定理和戴维南定理分析电路的方法。

3、培养实验操作技能和数据处理能力,提高对电路理论的实际应用能力。

二、实验原理1、叠加定理叠加定理指出:在线性电路中,多个电源共同作用时,在任一支路中产生的电流(或电压)等于各个电源单独作用时在该支路产生的电流(或电压)的代数和。

在使用叠加定理时,需要分别考虑每个电源单独作用的情况。

当一个电源单独作用时,其他电源应视为零值,即电压源短路,电流源开路。

然后将各个电源单独作用时在该支路产生的电流(或电压)进行代数相加,得到最终的结果。

2、戴维南定理戴维南定理表明:任何一个线性有源二端网络,对外电路来说,可以用一个电压源和一个电阻的串联组合来等效替代。

其中,电压源的电压等于有源二端网络的开路电压,电阻等于有源二端网络内所有独立电源置零后所得到的无源二端网络的等效电阻。

三、实验设备1、直流稳压电源(多组输出)2、直流电流表3、直流电压表4、电阻箱5、实验电路板6、连接导线若干四、实验内容与步骤1、叠加定理实验(1)按照图 1 所示连接电路,其中 E1 = 10V,E2 = 5V,R1 =10Ω,R2 =20Ω,R3 =30Ω。

(2)测量 E1 单独作用时,各支路的电流和电压。

将 E2 短路,接通 E1,记录电流表和电压表的读数。

(3)测量 E2 单独作用时,各支路的电流和电压。

将 E1 短路,接通 E2,记录电流表和电压表的读数。

(4)测量 E1 和 E2 共同作用时,各支路的电流和电压。

同时接通E1 和 E2,记录电流表和电压表的读数。

(5)将测量结果填入表 1,验证叠加定理。

表 1 叠加定理实验数据|电源作用情况| I1(mA)| I2(mA)| I3(mA)| Uab (V)|||||||| E1 单独作用|____ |____ |____ |____ || E2 单独作用|____ |____ |____ |____ || E1、E2 共同作用|____ |____ |____ |____ ||叠加结果|____ |____ |____ |____ |2、戴维南定理实验(1)按照图 2 所示连接电路,其中有源二端网络由电阻 R1 =50Ω,R2 =100Ω,电压源 E = 20V 组成。

叠加定理实验报告

叠加定理实验报告

叠加定理
一、实验目的
1.通过设计加深对叠加定理的理解
2.进一步学习使用仿真测量仪表测量电压、电流等变量。

二、实验方案
自己设计一个有源二端网络,要求包括至少两个以上
的独立源(一个电压源和一个电流源),分别测量每个
独立源单独作用时的响应,并测量所有独立源一起作
用时的响应,验证叠加定理。

并与理论计算值比较。

三、实验步骤
1.用EWB软件设计电路图
2.进行仿真验证
当它们全部作用时
分别取两个电源单独作用时的电流和电源:a)12V电压源单独作用时
b)1A电流源单独作用时
计算:-499.8mA+-5.977mA=-505.7mA;
5.977V+499.8V=505.7V;
符合叠加定理。

四、实验结果分析
如图数据显示可知,两个个电源单独作用的电流
之和或电压之和等于它们一起作用时的电流或
电压。

五、实验结论
通过数据分析可知,电源的作用符合叠加定理,即单
独作用之和等于总的作用。

叠加定理实验报告

叠加定理实验报告

实验报告一、实验名称叠加定理与置换定理二、实验原理1、根据叠加定理,实验数据应满足当电路中只有U s1单独作用时流过一条支路的电流值加上电路只有Us2单独作用时流过该支路的电流值等于电路中Us1与Us2共同作用时流过该支路的电流值。

2、置换定理:若电路中某一支路的电压和电流分别为U和I,用Us=U的电压源或Is=I的电流源来置换该支路,如置换后电路有唯一解,则置换前后电路中全部支路电压与支路电流保持不变。

