燕山大学材料力学大纲
材料力学 课程考核大纲
材料力学课程考核大纲一、适用对象修读完本课程规定内容的土木工程专业本科学生。
提出并获准免修本课程、申请进行课程水平考核的土木工程专业本科学生。
提出并获准副修第二专业、申请进行本课程水平考核的非土木工程专业的本科学生。
二、考核目的考核学生对《材料力学》的基本概念、知识、理论的掌握情况,以及灵活应用的能力;属于水平考试。
三、考核方式和考试时量1、考核方式:本课程的考核采用期末闭卷考试与平时考查相结合的方式,进行考核与成绩评定。
2、考试时量:期终考试时间为120分钟。
四、课程考核成绩构成本课程采用100分制进行成绩评定。
考核成绩构成:平时考查(含考勤、听课、作业、实验和平时测验)占30%,期终考试成绩占70%。
五、考试内容和要求(一)绪论1、考试内容:(1)材料力学的主要任务;(2)杆件基本变形形式。
2、考试要求:(1)了解材料力学的主要任务;(2)了解可变形体的性质及基本假设;(3)了解杆件的几何特征;(4)知道杆件变形的四种基本形式。
(二)轴向拉伸、压缩1、考试内容:(1)轴向拉伸与压缩的概念;(2)用截面法计算拉(压)杆的内力(轴力),轴力图的绘制;(3)轴向拉伸或压缩时横截面上的应力;(4)直杆轴向拉伸或压缩时斜截面上的应力;(5)材料拉伸和压缩时的力学性能时的力学性能;(6)安全因数和许用应力;(7)拉(压)杆的强度条件及其应用;(8)轴向拉伸或压缩时的变形,刚度和刚度条件;(9)轴向拉伸或压缩的应变能.2、考试要求:(1)了解轴向拉(压)的概念(2)会用截面法计算轴力、绘制轴力图;(3)理解应力的概念;会计算拉压杆横截面,斜截面上的应力;(4)熟练掌握胡克定律,会计算拉(压)杆的变形;(5)掌握低碳钢拉伸、混凝土压缩时的力学性能,了解其他材料力学性能;(6)掌握强度计算中的三种类型:强度校核、截面选取、确定许可荷载。
(7)理解安全因素和许用应力的概念;(8)熟悉应力集中的概念。
(三)平面图形的几何性质1、考试内容:(1)静矩和形心;(2)惯性矩、惯性积和惯性半径;(3)平行移轴公式;(4)转轴公式与主惯性轴、主惯性矩。
-燕山大学材料力学考试大纲
材料力学发布日期:2011-8-27 9:59:03新闻来自:本站原创1、变形固体的基本假设。
内力、截面法。
应力、应变、虎克定律。
杆件的基本变形形式。
2、轴向拉伸和压缩的概念和实例。
横截面上的内力和应力。
材料在拉伸与压缩时的力学性能。
许用应力、强度条件。
拉伸和压缩时的变形。
拉压静不定问题。
温度应力。
装配应力。
3、剪切和挤压的实用计算。
4、外力偶矩与扭矩的计算。
薄壁圆筒的扭转、纯剪切。
圆轴扭转时的应力和变形。
圆轴扭转的强度和刚度计算。
5、静矩和形心。
惯性矩、惯性积、惯性半径。
平行移轴公式。
转轴公式。
主惯性轴、主惯性矩。
6、剪力与弯矩。
剪力与弯矩方程。
应用内力方程作剪力图与弯矩图。
载荷集度、剪力和弯矩间的微分关系。
应用微分关系作剪力图和弯矩图。
叠加法作弯矩图的概念。
7、弯曲正应力。
弯曲切应力。
弯曲正应力和切应力强度计算。
弯曲中心。
8、挠度和转角。
梁的刚度条件。
挠曲线的近似微分方程。
积分法求梁的变形。
叠加法求梁的变形。
9、一点应力状态的概念。
平面应力状态分析的解析法和图解法。
三向应力状态简介。
平面应变状态分析。
广义虎克定律。
10、组合变形的概念。
斜弯曲。
拉伸或压缩与弯曲的组合。
偏心压缩(拉伸)、截面核心。
强度理论的概念。
四种常用的强度理论。
扭转和弯曲的组合。
11、结构变形能的计算。
单位载荷法。
图形互乘法。
功的互等定理。
12、静不定系统的概念。
力法解静不定问题。
材料力学(本科)教学大纲.
材料力学(本科)教学大纲课程编号:课程类型:专业基础课课程教学:讲授适用专业:土木工程及相关专业授课总学时:90学时(5学分)一、课程的性质、作用和任务材料力学是一门技术基础课。
通过本门课程的学习,要求学生对杆件的受力分析、强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力,初步的力学建模及对简化模型近似性评估的能力,一定的定性与定量分析能力和初步的实验能力。
它的任务是在保证构件既安全适用又经济的前提下,为构件选择合适的材料,确定合理的的截面形状和尺寸,提供必要的计算方法和实验技术。
它为学生学习结构力学、弹性力学等后继课程奠定基础,把它应用于工程,即可对杆类构件或零件进行强度、刚度和稳定性设计。
二、课程内容、基本要求及学时分配(总学时90)第一部分绪论讲授2 学时。
1、基本内容材料力学的任务,变形固体的概念及其基本假设,外力,截面法,内力和应变的概念,位移和应变的概念,杆件变形的基本形式。
2、基本要求1)理解外力、内力、应变等基本概念。
2)熟练掌握杆件变形的基本形式。
3、重点力的基本概念及杆件变形的几种基本形式。
第二部分拉伸和压缩讲授6 学时,习题课2 学时,试验2学时,共10学时。
1、基本内容轴向拉、压概念,轴向拉压时横截面上的内力和应力,斜截面上的应力;许用应力及强度条件;轴向拉、压时的变形;2、基本要求1)了解许用应力及强度条件的概念。
2)掌握轴向拉压时横截面上的内力和应力,斜截面上的应力;虎克定律的应用条件。
3)掌握低碳钢的拉伸试验及其试验特点。
4)熟练掌握应力集中,安全系数等基本概念。
3、重点轴向拉压时横截面上的内力和应力,斜截面上的应力。
第三部分剪切讲授2学时。
1、基本内容剪切的概念,纯剪切,剪应力互等定理,剪切虎克定律,剪切弹性模量。
2、基本要求1)了解剪切的概念。
2)掌握纯剪切状态的受力特性,剪应力互等定理。
4)理解胡克定律的应用条件及适用范围。
3、重点纯剪切状态的受力特性,剪应力互等定理。
《材料力学》考试大纲
《材料力学》考试大纲一、考试的总体要求材料力学是变形固体力学入门的专业基础课。
要求考生对构件的强度、刚度、稳定性等问题有明确的认识,全面系统地掌握材料力学的基本概念、基本定律及必要的基础理论知识,同时具备一定的计算能力及较强的分析问题及解决问题的能力。
二、考试的内容1 绪论及基本概念1)可变形固体的性质极其基本假设2)杆件变形的基本形式2 轴向拉伸和压缩1)轴向拉伸和压缩的概念2)内力,截面法,轴力及轴力图3)应力,拉(压)杆内的应力4)拉(压)杆的变形,胡克定律5)拉(压)杆内的应变能6)材料在拉伸和压缩时的力学性能7)强度条件,安全系数,许用应力8)应力集中的概念3 扭转1)薄壁圆筒的扭转2)传动轴的外力偶矩,扭矩及扭矩图3)等直圆杆在扭转时的应力,强度条件4)等直圆杆扭转时的变形,刚度条件5)等直圆杆在扭转时的应变能4 弯曲内力1)对称弯曲的概念2)梁的剪力和弯矩,剪力图和弯矩图3)平面刚架和曲杆的内力图4)梁横截面上的正应力,梁的正应力强度条件5)梁横截面上的切应力,梁的切应力强度条件6)梁的合理设计5 梁弯曲时的位移1)梁的挠度及转角2)梁的挠曲线近似微分方程及其积分3)按叠加原理计算梁的挠度和转角4)梁挠曲线的初参数方程5)梁的刚度校核,提高梁的刚度的措施6)梁内的弯曲应变能6 简单的超静定问题1)超静定问题及其解法2)拉压超静定问题3)扭转超静定问题4)简单超静定梁7 应力状态和强度理论1)平面应力状态的应力分析,应力圆2)空间应力状态的概念3)应力与应变间的关系4)空间应力状态下的应变能密度5)强度理论及其相当应力6)莫尔强度理论及其相当应力7)各种强度理论的应用8 