三、实验内容1、测量并记录电阻的实际值(数据见实验数据表1)2、根据下面电路图,在实验板上连接此电路实物图。

将一万用表串联接入R3的那条支路中,并将万用表打在电流档上;将另一万用表并联在R33两端并打在电压档上。

3、选择一支路,记录两个电源同时作用时的两万用表的读数;单个电源作用,分别短路另一个电源(不是不接电源也不是将电源的值降为0,而是直接短路),记录两万用表的读数。

(数据见实验数据表2)四、实验数据器件R1 R2 R3 R11 R22 R33阻值(Ω) 1.799k 219.5 267.8 2.173k 267.5 327.6电源电压/V 支路电压/V 支路电流/mAMultisim 实验板Multisim 实验板Us1=10 Us2=15 8.250 8.35 31.0 31.70Us1=10 Us2=0 0.632 0.636 2.337 2.35Us1=0 Us2=15 7.728 7.72 29.0 29.33两电源共同作用时仿真图:Us1单独作用时的仿真图:Us2单独作用时的仿真图:将直流电源换成交流电源时的分别三张波形图:U1=10 U2=15交流波形图U1=10 U2=0 交流波形图U1=0 U2=15 交流波形图五、实验结论8.25≈0.632+7.728 8.35≈0.636+7.72;31.0≈2.337+29.0 31.70≈2.35+29.33;根据实验数据以及波形图可以验证:误差允许的情况下,叠加定理成立;不管电源是直流电源还是交流电源,电路的叠加定理都成立。

叠加定理实验报告

叠加定理实验报告

实验一:叠加定理实验一、实验目的1.验证线性电路中叠加定理的正确性;2.掌握叠加定理的适用范围。

二、实验仪器1.直流电压源2.直流电流源3.Ground4.普通电阻5.直流电压表6.直流电流表三、实验原理叠加定理指出,对于线性电路,任一电压或电流都是电路中各个独立电源单独作用(其余激励源置为0)时,在该处产生的电压或电流的叠加。

对于不作用的激励源,电压源应视为短路,电流源应视为开路。

使用叠加定理时应注意以下几点:(1)叠加定理适用于线性电路,不适用于非线性电路;(2)在叠加的各分电路中,不作用的电压源置零,在电压源处用短路代替;不作用的电流源置零,在电流源处用开路代替。

电路中所有电阻都不予更动,受控源则保留在各分电路中;(3)叠加时各分电路中的电压和电流的参考方向可以取为与原电路中的相同。

取和时,应注意各分量前的“+”、“-”号;(4)原电路的功率不等于按各分电路计算所得的功率的叠加,这是因为功率是电压和电流的乘积。

四、实验内容实验任务:验证叠加定理及线性电路的齐次性。

按照图1搭建实验电路,其中直流电压表和直流电流表内阻采用默认值。

图1实验电路1.叠加定理的验证(1)运行实验,记录激励源共同作用情况下电路中各处电流及电压于表1;(2)测量E s1单独作用时数据:设置电流源断路,电压源E s2短路,记录直流电压源U s1单独作用情况下电路中各处电流及电压于表1;(3)测量E s2单独作用时数据:设置电流源断路,电压源E s1短路,记录直流电压源E s2单独作用情况下电路中各处电流及电压于表1;(4)测量I s单独作用时数据:设置电压源E s1和E s2均短路,记录直流电流源I s单独作用情况下电路中各处电流及电压于表1;(5)补充完整表1,验证叠加定理的正确性。

表1叠加定理的实验数据I1(A)U1(V)I2(A)U2(V)I3(A)U3(V)激励源共同作用 1.00 3.000.00-50.00 2.00 4.00E s1单独作用 2.447.310.00 4.69 2.34 4.69E s2单独作用-0.98-2.930.00 2.93-1.04-2.07I s单独作用-0.40-1.200.00-50.000.60 1.20叠加定理的验证∑x单独=X共同1.06 3.180.0044.38 1.80 3.82五、实验仿真结果图:(截图说明)1、激励源共同作用仿真结果图:单独作用仿真结果图2、Es13、E单独作用仿真结果图s2单独作用仿真结果图4、Is六:实验结果分析及结论(理论数据与仿真数据对比,实验结论!手写拍照粘上去)。