组合变形及连接部分的计算1)两相互垂直平面内的弯曲2)拉伸(压缩)与弯曲3)扭转与弯曲4)连接件的实用计算5)铆钉连接的计算9 压杆稳定1)压杆稳定性的概念2)细长中心受压直杆临界力的欧拉公式3)不同杆端约束下细长压杆临界力的欧拉公式,压杆的长度系数4)欧拉公式的应用范围,临界力总图,压杆稳定计算,截面设计三、考试题型及比例填空题: 20%左右问答题: 30%左右分析、计算题: 50%左右四、考试形式及时间考试形式为闭卷笔试,试卷总分值为150分,考试时间为三小时。
《材料力学》教学大纲及说明
《材料力学》教学大纲及说明《材料力学》课程大纲课程编码:3865课程名称:材料力学英文名称:Mechanics of Materials总学时:80 实验:12 上机:适用专业:土木工程专业一、课程内容及要求本课程的主要内容:主要讲授构件的强度、刚度、稳定性概念,及构件在满足该三项指标的前提下,如何选择合适的材料、合理截面、确定许可载荷提供理论依据。
学习重点:(一)基本概念部分主要以强度、刚度、稳定性、内应力、位移、应变等基本概念为重点,要求阐明截面法及有关各力学量间的关系,建立明确的概念。
(二)基本变形部分主要以各基本变形的概念,内力及内力图绘制、应力与变形计算及相应的强、刚度计算为重点,要求阐明各基本变形的受力与变形特点、应力、应变的分布规律及计算公式、强度及刚度条件,从力学角度满足工艺要求的有关措施。
(三)应力状态强度理论部分的重点为应力状态的概念,平面应力状态分析及强度理论的主要观点与相应的强度条件。
阐明平面应力状态分析的解析法与图解法结论。
古典强度理论的强度条件与适用范围,准确地用于杆件组合变形强度计算。
压杆稳定部分的重点是稳定性、临界力、;临界应力的概念及稳定校核计算。
阐明稳定及失稳的概念及实质;导出欧拉公式,进行临界应力计算;交变应力及动荷问题的重点是建立交变应力的概念及疲劳条件;动静法及能量法计算动荷问题的基本原理。
学习难点:(一)基本概念部分主要以强度、刚度、稳定性、内应力、位移、应变等基本概念为难点,要求阐明截面法及有关各力学量间的关系,建立明确的概念。
(二)基本变形部分主要以内力及内力图绘制、应力计算及相应的强、刚度计算为难点。
(三)应力状态强度理论部分的难点为应力状态的概念,平面应力状态分析的解析法与图解法。
压杆稳定部分的难点是临界应力计算。
第一章总论§1.1材料力学及其基本任务、材料力学的主要研究对象§1.2基本概念变形固体及其基本假设、外力、内力、应力、变形、变位、应变§1.3 杆件的基本变形要求:通过本章的教学,使学生了解材料力学的任务和杆件变形的基本形式,了解构件强度、刚度和稳定性的概念;理解变形固体的基本假定、条件和意义;理解内力、正应力、剪应力、剪应变及单元体的基本概念;初步掌握用截面法计算内力的方法。
材料力学教学大纲
《材料力学》课程教学大纲总学时:90 学分:5理论学时:78 实验学时:12面向专业:土木工程课程代码:HD0686先开课程:高等数学、理论力学课程性质:专业基础课第一部分:理论教学部分一、说明1、课程的性质、地位和任务材料力学是变形固体力学的一个分支,它是土木工程专业必修的专业核心课程。
为后续课程《结构力学》、《混凝土结构设计原理》、《钢结构设计原理》、《钢结构设计》以及《砌体结构》等各专业课的学习提供预备知识。
本课程安排在第三学期,是在学生学完高等数学、理论力学等课程之后,在学生数学力学等必备的知识基础上,进一步研究构件在力的作用下,内力、应力、变形及稳定性等问题。