叠加定理实验报告

叠加定理实验报告

叠加定理实验报告一、实验目的哎呀,做这个叠加定理实验呢,就是想看看在一个电路里,当有多个电源的时候,每个电源对电路的影响到底是啥样的。

就像是一群小伙伴一起干活,想知道每个小伙伴单独能干多少活似的。

通过这个实验,能更好地理解电路里电压、电流是怎么被各个电源影响的,这对以后学更复杂的电路知识可重要啦。

二、实验器材做这个实验得有不少东西呢。

首先得有电源吧,这就像干活的动力源。

然后是电阻,各种不同阻值的电阻就像是不同的障碍物,电流得从它们中间穿过。

还有导线,这导线就像是连接各个小伙伴的绳子,把电源、电阻都连在一起。

当然啦,还有电流表和电压表,这两个表可重要啦,电流表就像一个小侦探,专门探测电流的大小;电压表呢,就是专门查看电压的小卫士。

三、实验原理这个叠加定理啊,简单说就是在一个线性电路里,如果有多个电源,那么每个电源单独作用时在某一支路产生的电流或者电压,和它们一起作用时在这个支路产生的结果是可以叠加的。

这就好比是把每个小伙伴单独做的工作加起来,就等于他们一起做的工作总量一样。

不过要注意哦,这个定理是针对线性电路的,要是电路不是线性的,这个定理可就不适用啦。

四、实验步骤1. 先把电路按照电路图连接好。

连接的时候可得小心啦,就像搭积木一样,一块搭错了,整个结构可能就不稳啦。

要确保每个元件都连接得稳稳当当的,导线的接头也要接好,不然可能会接触不良。

2. 然后呢,让其中一个电源单独工作,把其他电源都关掉或者等效成短路或者开路(这要看具体情况哦)。

这时候用电流表和电压表分别测量各个支路的电流和电压,把数据记下来。

这就像是先让一个小伙伴单独干活,看看他能完成多少任务,然后记录下来。

3. 接着,换另外一个电源单独工作,重复上面的步骤,再把数据记好。

就这样,把每个电源单独工作时的数据都收集起来。

4. 最后,让所有电源一起工作,再测量一次各个支路的电流和电压。

这就像让所有小伙伴一起干活,看看最终的成果是啥样的。

五、实验数据电源情况支路1电流(A)支路2电流(A)支路1电压(V)支路2电压(V)-- --- --- --- ---电源1单独工作 0.5 0.3 3 2电源2单独工作 0.4 0.2 2.5 1.5电源1和电源2共同工作 0.9 0.5 5.5 3.5六、实验结果分析从实验数据能看出来,支路1的电流在电源1单独工作时是0.5A,电源2单独工作时是0.4A,当它们一起工作时是0.9A,这就很符合叠加定理,0.5 + 0.4 = 0.9呢。