通过材料力学的学习,要求学生对杆件的强度、刚度和稳定性等问题具有明确的基本概念和必要的基础知识,对常用材料的基本力学性能及其测定方法、电测试验应力分析的基本原理和基本方法有初步认识,使学生初步会用材料力学的理论和分析方法,解决一些简单的工程实际问题,为学习有关的后继课程打下初步基础。
由于本课程的内容及众多公式具有一定程序及规律,为了系统地学习、研究其内在规律,对整个教材的教学设想是应用框图思维法,即削枝强干,删繁就简,强调“三基”,突出重点,达到有利于培养学生分析问题与解决问题的能力。
2、课程教学和教改基本要求通过本课程的学习,使学生明确认识材料力学的基本概念和基本分析方法,培养分析问题、推导计算、判断结果和自学查阅的能力;熟练地做出杆件基本变形时的内力图,进行应力和位移、强度和刚度计算;掌握应力状态分析方法和理论,掌握组合变形下杆件的强度计算;掌握简单超静定问题的求解方法;了解压杆的稳定性概念,会计算轴向受压杆的临界力与临界应力;了解低碳钢和铸铁的基本力学性能及其测试方法;掌握电测实验应力分析的基本原理和方法。
对杆件的受力分析、强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力,初步的力学建模及对简化模型近似性评估的能力,一定的定性与定量分析能力和初步的实验能力。
《材料力学》课程教学大纲
《材料力学》课程教学大纲适用于本科机械设计制造及其自动化专业学分3.5 总学时:56 理论学时:48 实验/实践学时:8一、课程的性质、任务和要求《材料力学》是工科专业基础课,必修。
本课程共56学时,3.5学分。
《材料力学》课程的主要任务是:通过该课程的学习,要求学生掌握等直杆件的强度、刚度及轴向受压杆件的稳定性的计算等;能运用强度、刚度及稳定性条件对杆件进行校核、截面设计及载荷确定等简单计算工作;初步了解材料的机械性能及材料力学实验的基本知识和操作技能;初步学会应用材料力学的理论和方法解决一些简单的工程实际问题;为学习有关的后继课程打好必要的基础。
学习本课程后,应达到下列基本要求:1.对材料力学的基本概念和基本分析方法有明确的认识;2.能熟练地画出杆件在基本变形下的内力图,进行应力和位移、强度和刚度的计算;3.掌握应力状态理论和组合变形下杆件的强度计算;4.了解压杆的稳定性概念,会计算轴向受压杆的临界力和临界应力;5.了解低碳钢和灰口铸铁的基本力学性能及其测定方法;6.掌握简单超静定问题的求解方法;7.掌握电测实验应力分析的基本原理和方法。
二、本课程与其它课程的关系、主要参考教材本课程的先修课程为:高等数学、工程图学、理论力学。
选用教材:《材料力学Ⅰ》(第5版),刘鸿文主编,高等教育出版社,2010参考书目:[1]《材料力学Ⅰ》(第5版),孙训方主编,高等教育出版社,2009[2]《材料力学Ⅰ》(第3版),单辉祖,高等教育出版社,2009[3]《材料力学》,Timoshenko(铁木辛柯)编,科学出版社,1978三、课程内容1.绪论主要内容:材料力学的任务及研究对象;变形固体的基本假设;力与内力、截面法与应力、线变形和角变形的概念;杆件变形的基本形式。
2.拉伸、压缩与剪切主要内容:轴向拉伸与压缩的概念与实例;直杆横截面上的内力、应力及斜截面上的应力计算;安全系数与许用应力的应用、拉压杆件的强度计算;轴向拉伸与压缩时杆件的纵向变形、线应变、横向变形计算;泊松比、虎克定律、弹性模量,抗拉(压)刚度、应力集中的概念;金属材料拉伸和压缩时的力学性能;简单拉(压)超静定问题、热应力和装配应力的解法;剪切和挤压的实用计算。
材料力学考试大纲
材料力学一、课程的性质与设置目的和要求材料力学是由基础理论课向设计课程过渡的技术基础课。
该课程对后续专业课及工程应用都有深远的影响。
通过对材料力学课程的学习,要求学生对杆件的强度、刚度和稳定性问题具有明确的基本概念、必要的基础理论知识、比较熟练的计算能力、一定的分析能力和实验能力。
二、课程内容与考核目标本课程主要讲述杆件的强度、刚度和稳定性理论及其应用,包括四种基本变形与组合变形的应力和变形,强度和刚度计算,能量方法与超静定问题,压杆稳定,动载荷与交变应力。
第一章拉伸与压缩1.学习目的与要求:本章介绍杆件在拉伸或压缩时的应力和变形计算。
通过学习,要求能熟练绘制杆件的轴力图;能熟练进行杆件强度计算和变形计算。
2.课程内容:轴向拉、压的概念;外力、内力、应力、应变、变形、位移等概念;拉(压)杆的内力、内力图;应力和强度计算、材料的拉、压力学性能、杆件的变形计算;简单的超静定问题。
3.考核知识点:轴力、轴力图;轴向拉压时截面上的应力;轴向拉压时的变形、虎克定律;材料的力学性能(低碳钢、铸铁的拉伸试验的应力应变图;低碳钢和铸铁的压缩试验及两类材料的比较);轴向拉压的强度条件及强度计算;4.考核要求:能熟练运用截面法计算杆件的轴力,正确绘制轴力图;掌握杆件拉、压时的强度计算;掌握杆件的变形计算;了解材料的基本力学性能以及试件拉、压破坏时的现象和原因;掌握求解简单超静定问题的方法。
第二章剪切1.学习目的与要求:本章介绍连接件的实用计算。
通过学习,要求会计算简单的连接件的强度问题。
2.课程内容:剪切构件的受力和变形特点,连接处可能的破坏形式,剪切和挤压的实用计算。
3.考核知识点:剪切和挤压的概念,剪切和挤压的应力计算。
4.考核要求:了解剪切和挤压的概念,会计算简单的连接件的强度问题。
第三章扭转1.学习目的与要求:本章介绍杆件扭转时的应力和变形,通过学习,要求能熟练绘制杆件的扭矩图;掌握应力和变形的计算公式,能熟练进行轴类零件的强度和刚度计算2.课程内容:纯剪切概念、剪切胡克定律、切应力互等定理;功率、转速与外力偶矩的关系;扭矩和扭矩图、应力和变形的计算、强度条件和刚度条件;弹簧的应力和变形计算;简单扭转超静定问题的计算;非圆截面杆扭转的应力和变形简介。
材料力学实验课程教学大纲
材料力学实验课程教学大纲课程名称:材料力学/ Mechanics of Materials课程代码:05123122课程类别:专业/必修学时数:12学分:1.0先修课程:高等数学、理论力学等开课单位:建筑工程学院适用专业:土木工程;土木类(中德联合培养)一、课程的性质、目的和任务材料力学实验是材料力学教学中的一个重要环节,对于提高学生的综合素质、培养学生的实践能力与创新精神具有极其重要的作用。
通过材料力学实验不仅丰富了学生的书本知识,而且增强了学生的实践能力;更重要的是,提高了学生应用实验的手段与方法去分析、研究和解决工程问题的能力;提高了学生建立或者修正完善力学模型的能力。
通过力学实验还可以培养学生对一些新材料和新结构的研究能力。
通过实验课的系统训练,学生应掌握材料力学实验的基本知识,熟练掌握实验报告的书写方法,掌握简单设计性实验报告的书写方法,掌握实验数据处理及误差分析方法;了解实验设备、仪器的基本工作原理,掌握它们的操作方法;掌握材料力学实验中的基本实验方法,能应用材料力学知识解释、分析拉伸、扭转、弯曲等实验中所发生的应力和应变变化的规律;初步具备对材料力学实验过程的设计能力,即能独立完成实验的全过程,具有一定的动手能力和思维判断能力。
二、教学内容、教学基本要求及教学重点与难点1.万能试验机操作及拉伸示范实验、拉伸试验了解万能试验机的构造原理和使用方法,结合具体机型认识主要部件及其作用;了解游标卡尺原理及能正确使用游标卡尺。