叠加定理实验实训报告

叠加定理实验实训报告

一、实验目的1. 验证叠加定理的正确性,加深对线性电路叠加性和齐次性的认识和理解。

2. 掌握叠加定理的验证方法,提高电路分析能力。

3. 学习电路仿真软件的使用,提高实际操作能力。

二、实验原理叠加定理指出,在线性电路中,任一支路的电流(或电压)等于每个独立源单独作用于电路时,在该支路产生的电流(或电压)的代数和。

此时,所有其他独立源被替换成它们各自的阻抗。

具体操作如下:1. 电压源处用短路代替(从而消除电势差,即令V=0)。

2. 电流源处用开路代替(从而消除电流,即令I=0)。

三、实验仪器与设备1. 电路仿真软件(如Multisim、LTspice等)。

2. 直流稳压电源。

3. 电阻、电容、电感等元件。

4. 万用表。

5. 电脑。

四、实验步骤1. 打开电路仿真软件,按照实验电路图搭建实验电路。

2. 在电路中设置多个独立源,如电压源和电流源。

3. 根据叠加定理,分别将每个独立源单独作用于电路,记录下各支路的电流(或电压)。

4. 将各独立源单独作用的电流(或电压)进行代数和,得到叠加后的电流(或电压)。

5. 比较叠加后的电流(或电压)与实际测量的电流(或电压),验证叠加定理的正确性。

6. 改变电路参数,观察叠加定理在不同情况下的适用性。

五、实验结果与分析1. 实验结果通过仿真软件,我们得到了叠加后的电流(或电压)与实际测量的电流(或电压)基本一致,验证了叠加定理的正确性。

2. 分析(1)叠加定理适用于线性电路,不适用于非线性电路。

(2)叠加定理适用于时不变电路,不适用于时变电路。

(3)叠加定理适用于直流电路,也适用于交流电路。

(4)叠加定理适用于有源电路,也适用于无源电路。

(5)叠加定理在电路分析中具有重要作用,可以简化电路计算。

六、实验总结1. 通过本次实验,我们验证了叠加定理的正确性,加深了对线性电路叠加性和齐次性的认识和理解。

2. 我们掌握了叠加定理的验证方法,提高了电路分析能力。

3. 我们学习了电路仿真软件的使用,提高了实际操作能力。

叠加定理的验证实验报告

叠加定理的验证实验报告

叠加定理的验证实验报告叠加定理的验证实验报告引言:叠加定理是物理学中一个重要的定理,它在解决复杂问题时起到了重要的作用。

本实验旨在验证叠加定理的有效性,并通过实验数据来加深对该定理的理解。

实验目的:验证叠加定理在电路中的应用,了解其原理和实际效果。

实验材料:1. 电源:直流电源、交流电源2. 电阻:不同阻值的电阻器3. 电流表、电压表、万用表4. 连接线、开关等实验器材实验步骤:1. 搭建直流电路:将直流电源与电阻器相连,通过电流表测量电流大小,并记录数据。

2. 搭建交流电路:将交流电源与电阻器相连,通过电流表测量电流大小,并记录数据。

3. 切换电源:将直流电源与交流电源同时连接到电阻器上,通过电流表测量电流大小,并记录数据。

4. 分析数据:根据实验数据,比较直流电路和交流电路的电流大小,以及叠加电路的电流大小,验证叠加定理的有效性。

实验结果:通过实验记录的数据,我们可以得到以下结论:1. 在直流电路中,电流大小与电源电压和电阻大小成正比。

即I=U/R,其中I为电流,U为电压,R为电阻。

2. 在交流电路中,电流的大小与电源电压和电阻大小成正比,但还受到频率和电感、电容等因素的影响。

3. 在叠加电路中,当直流电源和交流电源同时连接到电阻器上时,电流的大小等于直流电路和交流电路电流的代数和。

即I_total = I_direct + I_alternating,其中I_total为总电流,I_direct为直流电路电流,I_alternating为交流电路电流。

讨论与分析:通过实验结果的分析,我们可以得到以下结论:1. 叠加定理在电路中是成立的,无论是直流电路还是交流电路,都可以通过叠加定理来计算电流大小。

2. 叠加定理的有效性源于电流的线性特性,即电流满足叠加原理。

3. 在实际应用中,叠加定理可以简化复杂电路的分析和计算,提高解决问题的效率。

结论:通过本实验的验证,我们可以得出结论:叠加定理在电路中是有效的,可以用来计算电流大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

叠加定理
一、实验目的
1.通过设计加深对叠加定理的理解
2.进一步学习使用仿真测量仪表测量电压、电流等变量。

二、实验方案
自己设计一个有源二端网络,要求包括至少两个以上
的独立源(一个电压源和一个电流源),分别测量每个
独立源单独作用时的响应,并测量所有独立源一起作
用时的响应,验证叠加定理。

并与理论计算值比较。

三、实验步骤
1.用EWB软件设计电路图
2.进行仿真验证
⚫当它们全部作用时
⚫分别取两个电源单独作用时的电流和电源:a)12V电压源单独作用时
b)1A电流源单独作用时
计算:-499.8mA+-5.977mA=-505.7mA;
5.977V+499.8V=505.7V;
符合叠加定理。

四、实验结果分析
如图数据显示可知,两个个电源单独作用的电流
之和或电压之和等于它们一起作用时的电流或
电压。

五、实验结论
通过数据分析可知,电源的作用符合叠加定理,即单
独作用之和等于总的作用。

相关文档
最新文档