正确测定低碳钢的P s,P b值,准确测量试验前后的l0,d0,l,d;根据试验测定值计算σs,σb,ψ,δ。
教学重点与难点:了解试验设备——万能材料试验机的构造和工作原理,掌握其操作规程及使用时的注意事项;观察低碳钢在拉伸过程中的各种现象(包括屈服、强化、强化、颈缩及断裂);测定低碳钢的强度和塑性指标:屈服极限σs、强度极限σb、伸长率δ和截面收缩率ψ;观察材料在拉伸过程中的各种现象,并利用自动绘图装置绘制拉伸图(P─ΔL曲线)。
《材料力学》教学大纲
《材料力学》教学大纲一、课程概述材料力学是一门研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等力学性能的学科。
它是工科学生必修的专业基础课程之一,为后续的机械设计、结构力学、工程力学等课程提供必要的理论基础。
通过本课程的学习,学生应掌握材料力学的基本概念、基本理论和基本方法,具备对工程构件进行强度、刚度和稳定性分析的能力,为今后从事工程设计和科学研究工作打下坚实的基础。
二、课程目标1、知识目标掌握材料力学的基本概念,如内力、应力、应变、弹性模量、泊松比等。
理解拉伸、压缩、剪切、扭转和弯曲等基本变形形式下的应力和应变分布规律。
掌握材料在拉伸和压缩时的力学性能,如屈服极限、强度极限、延伸率和断面收缩率等。
熟悉梁的弯曲理论,包括弯曲内力、弯曲应力和弯曲变形的计算方法。
了解组合变形和压杆稳定的基本概念和分析方法。
2、能力目标能够对简单的工程构件进行受力分析,绘制内力图。
能够根据材料的力学性能和构件的受力情况,进行强度、刚度和稳定性的计算和校核。
具备运用材料力学知识解决工程实际问题的能力。
培养学生的逻辑思维能力和创新能力。
3、素质目标培养学生严谨的科学态度和认真负责的工作作风。
提高学生的工程意识和创新意识,培养学生的团队合作精神。
三、课程内容1、绪论材料力学的任务和研究对象。
变形固体的基本假设。
内力、截面法和应力的概念。
应变的概念和线应变、切应变的计算。
2、拉伸、压缩与剪切轴向拉伸和压缩的概念。
轴向拉伸和压缩时横截面上的内力和应力计算。
材料在拉伸和压缩时的力学性能,包括低碳钢和铸铁的拉伸试验、应力应变曲线、屈服极限、强度极限、延伸率和断面收缩率等。
轴向拉伸和压缩时的变形计算,胡克定律。
剪切和挤压的实用计算。
3、扭转扭转的概念。
圆轴扭转时横截面上的内力——扭矩和扭矩图。
圆轴扭转时横截面上的应力计算。
圆轴扭转时的变形计算,扭转角和单位长度扭转角的计算。
扭转时的强度和刚度条件。
4、弯曲内力弯曲的概念和梁的分类。
《材料力学》考试大纲
《材料力学》考试大纲一、考查目标《材料力学》作为全日制结构工程,工程力学,防灾减灾工程及防护工程,建筑与土木工程(专业学位)等专业的硕士研究生入学考试科目,其目的是考察考生是否具备进行专业学习所要求的基础力学知识。
二、考查内容(一)轴向拉伸与压缩1. 轴向拉(压)杆的内力计算、绘制轴力图2. 横截面和斜截面上的应力3. 轴向拉(压)的应力、变形,轴向拉(压)的强度计算4. 轴向拉(压)的超静定问题,轴向(压)压时材料的力学性质(二)剪切与扭转1. 连接件剪切面和挤压面的判定与计算,切应力和挤压应力的实用计算与强度分析2. 切应力互等定理和剪切虎克定律3. 外力偶矩的计算、扭矩和扭矩图4. 圆截面的极惯性矩及抗扭截面模量的计算5. 横截面内扭转切应力的计算及圆轴扭转的强度和刚度分析(三)弯曲1. 剪力和弯矩的计算,根据载荷集度、剪力和弯矩间的微分关系绘制剪力图和弯矩图2. 矩形和圆形截面的弯曲惯性矩和抗弯截面系数的计算3. 直梁横截面上的正应力、切应力的计算与强度分析,提高弯曲强度的措施4. 挠曲线微分方程,用积分法求解弯曲变形,用叠加法求解弯曲变形,解简单超静定梁,梁的刚度条件(四)应力和应变分析与强度理论1. 掌握应力状态、主应力和主平面的概念,以二向应力状态为主,掌握应力状态的解析法和图解法2. 计算任意斜截面上的应力、主应力和主平面的方位;掌握单元体最大剪应力计算方法3. 广义胡克定律4. 四种常用的强度理论在分析复杂应力状态时的应用(五)组合变形1. 掌握几种组合变形(斜弯曲、拉压(压缩)与弯曲组合、偏心压缩、扭转与弯曲组合变形)的变形特征和强度分析与计算方法(六)压杆稳定1. 掌握压杆稳定的概念,常见约束下细长压杆的临界压力2. 欧拉公式及经验公式的应用3. 压杆临界应力以及临界应力总图4. 压杆稳定性的校核计算;提高压杆稳定的措施(七)能量方法1. 杆件以及钢架变形能的计算方法2. 熟练掌握卡氏第二定理和单位载荷法(摩尔积分)计算结构的位移(梁、刚架和桁架)3. 功的互等定理和位移互等定理4. 能够用能量方法解一次超静定问题。
《材料力学》课程教学大纲
《材料力学》课程教学大纲了解材料力学的基本理论、基本概念和基本分析方法。
使学生能科学地辨认材料力学中的各种概念、原理、专业术语,使学生知道材料力学中各种构件的分类、受力过程和变化倾向。
理解材料力学中杆件和梁的几种变形形式。
使学生能用自己的语言对各种理论知识加以叙述、解释和归纳,并且能够指出各部分知识之间的内在联系和相互区别。
熟悉各种概念、原理和定律,掌握其计算与应用的方法。
具体反映在:1. 对材料力学的基本理论、基本概念和基本分析方法有明确的认识。
2. 掌握一般杆类零件和构件的受力与变形原理,具有绘出其合理的力学计算简图的初步能力。
3. 能够熟练地分析与计算杆件在拉、压、剪、扭、弯时的内力,绘制相应的内力图。
4. 能够熟练地分析与计算杆件在基本变形下的应力和变形,并进行相应的强度和刚度计算。
5. 对应力状态理论与强度理论有明确的认识,并能够将其应用于组合变形情况下的强度计算。
对应变状态有关概念有一定了解和认识。
6. 熟练地掌握简单超静定问题的求解方法。
7. 能够熟练地分析与计算理想中心受压杆件的临界荷载和临界应力,并对国家现行钢结构设计规范所规定工程压杆的稳定计算方法,有深入地了解和认识,并能够熟练地进行压杆的稳定性计算。
8. 对杆件的应变能有关概念、基本原理和基本定理有一定认识和掌握,并能够熟练地用来计算简单梁、扭转圆轴和简单拉压杆结构的位移,进而计算简单超静定问题的内力。
9.对于常用材料的基本力学性能及其测试方法有初步认识。
10. 对于电测实验应力分析的基本原理和方法有初步认识。
三、教学内容与教学要求1.绪论内容要求:了解材料力学的任务、变形固体的概念;理解变形固体的基本假设;熟悉杆件变形的基本形式分类。
重点:杆件的四种基本变形。
难点:理解变形固体的四个基本假设。
2.轴向拉伸和压缩内容要求:①了解轴向拉伸和压缩的概念、内力的概念及其分类。
②掌握轴向拉压内力的计算方法及内力图的绘制;理解应力的概念及其分布规律;正确计算横截面、斜截面的应力及变形计算。
燕山大学理论力学考试大纲
燕山大学理论力学燕山大学理论力学((力学类力学类))考研专业课复习大纲考研专业课复习大纲 考研加油站收集整理 一、静力学:1、静力学公理与物体的受力分析:静力学公理、约束与约束反力、受理分析与受力图。
2、平面汇交力系:平面汇交力系合成与平衡的几何法、解析法、力的分解与力在轴上的投影。
3、力矩、平面力偶理论:力对点之矩、合力矩定理、平面力偶理论、平面力偶系的合成和平衡方程。
4平面任意力系:力的平移定理、平面任意力系向一点的简化、平面任意力系的平衡方程、静定与静不定的概念、物体系统的平衡、平面简单桁架的内力计算。
5摩擦及其平衡问题:滑动摩擦和滚动摩阻、摩擦角和自锁现象、考虑摩擦时平衡问题的解法。
6空间力系:空间汇交力系、空间力偶理论、力对轴之矩与力对点之矩、空间任意力系的简化、空间任意力系的平衡方程。
二、运动学:1、点的运动学:确定点运动位置的基本方法、点的速度与加速度的矢量表示、点的速度与加速度的直角坐标表示、点的速度与加速度的弧坐标表示。
2、刚体的简单运动:刚体的平动、刚体绕定轴的转动、转动刚体上各点的速度与加速度、定轴轮系的传动问题。
3、点的合成运动:点的合成运动的几个基本概念、点的速度合成定理、牵连运动为平动时的加速度合成定理、牵连运动为转动时的加速度合成定理。
4、刚体的平面运动:刚体的平面运动的分解、求平面图形上各点速度的基点法和投影法、求平面图形上各点速度的瞬心法、求平面图形上各点加速度的基点法。
三、动力学:1、质点动力学的基本方程:动力学的基本定律、质点的运动微分方程、质点动力学的两类基本问题。
2、动量定理:质点的动量定理、质点系的动量定理、质心运动定理。
3、动量矩定理:质点的动量矩定理、质点系的动量矩定理、刚体绕定轴的转动微分方程、刚体对轴的转动惯量、刚体的平面运动微分方程。
4、动能定理:力的功、质点的动能定理、质点系的动能定理、功率、功率方程、机械效率、势力场、势能、机械能守恒定律、基本定理的综合应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料力学
发布日期:2011-8-27 9:59:03新闻来自:本站原创
1、变形固体的基本假设。
内力、截面法。
应力、应变、虎克定律。
杆件的基本变形形式。
2、轴向拉伸和压缩的概念和实例。
横截面上的内力和应力。
材料在拉伸与压缩时的力学性能。
许用应力、强度条件。
拉伸和压缩时的变形。
拉压静不定问题。
温度应力。
装配应力。
3、剪切和挤压的实用计算。
4、外力偶矩与扭矩的计算。
薄壁圆筒的扭转、纯剪切。
圆轴扭转时的应力和变形。
圆轴扭转的强度和刚度计算。
5、静矩和形心。
惯性矩、惯性积、惯性半径。
平行移轴公式。
转轴公式。
主惯性轴、主惯性矩。
6、剪力与弯矩。
剪力与弯矩方程。
应用内力方程作剪力图与弯矩图。
载荷集度、剪力和弯矩间的微分关系。
应用微分关系作剪力图和弯矩图。
叠加法作弯矩图的概念。
7、弯曲正应力。
弯曲切应力。
弯曲正应力和切应力强度计算。
弯曲中心。
8、挠度和转角。
梁的刚度条件。
挠曲线的近似微分方程。
积分法求梁的变形。
叠加法求梁的变形。
9、一点应力状态的概念。
平面应力状态分析的解析法和图解法。
三向应力状态简介。
平面应变状态分析。
广义虎克定律。
10、组合变形的概念。
斜弯曲。
拉伸或压缩与弯曲的组合。
偏心压缩(拉伸)、截面核心。
强度理论的概念。
四种常用的强度理论。
扭转和弯曲的组合。
11、结构变形能的计算。
单位载荷法。
图形互乘法。
功的互等定理。
12、静不定系统的概念。
力法解静不定问题。
对称及反对称性质的应用。
静不定结构的位移。
13、动静法的应用。
构件受冲击时的应力和变形。
14、压杆稳定的概念。
两端铰支细长压杆的临界力。
不同杆端约束细长压杆的临界力。
欧拉公式的适用范围、经验公式。
临界应力总图。
压杆稳定性计算的安全系数法。
参考书:
1、《材料力学》.白象忠.科学出版社
2、《材料力学》.刘鸿文.高等教育出版社(第四版)。